一道數學競賽題之勘誤

周靖北

在指導學生參加數學競賽的過程中,往往被大量的各式競賽考古題包圍,有些題目絞盡腦汁仍想不出來,便參考所附的解答或與同事討論,大致上問題皆能獲得解決,但有一道題目,在看了該題本所附的解答之後,仍然懵懵懂懂,一方面覺得該解法有些神來之筆,不知如何想到的?另一方面覺得有些步驟跳得太快,說明不夠詳細。經深入探討之後,發現題目的解法隱約用到了擴張(體)的概念,這個概念在高中課程中並不會提到,只有某類題型大概沾到邊:「若一個整係數二次多項方程式有一根爲 $2+\sqrt{3}$,求另一根。」答案爲 $2-\sqrt{3}$,但老師在對學生講解這類題目時,並不需要提到擴張,而且大部分老師在還原這個二次方程時,大概都是這樣解:令 $x=2+\sqrt{3}$,則 $(x-2)^2=(\sqrt{3})^2$,得知原二次方程爲 $x^2-4x+1=0$ 。

對於高中生來說擴張可說是陌生的概念,要解出這道競賽題難度頗高。本文將由高中已知關於有理數、平方根以及二項展開式的性質出發,並且概略提到「體」、「擴張」等等名詞定義及性質,來解釋此道題目的解法。

另外發現該題本所附的解法並不完整,所給的答案只是其中一組解。

該試題爲 99 學年度高級中學數學科能力競賽複賽南區 (高雄區) 筆試 (一) 的第 1 題, 由 「99 學年度學科能力競賽數學科決賽總報告」所提供的題目及參考解答如下:

題目: 若兩互質的整係數多項式 P(x) 與 Q(x) 滿足 $\frac{P(\sqrt{2}+\sqrt{3}+\sqrt{7})}{Q(\sqrt{2}+\sqrt{3}+\sqrt{7})}=\sqrt{2}+\sqrt{3}$, 則 P(x) 與 Q(x) 爲何?

參考解答:

令
$$s=\sqrt{2}+\sqrt{3}+\sqrt{7}$$
,考慮整係數多項式 $A(x)$ 與 $Q(x)$ 滿足 $\frac{A(\sqrt{2}+\sqrt{3}+\sqrt{7})}{Q(\sqrt{2}+\sqrt{3}+\sqrt{7})}=\frac{A(s)}{Q(s)}=\sqrt{7}$,則所求 $\sqrt{2}+\sqrt{3}=s-\sqrt{7}=s-\frac{A(s)}{Q(s)}$ 。

所以, x=s 是 $A(x)-\sqrt{7}Q(x)=0$ 方程式的解。考慮整係數多項式 B(x) 以消去 $\sqrt{2}$ 及 $\sqrt{3}$ 兩項, (註 1)

$$B(x) = (x - \sqrt{2} - \sqrt{3} - \sqrt{7})(x - \sqrt{2} + \sqrt{3} - \sqrt{7})(x + \sqrt{2} - \sqrt{3} - \sqrt{7})(x + \sqrt{2} + \sqrt{3} - \sqrt{7}) = A(x) - \sqrt{7}Q(x)$$
 (註 2)

所以, 化簡 B(x) 得

$$[(x - \sqrt{7})^2 - (\sqrt{2} + \sqrt{3})^2] \cdot [(x - \sqrt{7})^2 - (\sqrt{2} - \sqrt{3})^2]$$

$$= [(x - \sqrt{7})^2 - 5 - 2\sqrt{6}] \cdot [(x - \sqrt{7})^2 - 5 + 2\sqrt{6}]$$

$$= [(x - \sqrt{7})^2 - 5]^2 - (2\sqrt{6})^2$$

$$= (x^2 - 2\sqrt{7}x + 2)^2 - 24$$

$$= (x^4 + 32x^2 - 20) - \sqrt{7}(4x^3 + 8x),$$

得
$$A(x) = x^4 + 32x^2 - 20$$
 及 $Q(x) = 4x^3 + 8x$ 。

所以,
$$\sqrt{2} + \sqrt{3} = s - \sqrt{7} = s - \frac{A(s)}{Q(s)} = s - \frac{s^4 + 32s^2 - 20}{4s^3 + 8s} = \frac{3s^4 - 24s^2 + 20}{4s^3 + 8s}$$
,

得
$$P(x) = 3x^4 - 24x^2 + 20$$
 及 $Q(x) = 4x^3 + 8x$ 。

以上解法有兩處錯誤的地方, 分別在標示爲註 1 與註 2 的位置:

註 1: B(x) 乘開之後顯然並非整係數多項式,此處「整係數多項式 B(x)」應爲意思表達之錯 誤。

註 2: $A(x) - \sqrt{7}Q(x)$ 不一定等於 B(x), 但 $A(x) - \sqrt{7}Q(x)$ 必爲 B(x) 的倍式, 且爲 $A(x) - \sqrt{7}Q(x) = (f(x) + \sqrt{7}g(x))B(x)$ 之形式, 其中 f(x)、g(x) 皆爲有理係數 多項式。又因爲 A(x)、Q(x) 爲整係數多項式且互質,因此 $f(x)(x^4+32x^2-20)$ — $7q(x)(4x^3+8x)$ 與 $-f(x)(4x^3+8x)+g(x)(x^4+32x^2-20)$ 爲整係數多項式且互 質。

滿足條件的 f(x)、q(x) 有無限多組, 因此此題答案有無限多組。

上述解法中的關鍵推論是: 若 $\sqrt{2} + \sqrt{3} + \sqrt{7}$ 是方程式 $A(x) - \sqrt{7}Q(x) = 0$ 的解 (其中 A(x) 與 Q(x) 皆爲整係數多項式), 則 $\sqrt{2} - \sqrt{3} + \sqrt{7}$, $-\sqrt{2} + \sqrt{3} + \sqrt{7}$, $-\sqrt{2} - \sqrt{3} + \sqrt{7}$ 也都會是方程式 $A(x) - \sqrt{7}Q(x) = 0$ 的解, 因此 $A(x) - \sqrt{7}Q(x)$ 會被 $B(x) = (x - \sqrt{7}Q(x))$ $\sqrt{2} - \sqrt{3} - \sqrt{7}(x - \sqrt{2} + \sqrt{3} - \sqrt{7})(x + \sqrt{2} - \sqrt{3} - \sqrt{7})(x + \sqrt{2} + \sqrt{3} - \sqrt{7}) =$ $(x^4 + 32x^2 - 20) - \sqrt{7}(4x^3 + 8x)$ 整除。

而 $A(x) - \sqrt{7}Q(x)$ 與 B(x) 皆爲「(整係數多項式)+ $\sqrt{7}$ (整係數多項式)」的形式,因此 $A(x) - \sqrt{7}Q(x)$ 除以 B(x) 的商, 會是「(有理係數多項式)+ $\sqrt{7}$ (有理係數多項式)」的形式。

以下便針對上述推論作詳細說明,並且提供這道題目經過修正後的解法。

概念 1: 體 (field): 具備加法與乘法兩種運算的代數結構, 具有加法單位元素 0 與乘法單位元素 1, 任意元素 a 皆有加法反元素 (-a); 除了 0 以外, 其他任意元素 b 皆有乘法反元素 $b^{-1} = \frac{1}{b}$ 。體還必須滿足許多運算性質, 這裡不一一贅述, 只針對需要用到的性質稍作介紹。證明過程中會用到一個關鍵性質, 那就是體對於兩種運算皆具有封閉性, 即: 若 F 是一個體, $a,b \in F$, 則 $a+b \in F$, 且 $a*b \in F$ 。

有理數集 Q、實數集 R、複數集 C 皆爲體的例子, 整數集 Z 並不是體, 因爲對於 2 來說, 其乘法反元素 $\frac{1}{2}$ 並不屬於 Z,但 Z 仍是一個具備加法與乘法的代數結構, 稱爲「環」(ring)。

概念 2: 擴張體: 這裡不討論擴張體的嚴謹定義, 只探討證明過程中會用到的擴張體的例子與 概念。

 $Q(\sqrt{2})=\{a+b\sqrt{2}\mid a,b\in Q\}$ 爲 Q 的一個擴張體, 是由 Q 這個體加入一個不屬於 Q 的元素 $\sqrt{2}$ 之後, 經適當擴展所能夠得到最小的體 (以 Q 及 $\sqrt{2}$ 爲基礎, 增加一些元素以形成一個體, 但增加的元素越少越好)。因爲體具有封閉性, 因此經適當擴展之後, $Q(\sqrt{2})$ 內的元素必爲 $a+b\sqrt{2}$ 的形式 (其中 $a,b\in Q$)。

 $Q(\sqrt{2},\sqrt{3})=\left(Q(\sqrt{2})\right)(\sqrt{3})=\{a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}\mid a,b,c,d\in Q\}$ 爲 $Q(\sqrt{2})$ 的一個擴張體, 是由 $Q(\sqrt{2})$ 這個體加入一個不屬於 $Q(\sqrt{2})$ 的元素 $\sqrt{3}$ 之後, 經適當擴展所能夠得到最小的體。 $Q(\sqrt{2},\sqrt{3})$ 亦可視爲 Q 的一個擴張體, 是由 Q 這個體加入兩個不屬於 Q 的元素 $\sqrt{2},\sqrt{3}$ 之後, 經適當擴展所能夠得到最小的體。

已知性質 1: 若 a 爲正整數且 a 不是平方數, 則 \sqrt{a} 不是有理數。

說明: 由「 $\sqrt{2}$ 不是有理數」的經典證明可以類似地證明上面這個更一般的性質。

已知性質 2: 若 a, b 爲有理數且 $a + b\sqrt{2} = 0$, 則 a = b = 0。

說明: 若 $b \neq 0$, 則由 $a+b\sqrt{2}=0$ 可得 $\sqrt{2}=-\frac{a}{b}\in Q$, 與已知性質 1 不合, 故 a=b=0 。

此性質等價於「若 a,b,c,d 爲有理數且 $a+b\sqrt{2}=c+d\sqrt{2},$ 則 a=c 且 b=d」,這說明了在擴張體 $Q(\sqrt{2})$ 中,數的表達方式是唯一的。

已知性質 3: 若 a, b 爲有理數且 $(a+b\sqrt{2})^n = p+q\sqrt{2}$, 其中 p, q 爲有理數, 則 $(a-b\sqrt{2})^n = p-q\sqrt{2}$ 。

說明: 因爲 p,q 爲有理數, 故 p 爲 $(a+b\sqrt{2})^n$ 展開式中 $(\sqrt{2}$ 的) 偶次項之和, $q\sqrt{2}$ 爲 $(a+b\sqrt{2})^n$ 展開式中 $(\sqrt{2}$ 的) 奇次項之和, 對照 $(a-b\sqrt{2})^n$ 之展開式即可得證。

引理 1: $\sqrt{6} \notin Q(\sqrt{7})$ 。

說明: 若 $\sqrt{6} \in Q(\sqrt{7})$, 則存在有理數 a, b 使 $\sqrt{6} = a + b\sqrt{7}$ (1) 式,

可得 $a - b\sqrt{7} = \sqrt{6} - 2b\sqrt{7}$,

因此 $(a+b\sqrt{7})(a-b\sqrt{7}) = \sqrt{6}(\sqrt{6}-2b\sqrt{7})$.

展開得 $a^2 - 7b^2 = 6 - 2b\sqrt{42}$

因此 $2b\sqrt{42} = 6 - a^2 + 7b^2$ 爲有理數。

若 $b \neq 0$ 則 $\sqrt{42}$ 爲有理數, 與已知性質 1 不合, 故 b = 0。

代回 (1) 式可得 $\sqrt{6} = a$ 爲有理數, 與已知性質 1 不合, 故 $\sqrt{6} \notin Q(\sqrt{7})$ 。

利用類似的證明方法可推得

推論 1: 若 a, b 爲互質的正整數且都不是平方數, 則 $\sqrt{a} \notin Q(\sqrt{b})$ 。

說明: 其實條件還可以再放寬, 但得要增加其他限制條件, 這裡用不到這麼細的性質。

引理 2: $\sqrt{3} \notin Q(\sqrt{2}, \sqrt{7})$ 。

證明: 若 $\sqrt{3} \in Q(\sqrt{2}, \sqrt{7})$, 則存在有理數 a, b, c, d 使 $\sqrt{3} = a + b\sqrt{2} + c\sqrt{7} + d\sqrt{14}$,

整理得 $\sqrt{3} = (a + c\sqrt{7}) + (b + d\sqrt{7})\sqrt{2}, \dots$ (1) 式,

可得 $(a+c\sqrt{7})-(b+d\sqrt{7})\sqrt{2}=\sqrt{3}-2(b+d\sqrt{7})\sqrt{2}$,

因此 $((a+c\sqrt{7})+(b+d\sqrt{7})\sqrt{2})((a+c\sqrt{7})-(b+d\sqrt{7})\sqrt{2}) = \sqrt{3}(\sqrt{3}-2(b+d\sqrt{7})\sqrt{2}),$ $(a + c\sqrt{7})^2 - ((b + d\sqrt{7})\sqrt{2})^2 = 3 - 2(b + d\sqrt{7})\sqrt{6}.$

左式 $(a+c\sqrt{7})^2-2(b+d\sqrt{7})^2\in Q(\sqrt{7})$, 因此右式 $3-2(b+d\sqrt{7})\sqrt{6}\in Q(\sqrt{7})$,

可得 $(b + d\sqrt{7})\sqrt{6} \in Q(\sqrt{7})$ 。

若 $b + d\sqrt{7} \neq 0$, 則 $\sqrt{6} \in Q(\sqrt{7})$, 與引理 1 不合, 故 $b + d\sqrt{7} = 0$,

代回 (1) 式可得 $\sqrt{3} = a + c\sqrt{7} \in Q(\sqrt{7})$, 與推論 1 不合, 故 $\sqrt{3} \notin Q(\sqrt{2}, \sqrt{7})$ 。

62 數學傳播 38卷3期 民103年9月

在已知性質 2 中, 可以將 a,b 爲有理數的條件改爲有理數的擴張體, 得到如下的推論。

推論 2: 若 $a, b \in Q(\sqrt{2}, \sqrt{7})$ 且 $a + b\sqrt{3} = 0$, 則 a = b = 0。

證明: 若 $b \neq 0$, 則由 $a + b\sqrt{3} = 0$ 可得 $\sqrt{3} = -\frac{a}{b}$ 。

因爲 $a,b \in Q(\sqrt{2},\sqrt{7})$, 因此由 $Q(\sqrt{2},\sqrt{7})$ 的封閉性可得 $\sqrt{3} = -\frac{a}{b} \in Q(\sqrt{2},\sqrt{7})$, 此與引理 2 不合, 故 a=b=0。推論 2 等價於「若 $a,b,c,d \in Q(\sqrt{2},\sqrt{7})$ 且 $a+b\sqrt{3}=c+d\sqrt{3}$, 則 a=c 且 b=d」。

在已知性質 3 中, 可以將 a,b 爲有理數的條件改爲有理數的擴張體, 得到如下的推論。

推論 3: 若 $a,b \in Q(\sqrt{2},\sqrt{7})$ 且 $(a+b\sqrt{3})^n=p+q\sqrt{3}$, 其中 $p,q \in Q(\sqrt{2},\sqrt{7})$, 則 $(a-b\sqrt{3})^n=p-q\sqrt{3}$ 。

證明: 因爲 $a, b, p, q \in Q(\sqrt{2}, \sqrt{7})$, 故 p 爲 $(a + b\sqrt{3})^n$ 展開式中 $(\sqrt{3})$ 的) 偶次項之和, $q\sqrt{3}$ 爲 $(a + b\sqrt{3})^n$ 展開式中 $(\sqrt{3})$ 的) 奇次項之和, 對照 $(a - b\sqrt{3})^n$ 之展開式即可得證。

推論 4: 若 $f(x) \in Q(\sqrt{2}, \sqrt{7})[x]$ 且 $f(a+b\sqrt{3}) = p+q\sqrt{3}$, 其中 $a,b,p,q \in Q(\sqrt{2},\sqrt{7})$, 則 $f(a-b\sqrt{3}) = p-q\sqrt{3}$ 。

證明: 設 $f(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$, 其中 $c_n, c_{n-1}, \dots, c_0 \in Q(\sqrt{2}, \sqrt{7})$,

則對於其中的每一項 $c_k x^k$, 由推論 3 可推得: 若 $c_k (a + b\sqrt{3})^k = p_k + q_k \sqrt{3}$,

其中 $a, b, c_k, p_k, q_k \in Q(\sqrt{2}, \sqrt{7})$, 則 $c_k(a - b\sqrt{3})^k = p_k - q_k\sqrt{3}$ 。

因此各項之和也滿足類似性質,得證。

定理 1: 若 $f(x) \in Q(\sqrt{7})[x]$, $a,b,c \in Q(\sqrt{7})$ 且 $x = a\sqrt{2} + b\sqrt{3} + c$ 爲方程式 f(x) = 0 的根, 則 $x = a\sqrt{2} - b\sqrt{3} + c$, $-a\sqrt{2} + b\sqrt{3} + c$, $-a\sqrt{2} - b\sqrt{3} + c$ 也都是 f(x) = 0 的根。

證明: 因爲 $f(x) \in Q(\sqrt{7})[x]$, 因此 $f(x) \in Q(\sqrt{2}, \sqrt{7})[x]$ 。

因爲 $a, b, c \in Q(\sqrt{7})$, 因此 $a\sqrt{2} + c \in Q(\sqrt{2}, \sqrt{7}), b \in Q(\sqrt{2}, \sqrt{7})$ 。

可設 $f(a\sqrt{2} + b\sqrt{3} + c) = f((a\sqrt{2} + c) + b\sqrt{3}) = p + q\sqrt{3}$, 其中 $p, q \in Q(\sqrt{2}, \sqrt{7})$,

由推論 4 可得, $f(a\sqrt{2} - b\sqrt{3} + c) = f((a\sqrt{2} + c) - b\sqrt{3}) = p - q\sqrt{3}$ 。

已知 $x = a\sqrt{2} + b\sqrt{3} + c$ 為方程式 f(x) = 0 的根, 因此 $f(a\sqrt{2} + b\sqrt{3} + c) = p + q\sqrt{3} = 0$,

由推論 2 可得 p = q = 0。故 $f(a\sqrt{2}-b\sqrt{3}+c) = p-q\sqrt{3} = 0$,

因此 $x=a\sqrt{2}-b\sqrt{3}+c$ 亦爲方程式 f(x)=0 的根。

同理可證 $x = -a\sqrt{2} + b\sqrt{3} + c$ 、 $-a\sqrt{2} - b\sqrt{3} + c$ 也都是方程式 f(x) = 0 的根。

以下是將原本的題目解答稍作更改之後的參考解法:

題目: 若兩互質的整係數多項式 p(x) 與 q(x) 滿足 $\frac{p(\sqrt{2}+\sqrt{3}+\sqrt{7})}{q(\sqrt{2}+\sqrt{3}+\sqrt{7})} = \sqrt{2}+\sqrt{3}$,則 p(x) 與 q(x) 爲何?

參考解法: 令
$$s = \sqrt{2} + \sqrt{3} + \sqrt{7}$$
, 則 $\frac{p(s)}{q(s)} = s - \sqrt{7}$,

故 x = s 是方程式 $p(x) - (x - \sqrt{7})q(x) = 0$ 的一個解。

令
$$h(x) = p(x) - (x - \sqrt{7})q(x) = (p(x) - xq(x)) + \sqrt{7}q(x)$$
 (1),

因爲 p(x) 與 q(x) 皆爲整係數多項式 (因此也會是有理係數多項式), 故 $h(x) \in Q(\sqrt{7})[x]$ 。

因爲
$$x = \sqrt{2} + \sqrt{3} + \sqrt{7}$$
 是方程式 $h(x) = 0$ 的一個解且 $h(x) \in Q(\sqrt{7})[x]$,

因此由定理 $1, x = \sqrt{2} - \sqrt{3} + \sqrt{7}, -\sqrt{2} + \sqrt{3} + \sqrt{7}, -\sqrt{2} - \sqrt{3} + \sqrt{7}$ 也都是 h(x) = 0 的解,

故
$$h(x)$$
 在 $R[x]$ 中被 $\left(x - (\sqrt{2} + \sqrt{3} + \sqrt{7})\right)\left(x - (\sqrt{2} - \sqrt{3} + \sqrt{7})\right)\left(x - (-\sqrt{2} + \sqrt{3} + \sqrt{7})\right)\left(x - (-\sqrt{2} - \sqrt{3} + \sqrt{7})\right)$ 整除。計算得

$$(x - (\sqrt{2} + \sqrt{3} + \sqrt{7}))(x - (\sqrt{2} - \sqrt{3} + \sqrt{7}))$$
$$(x - (-\sqrt{2} + \sqrt{3} + \sqrt{7}))(x - (-\sqrt{2} - \sqrt{3} + \sqrt{7}))$$
$$= (x^4 + 32x^2 - 20) - \sqrt{7}(4x^3 + 8x)$$

設 $h(x) = m(x)((x^4 + 32x^2 - 20) - \sqrt{7}(4x^3 + 8x))$, 其中 $m(x) \in R[x]$,

因爲 h(x) 與 $(x^4 + 32x^2 - 20) - \sqrt{7}(4x^3 + 8x)$ 皆屬於 $Q(\sqrt{7})[x]$,

易證 m(x) 也屬於 $Q(\sqrt{7})[x]$ 。

設 $m(x) = f(x) + \sqrt{7}g(x)$, 其中 $f(x), g(x) \in Q[x]$, 因此

$$h(x) = (f(x) + \sqrt{7}g(x))((x^4 + 32x^2 - 20) - \sqrt{7}(4x^3 + 8x)), \quad \sharp \vdash f(x), g(x) \in Q[x],$$

$$= (f(x)(x^4 + 32x^2 - 20) - 7g(x)(4x^3 + 8x))$$

$$+\sqrt{7}(-f(x)(4x^3 + 8x) + g(x)(x^4 + 32x^2 - 20)).$$

對照 (1) 式: $h(x) = (p(x) - xq(x)) + \sqrt{7}q(x)$, 其中 p(x) 與 q(x) 爲整係數多項式, 可得

$$\begin{cases} p(x) - xq(x) = f(x)(x^4 + 32x^2 - 20) - 7g(x)(4x^3 + 8x) \\ q(x) = -f(x)(4x^3 + 8x) + g(x)(x^4 + 32x^2 - 20). \end{cases}$$

因爲 p(x) 與 q(x) 爲整係數多項式且互質, 所以 p(x) - xq(x) 與 q(x) 也是整係數多項式且 互質; 反之若 p(x) - xq(x) 與 q(x) 爲整係數多項式且互質, 則 p(x) 與 q(x) 也會是整係數 多項式且互質。故只要能找到有理係數多項式 f(x), q(x), 使得

$$f(x)(x^4 + 32x^2 - 20) - 7g(x)(4x^3 + 8x) \quad \text{ if } \quad -f(x)(4x^3 + 8x) + g(x)(x^4 + 32x^2 - 20)$$

爲整係數多項式且互質, 則便可得一組 p(x) 與 q(x) 的解。

這樣的有理係數多項式 f(x)、g(x) 有無限多組,例如:令 $\begin{cases} f(x) = -1 \\ g(x) = 0 \end{cases}$ 所得到的 p(x) 與 q(x) 即爲「99 學年度學科能力競賽數學科決賽總報告」中所提供的解,而令 $\begin{cases} f(x) = 0 \\ g(x) = 1 \end{cases}$ 即

可得到不同的答案。

後記: 雖然只是一道競賽題, 但我卻使用了這麼多的篇幅才勉強作了說明 (有些地方仍說明得 不夠詳細), 若是在競賽現場, 一題頂多讓你寫半個小時, 不太可能洋洋灑灑寫那麼詳細, 因此我 心裡頗爲好奇: 這道題作答到何種程度可以得到滿分? 更好奇的是: 當初這道競賽題不知有沒 有學生做對?

參考資料

- 1. 「99 學年度學科能力競賽數學科決賽總報告」。
- 2. I. N. Herstein, Abstract Algebra.

--本文作者任教高雄中學--