以古典幾何研究一高考試題

石長偉

2005年江西省高考理科壓軸題: 設抛物線 $\Gamma: y = x^2$ 的焦點爲 F, 動點 P 在直線 l: x-y-2=0 上運動, 過點 P 作拋物線的兩條切線 PA、PB, 且與拋物線 Γ 分別相切 於 A、B 兩點, (1) 求 ΔAPB 的重心 G 的軌跡方程; (2) 證明 $\angle PFA = \angle PFB$ 。

標準答案與好多雜誌提供的都是純粹的解析法,因爲解析法本身運算麻煩,爲了簡化思維,所以筆者對此題進行了古典幾何法的深入探索,直接將此題的結論推廣到圓錐曲線中,並加強了推廣命題。

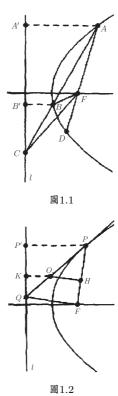
1. 預備知識

1.1 若 (如圖1.1) 圓錐曲線 Γ 的割線 AB 延長交相應於 焦點 F 的準線 l 於 C, AF 交 Γ 於 D, 則 CF 平 分 $\angle AFB$ 的外角 $\angle BFD$

證明: 分別過 $A \setminus B$ 作 $AA' \perp l$, $BB' \perp l$, 知 BB': AA' = BC : AC; 根據圓錐曲線統一定義知 $AF = e \cdot AA'$, $BF = e \cdot BB'$; 所以 AF : BF = AC : BC, 由 三 角 形 外 角 平 分 線 性 質 定 理 知 CF 平分 $\angle AFB$ 的外角 $\angle BFD$ 。

1.2 若 (如圖 1.2) 圓錐曲線 Γ 的切線 PQ 交相應於焦點 F 的準線 l 於 Q, 則 $\angle PFQ$ 爲直角。

證明: 根據切線的定義, 當圖 1.1 中的 B 點無限接近至與 A 重合時, 割線變爲切線, 由 1.1 知 $\angle PFQ$ 爲 直角。

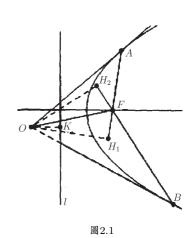


1.3 若 (如圖1.2) 圓錐曲線 Γ 的切線 PQ 交相應於焦點 F 的準線 l 於 Q, Q 爲 PQ 上的任 意一點, 且 $OK \perp l$, $OH \perp PF$, 則 $HF = e \cdot OK$ 。

證明: 由 1.2知 $OF \perp FP$, $\therefore OH \perp FP$, $\therefore FH : FP = QO : QP$, 過點 P 作 $PP' \perp l$, $:: OK \perp l, :: QO : QP = OK : PP', 即 OK : PP' = FH : FP, 又據圓錐曲線統一$ 定義知 $PF = e \cdot PP'$, 所以 $HF = e \cdot OK$ 。

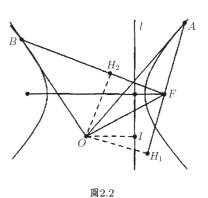
2. 命題推廣

2.1 若 (如圖2.1) O 為焦點為 F 的圓錐曲線 Γ 外的一 點, 過點 O 作 Γ 的兩條切線 $OA \setminus OB$, 切點分別是 $A \setminus B$, 且 $A \setminus B$ 點在 Γ 的同支上, 則 $\angle OFA =$ ∠OFB ("同支"是指橢圓、拋物線及雙曲線的一支)。 **證明**: 過 O 點作 $OH_1 \perp AF$, $OH_2 \perp BF$, $OK \perp l$, 由 1.3知 $OK \cdot e = H_1F$, $OK \cdot e = H_2F$, 故 $H_1F =$ H_2F 。在 $Rt\Delta OH_1F$ 與 $Rt\Delta OH_2F$ 中, OF 公 用, $H_1F = H_2F$, 所以 $\Delta OH_1F \cong \Delta OH_2F$, ∴ $\angle OFA = \angle OFB_{\circ}$



2.2 若 (如圖2.2) O 為焦點為 F 的圓錐曲線 Γ 外的一 點, 過點 O 作 Γ 的兩條切線 $OA \setminus OB$, 切點分別 爲 $A \setminus B$, 且 $A \setminus B$ 點在 Γ 的異支上, 則 $\angle OFA$ + $\angle OFB = \pi$ ("異支"是專指雙曲線的兩支)。

證明: 過 O 點作 $OH_1 \perp AF$, $OH_2 \perp BF$, $OK \perp l$, 由 1.3知 $OK \cdot e = H_1F$, $OI \cdot e = H_2F$, 故 $H_1F =$ H_2F 。在 $Rt\Delta OH_1F$ 與 $Rt\Delta OH_2F$ 中, OF 公 用, $H_1F = H_2F$, 所以 $\Delta OH_1F \cong \Delta OH_2F$, ∴ $\angle OFH_1 = \pi$, $\therefore \angle OFA + \angle OFB = \pi$

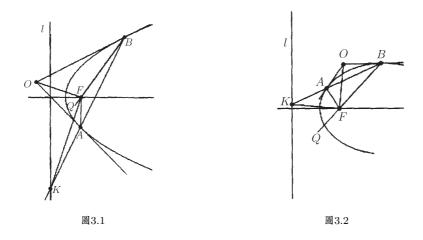


3. 命題加強

若 O 爲焦點爲 F 的圓錐曲線 Γ 外的一點, 過點 O 作 Γ 的兩條切線 OA 、OB, 切點 A、B 在 Γ的同支上, 延長 AB 交準線於 K, 延長 BF 至 Q, ①當切點 A, B 在對稱軸的異側

80 數學傳播 31卷4期 民96年12月

時 (如圖3.1); ②當切點 A, B 在對稱軸的同側時 (如圖3.2); 則 $\angle OFK$ 爲直角 ("同支"是指橢圓、拋物線及雙曲線的一支)。



證明: ①由 1.1知 $\angle QFK = \angle AFK$, 又由 2.1知 $\angle BFO = \angle AFO$, 但是 $\angle AFO = \angle OFQ + 2\angle QFK$, 並且 $\angle OFQ + \angle BFO = \pi$, 故 $2(\angle OFQ + \angle QFK) = \pi$, 所以 $\angle OFK$ 爲直角。

②由 1.1知: $\angle AFK = \angle QFK$, 又由 $\angle AFO = \angle BFO$, 因爲 $\angle QFK + \angle AFK + \angle AFO + \angle BFO = \pi$, 即 $2(\angle AFK + \angle AFO) = \pi$, 所以 $\angle OFK$ 爲直角。

圓錐曲線問題的純幾何證法與解析法相較而言, 純幾何法顯得優越多, 讀者不妨在解決問題時, 多一法考慮, 必有異種收穫。

—本文作者任教於陝西省西安東方中學—