談「校内段考」

王湘君

一. 前言:

北市某高中,這學期高二第一次段考,數學各班平均30多分,大約每班只有一、二人及格,及格的也不過是60多分,可謂慘不忍睹。

命題老師原本對自已精心設計的考題, 抱以高度的期望,沒料到學生考得這麼糟,眞 是大失所望。就像一位大廚師,上了一道拿手 的佳餚,客人非但不捧場,反而嫌東嫌西,廚 師豈有不沮喪的!大嘆學生不用功,責怪他們 太差勁,甚至怪罪到敎育當局的學年學分制, 沒有留級,學生有恃無恐,更不知努力求學, 以致程度每下愈況!有一位老師提議重考,因 爲學生沒讀好書,再考一次,可以讓學生有 機會好好地再讀一次,以補強前面所學的不 足。但最後以加分來「粉飾太平」,不過是美 化「帳面」而已,於事何補!

遺憾的是:並未見到老師認眞地檢討教學方法以及試題難易是否適中,只是一味地責怪學生,而學生因爲考不好,有挫折感,影響日後學習的興趣和信心。校內的考試,一再上演著同樣的戲碼,所以引起我寫這篇文章的動機,來探討試題怎麼出,才算是一次成功的測驗!

二. 試題剖析

這次考試範圍包括: 平面向量、空間概念、空間向量, 與空間中的平面。試題分三大類, 一、是非題, 佔10%, 二、填空題, 佔80%, 三、計算證明題, 佔10%, 考試時間爲70分鐘, 現在分題剖析如下:

一、是非題: 10%

- ①1. 設 A, B, C 爲相異三點, 過 A 恰有一平面與 \overrightarrow{BC} 垂直。
- ×2. 相異兩平面之交集可能爲一線段。
- ×3. 設 O, A, B, C 爲相異四點且 $\overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}, (\alpha, \beta, \in R)$ 。若 A, B, C 三點共線, 則 $\alpha + \beta = 1$
- ×4. 設 \vec{a} , \vec{b} , \vec{c} 爲三向量, 則 $\vec{a} \cdot (\vec{b} \cdot \vec{c}) = (\vec{a} \cdot \vec{b}) \cdot \vec{c}$
- ×5. 設 \vec{a} , \vec{b} , \vec{c} 爲三向量, 若 $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$ 且 $\vec{c} \neq \vec{0}$ 則 $\vec{a} = \vec{b}$ 。

評註: 只有第3題有陷阱, 必須注意 O不能與 A.B.C 三點共線, 此定理才能成立。 其餘的, 都是一看題, 就會答, 可惜學生平日 讀書馬虎, 只著重公式的記憶, 對基本觀念不 求甚解, 因此解答問題似是而非。

二、填空題:80%

- 1. 設 P 爲 $\angle BAC$ 內部一點, $\angle BAC$ = 60° , \overline{AB} = 3, \overline{AC} = 4, \overrightarrow{AP} = $9\overrightarrow{AB} + 3\overrightarrow{AC}$, \overline{AP} 與 \overline{BC} 相交於 D
- (1) $\overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC}, (x, y \in R)$ 則 $(x, y) = (\Psi)$
- $(2) \overrightarrow{AB} \cdot \overrightarrow{CA} = \underline{\qquad (Z) \qquad }.$
- $(3) |\overrightarrow{AD}| = \underline{\qquad} (\overline{\bowtie}) \qquad .$
- (4) $t = \underline{\qquad}$ (丁) 時, $|\overrightarrow{AB} + t\overrightarrow{AC}|$ 有最小值 $m, m = \underline{\qquad}$ (戊) 。
- (5) 過 A 作 \overline{BC} 之垂線交 \overline{BC} 於 H, $\overrightarrow{AH} = p\overrightarrow{AB} + q\overrightarrow{AC}, (p, q \in R)$ 則 (p,q) = (己) 。
- (6) 建立座標系使 A 之座標爲 (3,2), \overrightarrow{AB} 之 方向爲 x 軸正向, 單位長不變, C 在 \overrightarrow{AB} 上方,
 - (i) \overrightarrow{BC} 之坐標成分表示法爲 $\underline{\hspace{0.5cm}}$ $(\underline{\mathfrak{p}})$ 。
 - (ii) $\angle BAC$ 之分角線上之單位向量的座標成分表示法爲 (辛) 。

答案: (甲) $(\frac{3}{4}, \frac{1}{4})$ (乙) -6 (丙) $\frac{\sqrt{133}}{4}$ (丁) $-\frac{3}{8}$ (戊) $\frac{3\sqrt{3}}{2}$ (己) $(\frac{10}{13}, \frac{3}{13})$ (庚) $(-1, 2\sqrt{3})$ (辛) $(\frac{\sqrt{3}}{2}, \frac{1}{2})$

本題屬於平面向量部分

- (1) 解析:(i) $\overrightarrow{AD} = k\overrightarrow{AP}, \overrightarrow{AP} = 9\overrightarrow{AB} + 3\overrightarrow{AC}$ (已知), $\Rightarrow \overrightarrow{AD} = 9k\overrightarrow{AB} + 3k\overrightarrow{AC}$ (ii) B, C, D 共線 $\Rightarrow 9k + 3k = 1$ 評註: 標準考題, 是定理的應用, 但含兩個概念, 一般學生缺乏聯想力。
- (2) 解析: 利用 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, θ 爲 \vec{a} 與 \vec{b} 之夾角, 但須注意, \overrightarrow{AB} , \overrightarrow{CA} 夾 角爲 120°

評註: 基本題, 但也考核了學生是否細心。

(3) 解析: 利用 $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$

評註:標準考題,但本題爲連坐題,必須 前兩題都答對,才有得分機會。

- (4) 解析: 有兩種解法: (i) 利用 $|\vec{a}+t\vec{b}|^2 = |\vec{a}|^2 + 2t\vec{a}\cdot\vec{b} + t^2|\vec{b}|^2$ 及二次函數的配方
 - (ii) 利用 $\overrightarrow{a} + t\overrightarrow{b}$ 與 \overrightarrow{b} 垂直時, $|\overrightarrow{a} + t\overrightarrow{b}|$ 爲最小。

評註: 標準考題, 可惜與 (2) 連坐。

- (5) 解析: (i) 先用餘弦定理算出 \overline{BC} 長
 - (ii) 次用面積算出 \overline{AH} 長
 - (iii) 再用畢氏定理算出 \overline{BH} : \overline{CH}
 - (iv) 再用分點公式

評註: 計算繁瑣, 牽涉到較多的定理, 是 綜合性的考題, 應以計算題來考。

- (6) 解析:(i) 利用 $\overrightarrow{BC} = \overrightarrow{AC} \overrightarrow{AB}$, 把 A 當原點, \overrightarrow{AB} 射線當作 x 軸正向。(ii) 方向角爲 θ 的單位向量是 $(\cos\theta,\sin\theta)$ 。 評註: 這是測驗學生的解讀能力, 以及組織能力, 是一般學生最弱的部分, 學生往往「小題大作」。
- (1) A, B, C, E 共平面, 則 a = (子)
- (2) ΔABC 之面積爲 (\pm) 。
- (3) 四面體 A-BCD 之體積爲 __(寅)__。
- (4) 平面 ABC 之單位法向量之座標成分表示法爲 (Ψ) 。
- (5) D 在平面 ABC 上之正射影爲 H, 則 H 之座標爲 (辰) 。

- (6) k 爲 $\triangle ABC$ 之外心, 則 $\overrightarrow{AK} \cdot \overrightarrow{BC} =$
- (7) 若 \overrightarrow{AF} 之方向角爲 60° , 120° , 45° 且 $|\overrightarrow{AF}| = 6$,則 F 點之座標爲 (午) 。
- (8) 若 M 爲 \overline{BC} 之中點, N 爲 \overline{CD} 上 之點且 \overline{CN} : \overline{ND} = 3:2, \overrightarrow{MN} = $l\overrightarrow{AB} + m\overrightarrow{AC} + n\overrightarrow{AD}$ III (l, m, n) =(未)。 [答案](子) 4 (丑) $\frac{\sqrt{29}}{2}$ (寅) 1

(卯) $\pm(\frac{3}{\sqrt{29}}), \frac{-4}{\sqrt{29}}, \frac{2}{\sqrt{29}})$ (辰) $(\frac{47}{29}, \frac{5}{29}, \frac{41}{29})$

(已) -2 (午) $(4, -32 + 3\sqrt{2})$

 (\pm) $\left(-\frac{1}{2}, -\frac{1}{10}, \frac{3}{5}\right)$

本題屬於空間向量與空間中的平面部分。

- (1) 解析: 先求出 A,B,C 三點所決定的平 面方程式, 再把 E 點坐標代入。 評註: 因三階行列式還未教到, 如果用平 行六面體, 體積的觀念來解就容易多了。
- (2) 解析: 利用 ΔABC 面積 $=\frac{1}{2}\sqrt{|\overrightarrow{AB}|^2|\overrightarrow{AC}|^2-(\overrightarrow{AB}\cdot\overrightarrow{AC})^2}$ 評註: 基本題, 一再告誡學生, 空間中 Δ 面積公式要記住並且要會證明。
- (3) 解析: 解法有二 (i) 先求 D 到平面 ABC 之距離, 作爲四面體 A - BCD的高, 再利用體積公式 $=\frac{1}{3} \times$ 底 \times 高 (ii) 利用由 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} 所張的平行 六面體體積 (三階行列式) 即

$$\frac{1}{6} \begin{vmatrix} \overrightarrow{AB} \\ \overrightarrow{AC} \\ \overrightarrow{AD} \end{vmatrix}$$
 的絕對值

評註: 1.點到平面的距離, 不在本次考試 範圍內,而且與1,2連坐。

- 2. 平行六面體體積公式亦不在考試範圍 内。
- (4) 解析: 平面 ax + by + cz + d = 0 的單 位法向量為 $\pm \frac{1}{\sqrt{a^2+b^2+c^2}}(a,b,c)$ 。 評註: 與1連坐題, 學生總是疏忽有兩個 單位法向量。
- (5) 評注: 此題要用直線的參數式, 根本不在 此次考試範圍內。
- (6) 解析: 利用 $\overrightarrow{AK} \cdot \overrightarrow{BC} = \overrightarrow{AK} \cdot (\overrightarrow{AC} \overrightarrow{AC})$ \overrightarrow{AB}) = $\overrightarrow{AK} \cdot \overrightarrow{AC} - \overrightarrow{AK} \cdot \overrightarrow{AB}$ 以及内 積的幾何意義。

評註: 稍難, 學生不太會分解一個向量爲 多個向量的和。

(7) 解析: $\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF}, \overrightarrow{AF} =$ $|\overrightarrow{AF}|(\cos\alpha,\cos\beta,\cos\gamma)$, α,β,γ β \overrightarrow{AF} 的方向角。

評註: 學生誤把 \overrightarrow{AF} 當作 \overrightarrow{OF} 。

(8) 解析: $\overrightarrow{MN} = \overrightarrow{AN} - \overrightarrow{AM}$ 再利用分點 公式。

評註: 沒有單純利用分點公式, 必須先分 解向量, 對中下程度的學生來說不易得 分。

三. 計算題: 10% (社會組)

設 $\vec{a} = (-1, 2, -2), \vec{a} \cdot \vec{b} = 18, \theta$ 表 $\stackrel{-}{a}$ 與 b 之夾角

- (1) $|\overrightarrow{b}|$ =? (以 θ 表示)。
- (2) θ =? 時 |b| 有最小値 m, 此時 $\overline{b} = ? m = ?$
- 三. 計算證明題: 10% (自然組)

1. $\triangle ABC$ 中. \overline{AD} 垂直 \overrightarrow{BC} 於 D. \overrightarrow{BE} 垂直 \overrightarrow{CA} 於 E, \overrightarrow{AD} 與 \overrightarrow{BE} 交於 H, 求證: $\overrightarrow{CH} \perp \overrightarrow{AB}$

評註: 此兩題較簡單, 前者是向量的內 積,後者是用向量證明三高共點。

三. 成功的測驗應具備的條件

這份試卷裡,沒有死代公式,只重記憶 的題目, 更沒有解題「絕招」才能解的題目, 命題的方式相當靈活, 可見命題老師的確下 了一番工夫設計問題,不像有些試卷,一字 不改地抄現成的試題, 學生只要背解答, 就能 應付考試。而這份試題,學生必須對教材徹底 理解, 融會貫通, 並且要有良好的思維品質, 才能應考。這一點,命題老師似乎高估了學 生。個人認爲數學的學習分爲三階段,首先是 「點」的學習, 其次是把「點」連成「線」, 最後 才是把「線」展成面。段考是評量學生對「點」 的了解,是「基本概念」的測驗,所以綜合性 的試題,不宜佔太多比率。

以下是個人以爲段考應掌握的方向

- 一、題意淺顯明白 ——個題目只問一個概 念, 題意要淺顯, 沒有非數學的困擾。因 爲學生初學,對敎材根本不熟,而老師浸 淫在數學教學中二十多年, 不能以自己 的標準來要求學生。綜合性的題目, 只 能搭配著出, 讓程度高的學生, 有所發 揮,一個題目中若含兩個以上的概念,若 有一個不會,整題就解不出來。
- 二、題組比率應減少 —題組型的試題本來 可以測驗學生的連貫性與聯想力, 可惜 得分會受到連坐影響,有時一題答錯,就

全軍覆沒,另一項缺點是周延性不夠,涵 蓋面不廣, 容易遺漏某些重要題材, 此次 佔 80%, 似嫌多些, 約 30% ~ 40% 即 可。

- 三、掌握教材重點 ——不要超出現階段所學 的範圍, 要讓教, 學與測驗三項配合良 好。命題應理論和計算並重、演算不可 繁瑣, 難易適中, 最好有基本送分題, 讓 學生一看題目,就能答出來。
- 四、配合學生學習的經驗 —教學是老師與 學生的互動, 老師要掌握學生學習的脈 動,因材施教,也要因材測驗。平時所 學過的例題, 習題以及小考題, 在段考中 出一些類似的問題,讓學生有成就感。
- 五、成績要能呈現學生的程度 —段考不是 聯考, 也不是競試, 試題要適合學生的程 度,不宜太深太廣,以致打亂了他們學習 的陣脚, 要讓認眞讀書的人, 考得好, 要 能鑑別出各種程度的考生。如果大家的 分數, 都壓縮在一個小區間內, 那考試 的意義又何在?

四. 結語

「段考」是校內定期評量學生階段性學 習的成果,老師應在敎學範疇內命題。題目的 型式與難易的程度,應審慎分配使教與學的 結果,確實地展現出來。切莫以爲段考只是一 次小考而不重視, 隨興出題。不良的試題, 會 打擊學生的信心, 甚至放棄學習。 盼老師出題 時,要謹愼爲之。

--本文作者曾任教於師大附中, 現已退休--