一個 2n (n 為奇數) 階魔方陣的簡單解法

劉任昌

摘 要

奇數階魔方陣的解法最爲簡單,它是一般小學數學課中的生動教材。至於 4n 階魔方陣的解法,也是可以利用這種魔方陣的對稱原理,輕易的解出。但是,關於第三類 2n (n 爲奇數) 階魔方陣的解法,它的難度卻是遠高於前面兩類。本文要藉由推廣前面兩類魔方陣的解法,導出一個在目前可以見到的相關文獻中,對第三類魔方陣較簡單的解法。

1. 前言

魔方陣 (magic square),又被稱做是「幻方」,在中國古時候的「洛書」中,它則被稱做是「縱橫圖」^[1]。魔方陣的條件是:

將 $\{1,2,\dots,n^2-1,n^2\}$ 排列在一個 $n\times n$ 維的矩陣中,讓每一橫列、每一縱欄與兩條對角線的數字和,都相等。

魔方陣在初級組合數學 (Combainatorics) 的領域,是一項非常生動的內容,它也常被小學或中學老師拿來當作授課的內容之一,希望因此而激發學生思考數學問題的興趣。

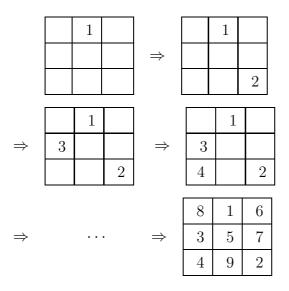
但是在一般的教材中, 只舉出了奇數階 與 4k 階魔方陣的排列方式, 原因是這兩類 魔方陣的解法相當容易, 但是對於六階魔方 陣的解法, 則避而不談, 最典型的例子, 就 是 Brualdi, R. A. 所寫的『Introductory Combainatorics』^[2]。

這篇文章的主要目的,是要導出一個對任意 2n(n爲奇數) 階魔方陣的簡單排列方法,並且將它證明。本文的內容如下,第2節先複習奇數階與 4k 階魔方陣的解法,第3節介紹六階魔方陣的解法,第4節介紹十階魔方陣的解法,第5節利用前面兩節的結果,歸納出一個解任意 2n(n 爲奇數) 階魔方陣的步驟,第6節則是證明上一節步驟的結果,並且做結論。

2. 奇數階與 4n 階的魔方陣

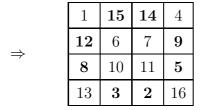
奇數階魔方陣的解法相當簡單,它是一般小學數學課中的生動教材,例如,排列三階魔方陣的常用步驟爲 de la Loubére 方法^[2]:

72 數學傳播 21卷2期 民86年6月



關於 4n 階魔方陣的解法, 也是可以利用這種魔方陣的對稱原理, 輕易的解出來, 例如我們可以用下列的步驟解四階方陣 [2]:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16



上面所介紹的兩種解法,只是衆多解法中, 被認為最簡單的兩種方法, 它們 的證明過程也是相當的容易, 只要使用類 似<u>梁培基與張航輔</u> 在「 4k 階全對稱幻方的 一種快速構作方法」^[3] 該篇文章的證明方法 即可。

真正具有難度的魔方陣, 是 2n (n 是奇數) 階的魔方陣。

3. 解六階的魔方陣

先讓我們考慮上一節的三階方陣,它的 組成元素是 $\{1,2,3,4,5,6,7,8,9\}$,但是, 我們現在使用 $\{0,4,8,12,16,20,24,28,32\}$ (差爲 4 的等差數列)來當作它的組成元素, 則

仍然是一個橫、直、對角方向的和, 皆爲 48的 魔方陣。

接著, 讓我們考慮下面這一個由 (1) 式 所擴展成的六階方陣:

						_
28	28	0	0	20	20	
28	28	0	0	20	20	
8	8	16	16	24	24	(2)
8	8	16	16	24	24	(2)
12	12	32	32	4	4	
12	12	33	33	4	4	

它是一個橫、直、對角方向的和, 皆爲 96的 方陣。

再讓我們觀察下面這個六階的方陣:

$$\Theta = \begin{bmatrix} 4 & 2 & 4 & 2 & 1 & 2 \\ 1 & 3 & 1 & 3 & 4 & 3 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 1 & 3 & 4 & 3 & 1 & 3 \\ 4 & 2 & 4 & 2 & 1 & 2 \\ 1 & 3 & 1 & 3 & 4 & 3 \end{bmatrix}$$
(3)

 Θ 是一個橫、直、對角方向的和, 皆爲 15的方陣。

我們再將方陣 (2) 與方陣 (3) 重疊相 加, 就得到如下的六階的魔方陣了。

32	30	4	2	21	22	
29	31	1	3	24	23	
12	10	17	18	28	26	(4)
9	11	20	19	25	27	(4)
16	14	36	34	5	6	
13	15	33	35	8	7	

它的横、直、對角方向的和,是 96 + 15 = $111 = \frac{36 \times (36+1)}{2} \times \frac{1}{6}$ 。

4. 解十階的魔方陣

以同樣類似的方法, 我們使用

	56	28	0	92	64
	60	52	24	16	88
(5)	84	76	48	20	12
	8	80	72	44	36
	32	4	96	68	40

替代方陣 (1)。方陣 (5) 的組成元素也是差 爲4的等差數列。

接著, 我們使用

										-
4	3	4	2	4	2	1	2	1	2	
1	2	1	3	1	3	4	3	4	3	
4	3	4	2	4	2	1	2	1	2	
1	2	1	3	1	3	4	3	4	3	
4	3	4	2	1	2	4	2	1	2	(6)
1	2	1	3	4	3	1	3	4	3	(0)
4	3	4	2	4	2	1	2	1	2	
1	2	1	3	1	3	4	3	4	3	
4	3	4	2	4	2	1	2	1	2	
1	2	1	3	1	3	4	3	4	3	

替代方陣 (3)。

我們再將擴展後的方陣 (5) 與方陣 (6) 重疊相加, 就得到橫、直、對角方向的和, 皆是 $\frac{100\times(100+1)}{2}\times\frac{1}{10}=505$ 的十階的魔方陣了。

在方陣 (6) 中, 最左兩欄完全是由

組成。

最右兩欄則完全是由

$$\begin{array}{c|c}
1 & 2 \\
\hline
4 & 3
\end{array}$$
(8)

組成。

此外,我們特別將該方陣中央部份的 $6 \times 6 = 36$ 個數字加粗,這是因爲這部份 六階方陣的數字與方陣 (3) 完全相同。如果 我們能掌握住這 36 個數字的排列方式和性 質,我們便可以在下一單元中,輕易的推導出 任意 2n (n 爲任意奇數) 階的魔方陣了。

5. 解 2n (n 為奇數) 階的魔方 陣的步驟

從上面兩節的內容, 我們已經可以歸納 出一個排列 2n (n爲奇數) 階魔方陣的方法 了:

- (一)、使用 $\{4k|k=0,1,\cdots,n^2-1\}$ 的等差數列,排列出一個 n階,且橫、直、對角線方向的和等於 $\frac{n^2(4n^2-4)}{2} \times \frac{1}{n} = 2n^3-2n$ 的魔方陣。例如 (1) 式。
- (二)、將步驟(-)方陣中的每一元素,擴展成 2×2 維、數字相等的方陣,我們因此

而得到一個 2n 階的方陣, 我們用 Σ 表示這一個 2n 階的方陣。例如 (2) 式。

 (Ξ) 、將方陣 (3) 的 Θ 同時做上、下方向對稱的擴展,擴展的矩陣是

。最後, Θ 被擴展成爲一個 $(2n) \times 6$ 的矩陣。我們用 Θ' 代表這一個擴展後的新矩陣。例如 (6) 式中的

4	2	4	2	1	2	
1	3	1	3	4	3	
4	2	4	2	1	2	
1	3	1	3	4	3	
4	2	1	2	4	2	(10
1	3	4	3	1	3	(10
4	2	4	2	1	2	
1	3	1	3	4	3	
4	2	4	2	1	2	
1	3	1	3	4	3	

(四)、將步驟 (三) 中的 Θ' ,同時做 左、右兩端對稱的擴展,擴展的元素分別由 方陣 (7) 與方陣 (8) 去填充 ,使它由一個 $(2n) \times 6$ 的矩陣,擴展成一個 $(2n) \times 10$ 的矩陣,再擴展成 $(2n) \times 14$ 的矩陣,... 直到 Θ' 變成一個 $(2n) \times (2n)$ 的矩陣,也就是一個 2n 階的方陣,將這個方陣用 Θ'' 表示。例如 (10) 式被擴展成 (6) 式。

 (Ξ) 、將步驟 (Ξ) 的 Σ 與步驟 (Ξ) 的 Θ'' 重疊相加, 就得到一個 2n 階的魔方陣了。

6. 證明

因爲 Σ (由 $\{4k|k=0,1,\cdots n^2-1\}$ 組成) 與 Θ'' (由 $\{1,2,3,4\}$ 組成) 重疊相加後,這 個新方陣的組成元素是 $\{1,2,\cdots,4n^2\}$,所 以,爲了要證明步驟(五)的結果確實是一個 魔方陣,我們僅需要證明步驟(二)所產生的 Σ 與步驟(四)所產生的 Θ'' ,都是一個橫、 直、對角線方向的和相等的方陣。

因爲步驟 (二) 的 Σ 是由步驟 (一) 的 奇數階魔方陣擴展而來, 所以, Σ 的横、直、對角線方向的和皆相等, 而且等於 $\frac{n^2(4n^2-4)}{2}$ × $\frac{1}{n}$ × $2=4n^3-4n$ 。

關於步驟 (Ξ) 中 Θ , 它只是一個 6×6 的方陣,且組成元素是 $\{1,2,3,4\}$,我們可以輕易的使用觀察法看出,它橫、直、對角線方向的和,都是 15 。

接著,當我們使用 (9) 式對 Θ 做上、下方向的擴增時;在橫的方向,每一列的總合固定是 15;在直的方向,仍然是維持每擴增兩列,和就增加 5 的情形。所以,我們最後所形成的 Θ' ,是一個橫列方向和等於 15,而直欄方向和等於 5n的矩陣。

接下來, 讓我們討論步驟 (五) 的 Θ'' 。

在直欄的方向,仍然是維持每擴增兩列, 就增加 5的情形,所以,直欄方向的和等於 5n。在橫列的方向,則因方陣 (7) 與方陣 (8) 被用來左、右對稱擴增,所以,這個矩陣每擴 增兩欄,它的橫列方向的和就增加 10。最後, Θ "每一橫列的和就等於 5n。

在對角線方向,由於左上角的擴展元素 是 (7) 式中的 {4,2},右下角的擴展元素是 (8) 式中的 {1,3},所以,在這個對角線的 方向,它的和仍然是每擴增兩欄,就增加 10。 Θ " 另一對角線方向也是類似如此,所以, Θ " 的兩條對角線方向和將等於 5n。

在 Σ 與 Θ'' 重疊相加之後, 它們每一方向的和等於 $(4n^3-4n)+5n$, 也等於 $\frac{4n^2(4n^2+1)}{2} \times \frac{1}{2n}$, 這正是一個 2n 階魔方陣

横、直、對角線方向的和。

實際上,當我們排列 2n 階魔方陣的時候,我們就使用類似排列奇數階魔方陣的方法,例如:

Ī			4	2						4	2			1			4	2														
			1	3						1	3						1	3														
							\Rightarrow							\Rightarrow	12	10																
							~								9	11																
												5	6						5	6												
												8	7						8	7												
	1			_			, ,						1	1 F	-																	
			4	2						4	2						4	2														
			1	3						1	3						1	3														
\Rightarrow	12	10					\Rightarrow	12	10					\Rightarrow	12	10	17	18														
7	9	11						9	11						9	11	20	19														
					5	6		16	14			5	6		16	16 14			5	6												
					8	7														13	15			8	7		13	15			8	7
							-							1																		
			4	2	21	22				4	2	21	22																			
			1	3	24	23				1	3	24	23																			
\Rightarrow	12	10	17	18			\Rightarrow	12	10	17	18	28	26	L .		…⇒魔方陣(4)。																
7	9	11	20	19				9	11	20	19	25	27																			
	16	14			5	6		16	14			5	6																			
	13	15			8	7		13	15			8	7																			

參考資料

- 1. 幼獅數學大辭典,幼獅出版社,臺北市,1992. 第2309-2311頁。
- 2. R. A. Brualdi, Introduction to Combainatorics, North-Holland, New York, 1977, P.6-7.
- 3. 梁培基與張航輔, 4k 階全對稱幻方的一種快速構作方法, 數學傳播, 17(4):87-92, 1993。
- —本文作者爲國立政治大學金融學系助教