從一個常見的矩陣談起

鄭穗生

1. 引言

在一些常見的教科書裡,往往會看到這 樣子的一個矩陣

如果我們追究這矩陣的來源,會發現它和原 子結構 [12],微分方程的數値計算 [10],細繩 結珠振動狀況 [11],飛輪的轉動穩定性 [11], 等都有著密不可分的關係。

在下一節中我們將以等矩結珠的細繩, 在受重力平衡狀態以及受轉動慣量平衡狀態 時所導至上述矩陣出現緣由, 作一說明。

該矩陣旣與各種自然現象有關,當然具 有豐富而有趣的性質。本文即試圖將一些觀 察到或由電腦模擬出來的物理現象與該矩陣 的一些特性作聯繫說明,希望籍此與讀者分 享筆者多年來研究的成果 [1-9] 與樂趣,並 提供一些研究方向,供有志者參考。

2. 結繩之動靜

考慮一條繃緊而且兩端固定之細繩(其 質量近似零)。假定繩子於等距點 x = $1, x = 2, \ldots, x = n$ 處受垂直外力 f_1, f_2, \ldots, f_n 作用,如圖一,

由張力 T_k 與外力 f_k 平衡所導至位移 y_1, \ldots, y_n 所滿足的方程 (見圖二) 爲,

$$T_k \sin \theta_k - T_{k-1} \sin \theta_{k-1} + f_k = 0,$$

k = 1, 2, ..., n

注意 $y_{k+1} - y_k = \tan \theta_k$,而且由於細繩繃 緊, 張力 $\approx T$ 而且 $\tan \theta_k \approx \sin \theta_k$,故近 似得

$$T(y_{k+1}-y_k)-T(y_k-y_{k-1})+f_k=0, \ 1 \le k \le n_{\circ}$$
(1)

另外,由於細繩兩端固定,得

$$y_0 = 0, \quad y_{n+1} = 0_{\circ}$$
 (2)

如果我們把線性方程式組 (1-2) 用矩陣法表示,則得,

$$M^{(n)}y = T^{-1}f, (3)$$

其中 $y = \operatorname{col}(y_1, \dots, y_n), f = \operatorname{col}(f_1, \dots, f_n)_{\circ}$

特別當外力 f_k 是由細繩結上質量為 m_k 的細珠所引致的話,則 $f_k = m_k g$,故方 程式 (3) 成為

$$M^{(n)}y = p, \ p = T^{-1}g \ \operatorname{col}(m_1, \dots, m_n)$$
(4)

而當外力 f_k 是由細繩結上質量為 m_k 的細 珠並沿 x-軸以角速度 ω 轉動所引致的話, 則 $f_k = m_k \omega^2 y_k$,故方程式 (3) 成為

$$M^{(n)}y = T^{-1}\omega^2 \operatorname{diag}(m_1, \dots, m_n)y_{\circ}$$
(5)

3. 逆矩陣之存在與性質

既然方程 (4), 即 $M^{(n)}y = p$, 可 以表示結繩靜力平衡時垂直位移與重力之關 係,而且由實驗知,該位移存在且唯一,故可 猜想 $M^{(n)}$ 之逆矩陣必存在。為了方便,記 $M^{(n)}$ 之逆爲 $G^{(n)}$ 。則給定 p 時, $y = G^{(n)}p$ 。特別取 $p = e_1 = col(1, 0, ..., 0)$, $p = e_2 = col(0, 1, 0, ..., 0)$, $p = e_n = col(0, ..., 0, 1)$ 時,由於 $G^{(n)}p = G^{(n)}e_k$ 是 $G^{(n)}$ 的第 k 行,所以我們得到 $G^{(n)}$ 的 一個物理意義,如記 $G^{(n)}$ 的第 j 行的分量 爲 $g_{1j}^{(n)}, g_{2j}^{(n)}, ..., g_{nj}^{(n)}$ 的話,則 $g_{ij}^{(n)}$ 是細繩 單獨於 x = j 點結上 $p_j = 1$ 的細珠時,細 繩在 x = i 的垂直位移 (見圖三)

有了這個物理意義,不難對 *G*⁽ⁿ⁾ 作出 下面的幾個猜想:

- 1. G⁽ⁿ⁾所有的分量必大於零。
- 2. $G^{(n)}$ 的分量必有對稱性 (例如 $g_{ij}^{(n)} = g_{ji}^{(n)}$)。
- G⁽ⁿ⁾ 的最大分量必處於"中央"(在"中 點"施力應得最大位移)。
- G⁽ⁿ⁾ 的每一行必先線性遞增然後線性遞 減 (見圖三)。

上述猜想,部份並不精確。這時侯我們 需以計算補足。我在第一次碰到求 G⁽ⁿ⁾ 這問 題時,個人電腦剛開始流行,所以我首先想到 的方法是以 Lotus 1-2-3 做計算。結果發現

$$G^{(2)} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix},$$

$$G^{(3)} = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix},$$

$$G^{(4)} = \frac{1}{5} \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix},$$

後面的 $G^{(n)}$,顯然不難想像。事實上,可以 試猜

$$g_{ij}^{(n)} = \begin{cases} \frac{i(n-j+1)}{n+1} & 1 \le i \le j\\ \frac{j(n-i+1)}{n+1} & j \le i \le n, \end{cases}$$

然後直接驗證 $M^{(n)}G^{(n)} = I$ 即可。 有了 $G^{(n)}$ 的精確形成,上述四個猜想都

可以以更精確的形式表示並加以證明:

1.
$$g_{ij}^{(n)} > 0$$
, $1 \le i, j \le n$.
2. $g_{ij}^{(n)} = g_{ji}^{(n)} = g_{n+1-i,n+1-j}^{(n)} = g_{n+1-j,n+1-i}^{(n)}$, $1 \le i, j \le n$.

3.

$$\max_{i,j} g_{ij}^{(n)} = \begin{cases} g_{\frac{n+1}{2},\frac{n+1}{2}}^{(n)} & n = \hat{\sigma} \\ \\ g_{\frac{n}{2},\frac{n}{2}}^{(n)} & n = \text{I} \end{cases}$$

4. 固定 *j* 時, $g_{ij}^{(n)}$ 在 $1 \le i \le j$ 時線性遞 增, 在 $j \le i \le n$ 時線性遞減。 如果我們滿足於對矩陣 *M*⁽ⁿ⁾ 及 *G*⁽ⁿ⁾ 所獲得之認知,可能有很多隱藏的事實就無 法被發現了。例如有下面的問題:

- 1. 什麼樣的矩陣其逆具正分量?
- 2. 什麼樣的矩陣其逆具對稱性?
- 3. 逆矩陣的最大最小分量位置可以預知嗎?
- 第三節中用猜的方法太特殊,有沒有較一般的方法? G⁽ⁿ⁾每一行都是線性遞增後線性遞減,是否可以幫助我們求逆矩陣?

對於頭一個問題,由於已有大量的研究 資料及專書報導 [13],我不打算在這裡詳述 了。對於第二個問題,也有一些結果,見 [18, 19]。簡單來說,如果矩陣具對稱性,則其逆也 具對稱性。

對於第三個問題,則筆者所知不多,無法 提供任何參考文獻。

至於第四個問題,研究資料也不少。事 實上,高斯消去法求逆,我們在中學時就已學 過。但這是一個通用的方法,對於具特殊類型 如 $M^{(n)}$ 或更一般的 Toeplitz 型矩陣,我們 希望能設計一些較有效率的方法,據我統計, 提出較有效率的計算方法的論文累計已超百 篇 [14,15]。做為一個例子,我們來看如何利 用 $G^{(n)}$ 的性質求其值 [7]。

設細繩上單獨於 x = j 點結上 $p_j = 1$ 的細珠, 則對應之位移 y_j 滿足

$$\begin{array}{rcl} y_i &=& a+b_i, \quad 0\leq i\leq j,\\ &&\\ &&\\ y_i &=& c+d(n+1-i), \quad j\leq i\leq n+1 \end{array}$$

4. 逆矩陣之計算

由於 $y_0 = y_{n+1} = 0$,故 a=c=0。只要決定 b 及 d 即可,注意到

$$-1 = y_{j+1} - 2y_j = y_{j-1}$$

= $(y_{j+1} - y_j) - (y_j - y_{j-1}) = -d - b_j$

故 b = 1 - d, 最後, 當 i = j 時, bj = d(n + 1 - j), 故 d = j/(n + 1)而 b = (n + 1 - j)/(n + 1), 即

$$g_{ij}^{(n)} = y_j = \frac{(n+1-j)i}{n+1}, \quad 0 \le i \le j,$$

$$\mathcal{B}_{ij}^{(n)} = y_i = \frac{j(n+1-i)}{(n+1)}, \quad j \le i \le n+1$$

雖然上面我們以 *M*⁽ⁿ⁾ 爲例作出逆矩陣之計 算。但這樣用兩個多項式相接的方法卻有一 般性。事實上, 對於"類似" *M*⁽ⁿ⁾ 或

之矩陣,利用多個多項式相接的方法,我們可 作出一類求逆矩陣之計算法 [7]。這裡我們順 便指出,[7]中所得之結果似乎可再加以推廣, 有興趣的讀者可以繼續研究這一課題。

5. *G*^(*n*)之列優性

在上一節中,我們提出了一些問題,並作 出部份解答,以說明 *M*⁽ⁿ⁾ 及 *G*⁽ⁿ⁾ 較深刻的 性質。下面我們以同樣的目的, 再提出一些問 題。

先回到結繩之靜態模型。對於給定的 *n* 個細珠 *m*₁, *m*₂,..., *m*_n, 如以不同的次序置 於繩上的話, 則對應的位移 *y*₁,..., *y*_n, 有一 最大值, 稱爲最大位移。

問題:以什麼次序置放細珠*m*₁,...,*m*_n, 才可使得對應的最大位移為最大?

這樣的問題, 我曾經向不少朋友提到。 一致的答案是把較重的細珠放在中間, 把輕 的放在兩邊。當然該答案並不精確, 但在 $n \le$ 9 的情形下, 我們可以用模擬計算來補充 (1。注意, 不同的細珠置放法導致一個排列, 目前 對於個人電腦, 8! 的排列中找最大是可以的, 9! 或 10! 排列中找最大則需要"很長"的時間 了)。事實上, 經反覆計算後, 我們可得出以 下實驗結論: 將細珠以大小次序排出, 並標 上 1,2,3,...,n 記號。將具標號爲1 的質量 置於繩上 x = n 的位置, 具標號爲2 的於 x = 1 的位置, 3 於 x = n - 1, 4於 x = 2, 等等。則對應的最大位移爲最大。

在 [6]中, 我們把這樣的實驗結論用數學 方式作了證明。其中一個重要的步驟, 是證明 $G^{(n)}$ 具"中央列優性"。要說明這性質, 我們 先把 $G^{(n)}$ 的每一列看做一個向量。我們說一 個向量 a 優於另一個向量 b 如果 a 的最大分 量不少於 b 的最大分量, a 的最大的兩個分 量的和不少於 b 的最大分量, a 的最大的兩個分 量的和不少於 b 的最大的兩個分量的和,... 以及 a 的所有分量的和不少於 b 所有分量 的和。(註:這種"優於"的概念, 在經濟學中常 見到。理由是如果 a, b 表二個國家成員的財 富, 則一個合理衡量國力的想法是認爲, a 國 不比 b 國差, 如果 a 國首富不比 b 國少, a 國頭兩名首富的財產總和不少於 b 國頭兩名 首富的財產總和,等等。)現在以 G⁽⁷⁾ 爲例

$G^{(7)} = \frac{1}{8}$	[7	6	5	4	3	2	1]	
	6	12	10	8	6	4	2	
	5	10	15	12	9	6	3	
	4	8	12	16	12	8	4	
	3	6	9	12	15	10	5	
	2	4	6	8	10	12	6	
	1	2	3	4	5	6	7	

不難驗證第一列劣於第二列,第二列劣於第 三列,第三列劣於第四列。然後,第四列優於 第五列,第五列優於第六列,最後,第六列優 於第七列。這樣的性質,我們不妨稱爲中央列 優性。當然,對於一般的 $G^{(n)}$,不能以驗證 的方式說明中央列優性。不過我們可舉一例 說明,一般的證明方法。首先注意到如 $a = (a_1, a_2, \ldots, a_n)$ 及 $b = (b_1, b_2, \ldots, b_n)$ 滿 足 $a_i \ge b_i$ 對於所有的i成立的話,則顯然 a優於b。現在如果a, b分別爲 $8 \times G^{(7)}$ 的 第二及第一列的話,即

$$a = (6, 12, 10, 8, 6, 4, 2),$$

$$b = (7, 6, 5, 4, 3, 2, 1),$$

則把 a 中的第二分量12減去1, 並加進第一 分量得

 $a' = (7, 11, 10, 8, 6, 4, 2)_{\circ}$

顯然 a 優於 a', 而 a' 又優於 b, 故 a 優於
b。這種"富藏於民"的判別較優性方法, 可參
考 [16], 而利用這方法作出中央列優性的證
明, 可參考 [6]。這裡我想順便補充幾件事情。

第一,[6]文本由我本人和呂宗澤教授合寫,因 爲在東德(當時還是共產國家)做報告時, 大會將單我個人具名的摘要當作最後文稿弄 錯了。第二,下面二個問題還未有任何答案, 值得研究:

問題: 什麼樣的矩陣其逆具中央列優 性?

問題: 以什麼次序置放細珠於細繩上, 才可使得對應的最大位移為最小?

6.*G*^(*n*)之斜聚性

由第三節,知位移 $y = G^{(n)}p$ 。故 細繩上細珠有位能 $m^t y = m^t G^{(n)}p$,其中 $m = \operatorname{col}(m_1, \ldots, m_n)$ 。如果我們關心細繩 上細珠在靜力平衡時的穩定性,自然會考慮 位能之最大最小。

問題:以什麼次序置放細珠才可使 m^tG⁽ⁿ⁾p 最大?

一如前一節,用計算模擬法可觀察到前 一節所描繪的排法也可使 *m^tG⁽ⁿ⁾p* 取最大。

這樣的觀察結果可能不太令人驚奇,但 我們卻未能用上節所描繪的想法作出證明。 還好,我們卻發現 *G*⁽ⁿ⁾ 的另一種性質可導致 這裡的觀察結果。要說明這性質,我們先看看 矩陣

6 數學傳播 十九卷四期 民84年12月

這矩陣感覺上以接近對角線的分量較大。再 看看矩陣 $G^{(7)}$,則類似的感覺就比較鮮明 了。更確實的說法如下。考慮任一給定方陣 $G = (g_{ij})$ 及任一中心 E = (x, y)落在 G的對角線 i = j上,而且以 G的四分量 座標為頂點的矩形(見圖四)

假如 (i) 當 *E* 的 *x* 坐標滿足 1 \leq $x \leq \frac{n+1}{2}$ 時, 有 $g_C \geq g_B$, $g_C \geq g_D$, $g_C - g_A \geq |g_D - g_B|$; 及(ii) 當 *E* 的坐 標滿足 $\frac{n+1}{2} < x \leq n$ 時, 有 $g_A \geq g_B$, $g_A \geq g_D$ 及 $g_A - g_C \geq |g_B - g_D|$ 。則稱方 陣 *G* 有斜聚性。

不難驗證, 方陣 *H* 及 *G*⁽ⁿ⁾ 具斜聚性 [3]。利用 *G*⁽ⁿ⁾ 的斜聚性, 加上一個把向量排 為 "對稱遞減"向量的算法 [17]即可證明我們 實驗觀察的結果 [3]。

在這裡我們順便提到 $m^t G_p^{(n)}$ 取最小値 時細珠的放法, 目前並無明確的猜想, 只能由 實驗知當 $m^T G^{(n)} p$ 取最小値時, 向量 m = $(m_1, m_2, ..., m_n)$ 必然滿足 $m_1 \ge m_2 \ge$ $\dots \ge m_j$ 及 $m_j \le m_{j+1} \le \dots \le m_n$, 其中 $1 \le j \le n$ 。實驗結果也可給出證 明,而且 G⁽ⁿ⁾的另一性質又被發現 [9]。但 由於這結果並沒有完整回答我們原來的問題, 我們不打算在這裡仔細作報告了。

7. 結繩之振動與轉動

在第二節中,我們推導了一個物理系統 的兩個數學模型。到目前為止,我們單只利 用其中的靜態模型獲至 $M^{(n)}$ 與 $G^{(n)}$ 的一 些性質。那麼動態模型是否也可提供 $M^{(n)}$ 與 $G^{(n)}$ 的其他性質呢? 的確如此,如果 我們進行結繩之轉動實驗,不難發現,並不 是在所有的轉速下有細珠位移的現象,而在 有位移現象時,各位移也不一定同向。這些 發現,導致不少數學研究。特別地,早在一百 年前 [20], Sturm 即已探索過結繩之振動與 轉動的數學理論基礎。後來, Krein, Gantmakher等人更進一步提出 Oscillating Matrix之概念 [13]來反映各類振動系統所表現 的共同特性。

這些概念以及固有轉動或振動頻率的概 念推動了固有值,離散富氏分析, Sturm-Liouville 系統等研究。這些研究部份已成為 現代線性代數的標準組成部份。另外一些則 伸展到現代的資訊工程(例如透過離散富氏 變換)等,對人類現代文明起了極大的催化 作用。

8. 結語

線性代數已知的理論與應用範圍甚廣, 但未被發現的似乎應更多。本文透過結繩之 動靜來說明發掘這些隱藏事實的過程中,我 的一些經驗。無疑,發掘的時間很長(已超 過十年),發掘的過程也不順暢(甚至可說 是異常艱苦),發掘出來的成果更不能賴以致 富。但今天能有機會把這些發現與讀者共享, 實一大樂事也。

參考文獻

- S. S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J., 12(1983), pp. 105-112.
- S. S. Cheng, Sturmian comparison theorems for three term recurrence equations, J. Math. Anal. Appl., 111 (19-85), pp. 464-474.
- S. S. Cheng and T. T. Lu, The maximum of a bilinear form under rearrangement, Tamkang J. Math., 17 (19-86), pp. 161-168.
- S. S. Cheng, Optimal fundamental frequencies of the loaded vibrating string, Tamkang J. Math., 18 (1987), pp. 23-32
- S. S. Cheng, A sharp condition for the ground state of difference equation, Applicable Analysis, 34 (1989), pp. 105-109.
- S. S. Cheng, Maximal displacements of the discrete losded strings, Lecture Notes Control Inf. Sci., 143(1990), 466-469.
- S. S. Cheng and L. Y. Hsieh, *Inverses of matrices arising from difference op*erators, Utilitas Math., 38(1990), pp. 65-77.
- S. S. Cheng and S. S. Lin, Existence and uniqueness theorems for nonlinear difference equations, Utilitas Math., 39 (1991), pp. 167-186

- T. T. Lu and S. S. Cheng, A necessary condition for the minimum of a quadratic form under rearrangements, Applied Math. Letters, to appear.
- R. L. Burden, J. D. Faires and A. C. Reynolds, Numerical Analysis, 2nd Ed., Prindle, Weber & Schmidt, Boston, 1981.
- F. B. Hildebrand, Finite Difference Equations and Simulations, Prentice Hall, 1968.
- D. E. Rutherford, Some continuant determinants arising in physics and chemistry I, Proc. Royal soc. Edinburgh, 62A(1947), pp. 229-236.
- F. P. Gantmakher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechnical Systems, United States Atomic Energy Commission, 1961.
- 14. D. S. Meek, A survey of results on the inverse of Toeplitz and band matrices, Proceedings of the Conference on Standard Algorithms for Linear Computation and the Implementations, RIMS, Kyoto University, Kyoto, Japan, July, 1982.
- 15. D. S. Meek, *Inverses of Toeplitz and band matrices*, preprint.
- A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, 1979.
- G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, London and New York, 19-64.
- A.R. Collar, On centrosymmetric and centroskew matrices, Quart. J. Mech. and Applied Math., 15(1962), pp.265-281.

- 8 數學傳播 十九卷四期 民84年12月
- I. J. Good, The inverse of a centrosymmetric matrix, Technometrics, 12 (19-70), pp. 925-928.
- 20. M. Bocher, The published and unpublished works of Charles Sturm on al-

gebraic and differential equations, Bull. Amer. Math. Soc., 18(1911), pp. 40-51.

—本文作者任教於清華大學數學系—