DNA序列與數學分析簡介

黄俊雄

一. 前言:

近代的分子生物研究起始於 1953 年 Watson 及 Crick 發現一 DNA 之結構 爲雙線螺旋形。這一革命性的發現導致許多 DNA data 被一一的從各種生物的細胞核內 讀出來。至1970中期讀 DNA 之技術更有 進一步突破,費用進一步降低。至今大約有 3×10^7 nuclestides (構成 DNA 之基本 分子,有四種)存於美國 Los Alamos National Laboratory 的 GenBank(電腦資 料庫) 及歐州德國 Heidelberg 之 EMBL databank (European Molecular Biology Laboratory)。日本亦已加入他們的資料庫 系統。由於 DNA 與生物細胞功能、進化、遺 傳、疾病等有非常密切之關係, DNA 可說是 生物的基本因子。如今有這麼大量的 data要 分析、處理,這可需要數學家的參加大力幫 忙。因爲生化學家天天忙於實驗整理資料,大 多 DNA 序列長達數萬個 nuclestides, 要把 每個 nuclestide 讀出無誤可眞費時費神,他 們實在沒時間做數學分析。因此數學家們應 多多參與幫忙。我們正面臨一生物革命時代, 正如數百年前伽利略發現行星運動三大定律。 當時他必須面對 Tycho Brahe 花了一輩子 時間所收集來的天文資料來分析。同樣地,如 今有大量的 DNA data 被讀出來,這與細胞 的功能、遺傳、疾病、進化等有什麼關係,可 眞需要聰明的數學家來研究解釋並找出定律 來。有一點現在數學家比伽利略佔優勢的是: 如今有快速電腦幫忙計算,幫忙繪圖顯像,幫 忙分析各種情形。

二. 生物背景:

每一生物細胞內有細胞核, 核內有 染色體 (chromosomes) 及核酸 (nucleic acids)。一 genome大致可說是染色 體部份集合,內含有很多基因 (gene),一 gene 可說是 DNA 序列的部份序列。一 DNA(deoxyribonucleic acid 去氧核糖核 酸)是由四種型式的 nucleotides (叫 A (adenine),G (guanine),C (cytosine), T(thymine))組成,其長度有的長達百萬單 位 (每一 nucleotide 有一定分子式,由碳、 氫、氧、氮等組成)。其結構有雙線螺旋型,也 有雙線捲圈圓型,或單線一條型,或單、雙線 圓型等 (見表一)。核酸有兩種,一為 DNA, 另一為 RNA (ribonuclei acid 核糖核酸)。 RNA 也是由四種型式的 nucleotides(叫 A, 2 數學傳播 十八卷一期 民83年3月

G, C, U(uracil)) 組成, 其長度大多爲數千 個單位而結構更複雜。在單一有機體內存在 著數千個不同的蛋白質 (protein)。每一蛋白 質是由一序列 amino acids(氨基酸) 組成, 大多長達數百個 (有的更長)。每一 amino acid 是由三個 RNA 之 nucleotides(即 A, G, C, U) 組成, 這組成單位叫 codon。數學 上應有 64種 codons, 但實際上存在的只有 20種 (見表二)。已讀出的 protein 序列皆存 在一資料庫, 叫 Protein Identification Resources(PIR) data base, 至今約有3000個 序列。

由物理化學特性上, nucleotides 傾向 於結合成一對一對存在著: G 與 C 結合, A 與 T 或 U 結合。一例如下:

很多 DNA 是由雙線 DNA 結合一起, 其結合規則即如上述。因此叫此雙線為 complementary pairs(互補對)。在 RNA 序列 中,通常為單線的,但常有部份序列與其他部 份序列結合一起,而沒結合的部份就成圓圈 狀,這叫 secondary structure(見下圖)。這 種結構在分子的形狀 (3-dimensional,很複 雜)及功能佔有很重要的地位。

一實際已讀出的 RNA 例子是 E. coli 16S RNA, 列於圖 1。請注意, 大多結合成對 的是合於上述規則 (用短直線連接), 也有不 合於上述規則 (用打點表示)。

一生命有機體會吸收養份, 使一 DNA

能複製自已成更多 DNA, 一些 DNA 經由 一轉錄過程 (transcription) 可轉變成 Untranslated RNA(tRNA) 及 messenger RNA (mRNA), 而 messenger RNA 可經 由一 translation 過程轉變成 protein。在 衆多 cellular RNA 中, messenger RNA 大約5%, 佔最多的 (約80%) 叫 ribosomal RNA(rRNA) 其正確功能未知, 但有證據指 出它對 protein 合成時某些部件之結合而成 爲 ribosome 極爲重要。

4 數學傳播 十八卷一期 民83年3月

表一. COMPLETELY SEQUENCED GENOMES

DNA 序列與數學分析簡介 5

$\mathbf{Organism}^{\mathrm{a}}$	$ {\bf Genome \ type}^{\rm b} $	$\frac{\mathbf{Sequence}}{\mathbf{length}^{\mathrm{c}}}$	$egin{array}{c} \mathbf{Accession} \ \mathbf{no.}^{\mathrm{d}} \end{array}$
Organelles			
Mouse mitochondrion	ds-DNA. circular	16295	J01420
Bovine mitochondrion	ds-DNA, circular	16338	J01394
Human mitochondrion	ds-DNA, circular	16569	J01415
X laevis mitochondrion	ds-DNA, circular	17553	M10217
	us Britt, offound	11000	
Eukaryotic plasmids			
S. cerevisiae 2 μ m plasmid	ds-DNA, circular	6318	J01347
$K. \ lactis \ 2 \ Kl \ plasmid$	ds-DNA, circular	8874	X00762
Prokarvotic plasmids			
pSN2	ds-DNA, circular	1288	J01763
pC194	ds-DNA, circular	2910	J01754
pBR327	ds-DNA, circular	3273	J02549
pE194	ds-DNA, circular	3728	J01755
pVH51	ds-DNA, circular	3847	K03114
pBB329	ds-DNA circular	4150	J01753
p.ID1	ds-DNA, circular	4207	M10316
pBB322	ds-DNA circular	4363	.101749
pT181	ds-DNA, circular	4437	J01764
ColEl	ds-DNA circular	6646	J01566
BSC13	ds-DNA circular	7894	J01783
165010	dis Divit, circular	1001	001100
Animal viruses			
Duck hepatitis B virus	ms-DNA, circular	3021	K01834
Human hepatitis B virus(ayw)	ms-DNA, circular	3182	J02203
Human hepatitis B virus(adr)	ms-DNA, circular	3188	V00867
Human hepatitis B virus(adw)	ms-DNA, circular	3200	V00866
Woodchuck hepatitis virus(WHV1)	ms-DNA, circular	3308	J02442
Woodchuck hepatitis virus(WHV2)	ms-DNA, circular	3320	M11082
Ground squirrel hepatitis virus	ms-DNA, circular	3311	K02715
Avian sarcoma virus Y73	ss-RNA, linear	3718	J02027
FBR murine osteosarcoma virus	ss-RNA, linear	3791^{e}	K02712
FBJ murine osteosarcoma virus	ss-RNA, linear	4026^{e}	J02084
Black beetle virus	ss-RNA, 2 linear segments	4504	K02560
Adeno-associated virus 2	ss-RNA, linear	4675	J01901
Fujinami sarcoma virus	ss-RNA, linear	4788^{e}	J02194
Human polyomavirus BK(MM)	ds-DNA, circular	4963	J02039
Minute virus of mice	ss-DNA, linear	5081	J02275
Human polyomavirus JC	ds-DNA, circular	5130	J02226
Human polyomavirus BK(Dunlop)	ds-DNA, circular	5153	J02038
Parvovirus H1	ss-DNA, linear	5176	J02198
Simian virus 40	ds-DNA, circular	5243	J02400
Lymphotropic papovavirus	ds-DNA, circular	5270	K02562
Polyoma virus (a3)	ds-DNA, circular	5296	J02289
Polyoma virus (a2)	ds-DNA, circular	5297	J02288
Simian sarcoma virus	ss-RNA, linear	5319^{e}	J02394
Crawford small-plaque polyomavirus	ds-DNA, circular	5350	K02737
Abelson murine leukemia virus	ss-RNA, linear	5659^{e}	J02009
Moloney murine sarcoma $virus(1)$	ss-RNA, linear	5828^{e}	J02266
Moloney murine sarcoma $virus(124)$	ss-RNA, linear	5833^{e}	J02263
Spleen focus-forming virus	ss-RNA, linear	6296^{e}	K00021
Human rhinovirus type 14	ss-RNA, linear	7212	K02121
Polivirus type 3	ss-RNA, linear	7431	K01392
Polivirus type 3 attenuated	ss-RNA, linear	7432	K00043

6 數學傳播 十八卷一期 民83年3月

ds: double stranded

ms: mixed (single+double)

ss: single stranded

表一. COMPLETELY SEQUENCED GENOMES

DNA 序列與數學分析簡介 7

		Sequence	Accession
$\mathbf{Organism}^{\mathrm{a}}$	${\bf Genome} ~ {\bf type}^{\rm b}$	$\mathbf{length}^{\mathrm{c}}$	$\mathbf{no.}^{\mathrm{d}}$
Poliovirus type 1	ss-RNA, linear	7440	J02281
Poliovirus type 1 attenuated	ss-RNA, linear	7441	V01150
Human hepatitis A virus	ss-RNA, linear	7478	K02990
Human papillomavirus 1A	ds-DNA, circular	7811	V01116
Cottontail rabbit papillomavirus	ds-DNA, circular	7868	K02708
Human papillomavirus 6b	ds-DNA, circular	7902	X00203
Human papillomavirus type 16	ds-DNA, circular	7904	K02718
Bovine papillomavirus type 1	ds-DNA, circular	7945	J02044
Maloney murine leukemia virus	ss-RNA, linear	8332	J02255
AKV murine leukemia virus	ss-RNA, linear	8371	J01998
Bovine leukemia virus	ss-RNA, linear	8714	K02120
Human T-cell leukemia virus type II	ss-RNA, linear	8952^{c}	M10060
Human T-cell leukemia virus type I	ss-RNA, linear	9032^{c}	J02029
Lymphadenopathy-associated virus	ss-RNA, lincar	9193	K02013
Visna lentivirus	ss-RNA, lincar	9202	M10608
Rous sarcoma virus	ss-RNA, linear	9625^{c}	J02342
AlDS-associated virus- 2^{f}	ss-RNA, linear	9737^{c}	K02007
Human T-cell leukemia virus type III^{f}	ss-RNA, linear	9751°	K02083
Yellow fever virus	ss-RNA, linear	10862	K02749
Vesicular stomatitis virus	ss-RNA, linear	11162	J02428
Sindhis virus	ss-RNA, linear	11703	J02363
Influenza type A	ss-RNA, 8 linear segments	13588	J02143
Adenovirus 2	ds-DNA linear	35937	J01917
Epstein-Barr virus	ds-DNA linear	172282	V01555
Plant viruses		112202	101000
Coconut cadang-cadang viroid (fast)	ss-RNA circular	246	.102050
Avocado supplotch viroid	ss-BNA circular	247	102020
Coconut cadang-cadang viroid (slow)	ss-BNA circular	287	J02051
Hop stunt viroid	ss-BNA circular	297	X00009
Cucumber pale fruit viroid	ss-BNA circular	303	X00524
Chrysanthemum stunt viroid (CSV2)	ss-BNA circular	354	M19506
Chrysanthemum stunt viroid (CSVI)	ss-BNA circular	356	M19505
Potato spindle tuber viroid	ss-RNA circular	359	.102287
Tomato anical stunt viroid	ss-BNA circular	360	K00818
Tomato planta macho viroid	ss-RNA circular	360	K00817
Citrus exocortis viroid (C)	ss-BNA circular	371	102053
Citrus exocortis viroid (DE25)	ss-RNA circular	371	K00964
Citrus exocortis viroid (DE26)	ss-BNA circular	371	K00965
Satellite tobacco necrosis virus	ss-RNA linear	1239	.102399
Maize streak virus	ss-DNA circular	2687	K02026
Tomato golden mosaic virus	ss-DNA 2 circular segments	5096	K02020 K02030
Bean golden mosaic virus	ss-DNA 2 circular segments	5233	M10070
Cassava latent virus	ss-DNA 2 circular segments	5503	102057
Tobacco mosaic virus (vulgare)	ss-BNA linear	6395	J02415
Cauliflower mosaic virus (D/H Hungary)	ds-DNA circular	8016	102047
Cauliflowver mosaic virus (Strasbourg)	ds-DNA circular	8024	102048
Cauliflower mosaic virus (CM1841)	ds-DNA circular	8031	J02046
Brome mosaic virus	ss-BNA 3 linear segments	8213	K02706
Alfalfa mosaic virus	ss BNA 3 linear segments	8274	102000
Cowpea mosaic virus	ss-RNA 2 linear segments	9370	X00206
Bacterionhage	os rurri, 2 micar segments	5010	1100200
MS2	ss-BNA linear	3569	102467
φX174	ss-DNA circular	5386	102482
ψμ114	bo-DIVA, UICUIAI	0000	002402

 $\blacksquare 1.$ Secondary structure of E. coli 16S RNA

	U	C	А	G
II	UUU Phenyl-	UCU	UAU Tyrosine	UGU
	UUC alanine	UCC Serine	UAC	UGC Cysteine
U	UUA	UCA	UAA TERMINATE	UGA TERMINATE
	UUG Leucine (1)	UCG	UAG	UGG Tryptophan
C	CUU CUC Lougino (1)	CCU CCC Proline	CAU Histidine	CGU CGC Argining (2)
	CUA	CCA	CAA Glutamine (2)	CGA
	CUG	CCG	CAG	CGG
A	AUU	ACU	AAU	AGU
	AUC Isoleucine	ACC Threenine	AAC Asparagine	AGC Serine
11	AUA AUG Methionine	ACA ACG	AAA Lysine	AGA Arginine (3)
G	GUU	GCU	GAU Aspartic	GGU
	GUC Valine	GCC Alanine	GAC acid	GGC Glycine
U	GUA	GCA	GAA Glutamic (2)	GGA
	GUG	GCG	GAG acid	GGG

表二. Codons and their amino acids. The coodons are shown in their mRNA form.

三. 序列排對 (Sequence Aligments):

序列間的比對是非常的重要,因爲這有 助於了解很多分子的進化、結構及功能。功 能相同的巨分子們及不同生物類中具有同名 稱的巨分子們通常皆具有某一程度不同的序 列,而其不同程度隨著進化的距離而加大。功 能不同的序列們 (如 hemoglobin 及 myglobin) 常常是由同一祖先序列分差發展而 來的,在相關序列中其對應部位常具有相似 的生化活動。

(3.1) 排對的數目:

令兩個序列各為 <u>a</u> = $a_1a_2...a_n$ 及 <u>b</u> = $b_1b_2...b_m$,其中 a_i 及 b_j 為 A, G, C, T 中之一個 (當我們考慮 DNA 時);或 為 20種符號之一 (當考慮 protein 時)。因 為可解 $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_3$, 但 $a_4 = b_5$, $a_5 = b_6$, $a_6 = a_7$, (即 n = 6, m = 7) 我們稱 <u>b</u> 為由 <u>a</u> 插入 b_4 而來或 <u>a</u> 為由 <u>b</u> 刪除 b_4 而來。如此在比對兩序列 時我們插入空元素中於序列中使兩序列同長。 即新的排對序列為

$$a_1^* a_2^* \dots a_L^*$$

 $b_1^* b_2^* \dots b_L^*,$

 a_i^* 及 b_i^* 是由原來 <u>a</u> 及 <u>b</u> 插入多個 ϕ 而 來; $n + m \ge L \ge \max\{n, m\}$ 。例子: <u>a</u> = ATAAGC, <u>b</u> = AAAAACG, 則排 對之一如下:

$$\underline{a}^* = \phi ATAAGC\phi$$
$$\underline{b}^* = AAAAA\phi CG_{\circ}$$

這樣排對的數目太多了 (通常 $n \ge m \ge$ 1000)。因此要加入規範: $\begin{pmatrix} \phi \\ \phi \end{pmatrix}$ 不允許發生, $\begin{pmatrix} C\phi \\ \phi G \end{pmatrix}$ 及 $\begin{pmatrix} C\phi \\ G\phi \end{pmatrix}$ 看成與 $\begin{pmatrix} C \\ G \end{pmatrix}$ 一樣。如此可能 排對的數目為

$$g(n,n) = \begin{pmatrix} 2n \\ n \\ as \ n \to \infty_{\circ} \end{pmatrix} \approx a^{2n} (4\sqrt{n\pi})^{-1}$$

當 n = m = 1000 時, $g(100, 100) \sim 10^{600}$, 太大不能一一硬是排對! 假如進一步 限制在一定長度範圍內不許有插入發生, 只 許有突變發生 (即 $\phi \neq a_i^* \neq b_i^* \neq \phi$), 則此 數目可進一步縮小。

當考慮 k 序列排對時, 我們可知其可能 排對數目會更大。令 $f_k(n) \lesssim k$ 序列 (其長 度為 n) 之排對數目, 則可證明出 for $k \ge 2$,

 $\lim_{n \to \infty} \log f_k(n)/n = \log C_k,$

where $C_k = (2^{1/k} - 1)^{-k} \approx \frac{1}{\sqrt{2}} [\frac{k}{\log 2}]$ 。當 n = 1000, k = 3時, $f_3(1000) \approx 10^{1755}$, 太大了。

(3.2) 用動態規畫做兩序列之排對:

我們要比對兩序列之相似性首先要定義 兩序列之距離函數 $D : D(\underline{a}, \underline{b}) = \min \sum_{i=1}^{L} d(a_i^*, b_i^*)$ 此處 minimum 是考慮所有可能的 排對。雖然可能的排對數目很大,但我們可用 動態規畫 (Dynamic Programming) 來解 決此問題。首先定義函數 d 如同成本函數:

 $d(a_i^*, b_i^*) = \begin{cases} 2 & \text{if } a_i^* = \phi \text{ or } b_i^* = \phi \\ 1 & \text{otherwise } (a_i^* = b_i^* = \phi \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

則很容易證出如下定理:

定理1: 若 <u>a</u> = $a_1 a_2 \dots a_n$ 且 <u>b</u> = $b_1, b_2 \dots$ b_m , 定義 $D_{ij} = D(a_1 a_2 \dots a_i, b_1 b_2 \dots b_j)$ 。 並設

$$D_{oo} = 0, \ D_{oj} = \sum_{k=1}^{j} d(\phi, b_k),$$

$$\boxplus \ D_{io} = \sum_{k=1}^{i} d(a_k, \phi).$$

則

$$D_{ij} = \min\{D_{i-j,j} + d(a_i, \phi), D_{i-1,j-1} + d(a_i, b_j), D_{i,j-1} + d(\phi, b_j)\}_{\circ}$$

此 即 動 態 規 畫 的 式 子。當 $d(a_i, b_j) =$ 1, $d(\phi, b_j) = d(a_i, \phi) = 2$ 時, 這演算法 則具有計算複雜性 O(nm)。一個例子是, 我 們排對兩個 Escherichia coli tRNA 序列: threonine tRNA(即 <u>a</u>) 及 valine tRNA (即 <u>b</u>)。利用定理1我們得到72個最佳排對, 其中之一顯示如下 (與72 最佳排對共通部份 則用方格框起來):

定義距離函數 $D(\underline{a}, \underline{b})$ 再設法重覆的找 最小 D 是一常用法則。另一常用法則是定義 相似函數 $S(\underline{a}, \underline{b}), S(a_i, b_j) < 0$ 若 $a_i \neq b_j$ 且 $S(a_i, b_j) > 0$ 若 $a_i = b_j$ 。如此我們可把 定理1中之D及 d 全改成S而 minimum 則 改成 maximum (即找最大相似度)。

假如事先給定一短的模型 <u>a</u>, 我們想找
出在 <u>b</u> 中那些地方很近似 <u>a</u>。此問題可寫成:
找出 *i* 及 *j* (*i* ≤ *j*)使

$$S(\underline{a}, b_i b_{i+1} \dots b_{j-1} b_j) = \max_{k < \ell} S(\underline{a}, b_k b_{k+1} \dots b_\ell)_{\circ}$$

解法就是把原來的動態規畫中式子修改一下 就行了。舉例如下: 在 E. coli promoter sequence 中, 模型 TATAAT 是已知具有顥著的特殊功能。故令 <u>a</u> = TATAAT。S(a, a) = 1, S(a, b) = -1 for $a \neq b$, and $S(a, \phi) = -2$ 。令 <u>b</u> =E. coli promoter sequence。利用動態規畫我們可 找出在 (6,43) 位置上有最佳排對:

TATAAT CATGAT。

此處 CATGAT 在 <u>b</u> 內, 爲一 canonical -10 pattern。 在 (6,13) 位置上有:

TATAAT TCGAAT,

此處 TCGAAT 在 <u>b</u> 內, 其功能在研究中, 不過在排對上倒一樣好。

有些全然相似性很小的序列們,竟然可 發現一些令人驚奇的關係來。比如在 viral (病毒)及 host DNA 中有令人出乎意料外 的長段列非常的相似。從數學上講,我們要找 出 $a_i a_{i+1} \dots a_i$ 及 $b_k b_{k+1} \dots b_\ell$ 使

$$\max_{\substack{1 \le i < j \le n \\ 1 < k < \ell \le m}} S(a_i a_{i+1} \dots a_j, b_k b_{k+1} \dots b_\ell) \circ$$

同樣地我們可用修飾後的動態規畫來解此問 題。基本構想如下: 先定義

$$H_{ij} = \max\{0, S(a_x a_{x+1} \dots a_i, b_y b_{y+1} \dots b_j) \\ : 1 \le x \le i, \ 1 \le y \le j\}_{\circ}$$

記錄x及y。令 $H_{io} = H_{oj} = 0$ for $1 \le i \le n$, $1 \le j \le m$ 。令 $S_{ok} = S(\phi, b_1 \dots b_k) = -\hat{g}_k$ 。則易證出

$$H_{ij} = \max\{0, H_{i-1,j-1} + S(a_i, b_j), \\ \max_{\substack{1 \le k \le i \\ 1 \le \ell \le j}} \{H_{i-k,j} - \hat{g}_k\}, \\ \max_{\substack{1 \le \ell \le j \\ 1 \le \ell \le j}} \{H_{i,j-\ell} - \hat{g}_\ell\}\}_{\circ}$$

如此從(i, j)位置倒回追查出(i, j)使

$$H_{ij} = \max_{\substack{1 \le k \le n \\ 1 \le \ell \le m}} H_{k\ell},$$

這時的 (*i*, *j*) 及其對應記錄下的 *x*, *y* 即告訴 你最相似的片段。

有時有些未知的因素存在於序列中而使 我們用數學方法找出的最佳排對並不正確地 反映生化特性。因此我們可利用生化資料來 正確估計相似分數,或成本函數,如此情況可 改善一些。另一方法即找出所有接近最佳的 排對來。此即找出所有排對而其對應的相似 分數落在最佳相似分數的某一距離內。如此 找出的排對中很可能某一個即合乎生化的解 釋。解決此問題的演算法與以前類似只不過 在計算過程中要記錄很多指標 (pointer) 及 倒回追蹤 (traceback)。 12 數學傳播 十八卷一期 民83年3月

利用 nucleotides 之間能量關係及動 態規畫我們可以設法預估出 RNA 之 secondary structure。這問題牽涉到化學分子 的物理特性,有興趣的人可看參考資料。

(3.3) bb12 多重序列的排對:

多重序列的排對可 把二序列排對的動 態規畫延伸下來加以解決之,但其計算複雜 度就成 $O(2^R n^R)$, R為序列個數。通常n很 大, $R \ge 3$ 時,計算量太大,不切實際。因 此另一新的,簡便方法就被提出來,今說明如 下: 令 R = 6及6序列排對如下:

$$Seq1 \cdots A \cdots$$

$$Seq2 \cdots A \cdots$$

$$Seq3 \cdots T \cdots$$

$$Seq4 \cdots A \cdots$$

$$Seq5 \cdots \phi \cdots$$

$$Seq6 \cdots C \cdots$$

把每一縱行看成一 vector。然後計算此行 A 出現的次數除以6, C出現的次數除以 6, G出現數的次數除以6, T出現次數除以 6, 以及 ϕ 出現次數除以6, T出現次數除以 6, 以及 ϕ 出現次數除以6。如此得到 $a = (p_A, p_C, p_G, p_T, p_\phi)$ 。我們要找出排對使測距

$$D = \sum_{\substack{\text{over} \\ \text{R-sequences} \\ +p_G \log p_G + p_T \log p_T + p_\phi \log p_g} (p_A \log p_A + p_C \log p_A + p_C \log p_C)$$

最大。此演算法是相當複雜。令 <u>a</u> = $a_1 \dots a_n, \underline{b} = b_1 \dots b_m, \dots, \underline{r} = r_1 \dots r_q$ 。

則考慮 $a_1 \dots a_i; b_1 \dots b_j; \dots; r_1 \dots r_x$ 之 排對, 其最後一行為:

$$\epsilon_1 a_i$$

$$\epsilon_2 b_j$$

$$\vdots$$

$$\epsilon_R r_x$$

此處 $\epsilon_i = 0$ 或 1, 且 $oa_i = \phi$ 。令距離函數 *D* 如上定義, 則可導出式子:

$$D_{ij\cdots x} = \max_{\underline{\epsilon} \neq \underline{o}} [D_{i-\epsilon_1, j-\epsilon_2, \dots, x-\epsilon_R}] + d(\epsilon_1 a_i, \epsilon_2 b_j, \dots, \epsilon_R r_x) \}.$$

這式子的計算複雜度是 $O(2^{R}n^{R})$, 記憶體 $O(n^{R})$ 。

四. 統計分析 (Statistical Analysis):

統計分析有助於找出一些特異現象及模型,比較兩序列之特性,等。

(4.1) 兩序列中最長相配片段之長度估計:

首先考慮兩序列中最長相配片段的長度 變化。此問題與丟銅板類似。假設連續丟一銅 板,其出現人頭的機率是 *p*。則連續出現人頭 的最長次數 *R_n* 會滿足

 $P(\lim_{n \to \infty} R_n / \log_{1/p}(n) = 1) = 1$ 。 (4.1) 令假設兩序列的分佈情形一樣, 則 $a_i = b_i$ 時 b_p) 即表示出現"人頭", 其機率

$$p = p_A^2 + p_C^2 + p_G^2 + p_T^2 \circ$$
(4.2)

故最長相配片段的長度 R_n 满足 (4.1) 式, 而其 p 值满足 (4.2) 式。更複雜的結果可 證明出來。令兩序列長各為 n 及 m 且 $\log(m)/\log(n) \rightarrow 1$ 。則其最長相配片段 (含 k 不相配單位) 具有長度 M 並滿足下 式:

$$E(M) \approx \log(qmn) + k \log \log(qmn) + k \log(q/p) - \log(k!) + r \log(e) -0.5$$

此處*E*表期望値; q = 1 - p; $\log \equiv \log_{1/p}$; $r = 0.577 \cdots$ 爲 Euler constant; e 爲 exponential constant= 2.718 ...。變異數

 $Var(M(n,m)) \approx [\pi \log(e)]^2/6 + 1/12_{\circ}$

(4.2) 頻率分析:

氨基酸 glutamine 可由 CAG 或 CAA 表示,但由頻率分析中發現 CAG codon 在 一些基因內發生的頻率非常高。利用 codon 偏好出現模式可減低 oligomers 用以確認蛋 白質序列之次數。codon 偏好模式與 E. coli 及酵母之基因表示法有相關。codon 頻率與 其對應之 tRNA 量多少有高度相關。在蛋白 質編碼序列中 oligonucleotide 傾向於重覆 出現其週期爲三。這種週期性在非編碼序列 中不存在。

在 DNA 序列中,四種 nucleotides 並不是平均出現其中,其基本組合在序列內 與序列對序列中皆有變異。利用近鄰居模式 可幫助了解分子構造。在 eukaryotes 內 CG 一齊出現的次數非常少,而在一般序列 中 PuPu 及 PyPy 比 PuPy 或 PyPu 更 偏好出現 (Pu 即 purine base (A or G), 而 Py pyrimidine base (C or T))。另一 uncleotide ordering 例子為序列中 A 之聚合。 在長序列 RNA 及 DNA 單一及重 A 出現次 數比期望(假設隨機出現)的少,另外長的連 串 A (runs of A), 比如 AAA, 出現的次數 比期望的更多。G 與 C 一齊出現的頻率很少, 但單一的 G 及 C, 及 GG, CC 出現次數的比 期望的更多。 長的 G 聚合與 C 聚合出現的 次數期望的少很多。在單線 DNA (病毒內) 序列中其含迴語 (palindrom, 即倒起來讀也 一樣之句,如 eye, madam) 之區域比期望的 少。在雙線核酸內,迴語序列包含一雙摺對稱 軸 (twofold axis of symmetry) 如 AGCT, 因此這種序列能對自己摺疊起來。迴語的少 量出現應與單線 DNA 病毒的 secondary structure 的拘束 (constraints) 有關。

(4.3) 馬可夫分析:

我們可把一長序列 DNA/RNA 看成 一馬可夫鏈 (Markov chain)。令 A = 1, C = 2, G = 3, T = 4。定義 order k 之馬 可夫鏈為 $\{X_t | t = 1, 1, \dots, N\}$ 滿足

$$P\{X_{n+1} = i_{n+1} | X_n = i_n, \dots, X_{n-k+1} = i_{n-k+1}, \dots, X_0 = i_0\}$$

= $P\{X_{n+1} = i_{n+1} | X_n = i_n, \dots, X_{n-k+1} = i_{n-k+1}\}$ for all n_{\circ}

在均匀馬可夫鏈中轉移機率不隨時間變動。 故有 $p_k = 3 \cdot 4^k$ 未知參數要估計 $(i_n = 1, 2, 3, 4)$ 。令 $n(i_1, i_2, \ldots, i_r)$ 爲轉移 $i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_r$ 在一序列中觀察到的次數。 則轉移機率之最大概似估計如下:

$$\hat{p}(i_1, i_2, \ldots, i_k; i_{k+1})$$

$$= \hat{P}\{X_{k+1} = i_{k+1} | X_k = i_k, \dots, X_1 = i_1\}$$

=
$$\frac{n(i_1, \dots, i_k, i_{k+1})}{n(i_1, \dots, i_k, +)},$$

此處 $n(i_1, i_2, \ldots, i_k, +) = \sum_{j=1}^4 n(i_1, i_2, \ldots, i_k, j)$ 。由此我們可做一些統計檢定。我們可用貝 氏訊息準則 (BIC) 來決定 order k。其方法 如下: 先計算 log-likelihood L(k)

 $L(k) = \sum n(i_1, \dots, i_k, i_{k+1}) \\ \log \hat{p}(i_1, \dots, i_k; i_{k+1}),$

此處加號 \sum 是對所有 $n(i_1, \ldots, i_k, i_{k+1}) >$ 0 之可能 $i_1, i_2, \ldots, i_{k+1}$ 。則 BIC(k) = $-2L(k) + p_k \log n$, 此處 $n(\leq N)$ 是 算 $n(\cdot)$ 時子序行的數目。要找的 k 即是使 BIC(k) 最小的 k。

通常因為 DNA 序列的線性結構有不均 匀性要找一長而均匀的序列是非常難。而要 做 high order 馬可夫分析卻需要很長的序 列 (因為 p_k 很大),這便成為不切實際。要減 低 p_k 參數數目, Raftery 提出一模型:

$$p(i_1, \dots, i_k; i_{k+1}) = \sum_{j=1}^k \lambda_j q(i_j, i_{k+1})$$

此處 $Q = \{q(i, j), 1 \le i, j \le 4\}$ 是一 4×4 row-stochastic matrix 需估計, $\lambda_1, \ldots, \lambda_k$ 未知參數且其和爲一。所以要估計的參數個 數減成爲 $p_k = 11 + k$, 比 3×4^k 少了太多。 代價是需用非線性最佳化法來從事參數估計。

馬可夫分析之例子如下: bacteriophage 入序列其長為 48502 nucleotides。 此序列分成 5 區域,各有其生化意義,叫 Late, Early 1, Early 2, Control, Silent。 馬可夫分析結果是 Late 區域為 order 2, 其 他為 order 1。

我們可進一步用 Fourier Transform, Walsh Transform,及 Correlation coefficient 等來找出週期性之模型。這時每一氨 基酸需適當的給一分數。在用機率模型分析 時我們很難找出明顯結構,但用上述方法則 易找出固定明顯的結構。

(4.4) 統計上顯著的模型:

給定一序列我們可從它取出一些統計 量, 但如何確定這些統計量的'顯著'與否? 這就需要先建立理論模型用以爲準則。通常 皆假設'隨機模型'而拿來比較。此模型又可 分爲'獨立隨機'及'馬可夫依賴隨機模型'。S. Karlin 以此對 DNA 序列做了很詳細研究。 另一準則爲資料混亂方法 (Data Shuffling Methods)。比如把一序列中有 A 及 G 的位 置上交換排列而把 C 及 T 的位置不動。通 常我們考慮 100 至 500 permutations, 統 計量可從每一次 permuted data 算出。如果 原來的統計量 (沒經 permutation) 比新得 的一堆統計量還偏離極端, 則原來的統計量 即被視爲顯著。

今定義一 k-word 為在一序列中的連 續 k 個字母。我們看一下 k-word 重複出 現的頻率。令 $f_k(\nu)$ 為那些出現 ν 次之 k-words 的個數。則 $N_k^* = \sum_{\nu \leq 2} f_k(\nu)$ 為 不同重現 k-words 的個數。有關之統計量 如平均值、變異數、範圍、偏差等皆在 karlin 的研究報告。今舉例如下,有三個 papovavirus genomes: Simian virus-40 (SV-40, 長= 5243), polyoma (長= 5293) 及 human BKV Dunlop strain (長= 5153), 其 $f_k(\nu)$, k = 6, 8之分佈見表三。由此表知 SV-40 及 BKV 之分很接近, 這表示他們之 genomes 是相似。而 Polyoma 在長的及高 次重現的 *k*-words 中有較低的個數。這可區 分出它與 SV-40 及 BKV 之不同。這些比較 對所有 $k, 4 \le k \le 15$ 皆成立。

表三. REPEAT-OCCURRENCE DISTRIBUTION OF OLIGONUCLEOTIDES (WORDS) OF LENGTH 6 AND 8

 $f_6(\nu)$

14 18	13	12	11	10	9	8	7	6	5	4	3	2	1	ν
0 1	2	0	0	1	7	14	30	57	87	175	361	628	898	BKV-Dun
2 0	1	3	1	5	7	11	29	47	90	183	363	627	943	SV-40
0 0	0	0	0	0	1	2	5	22	78	198	421	740	1174	Polyoma
0 0	0	0	0	0	0	1	3	11	42	132	423	899	1391	Random
	0	0	0	0	0	1	3	11	42	132	423	899	1391	Random Polvoma

e	1	\
t	(1	1
18	(1	 /)

ν	1	2	3	4	5	6
BKV-Dun	4158	383	57	12	2	0
SV-40	4198	434	46	7	1	1
Polyoma	4709	269	11	3	0	0

Note: The entries indicate the number of distinct k-words that occurred exactly ν -times for the specified sequence. The row labeled random is obtained from the pointwise minimum of the cumulative distribution derived from 10 random permutations of the polyoma sequence.

定義
$$L_r$$
 為重現至少 r 次的最長字的長 $L_r = \max\{k : \sum_{\nu=r}^{\infty} f_k(\nu) \ge 1\}.$

度。即

在隨機序列的情形下, L_r 之漸近分配可以 導出來, 我們可以此來判斷在一般序列下所 求之 L_r 是否顯著 (即夠長)。在 E. coli phages, T7 phage 顯示有一組顯著的長的 重現字, 而入 phage 顯示無顥著的長的重現 字。

今考慮有條件相似結構。由於 DNA 結 合成對時的互補現象,我們考慮對映 Δ^{C} : $A \to T, T \to A, G \to C, C \to G;$ 及對映 $\Pi_k^{(I)}$: inverse permutation on k-words, \mathbb{P} 把第 i 字母移到第 k+1-i 位置。由 Δ^C 及 $\Pi_k^{(I)}$ 可定義二價關係 (dyad relation)。比如 兩 5-word: ATTCG 及 CGAAT 有二價關 係。令 $g_{Dk}(\nu,\mu)$ 爲長度 $k \ge k$ -words pair (W, W*) 之個數並滿足下列條件: W 及 W* 具有二價關係並且 W 出現 v 次而 W* 出 現 μ 次。一例子如表四。k = 8,序列為 SV-40, polyoma, HPV 及 BPV(human and bovine papilloma viruses)。對 polyoma 及 SV-40 而言 gD8 之個數分析顯示其變異 性差不多。但 Polyoma 次數較少。這些次 數與 g_{D8} permutation range 指出對這兩 viruses $g_{D8}(1,1)$ 及 $g_{D8}(1,2)$ 已超出混亂 集合 (shuffled sets 共經任意 30 permutations) 的最大值。這情形對 SV-40 內之所 有 $g_{D8}(i,j), i = 1, 2, 3; j = 1, \dots, 6$ 一 樣清楚。這表示這些統計量很顯著。HPV 及 BPV 在表四中很接近。這指出兩者間仔細生 化關係需經進一步研究。

表四. COUNT OCCURRENCE DISTRIBUTION OF g_{D,8} FOR SV-40, POLYOMA, HPV, AND BPV

COMPARED WITH $g_{D,8}$ FOR CORRESPONDING PERMITES SEQUENCES^a

		SV40				
	1	2	3	4	5	6
1	276	68	9	3	0	1
	(195, 260)	(0, 25)	(0,3)			
2		15	9	1	0	0
		(0,4)	(0,1)			
3			0	0	0	0
			(0,0)			

	Polyoma						
	1	2	3				
1	248	36	0				
	(192, 229)	(0, 16)	(0,3)				
2		2	0				
		(0,2)	(0,0)				
3			0				
			$(0,\!0)$				

	HPV							
	1	2	3	4				
1	478	114	11	1				
	(341, 407)	(40, 92)	(0,7)	(0,2)				
2		12	1	0				
		$(0,\!6)$	(0,1)	(0,0)				
3			2	0				
			(0,0)	$(0,\!0)$				

	BPV							
	1	2	3	4	5			
1	486	115	10	0	0			
	(327, 418)	(43,101)	(0,8)	(0,1)				
2		17	2	0	1			
		(0,8)	(0,1)	$(0,\!0)$				
3			3	0	0			
			(0,0)	(0,0)				

^a The range of counts for 30 permutations are shown in parentheses for each (i, j).

五.DNA 之幾何及拓撲結構:

過去十多年中有關封閉性圈形 DNA 的 幾何及拓撲的研究發展成一很重要的領域。 主要理由是封閉性圈形 DNA 與斷了一線或 雙線的 DNA 在物理及化學性質上有基本之 不同。這些性質直到最近才可解釋,理由在 (1) 這些 DNA 之各線鏈環起來而具有一鏈 數 (linking number) *Lk*, (2) *Lk* 有二基本 特性: (a) *Lk* 在 DNA 結構連續變形下具有 不變性 (b) *Lk* 是由兩幾何量加起來, twist (旋數) *Tw*, 及 writhing (捲數) *Wr*, 即

$$Lk = Tw + Wr_{\circ}$$

這兩特性可應用在許多場合,比如鏈結缺陷 及超級盤繞之分析,topisomerases 之各型 酵素性質的分析等。

(5.1) 兩空間封閉曲線之鏈數Lk:

令 C₁ 及 C₂ 是兩連續有向封閉曲線 (在3度空間中)。今把它投影到平面上,其中

之一會棋過另一個交於數點。比如在圖2中有 二例,一有兩交點,而另一有四交點。對每一 交點可指定一指數 +1 或 -1, 此數是從看上 面曲線的切向量 (tangent vector) 必須轉至 下面曲線的切向量之方向而定, 如果轉向是 順時針, 即定為 -1, 否則為 +1。在此鏈數 Lk 即是把這些指數全加起來 (對所有交點) 再除以2,可用 $Lk(C_1, C_2)$ 表示之。如此, 圖 一中之左邊 Lk = [-1 + (-1)]/2 = -1, 而在右邊 Lk = [(-1) + (-(-1)]/2 = -2。一個有趣例子是在圖 3, 每 一交點具有 +1, 故其 Lk = +4。這例子描 繪出兩螺旋型封閉曲線互相旋繞(依右手法 則 in right-handed sense) 為一 DNA 之 極佳模式。圖4是一很奇怪的例子,有兩 +1 交點及兩 -1 交點, 因此 Lk = 0。圖中央 之交點不算因爲是一曲線對自己的交點,但 即使是 Lk = 0 這兩曲線不能分開。這例子 常稱為 trapped figure 8。

鏈數是有四個主要特性: (1) 此數與那 一投影面 (用以計算它) 無關, 這點很重要因 為 *Lk* 是空間的特性而不是投影面的; (2) 假 如任一曲線連續地變形但不斷裂, 則 *Lk* 是 不變 (參見圖 5); (3) 假如某一曲線之方向 倒反過來則 *Lk* 之符號就改變, 如圖 6 所示; (4) 假如此對曲線經由鏡面反映, 則 *Lk* 也是 改變符號, 如圖 7 所示。

只外 *Lk* 也可用空間平面曲線交接方法 與 Gauss 積分方法來定義, 有興趣的人請見 參考資料。

圖2. Linking numbers of pairs of curves using the index approach.

圖3. Linking of helically intertwined curves with a circular axis.

圖4. The trapped figure 8:a pair of curves with Lk = 0.

Barboxandomega barboxandom barboxandom

 $\square 6$. The reversal of the sign of Lk when one of the curves is reversed in orientation.

(5.2) 空間封閉曲線的捲數(Writhing):

空間一封閉曲線 C 投影到平面上,這 曲線也許會自己橫過自己數次。對每一橫過 的點,指定一指數 +1 或 -1,如以前 Lk 之說明。把這些指數全加起來即是 C 的有向 捲數 (directed writhing number),方向是 由於投影所致。真正的捲數,以 Wr(C) 或 Wr表示,是定義成所有可能投影的有向捲 數的平均值。如此在圖 8 中兩曲線對幾乎所 有投影皆有一交點,但其指數分別為 -1 及 +1,因此 Wr = -1及 +1。

與 *Lk* 不同,如果 *C* 的方向改了,有 向捲數並不改變,因爲對每一交點兩個交會 線段之方向皆改了,如此 *Wr* 並沒改變。更 進一步分析,不像 *Lk*,當 *C* 變形時 *Wr* 是 確實改變了。比如在圖 8中,任何不打結的曲 線皆可變形成一圓圈,此時Wr = 0。圖9是 多餘的例子用來顯示不同的Wr。

圖8. The writhing number of curves with one coil.

圖9. The writhing number of curves with multiple coils.

(5.3) 一曲線對另一曲線的旋數(Twist):

基本上,一曲線 C_2 對另一曲線 C_1 的 旋數,以 $Tw(C_2, C_1)$ 或 Tw 表示之,是測 量 C_2 繞著 C_1 的旋轉大小。最簡單的例子是 一螺旋線 (helix) 對自己軸旋轉,Tw 是此螺 旋線對自己軸環繞的次數。此數是正的,假如 螺旋線是右手旋,否則爲負即爲左手旋。一些 例子示於圖 10中。

旋數可用一向量從 C₁ 指到 C₂ 的旋轉 來測量。在圖 11中,向量旋轉了 2π 角度,而 旋數即總轉角除以 2π。對一螺旋型曲線其繞 另一封閉圓圈轉,則旋數也可類似用向量轉 角來定義。一例如圖 12。但是對更一般化的 例子中,比如 C₁ 不是直線或在一平面上,旋 數的定義就更複雜了,因為幾何觀念不是那 麼顯然了。這需要 C_1 與 C_2 間向量所組成 的帶狀曲面 (如圖 11, 12), 叫對應曲面, 來 解釋。我們假設此曲面在接近 C_1 地方可微 分 (或平滑), 此即在 C_1 上之每點皆有一切 平面與對應曲面相切。在圖 13中一部份對應 曲面給標示出來。令 $T \in C_1$ 在 x 點的單位 切向量。令 V是與 T垂直的單位相量 (定在 x 點) 但與曲面相切而指向 C_2 方向。如此, T及 V是互相垂直而支撑在 x 點的切平面。 然後其橫積 $T \times V$ 是與曲面垂直 (在 x 點 上), 而旋數 Tw 即是定義成 V在 $T \times V$ 方向上的總改變量當 x 沿著整條 C_1 上移動 時。Tw 即定義如下:

 $Tw = Tw(C_2, C_1) = \frac{1}{2\pi} \int_{C_1} (T \times V) \cdot dV.$ 通常旋數並不爲整數, 而常常隨 C_1 或對應曲 面的變形而改變。更進一步說, $Tw(C_2, C_1)$ 不必要等於 $Tw(C_1, C_2)$ 。今舉例如下:

圖10. The twist of helices and about a linear axis.

圖11. The spinning arrow approach to the twist of a helix with linear axis.

圖12. The spinning arrow approach to the twist of a helical curve with circular axis.

圖13. A is a graphical representation of a correspondence surface. B pictures the spanning vectors T and V to the correspondence surface at a point x of C_1 . (5.3.1) 具有直線軸的螺旋線: 令 C_2 是螺

旋線, 其圓半徑為 r, 主軸 C_1 是一直線其長 為 L (見圖 14)。可假設 C_1 是在 z - 軸上, 如此

曲線 C_2 : $y(s) = (r \cos(\alpha s), r \sin(\alpha s), p\alpha s)$, 此處 y(s) 是從原點指向 C_2 上一點之向量, $\alpha = 2\pi n/L, s$ 是沿主軸量的長度, $0 \le s \le$ L_o 當 s 從 0 走到 L, 這螺旋線繞著 C_1 軸 n 次 with pitch $2\pi p$, 即 $2\pi pn = L_o$ 要算 $Tw(C_2, C_1)$ 就先要建立起對應曲面。 先由 C_1 上一點 $(0, 0, p\alpha s)$ 指向 C_2 上 對應點 $(r \cos(\alpha s), r \sin(\alpha s), p\alpha s)$, 此向 量即為 $(r \cos(\alpha s), r \sin(\alpha s), 0)$ 叫對應向 量。這些對應向量產生出對應曲面。從圖 14 L, 知 T = (0,01), 且 $V = (\cos(\alpha s), \sin(\alpha s), 0)$ 。所以 $T \times V = (-\sin(\alpha s), \cos(\alpha s), 0)$ 。最後

$$\frac{dV}{ds} = (-\alpha \sin(\alpha s), \ \alpha \cos(\alpha s), 0)$$

因此

$$(T \times V) \cdot \frac{dV}{ds} = \alpha_{\circ}$$

如此

$$Tw(C_2, C_1) = \frac{1}{2\pi} \int_{C_1} (T \times V) \cdot dV$$

= $\frac{1}{2\pi} \int_0^L (T \times V) \cdot \frac{dV}{ds} ds$
= $\frac{1}{2\pi} \int_0^L \alpha ds = \frac{n}{L} \int_0^L ds = n_c$

特別興趣的是計算 $Tw(C_1, C_2)$, 經一 些計算 (原理同上) 可得 $Tw(C_1, C_2) = \frac{np}{(r^2+p^2)^{1/2}}$, 不同於 $Tw(C_2, C_1)$ 。

(5.3.2) 對稱螺旋線: 上面的分析(叫半帶 狀模式)可用於全帶狀模式,即對稱螺旋線。 這可把螺旋線 *C*₂ 對其軸 *C*₁ 做鏡面反映, 得新的螺旋線 C'_2 , 而 C'_2 對 C_2 之旋數, $Tw(C'_2, C_2)$ 是一樣等於 $Tw(C_1, C_2)$ 因為 單位向量 V 是在此二情形下一樣的 (見圖 15)。如此

$$Tw(C'_2, C_2) = \frac{np}{(r^2 + p^2)^{1/2}}$$
 (5.1)

此即一螺旋線繞著對稱的相對伴線 n 次, 然 而其旋數並不為 n; 螺旋線對其軸之旋數是 與他們之間的幾何架構有關。如果 pitch 低 (即 p 接近 0) 則 $Tw(C'_2, C_2)$ 很小。反過 來, 如 p 很大 (與 r 比較) 則 $Tw(C'_2, C_2)$ 趨近於 n。

■14. A circular helix of radius r and pitch $2\pi p$ about a linear axis.

\blacksquare16. A helical curve wrapping around a torus of radius r whose axis is a circle.

(5.3.3) 具有封閉圓形軸之螺旋線: 令 C_2 是一右手環繞一封閉圓形軸 C_1 的螺旋線 (見 圖 16)。 C_1 的半徑是 R, 因此曲率 k = 1/R, 長度 $L = 2\pi R$ 。想像一內輪胎,其半徑 r < R 且以 C_1 為中心軸。曲線 C_2 是一 螺旋線, uniform pitch 於內胎上。假設 C_2 繞 $C_1 n$ 次。即 $Lk = (C_2, C_1) = n$ 。又直 接的計算可得

$$Tw(C_2, C_1) = n_{\circ}$$

在此,一對應向量即爲從 C_1 之一點 x 到 C_2 上之一點,且落在 C_1 在 x 之向心向量與垂 直 C_1 平面之向量所組成的空間上。此倒可 看成 (5.3.1)中把直線軸彎成一圓的情況來 研究。

反過來要算 $Tw(C_1, C_2)$ 就很困難,由 定義可得

$$= \frac{Tw(C_1, C_2)}{\frac{1}{2\pi} \int_0^{2\pi n} \{(1 - rk\cos\theta)^2 + (rnk)^2\}^{\frac{1}{2}} d\theta,$$

這是一困難的橢圓積分,要查表才行。但當 $rk \ll 1$ 時 (即內胎之半徑比起 C_1 之半徑 小的太多), $rk \cos \theta$ 可忽略而得

$$Tw(C_1, C_2) \approx \frac{1}{2\pi} \int_0^{2\pi n} (1 + (rnk)^2)^{1/2} d\theta$$

= $n(1 + rnk)^2)^{11/2}$.

這解答與 $Tw(C_2, C_1) = n$ 成很明顯對比。 假如定義 pitch 為 $2\pi p$, 即 $2\pi pn = L = 2\pi R = 2\pi/k$ 。則

$$Tw(C_1, C_2) \approx \frac{np}{(r^2 + p^2)^{1/2}}$$

此與前面結果一樣。

如果 rk < 1 但不非常小, 則

$$Tw(C_1, C_2) = \left(\frac{2ng}{\pi\mu}\right)E(\epsilon),$$

此處

$$\begin{aligned} \frac{g}{\mu} &= ((r^2k^2(n^2+1)+1)^2 - 4r^2k^2)^{1/2}, \\ \epsilon^2 &= \frac{1}{2}(1-((n^2-1)r^2k^2+1)) \\ &\quad ((n^2+1)r^2k^2+1)^2 - 4r^2k^2)^{1/2}, \end{aligned}$$

及 $E(\epsilon)$ 是皆知的 complete elliptical integral。這是可怕的表示法,但在應用上卻非常有用。

如果 C_2 是左手旋轉,則 $Lk(C_2, C_1) =$ -n,且 $Tw(C_2, C_1) = -Tw(C_2, C_1),$ $Tw(C_1, C_2) = -Tw(C_1, C_2)_{\circ}$

(5.4) 基本公式Lk = Tw + Tr:

在一些特殊情況下三個量 *Lk*, *Tw*, *Tr* 是由基本公式連在一起, 而就是此公式可在

DNA 分析中有很大應用。最主要興趣的情況 是 C_1 與 C_2 為兩有向曲線其包住一帶狀對 應曲面, 而此曲面亦假設為可微分 (在 C_1 上; C_1 為邊界)。在此情況下這三個量滿足下面 基本公式:

 $Lk(C_2, C_1) = Tw(C_2, C_1) + Wr(C_1)_{\circ}$

一些例子如圖17中, (a) 及 (b) 之 Lk = Tw = Wr = 0 而 (c) 中 Lk = Tw = +1, $Wr(C_1) = 0_{\circ}$

這公式的一重要結果而必須知道的是如 下: 雖然 $Lk(C_2, C_1)$ 是拓撲上不變,但 $Tw(C_2, C_1)$ 及 $Wr(C_1)$ 卻不是,而在變 形時會變。因此只要 C_1, C_2 不斷裂,則在 Tw 有任何改變時,在 Wr 也一定有對等改 變,只是符號相反,大小卻一樣。比如在圖 18 中,如果我們舉起帶子之上端,則 $Wr(C_1)$ 開始減少而 $Tw(C_2, C_1)$ 開始增加,然後 最後變形爲圖 17(c) 中的樣子。在這過程中 $Lk(C_2, C_1) = +1$ 而 $Wr(C_1)$ 從 +1 變 成 0, $Tw(C_2, C_1)$ 從 0 變成 +1 (大約)。

這公式第二應用如下: 假設在圖 17(a) 帶子中,其邊界線 C_2 有一裂口。假如此裂口 補了,則 Lk = Tw = Wr = 0。然而假如 斷的一邊沿 C_1 轉了一圈 (右手旋) 然後再補 回,則 Tw 從 0 變成 1; Lk 也一樣。因為 C_1 不變,故 $Wr(C_1)$ 一樣為 0。如此本公式 確定無誤。最後產品如圖 17(c)。

第三應用如下:假如在圖 18 中帶子上 頭環之整個帶狀曲面裂開並假設底下環經由 此裂洞而往上伸成為上頭環,然後裂洞又補 好了。則在此過程 Wr(C₁)從 +1 (大約) 變成 -1 (大約),而 Tw 基本上不變,且 Lk 是減少了2。如此本公式又一次確定無誤。

圖17. Pictorial examples demonstrating

Lk = Tw + Wr for ribbon models.

B18. A ribbon model with Lk = +1,

 $Tw \sim 0, Wr \sim +1.$

(5.5) 應用於DNA分析:

在討論 Lk, Tw, Wr 之應用時, 有 兩模式要用: (1) 叫全帶模式, (2) 叫半帶 模式。全帶模式如前面討論之 C_1 , C_2 例 子。在 phosphodiester-sugar backbone chains 中, 其符號是 C 線中一 base 連到 互補線 W 中之 complementary base (如 圖 15)。因此 Lk 寫成 Lk(W,C), Tw 寫成 Tw(W,C), Wr 寫成 Wr(C)。

半帶模式定義如下:在 Crick-Watson 模式中描寫整個雙線螺旋結構,其有一軸,叫 A。在簡單線狀模式中, A 是一直線而由 C轉成螺旋形。在圓形模式中, A 是一圓圈而 C 來轉。半帶模式即是前節所述之 C_1 及 C_2 分別看成 A 及 C (或 W)。參見圖 14, 16。 Tw 寫成 Tw(C, A), Wr 寫成 Wr(A)。如 果 DNA 是封閉圓形則 Lk 寫成 Lk(C, A)。

首先討論線性 DNA。在 Crick-Watson DNA 中, 如 *C* 轉 *A n* 次, $Tw(C, A) = n_{\circ}$ 因此如 DNA 是長度 B bp(base-pair), 它的 Tw = B/10.5, 因為 要 10.5bp 來繞一圈。要算 *W* 線對 *C* 線的 旋數 Tw(W, C) 我們可用公式 (5.1) 來算 即 $Tw(W, C) = np/(r^2 + p^2)^{1/2}$ 。從古典 結構上, $2\pi p = 3.36nm$, r = 1.0nm。即 p = 0.54nm。如此

$$Tw(W,C) = \frac{.54n}{(1+.54^2)^{1/2}} = 0.47n_{\circ}$$

如果 DNA 長為 B bp, $Tw(W, C) = \frac{0.47B}{10.5}$ 。特別有興趣的是一線對另一線的 Tw 是大約一線對軸的 Tw 之一半。在文獻中, $p/(r^2p^2)^{1/2}$ 常以 sin α 表示, α 為螺旋之 pitch angle。這例子中 $\sin \alpha = 0.47$ 即 $\alpha \approx 28^{\circ}$ 。

其次討論封閉圓形 DNA (其軸爲圓 形)。假如 DNA C 線繞 A n 次, 則 Tw(C, A) = n。又因 A 是平面圓,故 Wr(A) = 0, 如此 Lk(C, A) = n(由基本 公式)。即 Lk(C, A) = Tw(C, A)。在此情 形 Lk常以 Lko 表示之。在此, 轉一圈約需 10.5bp。此即如果封閉圓形 DNA (長度為 B bp) 是在鬆弛狀態, 則 $Lk_o = B/10.5$ 。比 如一 DNA 有 2100bp 長, 那 $Lk_o = 200$ 。 今要算 Tw(W,C), 令 R 是 C 的半徑; r 是 DNA 之半徑。假設 $r \ll R$, 由前 節討論知 $Tw(W,C) = np/(r^2 + p^2)^{1/2}$. $p = R/n_{\circ}$ 對大多數 DNA 言, $r \ll R$, 因為大多 DNA 非常長。這情形即簡化成線 性情況。可易看出 Tw(W,C) = 0.47n, 又 因 Lk(C, A) = Lk(W, C) = n, 因此 Wr(C) = n - 0.47n = 0.53n。如此對每一 旋轉一圈的 DNA 片段,其對 Tw 之貢獻是 0.47 而對 Wr 是 0.53。 如果 r < R 但不 太小則必須用前面討論過的複雜積分式子去 算 Tw。一旦算出,可用 Wr = n - Tw 算 出 Wr 來。因為 DNA 大多很長,這種情況 很少碰到。

其他應用很多,比如一螺旋線繞一螺線的 DNA 分析以及酵素的活動 (enzymatic activity, 能改變 DNA 之結構使 *Lk* 改變)。 有興趣的人請參見考資料。

六. 結論:

DNA 的解讀造成了生物基因的革命時 代來臨。幸好我們有功能強大的電腦,這些大 量的 DNA 資料得以儲存並讓大家快速存取 分析。但是最根本的一些重大問題還未解,比 如那些 DNA 模式對細胞病變或細胞功能有 決定性關係。因此研究上需數學家、統計學家 等大力幫忙分析。最近有一派人設法用人造 神經網路來解釋分析一些問題,但顯然還未 成熟。一切有待努力。相信近十年內會有重大 突破,也許人類眞能控制基因變化,造出新的 人類來,到時整個世界就全變了。

參考資料

- M. S. Waterman, Ed., "Mathematical Methods for DNA Sequences", CRC Press, Boca Raton, Florida, 1989.
- R. Doolittle, Ed., "Moleculer Evolution: Computer Analysis of Protein and Nucleic Acid Sequences", Methods in Enzymology Vol. 183, Academic Press, 1990.
- 3. Nucleic Acids Research, 期刊。
- 4. J. Molecular Biology, 期刊。
- 5. Annual Review on Biochemistry, 期刊。

—本文作者曾任職於中央研究院資訊研究 所—