國立中正大學八十一學年度應用數學研究所
 碩士班研究生招生考試試題

基礎數學

I．（20\％）Test for convergence or divergence of the following infinite series
（a）$\sum_{n=1}^{\infty} \frac{\cos \left(\frac{\pi}{n}\right)}{n}$
（b）$\sum_{n=1}^{\infty} \frac{\sin \left(\frac{\pi}{n}\right)}{n}$
（c）$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}} \quad(p>1)$
（d）$\sum_{n, m=1}^{\infty} \frac{1}{n^{2}+m^{2}}$

II．（15\％）Compute the following integrals and differentiation
（a） $\int_{0}^{a^{12}} \frac{d t}{a^{2}-\sqrt{t}} \quad(a<1)$
（b） $\int_{0}^{2 \pi} \sin x^{2 n+1} d x \quad(n \geq 0$ integer $)$
（c）$\frac{\partial f}{\partial z}$ where $f(x, y, z)=\phi\left(x e^{-z}, y e^{-2 z}\right) \cdot e^{-3 z}, \quad \phi(u, v)=e^{u v}$

III．（15\％）Find the maximum and minimum of $f(x)=3 x-2 y+z$ subject to the condition $x^{2}+3 y^{2}+6 z^{2}=1$ ．

IV．(10%) Let A, B be compact subsets of $R^{n} . f: A \rightarrow B$ is 1－1，onto and continuous． Show that f^{-1} is continuous．

V．(5%) Given 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $\operatorname{det} A<0$ ．Show that A is diagonal－ izable．

VI． 5% ）Let A be an $n \times n$ matrix with the property $A^{k}=0$ for some $k>0$ ，integer． Show that both $I-A, I+A$ are not invertible．

2 數學傳播 十七卷二期 民 82 年 6 月

VII．（10\％）Let $A=\left(\begin{array}{ccccc}1 & a_{1} & \cdots & & a_{n} \\ -a_{1} & 1 & & & \\ & & & 0 & \\ \vdots & & \ddots & \\ & 0 & & \\ -a_{n} & & & 1\end{array}\right)$
（a）Find A^{-1}
（b）Find all eigenvalues of A ．

VIII．（10\％）（a）Define an＂inner product＂space．
（b）State and prove the Cauchy－Schwarz inegaulity for an inner product space．

IX．（10\％）Prore or disprove following statement：
Let V be any vector space $T: V \rightarrow V$ is a linear map．If T is $1-1$ ，then T is onto！

統計學

(20%) 1．Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n from the distribution with p．d．f．$f(x ; \theta)=\theta x^{\theta-1}, 0<x<1,0<\theta<\infty$ ．
(5%)（a）Find the method of moments estimator of θ ．
$(5 \%)(\mathrm{b})$ Find the maximam likelihood estimator of θ ．
$(10 \%)(c)$ Let $n=1$ ，find the most powerful test with significant level $\alpha=.05$ for testing $H_{0}: \theta=1$ versus $H_{1}: \theta=2$ ．
（20\％）2．Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n from $N\left(\mu, \sigma^{2}\right)$ ，where both μ and σ^{2} are unknown．For testing $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ verses $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$ ， show that the likelihood ratio test is equivalent to the χ^{2}（Chi－squared） test for variances．
(25%) 3．Consider the simple linear regression model：

$$
\begin{gathered}
Y_{i}=\beta_{i}+\beta_{1} x_{i}+\epsilon_{i} \quad i=1,2, \cdots, n \\
\text { where } \operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2} \text { and } \operatorname{cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0 \quad i \neq j .
\end{gathered}
$$

(10%)（a）Derive the least squares estimates of β_{0} and β_{1}（denoted by $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ respectively）．
$(10 \%)(\mathrm{b})$ Show that $E\left(\hat{\beta}_{1}\right)=\beta_{1}$ and find $\operatorname{Var}\left(\hat{\beta}_{1}\right)$
$(5 \%)(\mathrm{c})$ Show that $\operatorname{cov}\left(\bar{Y}, \hat{\beta}_{1}\right)=0$
(25%) 4．Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n from $U(0, \theta)$ ，the uniform distribution over $(0, \theta)$ ．
(5%)（a）Show that $X_{(n)}$ is a sufficient statistic for θ ，where $X_{(n)}=\max \left(X_{1}, \cdots, X_{n}\right)$ ．
（10\％）（b）Construct a $100(1-\alpha) \%$ confidence interval for θ based on the sufficient statistic $X_{(n)}$ ．
$(10 \%)(c)$ Find the best unbiased estimator of θ ．
（ 10% ）5．Let X be a random variable with continuous distribution function F ，and let F^{-1} be the inverse of F ．Show that the random variable $Y=F(X)$ is distributed as $U(0,1)$ ．

計算統計

1 Part I：數値計算方法

Reminder：The answer will not be accepted without proper explanation．

1．Let $P(x)=9.5 x^{20}+8.1 x^{16}+7.2 x^{12}+6.5 x^{8}$ ．What is the least number of multiplications required for evaluating $P(x)$ ？（ 10% ）

2．What is the polynomial $P(x)$ with the least degree which satisfies $P(0)=1$ ， $P^{\prime}(0)=0, P(1)=4$ and $P^{\prime}(1)=9 ?(10 \%)$

3．Let $f(x)=(x-1)^{3}, x \in R$ ．Suppose that the initial $x^{(0)}=0$ and $x^{(n)}, n \geq 1$ ， is defined by the Newton＇s method．Will the sequence $\left\{x^{(n)}\right\}$ converges to 1？If so，what is the order of convergence？（15\％）

4．Let the system $A x=b$ be nonsingular where $A \in R^{n \times n} ; x, b \in R^{n}$ ．In particular， we may actually solve the perturbed system $A y=b+\Delta b$ with $\|\Delta b\|$ small under some vector norm．Let cond (A) be the condition number of A under some matrix norm．Show that $\frac{1}{\operatorname{cond}(A)} \frac{\|\Delta b\|}{\|b\|} \leq \frac{\|y-x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}$ ．（15\％）

2 Part II：計算機系統概念

1．試用您熟悉的一種程式語言（譬如 C，Fortran，or Pascal，etc．）把計算機系 統是如何地來計算出 e^{x} 寫成一個副程式。（ 10% ）

2．就您所熟悉或使用過的兩種計算機系統（譬如 IBM PC and SUN Work Station，etc．），簡述他們的特性以及比較他們之間的異同（可以從軟，硬體和相關方面來回答這個問題）。 （15\％）

3．您知道計算機系統中有那些硬體部份可以用來儲存資料呢？如何的歸類？並依您的歸類方式略述他們的特性和差異性。進一步我們要透過計算機系統來储存和找尋資料的時候，則系統是如何地來幫助我們呢？（可以就您所熟悉的 File and Data Structures 說明之）。（ 15% ）

4．一個 Computer Word（譬如說有 4 bytes）可能存放著一個指令（Instruction），也有可能被解釋成放的是一組資料（Data），計算機系統是如何地來區別呢？並請您略述一下他們各有那些歸類方式？例如有那些 Instruction Formats 以及那些不同型態的 Data？ （可以就您所熟悉的概念略述之）。（ 10% ）

1．For vectors $x=\left[x_{1}, \ldots, x_{n}\right]$ and $y=\left[y_{1}, \ldots, y_{n}\right]$ in the vector space R^{n} ，the length and the inner product are given by the following：

$$
\|x\|^{2}=x_{1}^{2}+\ldots+x_{n}^{2}, \quad\langle x, y\rangle=\sum_{j=1}^{n} x_{j} y_{j} .
$$

Suppose that $v_{1}, \ldots, v_{m}, m \leq n$ ，is an orthonomal set of R^{n} ，i．e．

$$
\left\langle v_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Prove that for any vector g in R^{n} ，

$$
\sum_{j=1}^{m}\left\langle g, v_{j}\right\rangle^{2} \geq\|g\|^{2}
$$

2．Let W and V be vector subspaces of R^{n} ．Prove that

$$
\operatorname{dim} W+\operatorname{dim} V=\operatorname{dim}(W+V)+\operatorname{dim}(W \cap V)
$$

Here $\operatorname{dim} X$ denotes the dimension of X ．
3．Find real constants c_{0}, c_{1} and c_{2} so that the following integral has minimal value．

$$
\int_{0}^{1}\left(e^{x}-c_{0}-c_{1} x-c_{2} x^{2}\right)^{2} d x
$$

4．For any $n \times n$ matrix A ，we define $e^{A}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}$ ．
（a）Prove that $e^{A+B}=e^{A} e^{B}$ if $A B=B A$ ．(10%)
（b）Find e^{A} if $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$ ．
（c）Find e^{B} if $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ ．
（d）Find the general solution to $\frac{d u}{d t}=A u$ if $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \cdot(10 \%)$
5．Let $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6\end{array}\right]$ ．Find $\max _{\|x\|=1}\|A x\|$ and $\min _{\|x\|=1}\|A x\|$ ．（20\％）

高等微積分

$(20 \%) \# 1$ ．Let $f(s)=\sum_{n=1}^{\infty} n^{-s}$ ．Show that f is continuous on $[2, \infty)$ ．
$(20 \%) \#$ 2．Let $f(x)=3 x^{2}+x+100, \quad \forall x \in R^{\prime}$ ．Show that f is not uniformly continuous on R^{1} ．
$(15 \%) \# 3$ ．$S \subseteq R^{n}$ ．Suppose for each x in S there exists an open set $N(x)$ such that $N(x) \cap S$ is countable．Show that S is countable．
$(15 \%) \# 4$ ．Let f be an one to one and real－valued continuous function on $[0,1]$ ．
Show that f is strictly monotonic on $[0,1]$ ．
$(15 \%) \# 5$ ．Let f be a positive continuous real－valued function on $[0,1]$ ．Suppose $M=\max _{0 \leq x \leq 1} f(x)$ ．Show that

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f^{n}(x) d x\right)^{\frac{1}{n}}=M
$$

$(15 \%) \#$ 6．f and the derivative f^{\prime} are continuous on $[0, \infty)$ ．Suppose that $\int_{0}^{\infty}\left|f^{\prime}(x)\right| d x<$ ∞ ．Show that the limit of $f(x)$ exists as x tends to ∞ ．

微分方程

1．Solve the following Differential Equations（50\％）
a．$\quad y^{\prime}=\frac{x+4 y-2}{4 x-y+1}$
b．$y^{\prime}=\frac{y}{y e^{y}-2 x}$
c．$y^{\prime}=\frac{3 y}{x+y}$
d．$\quad y^{\prime}=\frac{x}{x^{2} y+y+y^{3}} \quad$（hint：let $u=x^{2}+1$ ）
e．$x^{2} y^{\prime \prime}+x y^{\prime}+y=0$

2．Solve the following system：$Y^{\prime}=A Y+B$ where

$$
Y=\binom{y_{1}}{y_{2}} \quad A=\left(\begin{array}{cc}
1 & 0 \\
6 & -1
\end{array}\right) \quad B=\binom{1}{t}
$$

3．By the method of infinite series，find two linealy independent solutions for $y_{2}^{\prime \prime} x y^{\prime}+$ $2 y=0$ （15\％）

4．Let $y=f(x)$ satisfy $y^{\prime \prime}=x y, y(0)=0 y^{\prime}(0)=1$ ．
（a）Show that $f(x)$ is strictly positive in $(0, \infty)$ ．
（b）What is $\lim _{x \rightarrow \infty} f(x)$ ？
5．Prove the uniqueness of the solution for the differential equation $y^{\prime}=\sin y$ ， $y(o)=1 . \quad(10 \%)$

數値分析

Reminder：The answer without the proper explanation will not be accepted．
1．Suppose a simple zero α of a C^{2} function $f: I R \rightarrow I R$ is to be approximated by applying the Newton＇s method under the tolerance ϵ ．We may have two possible stopping criteria：

$$
\text { (A) }\left|f\left(x_{n}\right)\right| \leq \epsilon \text {, or (B) }\left|x_{n+1}-x_{n}\right| \leq \epsilon \text {, }
$$

where $\left\{x_{n}\right\}$ is the sequence of Newton＇s iterates in the program．Which criterion is better？Why？

2．Given a data table as follows：

x	-3	-2	-1	0	1	2
$p(x)$	-62	-15	0	1	6	33

where $p(x)$ is a polynomial with $\operatorname{deg}(p) \leq 5$ ．What is the expression of $p(x)$ ？ （10\％）

3．Let $\mathbf{I}(f)=\int_{0}^{1} f(x) d x$ where $f \in C[0,1]$ ．A quadrature of $\mathbf{I}(f)$ is defined by $\mathbf{I}_{n}(f)=\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)$ for some nodes $x_{i} \in[0,1]$ and coefficients a_{i} ．Also let $\mathbf{P}_{3}=\{p(x): p(x)$ is a polynomial on $[0,1]$ with $\operatorname{deg}(p) \leq 3\}$ ．Show that the quadrature $\mathbf{I}_{n}(f)$ derived from the Simpson＇s rule is exact for all p in \mathbf{P}_{3} ．Hint： $\mathbf{I}(p)=\mathbf{I}_{n}(p) .(20 \%)$

4．Given an initial value problem（IVP）

$$
d y / d x=f(x, y), \quad x \in[0,1], y(0)=y_{0} \in \mathbf{R}
$$

where f is Lipschitz continuous in y ．Derive a weakly stable numerical method for solving（IVP）．（15\％）

5．For any matrix $A \in \mathbf{R}^{n \times n}$ ，it is known that $A=Q \cdot R$ where Q is orthonormal and R is upper triangular in $\mathbf{R}^{n \times n}$ ．Suppose

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & -1 \\
2 & -4 & 5
\end{array}\right]
$$

What are Q and R ？（15\％）
6．Given a linear system $A \cdot x=b$ where $A=\left[\begin{array}{ccc}-4 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & -4\end{array}\right]$ and $b=[1,1,1,]^{T}$ ． Please derive an iterative method for solving the system whose iterates convege for any choice of initial guess in \mathbf{R}^{3} ．(15%)

7．Let

$$
B=\left[\begin{array}{cccc}
5 & -1 & 0 & 0 \\
-1 & 3 & 2 & 0 \\
0 & 2 & 3 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Show that all the eigenvalues of B must lie in the interval $[0,6]$ ．（6\％）

