國立清華大學數學研究所 八十一學平度碩士班入學考試題

高等微積分

(10 points)

1. Find the volume of the solid region cut from the unit ball $x^2 + y^2 + z^2 \le 1$ by the cylinder $x^2 + y^2 = x$.

(15 points)

2. Compute the surface integral

$$\iint_{\partial Q} (x, y^2, z^3) \cdot \nu \, dS$$

$$(Q = [-1, 1]^3, \nu = \text{the outer normal of } Q)$$

- (a) directly,
- (b) by Gauss' divergence theorem.

(20 points)

3. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by

$$f(x, y) = \begin{cases} x^2 + y^2 - 2x^2y - \frac{4x^6 y^2}{(x^4 + y^2)^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

- (a) Show that f is continuous.
- (b) Is f differentiable at (0, 0)? Why?
- (c) Show that the restriction of f to each line through (0, 0) has a local minimum at (0, 0).
- (d) Does f have a local minimum at (0, 0)? Explain why.

(15 points)

4. Let $U = \{(x, y) \mid x^2 + y^2 < 1\}$ be the open unit disc in the plane, and let $f: U \longrightarrow \mathbb{R}$ be a continuous function. For each $\theta \in \mathbb{R}$, define $f_{\theta}: U \longrightarrow \mathbb{R}$ by $f_{\theta}(x, y) = f(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$.

Show that $f_{\theta} \longrightarrow f$ uniformly, as $\theta \longrightarrow 0$, on every compact subset of U.

(15 points)

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function and there is no $x \in \mathbb{R}$ such that f(x) = 0 = f'(x). Let $Z_f = \{x \in \mathbb{R} \mid f(x) = 0\}$ be the zero set of f. Show that Z_f is at most countable. (Hint: Try to show that $Z_f \cap [a, b]$ is finite for any bounded interval [a, b]).

(15 points)

6. Evaluate the following integrals

(a)
$$\int_{1}^{3} e^{-x} d[x]$$
.

- (b) $\int_{0}^{2} \int_{0}^{2} [x + y] dx'dy$, where [x] is the greatest integer $\leq x$.
- (c) $\int_{0}^{\infty} e^{-x^2} \cos(2xt) dx$, where $t \in \mathbb{R}$.

(15 points)

7. Suppose $f:[0,1] \to \mathbb{R}$ is a continuous function. Show that

$$\lim_{\epsilon \to 0} \int_{0}^{1} \frac{\epsilon f(x)}{(x-a)^{2} + \epsilon^{2}} dx$$

exists for every $a \in \mathbb{R}$, and find it in terms of f.

(15 points)

8. Show that for any continuous real-valued function f(x) on [0, 1], there exists a sequence of polynomials $\{p_n(x)\}_{n=1}^{\infty}$ with $p_n(0) = f(0)$, $p_n(1) = f(1)$ for all n such that $p_n \to f$ uniformly on [0, 1], as $n \to \infty$.

代數及線性代數

 $\mathbb{Z}=$ the ring of integers. $\mathbb{R}=$ the field of real numbers. $\mathbb{C}=$ the field of complex numbers. $\mathbb{M}_n(F)=$ the ring of all $n\times n$ matrices over F. $\mathbb{Z}_n=$ the ring of integers modulo n.

1. (20 points).

Let
$$A = A^* \in M_n(\mathbb{C})$$
.

- (a) Show that the eigenvalues of A are real numbers.
- (b) Let $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ be the eigenvalues of A. Show that $\lambda_1 = \max_{\substack{x \neq 0 \\ x \in \mathbb{C}^n}} \frac{\langle Ax, x \rangle}{\|x\|^2}$.
- 2. (10 points).

Find all orthogonal linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ which carry the line y = x to the line y = 3x.

3. (15 points)

Solve the following system of differential equations

$$\begin{cases} x_1' = x_1 + x_2 \\ x_2' = 3x_1 - x_2, \end{cases}$$

where, for each i, $x_i = x_i(t)$ is a differentiable real-valued function of the real variable t.

4. (15 points).

Let
$$G = M_2(I_3)$$
 and let $U = \{A \in G \mid A^t A = I\}$.

- (a) Compute the order of the multiplicative group U.
- (b) Find A, B in U such that A is of order 2, B is of order 4 and $ABA = B^{-1}$.
- 5. (20 points).

Let
$$A \in SL_2(\mathbb{R}) = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a,b,c,d \in \mathbb{R}, ad - bc = 1 \}.$$

- (a) Explain why there exists a complex matrix P such that $P^{-1}AP$ is either $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ or $\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$, where λ is a nonzero complex number.
- (b) Assume moreover that $A \neq \pm I$ and A has distinct eigenvalues λ, μ . Show that $|\lambda| = |\mu|$ if and only if $|\operatorname{trace}(A)| < 2$.

- 6. (15 points).
 - (a) Classify all abelian groups of order 99.
 - (b) Show that every group of order 99 is abelian.
- 7. (15 points).
 - (a) If a,b are integers and $5 \mid a^2 2b^2$, show that $5 \mid a$ and $5 \mid b$.
 - (b) Let $R = \{a + b\sqrt{2} \mid a,b \in \mathbb{Z}\}$ and let $M = \{a + b\sqrt{2} \mid 5 \mid a \text{ and } 5 \mid b\}$. Show that R/M is a field having 25 elements.
- 8. (10 points).

True or false. Justify your answers.

- (a) Let σ be an element of order 5 in S_{15} . Then there exists $s \in S$ such that O(s) contains exactly three elements, where $O(s) = {\sigma^i(s) | i \in \mathbb{I}}.$
- (b) There is an integral domain containing exactly 15 elements.

複變數函數論

(5 points)

For the function $f: \mathbb{C} \longrightarrow \mathbb{C}$ defined by

$$f(x + iy) = (x^3 + xy^2 + 1) + i(x^2 + y^2)$$

Determine where f is holomorphic and give f'(x + iy) at those points.

(12 points)

2. Evaluate the following integrals

(a)
$$\int_{0}^{\infty} \cos(x^2) dx$$

(b)
$$\int_0^{\pi} \frac{\mathrm{d}\theta}{(2+\cos\theta)^2}$$

(9 points)

- Does there exist a holomorphic function
 f: D = {z; |z| < 1} → C satisfying the following? Give one if it exists, explain why if it does not.
 - (a) $f(\frac{1}{n}) = \frac{n}{n+1}$ for all positive integers n.
 - (b) $f(\frac{1}{2n}) = 0$, $f(\frac{1}{2n-1}) = 1$ for all positive integers n.
 - (c) $f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^3}$ for all positive integers n.

(10 points)

4. Determine the number of zeros for the function $f(z) = z^4 - 6z + 3$ in $\{z ; |z| < 1\}$, and in $\{z ; 1 < |z| < 2\}$ respectively.

(12 points)

5. Let γ be a rectifiable simple closed curve in \mathbb{C} , γ divides \mathbb{C} into two disjoint connected regions D_1, D_2 with D_1 bounded. Assume that $f: \overline{D}_2 = D_2 \cup \gamma \longrightarrow \mathbb{C}$ is continuous and $f|_{D_2}$ holomorphic, $\lim_{z \to \infty} f(z) = A(< \infty)$. Show that

(a)
$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw = \begin{cases} A - f(z) & z \in D_2 \\ A & z \in D_1 \end{cases}$$

(b) if
$$0 \in D_1$$
, then $\frac{1}{2\pi i} \int_{\gamma} \frac{z f(w)}{zw-w^2} dw = \begin{cases} f(z) & z \in D_2 \\ 0 & z \in D_1 \end{cases}$

(12 points)

- 6. For the domains G_1 and G_2 given as follows, does there exist a conformal map sending G_1 onto G_2 ? Give one if it exists, explain why if it does not.
 - (a) $G_1 = \{z \in \mathbb{C} ; |z-1| < 1, |z-i| < 1\}, G_2 = \{z ; |z| < 1\}$
 - (b) $G_1 = \{z \in \mathbb{C} ; 0 < |z| < 1\}, G_2 = \{z \in \mathbb{C} ; 1 < |z| < 2\}$