中央研究院數學研究所招考八十一學年度研習員筆試試題

Choose 4 among the following questions. Please give complete arguments to the questions. If you can not answer a whole question, you may try a special case.

1. Let $f: \mathbb{Z}^3 \longrightarrow \mathbb{Z}^3$

$$f(x,y,z) = \begin{pmatrix} 3 & 2 & 1 \\ 4 & 5 & 0 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

compute $|Z^3/f(Z^3)|$. Explain your method.

2. On d-dimensional space, find all the α 's and β 's so that the following integrals converge

(1)
$$\int_{|x|>1} \frac{1}{|x|^{\alpha}} dx, x \in \mathbb{R}^d.$$

(2)
$$\int_{|x|<1} \frac{1}{|x|^{\beta}} dx, x \in \mathbb{R}^d.$$

3. Compute

$$\int_{-\infty}^{\infty} \frac{\cos x}{a^2 + x^2} dx, a > 0.$$

4. Find the maximum of the function f(x,y,z) = x + y + z on the surface $2x^2 + y^2 + z^2 = 1$. Sketch the proof of the theorem you used.

- 5. Let V be a finite dimension vector space over $R, B: V \times V \longrightarrow R$ is bilinear, show that if
- (1) $B(v,v) = 0, \forall v \in V$ (2) $B(v,w) = 0, \forall w \in V \Longrightarrow v = 0$ then dim V must be even.
- 6. Given a positive integer $p \geq 2$ and variables $x_1, x_2, ..., x_p$. Let $S = \{x_{i_1}x_{i_2}...x_{i_p} \mid \{i_1, i_2, ...i_p\} = \{1, 2, ..., p\}\}$. Define an equivalence relation " \sim " on S by imposing the condition:

$$x_{i_1}x_{i_2}...x_{i_k}x_{i_{k+1}}...x_{i_p} \sim x_{i_1}x_{i_2}...x_{i_{k+1}}x_{i_k}...x_{i_p}$$

whenever $i_k - i_{k+1} \neq \pm 1 \pmod{p}$. Show that S contains exactly $2^p - 2$ equivalence classes.

7. Let

$$M = \left[\begin{array}{cccc} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 1 & 1 & 2 \end{array} \right].$$

Find P such that $P^{-1}MP$ is the Jordan Cononical form of M.

- 8. (1) What is the definition of analytic function defined on C.
- (2) Suppose $f: C \longrightarrow C$ is analytic, with Ref(z) = constant. What can you say about f? Verify your statements.
- (3) Suppose $f: C \longrightarrow C$ is analytic, with Arg f(z) = constant. What can you say about f? Verify your statements.
- (4) Suppose $f: C \cup \{\infty\} \longrightarrow C$ is analytic. What can you say about f.
- (5) Suppose $f:C\cup\{\infty\}\longrightarrow C\cup\{\infty\}$ is analytic. What can you say about f? Verify your statements.