關鍵詞: 圓內接正多邊形、奇偶弦長、冪次定和。
一、前言
科學研習月刊森棚教官的數學題 (參
二、引理
(一) 引理1 : (參
證明: 設 $P=\cos(-\theta )+i\sin(-\theta )$, $0\le\theta\le \dfrac{2\pi}N$。
\begin{align*} \hbox{則} \overline{PA_k}=\,& |P-Z_k| (k=0,1,2,\ldots,N-1)\\ =\,&\Big|\Big[\cos(-\theta )-\cos\Big(\frac{2k}{N} \pi \Big)\Big]+i\Big[\sin(-\theta )-\sin\Big(\frac{2k}{N} \pi \Big)\Big]\Big|\\ =\,&\sqrt{\Big[\cos(-\theta )-\cos\Big(\frac{2k}{N} \pi \Big)\Big]^2+\Big[\sin(-\theta )-\sin\Big(\frac{2k}{N} \pi \Big)\Big]^2}\\ =\,&\sqrt{2-2\Big[\cos(-\theta )\cos\Big(\frac{2k}{N} \pi \Big)+\sin(-\theta )\sin\Big(\frac{2k}{N} \pi \Big)\Big]}\\ =\,&\sqrt{2-2\cos\Big[(-\theta )-\frac{2k}N \pi \Big]}=\sqrt{2\Big[1-\cos\Big(\theta +\frac{2k}{N} \pi \Big)\Big]}\\ =\,&\sqrt{4\sin^2 \Big(\frac\theta 2+\frac kN \pi \Big)}=\Big|2\sin\Big(\frac\theta 2+\frac kN \pi \Big)\Big|. \end{align*}$\therefore\ \sin\Big(\dfrac \theta 2+\dfrac kN \pi\Big)\ge 0$, 故 $\overline{PA_k}=|P-Z_k |=2\sin\Big(\dfrac{\theta}2+\dfrac kN \pi \Big)$.
Q.E.D.
(1) $\sum\limits_{k=0}^{N-1}\cos p\Big(\theta +\dfrac{2k} N \pi \Big)=0$, $\sum\limits_{k=0}^{N-1}\sin p\Big(\theta +\dfrac{2k}N \pi \Big) =0$ $(1\le p\le N-1,p\in{\Bbb N})$.
(2) $\sum\limits_{k=0}^{N-1}\cos p\Big(\theta +\dfrac{2k+1}N \pi \Big)=0$, $\sum\limits_{k=0}^{N-1}\sin p\Big(\theta +\dfrac{2k+1}N \pi \Big)=0$ $(1\le p\le N-1,p\in{\Bbb N})$.
證明:
(1) 設方程式 $z^N=\cos (pN\theta )+i\sin (pN\theta ) (1\le p\le N-1,N\ge 2,p,N\in {\Bbb N})$,
令複數 $z=\cos\varphi +i\sin\varphi $, 則 $(\cos \varphi +i\sin\varphi )^N=\cos (pN\theta )+i\sin (pN\theta )$,
由棣美弗定理可知: $\cos(N\varphi )+i\sin(N\varphi )=\cos (pN\theta )+i\sin (pN\theta )$,
推得 $N\varphi =pN\theta +2kp\pi\ \Rightarrow\ \varphi =p\theta +\dfrac{2k}N p\pi $, $k=0,1,2,\ldots,N-1$,
故可得 $z_k=\cos p\Big(\theta +\dfrac{2k\pi}N\Big)+i\sin p\Big(\theta +\dfrac{2k\pi}N\Big)$, $k=0,1,2,\ldots,N-1$,
為其複數方程式 $z^N=\cos(pN\theta )+i\sin(pN\theta )$ 的 $N$ 個複數根。
由於複數的 $N$ 次方根和為 0,
即 $\sum\limits_{k=0}^{N-1} z_k=0 \ \Rightarrow\ \sum\limits_{k=0}^{N-1}\Big[\cos p\Big(\theta +\dfrac{2k\pi}N\Big)
+i\sin p\Big(\theta +\dfrac{2k\pi}N\Big)\Big] =0$,
故 $\sum\limits_{k=0}^{N-1}\cos p\Big(\theta +\dfrac{2k}N \pi \Big) =0$ 且
$\sum\limits_{k=0}^{N-1}\sin p\Big(\theta +\dfrac{2k}N \pi \Big)=0$, $k=0,1,2,\ldots,N-1$。
(2) 設方程式 $z^N=\cos p(N\theta +\pi )+i\sin p(N\theta +\pi )$ $(1\le p\le N-1$, $N\ge 2$, $p, N\in{\Bbb N})$,
令複數 $z=\cos\varphi +i\sin\varphi $, 則 $(\cos \varphi +i\sin\varphi )^N=\cos p(N\theta +\pi )+i\sin p(N\theta +\pi )$,
由棣美弗定理可知: $\cos(N\varphi )+i\sin(N\varphi )=\cos p(N\theta +\pi )+i\sin p(N\theta +\pi )$,
推得 $N\varphi =pN\theta +p\pi +2kp\pi \ \Rightarrow\ \varphi =p\theta +\dfrac{2k+1}N p\pi $, $k=0,1,2,\ldots,N-1$,
故可得 $z_k=\cos p\Big(\theta +\dfrac{2k+1}N \pi \Big)+i\sin p\Big(\theta +\dfrac{2k+1}N \pi \Big)$, $k=0,1,2,\ldots,N-1$,
為其複數方程式 $z^N=\cos p(N\theta +\pi )+i\sin p(N\theta +\pi )$ 的 $N$ 個複數根。
由於複數的 $N$ 次方根和為 0,
即 $\sum\limits_{k=0}^{N-1} z_k=0\ \Rightarrow\ \sum\limits_{k=0}^{N-1}\Big[\cos p\Big(\theta +\dfrac{2k+1}N \pi \Big)+i\sin p
\Big(\theta +\dfrac{2k+1}N \pi \Big)\Big]=0$,
故 $\sum\limits_{k=0}^{N-1}\cos p\Big(\theta +\dfrac{2k+1}N \pi \Big)=0$ 且
$\sum\limits_{k=0}^{N-1}\sin p\Big(\theta +\dfrac{2k+1}N \pi \Big)=0$, $k=0,1,2,\ldots$, $N\!-\!1$.
Q.E.D.
(1) $\sin^{2n} \alpha =\dfrac 1{2^{2n-1}} [\sum\limits_{k=0}^{n-1}(-1)^{n+k} C_k^{2n} \cos(2n-2k)\alpha +\dfrac 12 C_n^{2n} \Big]$.
(2) $\sin^{2n+1} \alpha =\dfrac 1{2^{2n}}\Big[\sum\limits_{k=0}^{n}(-1)^{n+k} C_k^{2n+1} \sin(2n+1-2k)\alpha\Big]$.
證明: 根據歐拉公式, 可設 $e^{i\alpha} =\cos\alpha +i\sin \alpha $, 則 $e^{-i\alpha}=\cos\alpha -i\sin \alpha$。
推得 $\cos\alpha =\dfrac{e^{i\alpha} +e^{-i\alpha}}2$, $\sin\alpha =\dfrac{e^{i\alpha} -e^{-i\alpha}}{2i}$。
\begin{align*} \hbox{所以}\ \sin^N \alpha =\,&\frac 1{2^Ni^N} [e^{i\alpha} +(-1)e^{-i\alpha} ]^N\\ =\,&\frac 1{2^Ni^N} [C_0^N e^{iN\alpha} +C_1^N e^{i(N-1)\alpha} \cdot (-1) e^{-i\alpha}+C_2^N e^{i(N-2)\alpha} \cdot (-1)^2 e^{-i2\alpha} ~\\ & +\cdots+C_{N-1}^N e^{i\alpha} \cdot (-1)^{N-1} e^{-i(N-1)\alpha}+C_N^N (-1)^N e^{-iN\alpha}]\\ =\,&\frac 1{2^Ni^N} [e^{iN\alpha} +(-1) C_1^N e^{i(N-2)\alpha} +(-1)^2 C_2^N e^{i(N-4)\alpha}\\ & +\cdots+(-1)^{N-1} C_{N-1}^N e^{-i(N-2)\alpha}+(-1)^N e^{-iN\alpha}]. \end{align*}(1) $N=2n$ 時,
\begin{align*} \sin^{2n} \alpha =\,&\frac 1{2^{2n}i^{2n}} [e^{i2n\alpha} +(-1) C_1^{2n} e^{i(2n-2)\alpha} +(-1)^2 C_2^{2n} e^{i(2n-4)\alpha}\\ & +\cdots+(-1)^{2n-1} C_{2n-1}^{2n} e^{-i(2n-2)\alpha}+(-1)^{2n} e^{-i2n\alpha}]\\ =\,&\frac 1{2^{2n}(-1)^n}\{[e^{i2n\alpha} +e^{-i2n\alpha}]+(-1) C_1^{2n} [e^{i(2n-2)\alpha} +e^{-i(2n-2)\alpha}]\\ &+(-1)^2 C_2^{2n} [e^{i(2n-4)\alpha} +e^{-i(2n-4)\alpha}]\\ & +\cdots+(-1)^{n-1} C_{n-1}^{2n} [e^{i2\alpha} +e^{-i2\alpha}]+C_n^{2n} e^{in\alpha} \cdot (-1)^n e^{-in\alpha}\}\\ =\,&\frac{(-1)^n}{2^{2n}}[2\cos 2n\alpha +(-1) C_1^{2n}\cdot 2 \cos(2n-2)\alpha +(-1)^2 C_2^{2n}\cdot 2 \cos(2n-4)\alpha \\ & +\cdots+(-1)^{n-1} C_{n-1}^{2n}\cdot 2 \cos 2 \alpha +(-1)^n C_n^{2n}]\\ =\,&\frac 1{2^{2n-1}}[(-1)^n \cos 2n\alpha +(-1)^{n+1} C_1^{2n} \cos(2n-2)\alpha +(-1)^{n+2} C_2^{2n} \cos(2n-4)\alpha \\ & +\cdots+(-1)^{2n-1} C_{n-1}^{2n} \cos 2 \alpha +\frac 12 (-1)^{2n} C_n^{2n}]\\ =\,&\frac 1{2^{2n-1}}\Big[\sum\limits_{k=0}^{n-1}(-1)^{n+k} C_k^{2n} \cdot \cos(2n-2k)\alpha +\frac 12 C_n^{2n}\Big]. \end{align*}(2) $N=2n+1$ 時,
\begin{align*} \sin^{2n+1} \alpha =\,& \frac 1{2^{2n+1} i^{2n+1}}[e^{i(2n+1)\alpha}+(-1) C_1^{2n+1} e^{i(2n-1)\alpha} +(-1)^2 C_2^{2n+1} e^{i(2n-3)\alpha}\\ & +\cdots+(-1)^{2n} C_{2n}^{2n+1} e^{-i(2n-1)\alpha}+(-1)^{2n+1} e^{-i(2n+1)\alpha}]\\ =\,&\frac 1{2^{2n+1}(-1)^n i}\{[e^{i(2n+1)\alpha} -e^{-i(2n+1)\alpha}]+(-1) C_1^{2n+1} [e^{i(2n-1)\alpha} -e^{-i(2n-1)\alpha}]\\ &+(-1)^2 C_2^{2n+1} [e^{i(2n-3)\alpha} -e^{-i(2n-3)\alpha}]+\cdots+(-1)^n C_n^{2n+1} [e^{i\alpha} -e^{-i\alpha} ]\}\\ =\,&\frac{(-1)^n}{2^{2n}}[\sin (2n\!+\!1)\alpha \!+\!(-1) C_1^{2n+1} \sin(2n-1)\alpha \!+\!(-1)^2 C_2^{2n+1}\sin(2n\!-\!3)\alpha\\ & +\cdots+(-1)^n C_n^{2n+1} \sin\alpha]\\ =\,&\frac{1}{2^{2n}}[(-1)^n \sin(2n+1)\alpha +(-1)^{n+1} C_1^{2n+1}\sin(2n-1)\alpha\\ &+(-1)^{n+2} C_2^{2n+1} \sin(2n-3)\alpha +\cdots+(-1)^{2n} C_n^{2n+1} \sin\alpha]\\ =\,&\frac{1}{2^{2n}}\Big[\sum\limits_{k=0}^{n} (-1)^{n+k} C_k^{2n+1}\sin(2n+1-2k)\alpha \Big].\tag*{Q.E.D.} \end{align*}三、圓內接正多邊形的奇偶弦長冪次定和
正 $2n+1$ ($n\ge1$) 邊形的外接圓上動點到奇頂點的距離和與到偶頂點的距離和相等。 如圖二, 即 $\overline{PA_1}+\overline{PA_3}+\cdots+\overline{PA_{2n-1}}=\overline{PA_0}+\overline{PA_2}+\cdots+\overline{PA_{2n}}$。
證明: 已知 $\overline{PA_k}=|P-Z_k |=2\sin\Big(\frac\theta 2+\frac k{2n+1}\pi\Big)$, $k=0,1,2,\ldots,2n$。 所以
\begin{align*} &\hskip -25pt \overline{PA_1}+\overline{PA_3}+\cdots+\overline{PA_{2n-1}}\\ =\,&2\Big[\sin\Big(\frac\theta 2+\frac\pi {2n+1}\Big)+\sin\Big(\frac\theta 2+\frac{3\pi}{2n+1}\Big)+\cdots+\sin\Big(\frac \theta 2+\frac{2n-1}{2n+1}\pi\Big)\Big]\\ &\hskip -25pt \overline{PA_0}+\overline{PA_2}+\cdots+\overline{PA_{2n}}\\ =\,&2\Big[\sin \frac\theta 2+\sin\Big(\frac\theta 2+\frac{2\pi}{2n+1}\Big)+\cdots+\sin\Big(\frac \theta 2+\frac{2n}{2n+1}\pi \Big)\Big]. \end{align*}於是
\begin{align*} &\hskip -20pt (\overline{PA_0}+\overline{PA_2}+\cdots+\overline{PA_{2n}} )-(\overline{PA_1}+\overline{PA_3}+\cdots+\overline{PA_{2n-1}} )\\ =\,&2\Big[\sin \frac\theta 2+\sin\Big(\frac\theta 2+\frac{2\pi}{2n+1}\Big)+\cdots+\sin\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big) +\sin\Big(\frac\theta 2+\frac{2n+2}{2n+1}\pi \Big)\\ & +\sin\Big(\frac\theta 2+\frac{2n+4}{2n+1}\pi \Big)+\cdots+\sin\Big(\frac \theta 2+\frac{4n}{2n+1}\pi \Big)\Big]\\ =\,&2\sum_{k=0}^{2n}\sin\Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big)=0 \hbox{ (由引理 2(1) 可知).} \end{align*}因此 $(\overline{PA_0}+\overline{PA_2}+\cdots+\overline{PA_{2n}} )-(\overline{PA_1}+\overline{PA_3}+\cdots+\overline{PA_{2n-1}} )=0$,
故 $\overline{PA_1}+\overline{PA_3}+\cdots+\overline{PA_{2n-1}}=\overline{PA_0}+\overline{PA_2}+\cdots+\overline{PA_{2n}}$.
Q.E.D.
正 $2n$ ($n\ge 2$) 邊形的外接圓上動點到奇頂點的距離平方和與到偶頂點的距離平方和相等。 如圖三, $\overline{PA_1}^2+\overline{PA_3}^2+\cdots+\overline{PA_{2n-1}}^2 =\overline{PA_0}^2+\overline{PA_2}^2+\cdots+\overline{PA_{2n-2}}^2$。
證明: 已知 $\overline{PA_k}=|P-Z_k |=2\sin\Big(\dfrac\theta 2+\dfrac{k}{2n} \pi \Big)$, $k=0,1,2,\ldots,2n-1$。 所以
\begin{align*} &\hskip -15pt \overline{PA_1}^2+\overline{PA_3}^2+\cdots+\overline{PA_{2n-1}}^2\\ =\,&4\sin^2 \Big(\frac\theta 2+\frac{\pi}{2n}\Big)+4\sin^2 \Big(\frac\theta 2+\frac{3\pi}{2n}\Big)+\cdots+4\sin^2 \Big(\frac\theta 2+\frac{2n-1}{2n} \pi \Big)\\ =\,&\Big[2-2\cos\Big(\theta +\frac\pi n\Big)\Big]+\Big[2-2\cos\Big(\theta +\frac{3\pi}n\Big)\Big]+\cdots+\Big[2-2\cos\Big(\theta +\frac{2n-1}n \pi \Big)\Big]\\ =\,&2n-2\Big[\cos\Big(\theta +\frac \pi n\Big)+\cos\Big(\theta +\frac{3\pi}n\Big)+\cdots+\cos\Big(\theta +\frac{2n-1}n \pi \Big)\Big]\\ =\,&2n-2\sum_{k=0}^{n-1}\cos\Big(\theta +\frac{2k+1}n \pi \Big)\\ =\,&2n-0 =2n. \hbox{(由引理 2(2) 可知)}\\ &\hskip -15pt \overline{PA_0}^2+\overline{PA_2}^2+\cdots+\overline{PA_{2n-2}}^2\\ =\,&4\sin^2 \frac\theta 2+4\sin^2 \Big(\frac\theta 2+\frac{2\pi}{2n}\Big)+\cdots+4\sin^2 \Big(\frac\theta 2+\frac{2n-2}{2n} \pi \Big)\\ =\,&[2-2\cos \theta ]+\Big[2-2\cos\Big(\theta +\frac{2\pi}n\Big)\Big]+\cdots+\Big[2-2\cos\Big(\theta +\frac{2n-2}n \pi \Big)\Big]\\ =\,&2n-2\Big[\cos\theta +\cos\Big(\theta +\frac{2\pi}n\Big)+\cdots+\cos\Big(\theta +\frac{2n-2}n \pi \Big)\Big]\\ =\,&2n-2\sum_{k=0}^{n-1}\cos\Big(\theta +\frac{2k}n \pi \Big) =2n-0=2n, \hbox{(由引理 2(1) 可知).} \end{align*}故 $\overline{PA_1}^2+\overline{PA_3}^2+\cdots+\overline{PA_{2n-1}}^2=\overline{PA_0}^2+\overline{PA_2}^2+\cdots+\overline{PA_{2n-2}}^2$.
Q.E.D.
(三)定理 3:
正 $2n+1$ ($n\ge 2$) 邊形的外接圓上動點到奇頂點的距離立方和與到偶頂點的距離立方和相等。 如圖四, 即 $\overline{PA_1}^3+\overline{PA_3}^3+\cdots+\overline{PA_{2n-1}}^3 =\overline{PA_0}^3+\overline{PA_2}^3+\cdots+\overline{PA_{2n}}^3$。
證明:
已知 $\overline{PA_k}=|P-Z_k |=2\sin\Big(\dfrac\theta 2+\dfrac k{2n+1}\pi \Big),\ k=0,1,2,\ldots,2n$。 所以
\begin{align*} &\hskip -20pt \overline{PA_1}^3+\overline{PA_3}^3+\cdots+\overline{PA_{2n-1}}^3\\ =\,&8\sin^3 \Big(\frac\theta 2+\frac\pi {2n+1}\Big)+8\sin^3 \Big(\frac\theta 2+\frac{3\pi}{2n+1}\Big)+\cdots+8\sin^3 \Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\\ =\,&\Big[6\sin\Big(\frac\theta 2+\frac \pi {2n+1}\Big)-2\sin\Big(\frac{3\theta}2+\frac{3\pi}{2n+1}\Big)\Big]\\ &+\Big[6\sin\Big(\frac\theta 2+\frac{3\pi}{2n+1}\Big)-2\sin\Big(\frac{3\theta}2+\frac{9\pi}{2n+1}\Big)\Big]\\ &+\cdots+\Big[6\sin\Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)-2\sin\Big(\frac{3\theta}2+\frac{6n-3}{2n+1}\pi \Big)\Big]\\ =\,&6\Big[\sin\Big(\frac\theta 2+\frac{\pi}{2n+1}\Big)+\sin\Big(\frac\theta 2+\frac{3\pi}{2n+1}\Big)+\cdots+\sin\Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\Big]\\ &-2\Big[\sin\Big(\frac{3\theta} 2+\frac{3\pi}{2n+1}\Big)+\sin\Big(\frac{3\theta}2+ \frac{9\pi}{2n+1}\Big) +\cdots+\sin\Big(\frac{3\theta}2+\frac{6n-3}{2n+1}\pi \Big)\Big],\\ &\hskip -20pt \overline{PA_0}^3+\overline{PA_2}^3+\cdots+\overline{PA_{2n}}^3\\ =\,&8\sin^3 \frac\theta 2+8\sin^3 \Big(\frac\theta 2+\frac {2\pi}{2n+1}\Big)+\cdots+8\sin^3 \Big(\frac\theta 2+\frac{2n}{2n+1}\pi\Big)\\ =\,&\Big[6\sin \frac \theta 2-2\sin \frac{3\theta}2\Big]+\Big[6\sin\Big(\frac\theta 2+\frac{2\pi}{2n+1}\Big)-2\sin\Big(\frac{3\theta}2+\frac{6\pi}{2n+1}\Big)\Big]+\cdots\\ &+\Big[6\sin\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)-2\sin\Big(\frac{3\theta}2+\frac{6n}{2n+1}\pi \Big)\Big]\\ =\,&6\Big[\sin \frac\theta 2+\sin\Big(\frac\theta 2+\frac{2\pi}{2n+1}\Big)+\cdots+\sin\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\Big]\\ &-2\Big[\sin \frac{3\theta}2+\sin(\frac{3\theta }2+\frac{6\pi}{2n+1}\Big)+\cdots +\sin\Big(\frac{3\theta}2+\frac{6n}{2n+1}\pi \Big)\Big], \end{align*}於是
\begin{align*} &\hskip -15pt (\overline{PA_0}^3+\overline{PA_2}^3+\cdots+\overline{PA_{2n}}^3 )-(\overline{PA_1}^3+\overline{PA_3}^3+\cdots+\overline{PA_{2n-1}}^3 )\\ =\,&6\Big[\sin \frac\theta 2+\sin\Big(\frac\theta 2+\frac 2{2n+1}\pi \Big)+\cdots+\sin\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\\ & +\sin\Big(\frac\theta 2+\frac{2n+2}{2n+1} \pi \Big)+\sin\Big(\frac\theta 2+\frac{2n+4}{2n+1} \pi \Big)+\cdots +\sin\Big(\frac\theta 2+\frac{4n}{2n+1}\pi \Big)\Big]\\ &-2\Big[\sin \frac{3\theta}2+\sin\Big(\frac{3\theta}2+\frac 6{2n\!+\!1}\pi \Big)\!+\!\cdots\!+\!\sin\Big(\frac{3\theta}2+\frac{6n}{2n\!+\!1}\pi \Big) +\sin\Big(\frac{3\theta}2+\frac{6n\!+\!6}{2n\!+\!1}\pi \Big)\\ & +\sin\Big(\frac{3\theta} 2+\frac{6n+12}{2n+1}\pi \Big)+\cdots+\sin\Big(\frac{3\theta} 2+\frac{12n}{2n+1}\pi \Big)\Big]\\ =\,&6\sum_{k=0}^{2n}\sin\Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big)-2\sum_{k=0}^{2n} \sin 3\Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big). \end{align*}由引理 2(1) 可知 : $\sum\limits_{k=0}^{2n}\sin\Big(\dfrac\theta 2+\dfrac{2k}{2n+1}\pi \Big) =0$ 和 $\sum\limits_{k=0}^{2n}\sin 3\Big(\dfrac\theta 2+\dfrac{2k}{2n+1}\pi\Big)=0$。
因此 $(\overline{PA_0}^3+\overline{PA_2}^3+\cdots+\overline{PA_{2n}}^3 )-(\overline{PA_1}^3+\overline{PA_3}^3+\cdots+\overline{PA_{2n-1}}^3 )=0$.
故 $\overline{PA_1}^3+\overline{PA_3}^3+\cdots+\overline{PA_{2n-1}}^3=\overline{PA_0}^3+\overline{PA_2}^3+\cdots+\overline{PA_{2n}}^3$.
Q.E.D.
(四)定理 4:
正 $2n$ ($n\ge 3$) 邊形的外接圓上動點到奇頂點的距離四次方和與到偶頂點的距離四次方和相等。 如圖五, 即 $\overline{PA_1}^4+\overline{PA_3}^4+\overline{PA_5}^4+\cdots+\overline{PA_{2n-1}}^4 =\overline{PA_0}^4+\overline{PA_2}^4+\overline{PA_4}^4+\cdots+\overline{PA_{2n-2}}^4$。
證明: 已知 $\overline{PA_k}=|P-Z_k |=2\sin\Big(\dfrac\theta 2+\dfrac k{2n} \pi \Big)$, $k=0,1,2,\ldots,2n-1$。 所以
\begin{align*} &\hskip -15pt \overline{PA_1}^4+\overline{PA_3}^4+\overline{PA_5}^4+\cdots+\overline{PA_{2n-1}}^4\\ =\,&16\sin^4 \Big(\frac\theta 2+\frac{\pi}{2n}\Big)+16\sin^4 \Big(\frac\theta 2+\frac{3\pi}{2n}\Big) +16\sin^4 \Big(\frac\theta 2+\frac{5\pi}{2n}\Big)+\cdots\\ &+16\sin^4 \Big(\frac\theta 2+\frac{2n-1}{2n}\pi \Big)\\ =\,&2\Big[3-4\cos\Big(\theta +\frac \pi n\Big)+\cos\Big(2\theta +\frac{2\pi}n\Big)\Big]+2\Big[3-4\cos\Big(\theta +\frac{3\pi}n\Big)+\cos\Big(2\theta +\frac{6\pi}n\Big)\Big]\\ &+2\Big[3-4\cos\Big(\theta +\frac{5\pi}n\Big)+\cos\Big(2\theta +\frac{10\pi}n\Big)\Big]+\cdots\\ &+2\Big[3-4\cos\Big(\theta +\frac{2n-1}n \pi \Big)+\cos\Big(2\theta +\frac{4n-2}n \pi \Big)\Big]\\ =\,&6n-8\Big[\cos\Big(\theta +\frac\pi n\Big)+\cos\Big(\theta +\frac{3\pi}n\Big)+\cos\Big(\theta +\frac{5\pi}n\Big)+\cdots+\cos\Big(\theta +\frac{2n-1}n \pi \Big)\Big]\\ &+2\Big[\cos\Big(2\theta \!+\!\frac{2\pi}n\Big)\!+\!\cos\Big(2\theta \!+\!\frac{6\pi}n\Big)\!+\!\cos\Big(2\theta \!+\!\frac{10\pi}n\Big)\!+\!\cdots \!+\!\cos\Big(2\theta \!+\!\frac{4n\!-\!2}n \pi \Big)\Big]\\ =\,&6n-8\sum_{k=0}^{n-1}\cos\Big(\theta +\frac{2k+1}n \pi \Big) +2\sum_{k=0}^{n-1}\cos 2\Big(\theta +\frac{2k+1}n \pi \Big)=6n. \end{align*}由引理 2(2) 可知: $\sum\limits_{k=0}^{n-1}\cos\Big(\theta +\dfrac{2k+1}n \pi \Big) =0$ 和 $\sum\limits_{k=0}^{n-1}\cos 2\Big(\theta +\dfrac{2k+1}n \pi \Big)=0$。
\begin{align*} &\hskip -20pt \overline{PA_0}^4+\overline{PA_2}^4+\overline{PA_4}^4+\cdots+\overline{PA_{2n-2}}^4\\ =\,&16\sin^4 \frac\theta 2+16\sin^4 \Big(\frac\theta 2+\frac 1n \pi \Big)+16\sin^4 \Big(\frac\theta 2+\frac 2n \pi \Big) +\cdots+16\sin^4 \Big(\frac\theta 2+\frac{n-1}n \pi \Big)\\ =\,&2[3-4cos\theta +cos2\theta ]+2[3-4\cos(\theta +\frac 2n \pi )+\cos(2\theta +\frac 4n \pi )]\\ &+2[3-4\cos(\theta +\frac 4n \pi )+\cos(2\theta +\frac 8n \pi )]+\cdots\\ &+2\Big[3-4\cos\Big(\theta +\frac{2n-2}n \pi \Big)+\cos\Big(2\theta +\frac{4n-4}n \pi \Big)\Big]\\ =\,&6n-8\Big[\cos\theta +\cos\Big(\theta +\frac 2n \pi \Big)+\cos\Big(\theta +\frac 4n \pi \Big)+\cdots+\cos\Big(\theta +\frac {2n-2}n \pi \Big)\Big]\\ &+2\Big[\cos2\theta +\cos\Big(2\theta +\frac 4n \pi \Big)+\cos\Big(2\theta +\frac 8n \pi \Big)+\cdots+\cos\Big(2\theta +\frac{4n-4}n \pi \Big)\Big]\\ =\,&6n-8\sum_{k=0}^{n-1}\cos\Big(\theta +\frac{2k}n \pi \Big) +2\sum_{k=0}^{n-1}\cos 2\Big(\theta +\frac{2k}n \pi \Big)=6n. \end{align*}由引理 2(1) 可知 : $\sum\limits_{k=0}^{n-1}\cos\Big(\theta +\dfrac{2k}n \pi \Big) =0$ 和 $\sum\limits_{k=0}^{n-1}\cos 2\Big(\theta +\dfrac{2k}n \pi \Big)=0$。
故 $\overline{PA_1}^4\!+\!\overline{PA_3}^4\!+\!\overline{PA_5}^4\!+\!\cdots\!+\!\overline{PA_{2n-1}}^4 \!=\!\overline{PA_0}^4\!+\!\overline{PA_2}^4\!+\!\overline{PA_4}^4\!+\!\cdots\!+\!\overline{PA_{2n-2}}^4$.
Q.E.D.
設正 $2n$ ($n\ge m$, $m\ge 2$) 邊形 $A_0 A_1 A_2\cdots A_{2n-1}$ 的外接圓, 設 $P$ 點為圓弧$A_0 A_{2n-1}$ 上任一點, 則
\begin{align*} &\hskip -20pt \overline{PA_1}^{2m-2}+\overline{PA_3}^{2m-2}+\overline{PA_5}^{2m-2}+\cdots+\overline{PA_{2n-1}}^{2m-2}\\ =&\overline{PA_0}^{2m-2}+\overline{PA_2}^{2m-2}+\overline{PA_4}^{2m-2}+\cdots+\overline{PA_{2n-2}}^{2m-2}. \end{align*}證明: 已知 $\overline{PA_k}=|P-Z_k |=2\sin\Big(\dfrac\theta 2+\dfrac{k}{2n} \pi \Big)$, 其中 $k=0,1,2,\ldots,2n-1$。
且 $\sin^{2m-2} \alpha =\dfrac 1{2^{2m-3}}\Big[\sum\limits_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\alpha+\dfrac 12 C_{m-1}^{2(m-1)}\Big]$, 所以
\begin{align*} &\hskip -15pt \overline{PA_1}^{2m-2}+\overline{PA_3}^{2m-2}+\overline{PA_5}^{2m-2}+\cdots+\overline{PA_{2n-1}}^{2m-2}\\ =\,&2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2+\frac{\pi}{2n}\Big)+2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2+\frac{3\pi}{2n}\Big) +2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2+\frac{5\pi}{2n}\Big)\\ &+\cdots+2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2+\frac{2n-1}{2n}\pi \Big)\\ =\,&2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2+\frac{\pi}{2n}\Big)+\frac 12 C_{m-1}^{2(m-1)} \Big]\\ &+2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2+\frac{3\pi}{2n}\Big)+\frac 12 C_{m-1}^{2(m-1)} \Big]\\ &+2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2+\frac{5\pi}{2n}\Big)+\frac 12 C_{m-1}^{2(m-1)} \Big]+\cdots\\ &+2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2+\frac{2n-1}{2n}\pi \Big)+\frac 12 C_{m-1}^{2(m-1)} \Big]\\ =\,&n\!\cdot\! C_{m-1}^{2(m-1)}\!+\!2(-1)^{m-1}\Big[\cos(m\!-\!1)(\theta \!+\!\frac\pi n)\!+\!\cos(m\!-\!1) (\theta \!+\!\frac 3 n \pi )\!+\!\cos(m\!-\!1)(\theta \!+\!\frac 5n \pi)\\ &\hskip 5cm +\cdots+\cos(m-1)\Big(\theta +\frac{2n-1}n \pi \Big)\Big]\\ &+2(-1)^m C_1^{2m-2} \Big[\cos (m-2)(\theta +\frac\pi n)\!+\!\cos(m\!-\!2)(\theta \!+\!\frac 3n \pi )+\cos(m\!-\!2)(\theta \!+\!\frac 5n \pi )\\ &\hskip 5cm +\cdots+\cos(m-2)(\theta +\frac{2n-1}n \pi )\Big]\\ &+2(-1)^{m+1} C_2^{2m-2} \Big[\cos (m-3)(\theta +\frac\pi n)+\cos(m-3)(\theta +\frac 3n \pi)\\ &+\cos(m-3)(\theta +\frac 5n \pi )+\cdots+\cos(m-3)\Big(\theta +\frac{2n-1}n \pi \Big)\Big]+\cdots\\ &+2(-1)^{2m-3} C_{m-2}^{2m-2} \Big[\cos \Big(\theta \!+\!\frac\pi n\Big)\!+\!\cos\Big(\theta \!+\!\frac 3n \pi \Big) \!+\!\cos\Big(\theta \!+\!\frac 5n \pi \Big)\!+\!\cdots\\ &\hskip 5cm+\cos\Big(\theta \!+\!\frac{2n\!-\!1}n \pi \Big)\Big]\\ =\,&n\cdot C_{m-1}^{2(m-1)} +2(-1)^{m-1} \sum_{k=0}^{n-1}\cos(m-1) \Big(\theta +\frac{2k+1}n \pi \Big)\\ &+2(-1)^m C_1^{2m-2} \sum_{k=0}^{n-1}\cos(m-2)\Big(\theta +\frac{2k+1}n \pi \Big)\\ &+2(-1)^{m+1} C_2^{2m-2} \sum_{k=0}^{n-1}\cos(m-3)\Big(\theta +\frac{2k+1}n \pi \Big)\\ &+\cdots+2(-1)^{2m-3} C_{m-2}^{2m-2} \sum_{k=0}^{n-1}\cos\Big(\theta +\frac{2k+1}n \pi \Big) =n\cdot C_{m-1}^{2(m-1)}. \end{align*}由引理 2(2) 可知 : $\sum\limits_{k=0}^{n-1}\cos p \Big(\theta +\dfrac{2k+1}n \pi \Big)=0$ $(1\le p\le n-1,p\in{\Bbb N})$。
\begin{align*} &\hskip -20pt \overline{PA_0}^{2m-2}+\overline{PA_2}^{2m-2}+\overline{PA_4}^{2m-2}+\cdots+\overline{PA_{2n-2}}^{2m-2}\\ =\,&2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2\Big)+2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2+\frac{2\pi}{2n}\Big)+2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2+\frac{4\pi}{2n}\Big)\\ &+\cdots+2^{2m-2} \sin^{2m-2} \Big(\frac\theta 2+\frac{2n-2}{2n} \pi \Big)\\ =\,&2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2\Big)+\frac 12 C_{m-1}^{2(m-1)} \Big]\\ &+2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2+\frac{2\pi}{2n}\Big)+\frac 12 C_{m-1}^{2(m-1)}\Big]\\ &+2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2+\frac{4\pi}{2n}\Big)+\frac 12 C_{m-1}^{2(m-1)}\Big]+\cdots\\ &+2\Big[\sum_{k=0}^{m-2}(-1)^{m-1+k} C_k^{2m-2} \cos(2m-2-2k)\Big(\frac\theta 2+\frac{2n-2}{2n} \pi \Big)+\frac 12 C_{m-1}^{2(m-1)} \Big]\\ =\,&n\cdot C_{m-1}^{2(m-1)}+2(-1)^{m-1} \Big[\cos(m-1)\theta +\cos(m-1)(\theta +\frac 2n \pi )\\ &\hskip 2cm +\cos(m-1)\Big(\theta +\frac 4n \pi \Big)+\cdots+\cos(m-1)\Big(\theta +\frac{2n-2}n \pi \Big)\Big]\\ &+2(-1)^m C_1^{2m-2} \Big[\cos (m-2)\theta+\cos(m-2)\Big(\theta +\frac 2n \pi \Big)\\ &\hskip 2cm +\cos(m-2)\Big(\theta +\frac 4n \pi \Big)+\cdots+\cos(m-2)\Big(\theta +\frac{2n-2}n \pi \Big)\Big]\\ &+2(-1)^{m+1} C_2^{2m-2} \Big[\cos (m-3)\theta+\cos(m-3)\Big(\theta +\frac 2n \pi \Big)\\ &\hskip 2cm +\cos(m-3)\Big(\theta +\frac 4n \pi \Big)+\cdots+\cos(m-3)\Big(\theta +\frac{2n-2}n \pi \Big)\Big]+\cdots\\ &+2(-1)^{2m-3} C_{m-2}^{2m-2} \Big[\cos \theta+\cos\Big(\theta +\frac 2n \pi \Big)+\cos\Big(\theta +\frac 4n \pi \Big)+\cdots\\ &\hskip 5cm +\cos\Big(\theta +\frac{2n-2}n \pi \Big)\Big]\\ =\,& n\cdot C_{m-1}^{2(m-1)} +2(-1)^{m-1} \sum_{k=0}^{n-1}\cos(m-1) \Big(\theta +\frac{2k}n \pi \Big)\\ &\hskip 2cm +2(-1)^m C_1^{2m-2} \sum_{k=0}^{n-1}\cos(m-2)\Big(\theta +\frac{2k}n \pi \Big)\\ &\hskip 2cm +2(-1)^{m+1} C_2^{2m-2} \sum_{k=0}^{n-1}\cos(m-3)\Big(\theta +\frac{2k}n \pi \Big)+\cdots\\ &\hskip 2cm +2(-1)^{2m-3} C_{m-2}^{2m-2} \sum_{k=0}^{n-1}\cos\Big(\theta +\frac{2k}n \pi \Big)=n\cdot C_{m-1}^{2(m-1)}. \end{align*}由引理 2(1)可知 : $\sum\limits_{k=0}^{n-1}\cos p \Big(\theta +\frac{2k}n \pi \Big)=0$ $(1\le p\le n-1$, $p\in{\Bbb N})$。 故
\begin{align*} &\overline{PA_1}^{2m-2}+\overline{PA_3}^{2m-2}+\overline{PA_5}^{2m-2}+\cdots+\overline{PA_{2n-1}}^{2m-2}\\ =\,&\overline{PA_0}^{2m-2}+\overline{PA_2}^{2m-2}+\overline{PA_4}^{2m-2}+\cdots+\overline{PA_{2n-2}}^{2m-2} (m\ge 2). \tag*{Q.E.D.} \end{align*}(六)定理 6:
設正 $2n+1$ $(n\ge m$, $m\ge 1)$ 邊形 $A_0A_1A_2\cdots A_{2n}$ 的外接圓, 設 $P$ 點為圓弧 $A_0 A_{2n}$ 上任一點, 則
\begin{align*} &\overline{PA_1}^{2m-1}+\overline{PA_3}^{2m-1}+\overline{PA_5}^{2m-1}+\cdots+\overline{PA_{2n-1}}^{2m-1}\\ =\,&\overline{PA_0}^{2m-1}+\overline{PA_2}^{2m-1}+\overline{PA_4}^{2m-1}+\cdots+\overline{PA_{2n}}^{2m-1}. \end{align*}證明: 已知 $\overline{PA_k}=|P-Z_k |=2\sin\Big(\dfrac\theta 2+\dfrac k{2n+1}\pi \Big)$, 其中 $k=0,1,2,\ldots,2n$。
且 $\sin^{2m-1} \alpha =\dfrac 1{2^{2m-2}}\Big[\sum\limits_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \cos(2m-1-2k)\alpha\Big]$, 所以
\begin{align*} &\hskip -10pt \overline{PA_1}^{2m-1}+\overline{PA_3}^{2m-1}+\overline{PA_5}^{2m-1}+\cdots+\overline{PA_{2n-1}}^{2m-1}\\ =\,&2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2+\frac{\pi}{2n+1}\Big)+2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2+\frac{3\pi}{2n+1}\Big)\\ &+2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2+\frac{5\pi}{2n+1}\Big)+\cdots+2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\\ =\,&2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2+\frac{\pi}{2n+1}\Big)\Big]\\ &+2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2+\frac{3\pi}{2n+1}\Big)\Big]\\ &+2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2+\frac{5\pi}{2n+1}\Big)\Big]+\cdots\\ &+2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\Big]\\ =\,&2(-1)^{m-1}\Big[\sin (2m-1)\Big(\frac\theta 2+\frac{\pi}{2n+1}\Big)+\sin(2m-1)\Big(\frac\theta 2+\frac 3{2n+1}\pi \Big)\\ &+\sin(2m-1)\Big(\frac\theta 2+\frac 5{2n+1}\pi \Big)+\cdots+\sin(2m-1)\Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\Big]\\ &+2(-1)^m C_1^{2m-1} \Big[\sin(2m-3)\Big(\frac\theta 2+\frac\pi {2n+1}\Big)+\sin(2m-3)\Big(\frac\theta 2+\frac 3{2n+1}\pi \Big)\\ &+\sin(2m-3)\Big(\frac\theta 2+\frac 5{2n+1}\pi \Big)+\cdots+\sin(2m-3)\Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\Big]\\ &+2(-1)^{m+1} C_2^{2m-1} \Big[\sin(2m-5)\Big(\frac\theta 2+\frac\pi {2n+1}\Big)+\sin(2m-5)\Big(\frac\theta 2+\frac 3{2n+1}\pi \Big)\\ &+\sin(2m-5)\Big(\frac\theta 2+\frac 5{2n+1}\pi \Big)+\cdots+\sin(2m-5)\Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\Big]\\ &+\cdots+2(-1)^{2m-2} C_{m-1}^{2m-1} \Big[\sin\Big(\frac\theta 2+\frac\pi {2n+1}\Big) +\sin\Big(\frac\theta 2+\frac 3{2n+1}\pi \Big)\\ &+\sin\Big(\frac\theta 2+\frac 5{2n+1}\pi \Big)+\cdots+\sin\Big(\frac\theta 2+\frac{2n-1}{2n+1}\pi \Big)\Big]\\ =\,&2(-1)^{m-1} \sum_{k=0}^{n-1}\sin(2m-1) \Big(\frac\theta 2+\frac{2k+1}{2n+1}\pi \Big)\\ &+2(-1)^{m-1} C_1^{2m-1} \sum_{k=0}^{n-1}\sin(2m-3)\Big(\frac\theta 2+\frac{2k+1}{2n+1}\pi \Big)\\ &+2(-1)^{m+1} C_2^{2m-1} \sum_{k=0}^{n-1}\sin(2m-5)\Big(\frac\theta 2+\frac{2k+1}{2n+1}\pi \Big)\\ &+\cdots+2(-1)^{2m-2} C_{m-1}^{2m-1} \sum_{k=0}^{n-1}\sin\Big(\frac\theta 2+\frac{2k+1}{2n+1}\pi \Big),\\[8pt] &\hskip -10pt \overline{PA_0}^{2m-1}+\overline{PA_2}^{2m-1}+\overline{PA_4}^{2m-1}+\cdots+\overline{PA_{2n}}^{2m-1}\\ =\,&2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2\Big)\!+\!2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2\!+\!\frac {2\pi}{2n+1}\Big) \!+\!2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2\!+\!\frac{4\pi}{2n+1}\Big)\\ &+\cdots+2^{2m-1} \sin^{2m-1} \Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\\ =\,&2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2\Big)\Big]\\ &+2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2+\frac{2\pi}{2n+1}\Big)\Big]\\ &+2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2+\frac {4\pi}{2n+1}\Big)\Big]+\cdots\\ &+2\Big[\sum_{k=0}^{m-1}(-1)^{m-1+k} C_k^{2m-1} \sin(2m-1-2k)\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\Big]\\ =\,&2(-1)^{m-1} \Big[\sin(2m-1)(\frac \theta 2)+\sin(2m-1)\Big(\frac\theta 2+\frac 2{2n+1}\pi \Big)\\ &+\sin(2m-1)\Big(\frac\theta 2+\frac 4{2n+1}\pi \Big)+\cdots+\sin(2m-1)\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\Big]\\ &+2(-1)^m C_1^{2m-1} \Big[\sin(2m-3) (\frac \theta 2)+\sin(2m-3)\Big(\frac\theta 2+\frac 2{2n+1}\pi \Big)\\ &+\sin(2m-3)\Big(\frac\theta 2+\frac 4{2n+1}\pi \Big)+\cdots+\sin(2m-3)\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\Big]\\ &+2(-1)^{m+1} C_2^{2m-1} \Big[\sin(2m-5) (\frac\theta 2)+\sin(2m-5)\Big(\frac\theta 2+\frac 2{2n+1}\pi \Big)\\ &+\sin(2m-5)\Big(\frac\theta 2+\frac 4{2n+1}\pi \Big)+\cdots+\sin(2m-5)\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\Big]+\cdots\\ &+2(-1)^{2m-2} C_{m-1}^{2m-1} \Big[\sin \frac \theta 2+\sin\Big(\frac\theta 2+\frac 2{2n+1}\pi \Big)+\sin\Big(\frac\theta 2+\frac 4{2n+1} \pi \Big)+\cdots\\ &\hskip 5cm +\sin\Big(\frac\theta 2+\frac{2n}{2n+1}\pi \Big)\Big]\\ =\,&2(-1)^{m-1} \!\sum_{k=0}^{n}\!\sin(2m\!-\!1) \Big(\frac\theta 2\!+\!\frac{2k}{2n\!+\!1}\pi \Big)\!+\!2(-1)^m C_1^{2m-1} \!\sum_{k=0}^{n}\!\sin(2m\!-\!3)\Big(\frac\theta 2\!+\!\frac{2k}{2n\!+\!1}\pi \Big)\\ &+2(-1)^{m+1} C_2^{2m-1} \sum_{k=0}^{n}\sin(2m-5)\Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big)+\cdots\\ &+2(-1)^{2m-2} C_{m-1}^{2m-1} \sum_{k=0}^{n}\sin\Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big). \end{align*}於是
\begin{align*} &\hskip -15pt (\overline{PA_0}^{2m-1}+\overline{PA_2}^{2m-1}+\overline{PA_4}^{2m-1}+\cdots+\overline{PA_{2n-2}}^{2m-1} )\\ &-(\overline{PA_1}^{2m-1}+\overline{PA_3}^{2m-1}+\overline{PA_5}^{2m-1}+\cdots+\overline{PA_{2n-1}}^{2m-1} )\\ =\,&2(-1)^{m-1} \sum_{k=0}^{2n}\sin(2m\!-\!1) \Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big)\\ &+2(-1)^m C_1^{2m-1} \sum_{k=0}^{2n}\sin(2m\!-\!3) \Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big)\\ &+2(-1)^{m+1} C_2^{2m-1} \sum_{k=0}^{2n}\sin(2m\!-\!5) \Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big)\\ &+\cdots+2(-1)^{2m-2} C_{m-1}^{2m-1} \sum_{k=0}^{2n}\sin\Big(\frac\theta 2+\frac{2k}{2n+1}\pi \Big). \end{align*}由引理 2(1) 可知 : $\sum\limits_{k=0}^{2n}\sin p \Big(\dfrac\theta 2+\dfrac{2k}{2n+1}\pi\Big)=0$ $(1\le p\le 2n$, $p\in{\Bbb N})$, 因此
\begin{align*} &\hskip +2pt (\overline{PA_0}^{2m-1}+\overline{PA_2}^{2m-1}+\overline{PA_4}^{2m-1}+\cdots+\overline{PA_{2n-2}}^{2m-1} )\\ &-(\overline{PA_1}^{2m-1}+\overline{PA_3}^{2m-1}+\overline{PA_5}^{2m-1}+\cdots+\overline{PA_{2n-1}}^{2m-1} )=0.\\ \hbox{故} &\hskip +2pt \overline{PA_1}^{2m-1}+\overline{PA_3}^{2m-1}+\overline{PA_5}^{2m-1}+\cdots+\overline{PA_{2n-1}}^{2m-1}\\ =\,&\overline{PA_0}^{2m-1}+\overline{PA_2}^{2m-1}+\overline{PA_4}^{2m-1}+\cdots+\overline{PA_{2n-2}}^{2m-1} (m\ge 1). \tag*{Q.E.D.} \end{align*}綜合以上性質, 我們得到一個結論 : 不論 $N$ 為奇數或偶數, 正 $N$ ($N\ge m$) 邊形的外接圓上動點到奇頂點的距離 $m-2$ 次方和與到偶頂點的距離 $m-2$ 次方和必相等。
參考資料
---本文作者任教國立金門高級中學---