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Abstract

In this paper, we develop a new scaling method to study spectral and Bergman kernels
for the k-th tensor power of a line bundle over a complex manifold under local spectral
gap condition. In particular, we establish a simple proof of the pointwise asymptotics
of spectral and Bergman kernels. As a new result, in the function case, we obtain the
leading term of Bergman kernel under spectral gap with exponential decay. Moreover, in
the general cases of (0, ¢)-forms, the asymptotics remain valid while the curvature of the

line bundle is degenerate.

1. Introduction

Let M be a Hermitian complex manifold with dimcM = n and equip M
with a positive Hermitian (1, 1)-form w. Consider a holomorphic line bundle
L over M with a locally defined weight function ¢ that gives L a Hermitian
metric h. The Hermitian form w and the metric A endow the space of L-
valued (0, q)-forms with a L2-inner product. By taking the completion of
this space with respect to the inner product, we obtain the Hilbert space
LZ,¢>(M7 T+O9M @ L). Consider D‘(’quﬁ to be the Kodaira Laplacian induced
by the Hermitian structures w and h. The Bergman projection

B L2 (M, T @ L) — Ker 0"

)
w,¢ ¢
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is the orthogonal projection from the space of L?-integrable sections of
709 M @ L onto the space of harmonic sections with respect to Kodaira
Laplacian D(q) . For a Borel set B C R, we denote by lB(D( e ) the func-

tional calculus of Db(uqu with respect to the indicator function 1p (cf. ﬂﬂ,
section 2]). Given a non-negative constant ¢, the spectral projection

P =1 q(@Y,) L2 (M, T*DM @ L) — EY)

is the orthogonal projection onto the space Rang <1l[0 C](DL(UQ)k ¢)> denoted by

( ) . The Bergman kernel B(q) (z w) is the Schwartz kernel of B(q) and the

spectml kernel P(q; (z,w) is the Schwartz kernel of Piqgﬁ o

The Bergman kernel is a fundamental object in complex analysis and
geometry, which plays a central role in some important problems in complex
geometry, geometric quantization, and mathematical physics. However, it
is challenging to study the Bergman kernel directly. Inspired by quantum
mechanics and semi-classical analysis, if we consider the k-th tensor power
LF of L and replace the Hermitian metric ¢ by k¢, it is possible to handle
the asymptotic behavior of the Bergman kernel as k goes to infinity. There-
fore, the study of the large k behavior of the Bergman kernel B(qzc ¢(z w)
has become prominent in modern research. The asymptotic behavior of the
Bergman kernel B(qzc ¢(z w) is rich in geometrical meaning and closely re-
lated to index theory and algebraic geometry. In ﬂ], R. Berman obtained
the local holomorphic Morse inequalities by analyzing the Bergman kernel
on the diagonal part. In @], C.-Y. Hsiao illustrated a proof of the Kodaira
embedding theorem by the full expansion. Furthermore, the approxima-
tion of Kéahler metrics(e.g., B], @]), existence of canonical Kahler metrics
e.g.,N%, B], ], M]) and the Berezin-Toeplitz quantization (e.g., M ; ],
E], |) are impressive applications. We refer readers to the book [25] of
X. Ma and G. Marinescu for a comprehensive study of Bergman kernel and

relative subjects.

For a compact manifold M with a positive line bundle L, T. Bouche
(1990, B]) and G. Tian (1990, @]) obtained the leading term of the Bergman
kernel, and D. Catlin proved the full expansion (1997, ﬂa]) later. More pre-
cisely, D.Catlin claimed that

BY) (2,2) ~ kD + kD 4 b as koo (L)
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for the case ¢ = 0. Furthermore, X. Dai, K. Liu and X. Ma gave another proof
of the full expansion based on localized techniques and heat kernel methods
(2004, @]),(2008, M]) and B. Berndtsson, R. Berman and J. Sjostrand also
offered a different proof (2008, E])

In the case of non-degenerate line bundle L which may not be positive,
if M is compact and M = M(q) (cf. Def. [T]), there is a full asymptotic
expansion of szid)(z, w) proven by R. Berman and J. Sjéstrand (2007, B])
Moreover, in (2006, [24]), X. Ma and G. Marinescu established similar results
in the context of spin®-Dirac operators in compact symplectic manifolds. In
a later work, C.-Y. Hsiao and G. Marinescu (2014, ﬂﬂ]) demonstrated that
the Bergman kernel has a local asymptotic expansion at all non-degenerate
points under the local spectral gap condition (cf. Def.[[.2]). Also, they showed

that the spectral kernel p9

ok kN has an analogous result.

In this paper, we derive the leading term b,(f) of the asymptotic expansion
(cf. (L) by scaling method under the local spectral gap condition (cf.
Def[[2]). For the function case, we can loosen the spectral gap condition
to an exponential decay rate (cf. Def[l.3]). It is noteworthy that we do not
require the curvature to be non-degenerate.

As for the spectral kernel, we fix a sequence ¢, satisfying

lim supy_, ., K~ 'cx = 0 and consider the asymptotic behavior of Pj)q; bk (z,2).

If there exists an integer d such that liminf,_ . k%c; > 0, then we can also

obtain the leading term of the expansion of P‘,Eq,)c .

the case ¢ = 0, we only need a weaker condition of ¢ that

(z,2). Furthermore, in

Je < 1such that lim infchminAi'klﬂck >0 where \; are defined in (L2).

1.1. Set-up and the main results

Let (M,w) be a Hermitian manifold with complex dimension n where
w is a positive Hermitian (1, 1)-form. Denote by (-|-),, the pointwise Hermi-
tain inner product induced by w on Te M and dV,, the induced Riemannian

. n
volume form given by “r.

We consider a holomorphic Hermitian line bundle (L, h%) over the man-
ifold M, and denote its k-th tensor power L®* by LF. Let s be a local
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holomorphic trivializing section of L over an open subset U of M. The Her-
mitian metric A’ corresponds locally to a weight function ¢ : U — R such
that |s ZL = ¢ 2. Denote by s* the k-th tensor power s®¥ of s. Then the
metric of L¥ in U can be described as \s’“],zm5 = ]sk\iLk = ¢~ 2k where s*
trivializes L* in U with its weight function k¢. Denote by (-|-)xs := QR

the pointwise Hermitian inner product hY" on L* for convenience.

We also introduce the holomorphic Hermitian connection V¥ on (L, h%)
that has a curvature form denoted by ©F. We identify © with a Hermitian
matrix ©F € ¢ (M, End (TM9M)) that satisfies the following equation:

(OF(2)v1 | v2)w = OF(2)(v1 AT) for all v,vy € TVOM, ze M.

Next, we set the notation describing the signature of the curvature.

Definition 1.1. For any ¢ € {0,1,...,n}, we denote

M(q) := {z € M | ©%(2) € End (7" M) is non-degenerate

and has exactly ¢ negative eigenvalues}.

There is a natural Hermitian structure denoted by (|-),, x4 on the vector
bundle T%9 M @ L* over M obtained by the Hermitian pointwise inner
product on T*9 M induced by w (cf. [Z2)) and the local weight func-
tions k¢ of the Hermitian metric RL* of Lk, where T(9 M denotes the
bundle of (0,q)-forms on M (cf. @I)). Let Q9 (M, L*) be the space
of smooth (0,¢)-forms on M with values in L*, and let QgO’Q)(M, L*) be
the subspace of Q(0:9) (M, L*) consisting of elements with compact support
in M. The pointwise inner product (-|-), s on TODM @ L¥ induces a
Lik(ﬁ—inner product (:|-)w ke on the space QEO’Q)(M, LF) (cf. @3)). Denote
Lf},k(p(M, T+O9M @ LF) as the completion of ng’q)(M, L*) with respect to
(‘| )w,kp and denote || - [|w ke as its norm.

Let 5](;1) - QOO (M, LF) — Qe+ (M, LF) be the Cauchy-Riemann op-
erator with values in L* and 5;’(q+1) : Q(O’q+1)(M, Lk) — Q(O’q)(M, Lk) be
the formal adjoint of 5,2;1) with respect to (:|-)w kg. Recall that the Kodaira
Laplacian is given by

09, =878 + 0 Vap@ . OO, LF) — 0O (a1, LF)
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and it has the Gaffney extension(cf. (2.0])):
0, : Dom O, € L2 4y (M, T=CONM @ LF) — L2 (M, TV M @ LF).

Denote by E,(f)gc the image of 1 (D((Uq)k ¢) which is the functional calculus

of Dfﬂc " with respect to the indicator function 1y . We specify a non-
negative sequence ¢ and denote by (cf. ([2.7))

plgqc)k = Tjp.0y] (Dc(,.)q,)kqﬁ) L2, (M, T 0 @ LF) - E,(f)g%

the spectral projection which is the orthogonal projection. Specifically, in

the case ¢ = 0, denote
B L2 (M, T 0D M © L) — Ker O

to be the Bergman projection. Define Pk(::]c)k (z,w) to be the spectral kernel and
B,iq)(z, w) to be the Bergman kernel which are the Schwartz kernels of P,g?zk
and B,(cq), respectively. Now, we choose a suitable holomorphic coordinate
chart U centered at p € M and a holomorphic trivialization s on U such

that (cf. Lemma 2.T])
o= En:)\i]zi]Q +0(2?); w= \/__127‘: dz' Adz" 4+ O(]z]). (1.2)
i=1 =1
Moreover, if \; > 0 for all i =1,...,n, we take the trivialization such that
6= SN+ O(el
i=1

Note that if p € M(q¢’) for some ¢’ € {0,...,n}, then
¢ =#{i;\ <0} and n—q¢ =#{i;\ >0}

In this paper, we always assume that \; < 0 for all i = 1,...,¢ by rear-

rangement. Next, we introduce the spectral gap conditions.

Definition 1.2 (spectral gap condition 1). For any ¢ € {0,...,n} and an

(9)
k

open set U C M, we say [ " has a small local spectral gap condition of
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polynomial rate on U if there exist d € N and C' > 0 such that for all large
enough k,

H < B(Q)> Hw . < k4 (D(qkd)u | u)w » for all u e QD (U, L¥).

)

For the function case ¢ = 0, we introduce a relaxed condition that allows

for a narrower spectral gap.

Definition 1.3 (spectral gap condition 2). For an open set U C M, we say
D‘(’Jo)k & has a small local spectral gap condition of suitable exponential rate
on U if there are constants 0 < ¢ < 1 and C > 0 such that for large enough
k,

(0 H2 < (rp2emin A k12 ((5(0) 0 k
H (I B, )u w7k¢_oe <Dw7k¢u | u)w’w for all uw e C°(U,L").

Let s : U — L be a local non-vanishing holomorphic section defined
on an open set U C M. We can locally express the spectral and Bergman
kernels on U x U as

P (z,w) = PO (z,w) s (2) ® (s"(w))";

k,ck
(9) (9)s k k * (13)

B,V (z,w) =B (z,w) 5" (2) ® (s"(w))".
Here, P,g?c);s(z,w) and B,(Cq)’s(z,w) are elements in C®(U x U,T*9)M X
709D M) where T*00) MR T*(9 M is the vector bundle over U x U whose
fiber at (z,w) € U x U is the space of linear transformations from 109D pr

to T4 09 a7 We now introduce the primary object in our approach.

Definition 1.4. We treat U as a subset in C" and assume that U is convex.
The scaled spectral kernel P ((k:)) €C™ <\/_U X \/7U 70,9 Cn x 70, q)C”)
is defined by

s np z w
P((;Z)),’ck(z’w) =k () (7 7)

Similarly, the scaled Bergman kernel is defined by

B (z,w) = k"B (7 %)

We are ready to illustrate the main results of this paper.
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Theorem 1.1 (main theorem for Bergman kernel). If p ¢ M(q), the scaled
Bergman kernel B((g;’s(z, w) — 0 locally uniformly in C> on C™. Ifp € M(q)

and ij’}w has local small spectral gap condition of polynomial rate in U (cf.

Def. [L2l), then B((g;’s(z,w) converges to

’)\1 e )\n‘ 62(221:1 |)‘i|5iwi+2?:q+1 IAilz"@i*Z?zl |)\i||wi|2)(d§1 A A dEQ)
T o

A A _)

25t X

locally uniformly in C*° on C"™. Here, we identify (dz' A --- A dz?) @ (2 A
ce A %) as a section of T*ODC" K T*O:DC™ gver C" defined by

e (dzH A AdzT) @ 0 for all n e THODC",

oot N

N o)

In particular, in the case p € M(0), the convergence above for the function
case ¢ = 0 remains valid if D‘(’Jo)kq5 has only local small spectral gap condition

of suitable exponential rate in U (cf. Def. [L3).

Next, the second main theorem is the spectral kernel version. The spec-
tral gap conditions can be dropped and conditions can be imposed on the
sequence ¢, since

I <I o 73(Q)

k»ck

) “”Z,kqﬁ <cg (DL(U(Z,L¢“ | u> for all u € LZJ@(M, 70D M @ LF).

This estimate plays the role of a spectral gap condition.

Theorem 1.2 (main theorem for spectral kernel). Assume that the non-
negative sequence cj satisfies

. Ck,
limsup — = 0.
k—o0

If p ¢ M(q), the scaled spectral kernel P((,Z))’Csk(z,w) — 0 locally uniformly in

C>® on C". Ifp € M(q) and there exists d € N such that lim infy,_, o, k% > 0,
then P((IZ))’; (z,w) converges to

A1 - . Al 2SS, Nl A Nl -, il 2y (g2t A A dz)
i ®(i A A ﬂ)
ow' owe’

locally uniformly in C*° on C".
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Particularly, in the case p€ M(0), the convergence above of the function
case ¢ = 0 still holds under a weaker condition of ¢, that
lim inf e2eTRIE2 0 0 for some ¢ < 1.

Remark 1.1. For a fixed point p € M, observe that B,iq)’s(p,p) = k:”B((Zg’S

(0,0). By Theorem [T under spectral gap conditions, we deduce

0 0
(dil/\---/\di%@(w/\---/\@)—i—o(k;”)

if pe M(q);

. A A
B (p.p) = 2l — |

BY*(p,p) = o(k") if p ¢ M(q).

In a similar way, by Theorem [[L2] we are able to conclude the same asymp-

totic behavior for the diagonal part of the spectral kernels P,gqc);s

the suitable conditions on ¢j. From our results, if the expansion (1)) exists,

(p, p) under

we can conclude that

Al g 9 9 k k)
T(dz /\.--Adz)®(W/\~-A%)®s ®(s)

if pe M(q);

b9 (p,p) =

b (p,p) =0 if p ¢ M(q).

Remark 1.2. Theorem [Tl provides a purely analytic proof of the Kodaira
embedding theorem (cf. @]), while Theorem can be used to establish
the Demaillys Morse inequality (cf. ﬂﬂ, section 10.5]).

We divide the proof of the main theorems into two steps. First, in Chap-

ter 3, we try to establish local uniform bounds of B((Z;’s (z,w) and P((]Z)) (z,w)

,8
sCk
on C" (cf. Theorem BH). In this way, we can infer that any subsequence
of B((g;’s (or P((g)) Csk) has a C* uniformly convergent subsequence by the
Arzela-Ascoli theorem.

Next, in Chapter 4, we prove that every convergent subsequence of B ((Z;’S

(or P((]Z)) ’jk) must converge to the Bergman kernel of the model case on C"
(cf. Theorem 5] Theorem I0, Theorem H.2T]), which is exactly

LRI EY) S N PMELRS 5 N VRS 5 il 2y (g5l A A dz)
7-[-n
0
A A ).

2( - owe

9
ow!
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2. Preliminaries and Terminology

2.1. Standard notations

Let Ny be the set NU {0}, and a multi-index « is of the form a =
(a1, a9,...,0ap) € (Ng)". Denote |a| := >, a; and a! = aqlag!---ay,!. For
= (6, &) ER™, £V =41 - 0.

Let M be a n-dimensional complex manifold and T'M be the real tangent

bundle of the underlying smooth manifold. Denote by TcM the complex-
ified tangent bundle TM & C and /\l TEM the I-th exterior algebra of the

cotangent bundle Tt M. For a local holomorphic coordinate (21, ..., z") that
has an underlying real coordinate (x!,... 2%") with 2/ = 22/=1 4 /—12%
let

0 1 0 0 0 1 0 0
9 2 <W‘V_1W> and @‘§<W+V_1W>

as sections of Te M. Therefore, dz? := dx? ' 4+\/—1dz? and dz’ := dai—1 —

V/—1dz? are sections of T3M. For a multi-index a = (a1, ..., ay) € (Ng)™,
o ._ (0 a n o ._ (0 9 n

we denote 57z 1= (571) - (g2)*" and 3% = (5z)* -+ (5z7)*". Some-

times, we simply write them as 0% and 92, respectively. Also, for a € N2",

we denote 52 := (%)0‘1 (8;9%

Define

)“2n and sometimes write it as 0%.

qu::{I:(il,...,Z'q):1§i1<i2<"'<iq§n}C(N0)q.

For any element I = (i1, ...,i,) € Jyn, we denote the g-forms dz! := dz* A
- Adz' and dz! = dZ A - A dE.

Consider an open subset U of M. Denote by C*°(U) the space of smooth
functions on U and by C2°(U) the subspace of C>°(U) whose elements have
compact support in U. For a vector bundle E over M, we denote C*>(U, E)
as the space of smooth sections of E over U and C°(U, E) as the subspace
of C*(U, E) whose every element has compact support in U. Let dm be the
standard Lebesgue measure on C", and let B(r) be the set {z € C"; |z| < r}.
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2.2. Complex geometry and Hermitian holomorphic line bundle

Let M be a complex manifold of dimension n. There is a natural
complex structure J : TM — TM such that J?> = —Id. Then TcM =
TN @ TODA where TEOM and TOYM are the i-eigenbundle and
—i-eigenbundle of J, respectively. Similarly, TZM = TN @ 74O Mf
where 7519V and 7O M are dual bundles of THO A and TOY M, re-
spectively. The splitting of the complexified tangent bundle can be extended
to the exterior algebra of the complexified cotangent bundle. Namely,

k P q
NTeM = (/\T*’(l’O)M> A\ (/\ T*’(O’l)M> : (2.1)

p+q=k

Define T®PON = (AP TLON) A (A*T*OD M) and hence A TEM =
@p+qzk T*®D M. Let QP9 (M) be the space of smooth (p, g)-forms which

are smooth sections of 7% ®® M and Q?”‘”(M) be the subspace of QP (M)
consisting of elements with compact support in M. For a local holomorphic
coordinate (z',...,2") in U C M, we have a local frame for TPD M given

by
T*’(p’Q)M |U: span{dzl A dzj}jejp’n“]ejq’n.
Next, we call w a positive Hermitian (1, 1)-form if:

(i) w e QD (M)
(i) For any local holomorphic coordinate (z!,...,2"), w can be written as

n
w=v-—1 Z hi7jd2i VAN dij
ij=1
where [h; ;] is a positive Hermitian matrix.
A positive Hermitian (1,1)-form w induces pointwise Hermitian inner prod-

ucts (-|-)y, on THO M and TV M that are locally given by <%]%)w = h;j

and ( 8822» |%>w := h; j, respectively. Thus, we have a Hermitian inner prod-

uct (|-, on the complexified cotangent bundle TeM = TWO) M @ TOD M.
When we restrict the domain of (:|-),, to the subbundle TM C TcM, we
obtain a Riemannian metric called g, on the underlying real manifold. The

wn

Riemannian volume form dV,, associated with g, is given by dV,, = %5.
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Moreover, The Hermitian inner product (:|-),, can be naturally extended to
7O M by

1 _
(dZgy N---NdZz, | dZ N+ NdZj)e = adet[h”’“]z,kth (2.2)

where [h?7] is the inverse matrix of [h; j]. We can now define the L-inner
product on the space ng’q) (M) by

(7]1 | 772)w :/ <771 | UQ)dew for all n, M2 € QEO’Q)(M)' (2.3)
M

Let L2(M,T*©9 M) be the completion of Q0 (M) with respect to the
inner product (-|-),, and denote by || - ||, the corresponding norm. For an

open set U C M, we define the restriction of the L?-inner product by
o [ )y i= [ (| melodVe forall mm € QOD©). (24)
U

In the same manner, we can define L2 (U, T*(:9 M) to be the completion of
QEO’Q)(U) with respect to (+[-),, ;; and denote | - ||, to be the corresponding

norm.

Recall that a holomorphic Hermitian line bundle (L, h¥) is a 1-dimen-
sional holomorphic Hermitian vector bundle. Let (U, s) be a local trivializa-
tion where U is a holomorphic chart and s : U C M — L is a holomorphic
local non-vanishing section. Then there exists a local weight ¢ : U — R

such that (s|s),. = e 2?(*). The Chern connection is locally given by the

connection 1-form @ = —20¢ and the curvature ©F is locally given by the
(1,1)-form
_ " 9% . )
L _ _ 7 =J
0" = —-200¢p =2 E 82@2].6[2 AdZ.

,j=1

Define ©F € ¢>°(M, End (T:% M)) to be the curvature operator such that
(©X(p)vy | v2) = OF(p)(vy AT3) for all vy,vy € THIM, pe M.

Now, we introduce a lemma that allows us to simplify the information on

curvature.
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Lemma 2.1 (cf. ﬂﬁ], Lemma I11,2.3). Let L — M be a holomorphic line
bundle over a complex manifold M. For any fired p € M, there exists a
trivialization (U, s) where U C C™ is a holomorphic chart centered at p and
s: U — L is a non-vanishing holomorphic section such that the Hermitian

form w and the local weight ¢ with respect to s can be written as
w(z)=V=1Y dz' NdZ'+O(2]);  é(2) = > Ail2'[> + O(J2%).
i=1 i=1

Remark 2.1. If \; #0 for all = 1,...,n, then the trivialization in Lemma

21 can be chosen such that

¢(2) = Z il 2+ O(|z[).

Observe that the Hermitian metric A on L can be identified by a family
of local wights {¢;} with respect of a family of trivializing sections {s;}. We
will alternatively denote (-|-)4 := (-|-),z if there is no risk of ambiguity.
We can define the k-th tensor power of L as L* := L®* and denote the
corresponding trivializing section as s := s®*. It follows that the local
weight of s* with respect to the induced metric A" s given by k¢. The

norm of s* is [s¥|pg := \sk\th =e k9,

Fix a positive Hermitian (1, 1)-form w on M and a Hermitian metric h”
with local weights ¢ on L. They induce a pointwise Hermitian inner product
(|")w .k on the bundle 7D M @ LF. For a fixed trivialization s : U — L
with local weight ¢, if u; = 7 ® s* and uy = 1y ® s* where n; € Q9 (U),
then

(ur | u2)w kg = (M ® s" | 72 ® 5k>w,k¢¢ = (m | 772>w€72k¢-

Then we can define the L2-inner product on the space ng’q)(M, L*) by
(ur | u2)y, ko :—/ (ur | u2)w kedVy for ui,ug € QDM LR, (2.5)
M

Denote ”“HZ,I«;& = (u|u),, and L37k¢(M, 709N @ L*) as the Hilbert

space which is the completion of QEO’Q) (M, Lk) with respect to the inner

product (+[-),, x4-
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2.3. The spectral and Bergman kernels

Let 5,(;]) QOO (M, LF) — QO+ (M, LF) be the Cauchy-Riemann op-
erator and 5;’(q+1) - QOO (A LR — QO (M, LF) be its formal adjoint
with respect to (:|-)u ke The Kodaira Laplacian is given by

D;ﬁ‘l) _ Du(u)k . 5; (Q+1)a(‘1) + a(q 1)8k( q) . Q(O’q)(M, Lk) N Q(O,q)(]\/[7 Lk).
Next, we define

Dom 8 ={uel? koM, 7509 01 & Lky; a( u € L2 ro(M, 7(0,a+1)
®Lk)}

5(q)

where 8k u is defined in distribution sense. Then we can extend 5}(;1) as

5,5:1) : Dom 5,(;]) C L2 (M, 10O @ LF) — L, ko (M, TN @ LY.

Let 5Z,(q+1) - Dom 527(q+1) c Lik(ﬁ(M, 7Ot M @ LF)
— L2 ko (M, 709D M @ LF) be the L? ro-adjoint of 5](;1) and denote

Dom[! = {u € Dom 8(‘1) N Dom8 *(a) | 8(Q)u € Dom8 *(a+1)
and 8k’( Ju e Dom@,(cq 1)}.

We have the Gaffney extension(cf. ﬂﬁ])

O : Dom O ¢ L2 (M, TN @ LF) - L2 (M, T M @ LF),
(2.6)
It is well-known that the extension is semi-positive and self-adjoint(cf. ﬂﬁ,

proposition 3.1.2]). Next, we introduce the spectral theorem.

Theorem 2.2 (ﬂﬂ], Theorem 2.5.1). Let A: Dom A C H — H be a self-
adjoint operator on a Hilbert space H. Then there exists a spectrum set
SpecA C R, a finite measure p on SpecA X N and a unitary operator

H :H — L*(SpecA x N, du)

with the following properties: Set h: Spec A x N — R by h(s,n) :=s. Then
an element f € H is in Dom A if and only if h- H(f) € L?>(SpecA x N, du).
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In addition, we have

Af =H 'o(h-Hf) forall fe Dom A.

By Theorem 2.2] we know that Dg]) has the spectrum set Spec D,(cq) that
()

lies in [0, c0) since ;" is semi-positive. Moreover, there is a unitary map
Hy: L2 (M, T*OD N @ LF) = L2(Spec O x N, dyuy)

such that Dg])u = H, ' o (h- Hyu) for all u € Dom D](cq).

Given non-negative constants ¢, we define the spectral projections by

P,gq) u:=H "o (Ljo,cp)xv - Hru) (2.7)

sCk

where 1jg ., xn 18 the indicator function defined on Spec Dg]) x N by

{]]‘[O,Ck]XN(S7 l) - ]- 1f S 6 [07Ck]7
Lio,coxni(s,0) =0 if s ¢ [0, cx].

Clearly, P9 s an orthogonal projection since Hj is a unitary map. In

k,cp
fact, the construction of P,iqzk

l[O,Ck](DgI)) with respect to the indicator function 1o ,; (cf. , section 2]).

We may denote by E,(f)S ., the image of ﬂ[o,ck]([]/iq)) and then

above coincides with the functional calculus

PR = g0 (O0) : L2 4y (M, T*OOM 0 LF) — B9 .

k},Ck

For the case ¢, = 0, we denote
B =P L2 s (M, OO M © LF) - KerOY

to be the Bergman projection. To introduce the spectral and Bergman
kernels, we need the following theorem (cf. ﬂE, section 5.2]). Denote by
D.(M, E) the space of distribution sections of a vector bundle E over M

whose elements have compact support in M.

Theorem 2.3 (Schwartz Kernel Theorem for smoothing operators). Let E

and F be two vector bundles on a manifold M with a volume form dV . Then
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for any continuous linear operator P : DL(M,E) — C®°(M, F), there exists
a unique smooth kernel Kp € C*°(M x M, F X E) such that

1‘0 / Kp o,y ))dV( )

for alluw € D,(M; E). Here, we denote FX E as a vector bundle on M x M
whose fiber at (x,y) € M x M s the space of linear transformations from
E, to F.

(a)

Since Kodaira Laplacian is elliptic, the spectral projection P o and the
(9)

Bergman projection B, are smoothing operators in the sense that

P DM, T OO M @ LF) = (M, T M @ L¥),
B,g ) - DL(M, T DM @ LF) — (M, T M © L)

are continuous maps. In conclusion, the conditions of Theorem [2.3] hold for

P,gq) and B(q) and hence their distribution kernels are smooth.

Definition 2.1. Define the spectral kernel P,gq) (z,w) and Bergman kernel

(q)(z w) which are in C* (M x M, (T 7509 )M @ LF) R (T M @ L)) to
be the Schwartz kernels of the spectral projection P,gq) and Bergman pro-
jection B,(cq), respectively. In this way, for all u € Lw,k¢>(M’ T5ODNM @ LF),

we have

2= [ PO (s wu(w)aV, (w);
2) = /MBk (2, w)u(w)dV, (w).

2.4. The Sobolev and Garding inequalities

In this section, we consider the (Z) -dimensional trivial complex vector
bundle T7%:9OC" over an open subset U of C" with a global trivializing

frame {dz'}icg, . Let

U= Z urdz! € QL)
I1€Jyn
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be a smooth section of T*9)C", We consider u as a smooth vector-valued

function

(UI)Iejq,n U CC" ~R*™ — (C(Z)

by fixing an order of 7 . Recall that the Fourier transform of v = (ur)rez,.,,
is
u(§) == (r(§))regyn

where 1r(€) = (2m)"™/?2 Jgen ur(@)e”*"dm. For any s € R, the Sobolev

s-norm || - |[s,r is

luly =l = [ | 1+ 1R (6 Pam(©). (2.
The Sobolev space Hy(U, T*90C") is the completion of QEO’Q)(U) with re-
spect to the norm || - ||s. Since [pon [ur]*dm = [po, [ur[*dm for all I € Ty p,
we have [l = [l = I lam = I llimv Where ||-lgm s the 2-norm with
respect to standard Lebesgue measure dm in Euclidean space. The following

proposition induces a variant of the Sobolev norm.

Proposition 2.4 (compatibility). Given v = Zlejqnujdil € QEO’Q)(U)
and s € N, there exist positive constants C and Cs independent of u such
that

Cr Y Do loulf<lulZ<Ca Y7 D llo%urls.

1€J4n ll<s 1€T4,n |al<s

The proof of Proposition 24 is simply by the fact that \@(5)\ =
|E%ur(€)| where £ := &1 - - - £52". Next, we introduce a basic proposition in

2n
the Sobolev theory.

Proposition 2.5. For any s € R, H_,(U,T*09C") is the dual space of
H (U, T59C") and

[ (| v)o | < [lull-s[lvlls

for allu € H_,(U, T*DC™) and v € Hy (U, T*0DC").
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Let C4(U, T*(9C") be the space of d-th differentiable sections. For any
point x € U, define

\u!%d(x) = Z Z lﬁo‘uf(m)IQ for all w e Cd(U7 T*’(O’Q)Cn). (2.9)
Ie\_,]q,n |a|§d

Next, define a norm || - [[¢a(y) on the space cHU, T+OaCm) by
Hqud(U) = 31615 Mgd(x) (2.10)

The following theorem is well-known and will be applied in Section 3.3.

Theorem 2.6 (Sobolev inequality). Let d € Ny and s € R such that s >
d+n. Ifu e Hy(U,TODC"), then u € CHU, T*ODC") and there exists a
constant Cs 4 independent of u such that

[ullcawy < Cs.allulls.

We now consider a second-order differential operator P : Q9(U) —
Q(O’Q)(U)I By ordering the basis {dz'};cy, ,, we can treat P as a (7) x (7)

q q
matrix [P; ;] of second-order differential operators P;; : C*(U) — C>*(U).
Let (z!,...,2%") be the standard coordinate on R?" ~ C". We can represent

f)i,j as
P ;= Z a;jo(x)0y where a; ;o € C(U).

ja]<2

Define the symbol o(P; ;) of P, ; by

o(Pij)(x,§) = Z \/—_1|a|ai7j’a(:n)£°‘ where z € U, £ € R?",

|| <2

o(P; ;) is a polynomial of ¢ of degree 2 for any fixed x € U. Furthermore,
we define the symbol o(P)(x,&) of P as the (Z’) X (Z) matrix [0 (P ;)(z, )]
of polynomials of £ for any x € U.

Definition 2.2 (elliptic operator). We call a second-order differential oper-
ator P : QOO(U) — QOD(U) is uniform elliptic on U if there exists C' > 0

A basic reference for this section is ]7 sections 1.1-1.3
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such that
lo(P)(2,&)v| > C|¢2v| Vo € U, #0and v € R*™. (2.11)

Theorem 2.7 (Garding inequality). Let P be a second-order differential
operator which is uniform elliptic on an open set U CC C". Then for any
m € N, there exists a positive constant C such that

[ ullom,z < C (|Jullor + |P™ullorr)  for all uw € Hay (U, THODC™).

Remark 2.2. The settings of this section can be modified to any trivial
vector bundles. In particular, the cotangent bundle TP9Cr - U c C*
with the trivializing frame {dz' A dz'};c7, . se7,,. For example, if u =
Z?j:l u; ;jdz' A dz’ is a smooth (1,1)-form with compact support in C", we

can define
n

[ulga(@) =Y D 10%ui () (2.12)

ij=1la|<d
and the norm

fulag, = sup ful2u(a).
zelU

3. The Local Uniform Bounds for Scaled Spectral
and Bergman Kernels

In this chapter, our aim is to analyze the behavior of the scaled spectral
and Bergman kernels. Our objective is to establish local uniform bounds on
the scaled kernels, which will allow us to investigate their local convergence
properties. To this end, we will apply the Arzela-Ascoli theorem.

In Section 3.1, we recall the set-up which has been mentioned in Section
1.1 and construct the scaled bundles. In Section 3.2, we compute the Kodaira
Laplacian on the trivial line bundle and apply the results on the cases of
scaled bundles. In Section 3.3, under the framework set in Sections 3.1
and 3.2, we can eventually control the local behavior of scaled spectral and
Bergman kernels by the analytic tools of Sobolev theory.
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3.1. The scaled bundles

Let (M,w) be a Hermitian manifold of dimension n and (L, h’) — M be
a holomorphic Hermitian line bundle. Given a non-vanishing holomorphic
section s of L on a holomorphic chart U that trivializes L, there exists a
local weight ¢ : U — R such that |s|?, = e7**. Denote |s|s := |s|,z for

convenience.

Recall that (+|-), is the L?-inner product of the Hilbert space
L2 (M, 7509 M) (cf. (Z3)) and (*|") .17 is the restriction of the inner product
(cf. Z4). Also, we can define another Hilbert space Li,k(ﬁ(M, 709 M
®L*) which has the inner product () g (et @H)).

Denote 5,(;) Q0D (M, LF) - QOa+) (M, L*) to be the Cauchy-Riemann
operator and 3;’(q+1) - QO (M, LR — Q09 (M, LF) to be the formal
adjoint of 9, with respect to (+|-)yxs. Recall that we have the Kodaira
Laplacian Dg}) (or ij’}c ¢) given by

O = gy tal + 9 Vo Dom O — L2 (M, DM @ LF)

which is the Gaffney extension(ctf. (2.0])).
(9)

k< the image of the

Fix a non-negative sequence c;. Denote by E

functional calculus 1, (D,(cq)) with respect to the indicator function Ly,

The spectral projection is the orthogonal projection
Pé?ﬁk = l[o,ck](D/(cq)) : Li,m(Mv T OOM @ LF) — El(;,])gck
and the Bergman projection is the orthogonal projection
BY =P : L2 1y (M, T M © L*) - Ker O

which is a special case of spectral projection by taking ¢, = 0. Readers may

consult ([277)) for an explicit definition.
For 7 ® s* and 1y ® s* in Li k¢(U, T*’(O’q)M®Lk) where n; € Qﬁo’q)(U),

observe that

(m @ 8" ® 8%y ke = / (m|n2)we=2*2dV, = (me % |ne ™) 1.
U
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This induces a unitary identification
L2 (UM @ LF) = L2(U, T 9M) by n®s* < ne . (3.1)
Define the localized spectral projection

PO L2 (U, 70D M) - L2 (U, 709 M)

k,Ck,S :

satisfying ’P,i?c)k (n®sk) = ek¢73,5?6)k75(776_k¢) ® s* for all n € L2 (U, T*O9M).
In the case ¢, = 0, we denote B,(cqz = P,gq()) s as the localized Bergman

projection.

Next, let P,E?C)k(z, w) and B,(CQ)(Z, w) be the spectral and Bergman kernels
which are the Schwartz kernels of P,g?zk and B,(Cq), respectively. We may also

define the localized spectral kernel pl (z,w) and localized Bergman kernel

k,Ck,S

B,ng(z,w) to be the Schwartz kernels of P\?  and B,ng, respectively. The

k,ci,s
relation between Pk(:qc);s(z, w) and P9

b.cp.s (7> W) is given by

P(‘])

() (z,w) = P (2, w) - |8* (2) [ -1 () (w) e =9 PO (2, ) ho ),

k,cp
(3.2)
where P(q)’s(z, w) is defined in ([L3).

k,ck
From now on, we fix a point p € M throughout this paper and apply

Lemma [ZT] to obtain a trivialization (U, s) centered at p such that
o(z) = Z)\i\zIZ—i—O(]z\B) and  w(z) = v—lZdzi/\dii—i—O(]z\).
i=1 =1

Recall that the set of points with signature ¢ is defined by

M(q) == {p' € M | ©L(p) is non-degenerate and has exactly ¢ negative

eigenvalues}

and observe that p € M(q) means ¢ = #{i | \i < 0} and n — ¢ = #{i |
Ai > 0}. In the case of p € M(0), we choose the trivialization such that
¢ =", Nilz|2+0O(|z|*) throughout this paper. Without loss of generality,
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we assume B(1) C U € C" and make the following observations. Denote
do(2) =D _Nil'* and gy (2) = ke(z/VE).
i=1

Then for any e < 1/2, there exists a constant C' independent of &k such that

|23 +1
- z)<C YV |z < k€. 3.3
[Py — dole2(2) < 7 |2 < (3.3)
where | - |¢2 is defined in (Z9]). Also, set
z
wo:=Vv-—1 dz; Ndz; and  wq) = w(—).
0=V % (k) (\/E)
Then there also exists a constant C’ such that
+1
W) — W z <C’|Z| YV |z < k°. 3.4
|lw(ry — wole2(2) < Ny 2| < (3.4)

where | - [¢2 for (1,1)-forms is defined in ([2.I2]). Furthermore, ¢(;) — ¢o and
w(k) — wo locally uniformly in C*° on C". ¢, and w(y, are defined on B(Vk)
and are called the scaled metric and scaled Hermitian form, respectively.

Inspired by the observations above, we construct the scaled line bundles.

Define

s () = sk(%) : B(Wk) — L*.

This makes L* a trivial line bundle over B(vk) with a trivializing section
s®) for any k € N. We denote the scaled line bundle as

L® .= ¥ & B(Vk) cC"
which equipped with the scaled metric ¢y by

(s®) | sk, = 2P0 = e~ 2kS(z/VE),

by

More generally, we consider the trivial vector bundle

709" @ L*) - B(VE) c C"
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which is a (") -dimensional complex vector bundle with the space of smooth
sections Q9 (B(VE), L®) and trivializing frames {dz' ® S(k)}jejqﬁn.

We endow the vector bundle 7*090C"® L*) — B(VE) with a pointwise
Hermitian structure by the scaled metric ¢ = kp(z/vVk) on L*¥) and the
scaled Hermitian form w) = w(z/VE) on T B(VE). That is, for all
m,nz € QOV(B(VE)),

(@ 5Pl © sF)u) 60 (2) = (2, €200,

Similar to the identification (B.1]), there is a unitary correspondence

Li(k)@(k) (B(\/E),T*,(O,Q)(Cn Q L(k)) o Li(k) (B(\/E),T*,(O,q)(cn) by  (3.5)

n @ s®) ¢ pekoE/VR),

In the meantime, by changing variable, there are unitary identifications

LB, T09C @ 1) = L, |, (B(VE), T*®9C" 0 L®))  (3.6)
by n® st e kT 2n(z/VE) @ s®)
and
LL(B(1), T500C") = L, (B(VE), T*0C") by (3.7)

0 k(2 /VE).

So far, we have four unitary identifications (B31I),([3.3]), [3.6]), (B1) between the
spaces of sections. In fact, the identifications form a commutative diagram.
We can transform the localized spectral (or Bergman) kernels defined on

B(1) to kernels on the scaled bundles over B(vk) by B.7).

Define the scaled localized spectral projection

P st L2 (BWER), THOOC) — 12 (B(VE), T*0C") such that
(P o) (VE2) = PO, (Vi) (3.8)

and the scaled localized Bergman projection BEZ% s = 73((8 0.~ Define the

scaled localized spectral kernel P((]Z)) o J(z,w) to be the Schwartz kernel of
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P((ngckjs which is given by

P}lj){% (z,w) =k "PY (=

and the scaled localized Bergman kernel B((Z; S(zw) = P9

(),0,5° In this way,

we have

(9) _ (@) (k?)
P(g)’%su(z) /B(\/E) P(g) Ck’s(z,w)u(w)de(k) where dV,,, = o

The relation between P((k)) CS (z,w) and P((,g)) (2, w) is given by
zZ,w) = e—¢(k>(3)p((g)):jk(27 w)e?® W) (3.9)

where P((]Z)) ’jk is defined in (4.

3.2. The Laplacians

The goal of this section is to compute Kodaira Laplacian on a trivial line
bundle. We now temporarily forget the set-up in Section 3.1. Let U be an
open set in C" and L — U be a trivial line bundle over U with a trivializing
section 5. Fix a positive Hermitian (1, 1)-form & on U and a weight function
¢ such that (sl8)g = e=2%. Consider

709Ccr o [ - U c C"

to be the Hermitian vector bundle with the pointwise Hermitian structure
([)54 induced by @ and ¢. That is, for n,m2 € QEO’Q)(I?),

(m @351 ®38);5() = (m(=) | m()ae ™) forallzeT.  (3.10)
This defines an inner product on the space on Qﬁo’q)(ff , f)) Namely,

(7]1 ® S | 72 ®‘§)¢D¢~> = /<771®§ | 772@5)@ d;dVg, where dVg := - (3.11)
’ % ’ n!

Let L2 (U T7+09C" ® L) be the completion of ol ’q)(U) with respect to
(-] ) Slmllarly, we have another Hilbert space L2 (U, T**9C") with its
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inner product (-|-)g (cf. 23)). There is a unitary identification

L? (U, T00C" @ L) = L2(U, T509C™), nosiene®  (3.12)

For any smooth (0,1)-form 1 on U, we can consider the wedge operator
nA-: T;’(O’Q)f] — T;’(O’QH)U Moreover, for the positive Hermitian (1, 1)-
form @, we let nA% - : T;’(O’qH)ﬁ — T;’(O’q)(j to be the adjoint of nA- via the
pointwise inner product (-|-)z. For ny,n2 € Tp (OD g , we have the identity
(mAZ)m2 A+ m2 A(mAL)- = (min2)e - -

Let 5(;) : QO L) — Q0T L) be the Cauchy-Riemann oper-
ator with values in L and 52’((”1) : QO L) — Q09U L) be the
formal adjoint of 5(;) with respect to (+[-) 5. Under identification ([B.12), it

is natural to define the localized Cauchy-Riemann operator ds : QDT —
QOa+D(T) such that 9; (n ® ) = e?d5(ne?) ® 5. Denote by 9@ the stan-
dard Cauchy-Riemann operator on Q%9 (7). Note that

O\ = =95 e?, (3.13)
By direct computation, we have
8 = 9D + (D) A -. (3.14)

Of course, we can also define 5;’((]) - QO (@) - QOO (T) satisfying
52(7) ®S§) = e? 0z (776_(7;) ® §. Then 5;’((]) is the formal adjoint of agq*l) with
respect to (-|-);. Next, define 5;’@ to be the formal adjoint of 94~ with
respect to (+|-),. Note that

07\ = 59 4 (9) A, - (3.15)
Recall that D%}) = 52’(q+1)5(zq) + 5(;_1)32’@ is the Kodaira Lapla-
cian. We can define the localized Kodaira Laplacian Diﬂ) = 3;’(q+1)5§q) +

3@_1)5;’@ that acts on Q9 (7). D(iq) and O are compatible under the

S s

identification ([3.I2]) in the sense that
09w 35) = (OWne ) @ 5. (3.16)

We can consider the Gaffney extansions of D(iq) and Déq) which preserve



2023] SEMI-CLASSICAL ASYMP. OF BERGMAN AND SPECTRAL KERNELS 323

the relation (BI0) and n ® § € Dom D%’) = 776_‘7B € Dom ng). Next, we

compute the localized Kodaira Laplacian using the settings above.

Lemma 3.1. The localized Kodaira Laplacian can be expressed as

O = 85+0 ((96) A5 +) +(06) N5+ 05 ((96) A-) +(9) 795+ (96103) .

(3.17)
where A( ) = o =@t 5@ 4 5la—1ga) . QOD(T) — QOD(T) is the Hodge
Laplacian with respect to &. Furthermore, assume that &"/n! = e®dm for

some function ¢ and let 0 denote the matriz of connection forms of V on
T@OU with respect to the frame {dz'}icyg,,. Then for f € C®(U) and
I € Jyn,

O fdz" = ( af

)( WAL dE' = f(dZAL)05) 9002 . (3.18)

Proof. First, by (3.14]) and BI5),

(é&)m) f(( ¢3> ) +(09)AT5+(06195) -

/-\/\
+

~_

A
*
Ex*

N——

Now, we compute 55; fdz'. By the locality of differential operator, we may
assume f € C2°(U). Let g € C®°(U) and J € J,_1., then

(05(f(2)dz")]g(2)dz") , = (f(2)d="[D(g(2)d=")),
/f <8g >< Z|dz' A dz7) e dm
/~(£( ) f(z)e? <dzl\dz Adz! Yodm
U i
_, .0 3(2) ) 9=I | =i « =
—/U—Q(Z)azi (f(z) A )<dzl\dz /\dz‘])g,> dm

_/~ —9(2) <§£ (2) + f(@%(z)) ((dz") N dz"|dz”)g €2 dm

U

- / 9(2)f(2) <%<dzl | dzt A d,gJ)@) ) dm.
U z
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By direct computation,

ai (dz'|(dzY) A dz)g aa_A (dz!|(dz") A dz)g = (d2 |V g 0, (d2P) A d2 )
= ((d='A5)859.:d2T1d27 ) = ((dz2'N5)0/0z:dZ" |dZ7 ).

So, we can conclude that

dt fdz! = ( f

)( WAL dE' — f(dZNL)05)9:0d7" O

So far, we establish a framework for the localized Cauchy-Riemann op-
erator J; and the localized Kodaira Laplacian ;. They depend only on the
local data @ and ¢ on C". Next, we are going to apply this framework to

the configuration in Section 3.1.

Recall the trivializing neighborhood B(1) CU C M taken in the previous
section. We insert U = B(1) and § = s* into the above framework. Denote
Ok.s = Og as the localized Cauchy-Riemann operator. By [B.I3), we have
Ok.s = e k?0ek? which is an analogy of the Witten deformation of exterior
derivative on real manifolds (cf. @]) Moreover, by [B14) and B.13),

Os = 0+ (k) N+ Oy = 05 + (k) N

Denote D,({:q,i = DSC) to be the localized Kodaira Laplacian. The expression
of D,(fl is given in Lemma B3Il On the other hand, we can consider the
scaled vector bundle T*09C" @ L*) — B(v/k) and insert U = B(Vk) and
§=s®). Thus, © = w(ky and qNS = ¢(r)- Denote 5(@,5 = 75(@ and compute
that

Oty = 0+ (b)) N5 Ty,s = Oy + (0k)) N -

Denote DEZ))’S = Di?,)c)

relations between the two sets of operators established above are given by

to be the scaled localized Kodaira Laplacian. The

z :—7 z ’(Q) Z) = —= )u z
(O ) (VE2) Tk Nu(Wk2)); (O u)(VE2) f (u(Vk2))
(3.19)
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and hence
1
<DEZ))7SU) (VEz) = 1O (u(VE2). (3.20)

Now, recall the Sobolev space H,(U, T*©:9C™) with its norm ||-||s(cf. ).
By the fact that w() — wo and ¢y — ¢o locally uniformly in C*°, we know
that the coefficients of DEZ)) converge locally uniformly. Therefore, we can

apply Theorem [2.7] to obtain the following proposition.

Proposition 3.2 (k-uniform Garding inequalities). For any fized radius

r > 0 and integers m € N, there is a constant C' independent of k such that
el < € (Jlullo + @)™ ullo )

for all uw € Hop(B(r), T*O9C™) and k > r2.

Remark 3.1. In fact, for any cut-off functions p € C(B(r),[0,1]), p €
C°(B(r),[0,00)) with supp p CC supp p, there is a C' > 0 such that

lpullen < € (llpullo + 170" ullo)  for all w € Q0D (B(r)).

This property makes the Garding inequality applicable to sections without

compact support.

3.3. The uniform bounds

To begin with, we make some observations about compatibility of norms.

Note that there exist positive constants C; and Cs such that

Cillullwy,5y < llullw,B1) < Collulluy,5)

for all u € Q09 (B(1)) since w and wp are both positive bounded Hermitian
(1,1)-forms on the precompact domain B(1). By scaling the metric, it follows
that

CIHUHWO,B(\/E) < HUHNW,B(\/E) < CQHUHWO,B(\/E) (3.21)

for all v € Q09 (B(k)). Moreover, by the fact that w() converges to wo

locally uniformly, for any fixed radius » > 0 and positive number € > 0,
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there exists kg € N such that
(]' - 5)| (u | U)wo,B(r) | < | (u | U)w(k),B('r) | < (]‘ + €)| (’U, | U)wO,B(r) | (322)

for all u, ve Q™ (B(r)) and k > ko. Now, we enter the core of this section.
Lemma 3.3. Given u € Q"7 (B(VE)) for some k € N, we have

(9)
1P 0.l VB < Mll mvR):
Consequently, there exists a constant C' independent of k such that the four
inequalities hold:

I (9)

(k)yck,su”woorw(k) B(VE) < CH H

wo or w(k),B(\/E)’

for allu € QEO’Q)(B(\/E)) and k € N. Moreover, for any radius r > 0 and a

number € > 0, there exists kg such that

HP((lZ;,ck,sun(k),B(\/E) < (1 + e)Hu”wo,B(r)a

for all u € ng’q)(B(r)) and k > k.
Proof. Let u € Q) (B(V'k)). Inspired by identification (B), we define
up(z) == k"?u(Vkz) € QO9(B(1))

which satisfies |[ugllo = [[ullw,,. Since B(1) C M, we can treat uj as an
element of Q"9 (M). By 33),

P u(z) =k~ n/2p(d)

(k),ck,s k,cr, s¥

up(Vk2).
This means 73((;3,6 su corresponds to P,gq) sur under the identification (B.7)
and hence

@ B
P&yl BV

2 (1).

By the identification ([B]) and the definition of P,gq)

HPk oS q) ) (ke @ Ml ro,B01)
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<P (upe? @ s*)|

w7k¢

-

< Jlue®s" || kg = [l

Combine the above arguments and get

(9)
HP(/?)’CMUHW(,C),B(\/E) < ”un(k),B(\/E)'

Finally, we apply (82I)) and [B22]) to complete the proof. O
Observe that

n
AVay = 0 =24t Ao A da® = 2%dm.
n.

The volume form induced by wq coincides with the standard Lebesgue mea-
sure dm up to a constant 2". Consequently, we know that the induced
L2-norms || - ||u, and || - ||gm (or || - lo) are equivalent. Here, || - ||o means the
Sobelov 0-norm which is exactly [ - ||, We now verify an essential result

of this paper.

Theorem 3.4. (k-uniform smoothing property) Fizx functions x and p in
CX(C") and real numbers s,t € R. If limsupy_,., % < oo, there evists a
constant C independent of k such that

NP ., pulls < Clulle

for all w € Hy(B(r), T*©9C") and k € N with supp x Usupp p C B(Vk).

Proof. 1t is sufficient to show that for each m € N,

XP o op: Hoom (B(r), TSOOCT) = Hyp, (B(2r), T0C")  (3.23)

is a k-uniformly bounded linear map for all k with supp xy Usuppp C B(\/E)

We may assume u € ng’q) (C™) by density argument. By Proposition

and Remark B.1],

NP . pullom S IXPE ., wpullo + 1RO )P . oullo

~p(a) < (@ " pla)
SIRPE oo Pl oy + 1K (O ) P st mviy (329
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The second inequality is from B2I). Define ug(z) := k™ ?u(vVkz), pp(z) ==
p(VEz) and Yx(2) := ¥(Vkz). For large enough k with B(v/k) D supp p, we
observe that prpui € ng’q)(B(l)) c 09 (M) and ||prugllw,Ba)
= HPun(k),B(\/E)‘ By Lemma [3.3]

IXPE 0l 57 S o (3.25)
Next, from the relations (B8] and (B20), we can see

/2 (DEZ))’S) P . ou(VEz) =k (Dﬁji) P prun(2).

By changing variable again, we compute that

w,B(1)-

(@ \" ) _ .—m @O\™ pla)
1(08 )" P bl s = I (OF2) " PO, e
(3.26)

Moreover, by the property of spectral projection, we estimate that

k,Ck,S

1= (O40) " P, sporunlosy < K™ (T0) " PO, pre*un @ 5* oo

Ck m
< (?) loke™ ke @ " ||wrs.B01)
Clk\m
= (?) prukllw,Ba)y S llullo- (3.27)

The last inequality is from the fact that lim sup,_, ., cx/k < co. Combining

estimates (3:24)-(B.21), we have
IXPE o prillm S Tl (3.28)
Next, by the self-adjointness of spectral projection, for all v € ng’q) (Cn),

(9) _ (9) k ko k &
(Xpm),ck,spu | ”)w(k) = <Xk73k,ckpk€ Pup @ s | v @ s )Ww

— <ek¢uk ® s* | Pkng?c)kaek%’“ ® Sk)w ko

= <u | pP((zg’Ckvsxv)

“(k)

where vy, (2) := k"?v(Vkz) and xx(2) := x(vVkz). By Proposition and
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@28,
(] PP o xv) | < lull-2mlloP( . XPllzm S -2 [0]o-
By the arguments above and ([.22]), we have

P

(k)»ckvs

pullo < llull-2m (3.29)

since v is arbitrary. By (8.24]), it remains to show the following fact:

s ° (@) m (9) . n *,(0, n n *,(0, n
Claim. X<D(Z‘),s) P(Z)v%sp : H_9,(C™,T Cle )_>L02JO((C , 709 )

is a k-uniformly bounded map.

To prove the claim, we observe that xpup € ng’q)( B(1)) C ol ’q)( M)
for large enough k, and |[Xzug|lw, By = ||)~(u||w<k). By Proposition 2] and

M?

1P o, O )" Xullom SI6PE., (O ™%

+ 1O )P o s O " Xt

Ulleogry

By rescahng, the first term on the right-hand side above is
EIPLL, (O™
inated by

Xtk |lw,B(1) where pi(z) := p(Vkz). This can be dom-

sCky S(

k_mHﬁkP;g?C)k( D)™ ek P, © 55|y g r < ( k)

since lim supy,_, o, cx/k < oo. For the second term, by rescaling, we write

16 P o, O " Xl
=k )P, (O™

k,c,s

2 (1)

which is smaller than

k—ZmHﬁk(DgJ))m (9) (D](cq))mf(kekqbuk ® SkHw,M),M

k»ck

< (%

< () IRke P ur ® 5" kg < llullo-

Combining arguments above, we get

1P s (O " Stll2n S o (3.30)
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By the self-adjointness of D,g 9 and P,gq) for any test function v e ng’q) (C™),
()Z(DEZ)%S)mP((Z;,Ck,Spu | v)w(k) = (k_mf( (O miy ))mpliqc)k SPRUE | Uk)w

= (e |67 PL0, O ) = (ul P, (OF Jw)

“(k)

where v;(2) := k"/?v(v/kz). Again, by Proposition 25 and (330), we have

| (41 P (O 07 20) | < 2l P (O, )" e
S lull—2ml[]lo-
H btai o (‘1) mp(a) < b bin-
ence, we obtain ( x(O (k)5 ) P(k) 5Pl | v < |Jul|—2m]lv]lo by combin
Wik

ing above arguments. This completes the proof of the claim since v is arbi-
trary. Finally, by estimates (3.:24)), (8:29) and the claim,

NP oy sptllom SINPE oo o0l mvm
) \™ p@)
1% (00 )" P e sl mwm S lll-2m
for all u € QY (C™). The theorem follows. O

With the preliminary work out of the way, we can now address the local
uniform bound of P((kq))’%s(z, w). To do so, we represent P((kq))’%s(z, w) as the
form

(a) ey Ry
P(’Z)vckv W Z P’Z),Ck sz w)dz @ (%) '
1,JeTqn

where P((q))’ " (z,w) € C*(B(Vk) x B(Vk)). Also, we define the C%-norm of
P((,Z)) o ;(2,w) on the bounded domain B(r) x B(r) as

a 1,J
1P oo o) By = s > S (10200 BG 1 (@,9) )

TYEB(T) 1 J€ Ty n al+IB1<d

where the variables x,y represent the real coordinates of C"* ~ R?". For
a K(z,w) € C®(C" x C*, T09C" ® 7%09C"), we say P((g))c Sszw) =
K(z,w) as k — o0 locally uniformly in C* if

”Pk) ensB W) — Kz w)lleasryxpery =0
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as k — oo for all d € N and r > 0.

Theorem 3.5 (The local uniform bounds for scaled spectral and Bergman

kernels). Suppose ¢y is a non-negative sequence such that

. Ck
lim sup — < o0.
k—o0
Fiz a radius r > 0. For any multi-indices o, 3 € N%” and I,J € Jgn, there

exists a constant C' independent of k such that

sup |8°‘85P,Z))c]k‘]s(x,y)| < C.
B(r)x B(r)

Proof. We start from the approximation of identity. For any fixed point
yo € B(r), we set f; as an approximation of identity with its mass con-
centrated at yo as | — oo. For example, let f; = I"f(\/I(y — o)) where
f e (B(r);[0,00)) and fB(T) fdm = 1. By the property of approximation

of identity, it is sufficient to establish the following estimate:

sup | / o208 P (2, iy)dm(y)]| < C.

z€B(r),k>r2,
IEN

We hope the C' is independent of u and the point yo € B(r) chosen above.
By integration by part, we just need to find an upper bound of

sap ot [ w9 hwam )l

z€B(r),k>r2,
leN

Choose x € C2°(B(2r)) so that x =1 on B(r). Observe that

sup [0 [ PO (w,9)(08 fuly))dm(y)|
) By e

z€B(r),k>r=,
leN

< sup ||73 (k)5 ((aﬁfl)dzj) letal(B(r)

k>r2,leN

< sup X73 P f,)dz" | )9
s P, (07102 N sony

where the norm || - [|¢jal (o)) We adopted is defined in (2.I0). By Sobolev
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inequality, for any integer m with 2m > |a| + n, we have
P oo o (O 10427 ) ctot oy S IXPE) o o (07 )42 ) J2m.

Note that |fl(§)| < |fR2n e‘ﬁxffl(x)dﬂ < O(1) and hence |@| <
111811 /] < |€]1P1. This implies that for large enough m € N,

19 fi)dz" || —2m < O(1).

After combining this fact with Theorem B.4] we know that for large enough
m €N,

IXP) . (P 1) o < IXPE.. p(0° )2 o
SO f)dz” || —am < O(1),

~

where p is a bump function which has value 1 around the point yg. We have

completed the proof. Od

We end this section with the following extremely important corollary,
which is an immediate consequence of the Arzela-Ascoli theorem and Theo-
rem

Corollary 3.6. If ¢, is a non-negative sequence such that

. Ck
limsup — < oo,
k—o0

then any subsequence of the scaled localized spectral kernel P((]Z)) s
(9)

Bergman kernel B(k) J(z,w) in the case cp = 0) has a C* locally uniformly

(z,w) (or

convergent subsequence in C™.

By the identity [B9), we have the same results for P((kq))’csk(z,w) and
B((gg’s(z,w).

4. Asymptotics of Spectral and Bergman Kernels

Recall the Corollary We have established that P((kq)) o5z w) (or
(9)s
P

(), (z,w)) is a sequence such that every subsequence has a C* uniformly
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convergent subsequence. To show that P((,Z)) o J(z,w) (or P((]Z)) ’jk (z,w)) is it-

self a uniformly convergent sequence in C*, it suffices to demonstrate that

every convergent subsequence of P((,Z)) s

Therefore, without loss of generality, we may assume that P((g)) .
,Ck»S
C°° uniformly convergent sequence, and our goal is to prove that the limit

(z,w) converges to the same limit.

(z,w) is a

must be the Bergman kernel in a model case which will be thoroughly in-
vestigated in Section 4.1. From now on, we make the following assumption
throughout this chapter.

Assumption 4.1. The scaled localized spectral kernel P((g)) o s(z,w) con-
verges to Bé‘”(z,w) locally uniformly in C* on C", where ng)(z,w) €
co(Cr x ¢, 7o09Ccr I 7%0.9C"). Equivalently, the scaled spectral ker-
nel P((kq))’csk(z,w) converges to B@5(z,w) = ed’o(z)ng)(z,w)e*d’o(w) locally
uniformly in C*°.

To maintain the validity of Corollary B.6] we must specify a non-negative
sequence ¢ such that limsupy ,,, % < oo. However, we will require a
stronger condition that limsup,_, ., % = 0. We will see the reason in Lemma

44l Clearly, the scaled localized Bergman kernels B ((g; ,(#,w) can be treated

as a spacial case of localized spectral kernels when ¢; = 0 and they satisfy

(Q)(

the above condition. Before investigating the properties of Bs" (z,w), we

study the space of sections in the model case on C™.

4.1. The model case

We now consider the trivial vector bundle 7%(%9C" @ C — C™ which is
equipped with a pointwise Hermitian structure induced by the weight func-
tion ¢g = > 1=, Ai|2%|? on the trivial line bundle C — C™ and the standard
Hermitian form wy = v/—1 Y.+, dz* Adz* on T*COC™ — C*(cf. BI0)).

We can define the Hilbert space Lio, o (C", 7%09C") with an inner
product (+[-),,, 4, (cf. 2.0)) and another space Lz (cn, T+0:9C") with 1)y
as its inner product (cf. ([23])). There is an unitary identification

L, 4, (C", T*9C" © C) = L (C", T5IC") by 1« ne=®.
Let 0\ : Q09(C",C) — QOe+)(Cn, C) and §57TY : Qe+ (Cr C) —
00.9) (C™,C) be the Cauchy-Riemann operator and its formal adjoint with
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respect to (:|-)wy,¢0- respectively. Then

D(()q) — ‘87(q+1)5(()q) + 5(()!171)58’@) - Dom D(()q) (cn, 7+0.9cn g )

WO o)

is the Gaffney extension of the Kodaira Laplacian with respect to the Hermi-
tian structure. As in (14 and ([B.I%]), we can define the localized Cauchy-
Riemann operator dg s and its formal adjoint 587 s with respect to (-|-), which

are given by

() = 59 + (Do) A -; a)() 8* + (Do) Aoy

S

respectively. The localized Kodaira Laplacian is

D((fg — 3;»(q+1)8( 9 8oq 1)8 ,(Q) Dom[!( ) N Lio(can*’(O’Q)Cn)

S

which satisfies D(()q) nel)= e‘lﬁOD((fg(nefd’o) ® 1. Next, we denote
B L2, 4 (€ T509C" © C) - KerOF ¢ L2, . (C", T*9C" @ C)
to be the Bergman projection and
B( qa) . L2 (Cn T ,(0, q)(cn) — KerD(Q) - L2 (Cn,T*,(O,q)Cn)

to be the localized Bergman projection satisfying B(() )(77® 1) —e¢08( )(n6_¢0)
®1. Furthermore, denote by B(()q)(z,w) the Bergman kernel and B((LS) (z,w)
the localized Bergman kernel which are Schwartz kernels of B(()q) and B(()?g, re-
spectively. Our main goal of this section is to compute the localized Bergman
kernel B(g?s)(z,w). Proposition ] below tells us that D((fz is diagonal with
respect to the basis {dz'}icy, .-

Proposition 4.1. For f € C*°(C",C) and I € Jyn,

@ o0 N~ [ _OPf b Of 0o O\ 4
oo 2 _Z< LR EN ER E R

=1

+ (Z A= Xt |5¢0|30> fdz".

icl igI
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Proof. Since the metric wy is flat, the Hodge Laplacian A,u of u := fdz! is

x aa* a2f =1
(95,0 + 005,) u = — i EEr)% dz'.

We compute the remaining terms of equation ([BI7)) in Lemma B11
9 ((0do) Ny u) + (Do) ALy, Ou
Io
=0 (Z = fdz' AL, + (Do) A5, Z oo —Ldz A dE!

S %omw_w 3 2 s

T 0z10z" 0z' 079 02t 97
B dgo af
;A Jfdz +Z Rt

On the other hand,
0%, ((9¢o) Aw) + (90) A Oy u

_ 5;;0( a¢0fd‘7 A dz ) + (Do) A Z——d Ar dz

_ Do 8f
— ) I _
= %;)\zfdz 82’ 822 z

Applying Lemma Bl we have

(@) p =T _ _Pf 9 df  9¢o fN\
oo/ 42 *Z< 9707 | 92 05 03 azi>dz

+z<ZAZ~ =3 i+ 10002, ) faz". O

icl i¢l

We now try to find the complete orthonormal system of the space
Ker D(q). By Proposition A1l to consider the equation D( )u = 0, we can

assume u is of the form
u(z) == fr(z)dz"  where dz! :=dz' A--- A dZ7

That is, we fix the multi-index I := (1,...,q) € J,», and let f; € L3 (C")N
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C>°(C™). Note that D((;fgu = 0 if and only if 5(()?2,11 =0 and 5S:£q)u = 0 which

are equivalent to

0 , 0 ,
i].—)\i?f}:o Viel and g—l—)\izlf]:O Vigl.
0zt 0zt
Thus, D((;fgu = 0 if and only if
Fi(z) := fI(zil, I L AL o Ll Nl P g Ml

is a holomorphic function on C". If we write F7(z) as the form F(z) =

> wenn @az® for some coefficients a € C, then
0

- _ q 2§ 1ail2
fr(zt, . oo za, 290 ) = E oz ei=1 M T i Ml

aeNgy

We can apply Fubini’s theorem and introduce polar coordinates by setting
2t = r;eV =1 {0 compute that for all o, o/ € NG,

(20462?:1)‘2'|Zi|2_ ?:q+1)\i|zi|2‘zo/e g:l)‘i|zi|2_ ?:q+1)\ilzi|2>
wo

q 572 | 512
:2n/ 2z 200 Ml P Ml ) gy
n
n 27 , q e’} ol 11 9
o (L[ e/ teeiman ) (T [ e tentan
=170 =170

n(
T aitalt 2
X H/ e 2N dr |,
0

i=q+1

which is zero if a # o'. By the Parseval’s identity, we can compute that:

||u|rio=2”/ [FrlPdm =2" |aa|2/ |2 220t Ml =g M=) gy
Cn Cn

aeNgy
q 00 n e’}
:2n(27)nz !aa!2<H/ Tzzaiﬂez\ir?dm.n/ T@zaiﬂemr?dri).
aeNy i=170 i=q+1 0

By the assumption that Hu||‘%O is a finite number, we can conclude that if
u is not identically zero, then \; < 0 for all ¢ € {1,...,¢} and \; > 0 for

all i € {g+1,...,n}. As a result, there exist nontrivial solutions of the
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equation Dg?gu =0 in LiO(Cn,T*’(O’Q)(Cn) only when p € M(q). In other
words, if p ¢ M(q), then

Ker D&g = {0} and B(()?z(z,w) =0.

Now, we focus on case p € M(q). Suppose \; < 0 for all 7+ € {1,...,¢q} and
Ai >0forallie{qg+1,...,n}. For brevity, we set

20 = (Zh)M () (0T L (M) = (1,...,q) € Tan-

(e
q
Observe that f;dz! is an element in Ker Dgfg if and only if f; is in the set

d E — _ n . P2 o~ .
{Fy(zt, ..., 20,290 00 2)e Lzl By is a holomorphic

function on C"}.

Therefore, we can see that the orthogonal basis of Ker Dgfg is given by

a S 12612 -
{20 iz Pl |d2[}aeNg-

Next, we denote
A := (JA1]y- -5 [ An]) € R™.

We now compute the length of the orthogonal basis to normalize them. By

Fubini’s theorem and changing the variables by letting 2* = rieV =1 and
R |2

u; = 2| \i|r?,

n

o =S AN|242 a51 2
||Zq€ Zz_ll ZH | dZ ||w0
n [e'S)
i . n ] 5|2 . _ |2
_ 2n/ | | |Zz|2aze 2570 INall2Y dm = 2" | |(27‘r)/ ri2a1+le 2| A3 dr;
Cmi=1 i=1 0

™ o w LT (o + 1)
_ uite idu, = 2" | | e
(2[As)et /0 ’ Z };[1 (2[Af)ett

=

i=1
L "al

moy!
=2" L = .
1L et = ety

Consequently,

2lal [)\]a—i-l
o

_ n Al-%12 ,_
{\I]a = 236 Zi:l [Aill2*] dzl}a

enNg
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(@)

is the orthonormal basis of Ker D()’ 5 and

Bi(zow) = > Wa(2) ® Uh(w)

aeNy
2|a|[>\]a+1 a— _3n 101282 [wi]2) 5 0
aeNy
AL A 20w ) S Dol e 2) e )
frd T Z ?[)\] Zq wq e Z’L:l |)‘l|(| I +| I )dZI ® (%)I
o] ENE '

= Pa Al st s i )~ S Wil P ) gt g Oy
T U

We summarize the results in the following theorem.

Theorem 4.2 (Bergman kernel for the model case). Consider the trivial
vector bundle T*O9C" @ C — C" endowed with the standard Hermitian
form wqy and the weight function ¢o . In the case p € M(q), we assume
Ai <0 foralli < q and N\; > 0 for all i > q. The localized Bergman Kernel
B((fs)(z,w) for (0, q)-forms is given by

A1 . Anl 2T NS W T g 1 N85I NP+ (g1 A A g3
T

®(i/\.../\ i)
ow! owd "™

Furthermore,

2|a| )\ a+1 n @
{\I}a = \/12“236_ >iz illz |2d21 VANRREIVAN d,?q}aeNg
s .

is the orthonormal basis of Ker D((fz c Lz, (C*, 7+09C™). However, if p ¢
M(q), then

Ker Dgfg = {0} and hence B((fs) (z,w) =0.

4.2. Mapping properties of the approximated integral operator

Returning to Assumption [4.1] the kernel section Bg‘Z)(z, w) is unknown

to us so far. Our objective is to demonstrate that it must be precisely the

Bergman kernel B(()?S), (z,w) in a model case established above. We embark on
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the proof by the following definition and lemma which helps us to translate
Bg‘”(z,w) from an unknown kernel section to an operator on the Hilbert
space L2 (C", T+09Cn),

Definition 4.1. Define the approximated integral operator as

L 2 n *,(0, n
BWu(z) := . B (z, w)u(w)dm(w) for all u e L, (C",T O.a)cmy,

Lemma 4.3 (Well-definition of the integral operator). For any u € L2, (C",
T+09C"), the integral BEQ)u(z) converges for almost every z € C". Fur-

thermore, the integral operator
B :Lio (cn, 7+0acn) LZO(Cn,T*’(O’Q)C”)
18 a bounded linear map with its operator norm smaller than 1.

Proof. Let u,v € Q0 (C™) and observe that

<v | BY wO /uppv /uppu B (z, w)u(w))w, 22" dm(w)dm(z).

Let ¢ > 0. By ([B.22) and the fact that wg) — wo and pl

(k),crys
(q)(z w) uniformly on supp v x supp u, the above integral can be dominated

(z,w) —

as

[ (v 189 ) | <a+9)|(vIP.,, )wo
(a)
<(1+2) (v P, | < 1+ 20l 1P, il
for large enough k. We apply (8.22]) and Lemma [3.3] to obtain
[0/ HP((gg’ckun(k) < (1+€)?||v||lwl[ullw, for large enough k.

Since >0 is arbitrary, the estimates above mean \(v | B@u) | <1{|v]]wo 1] wo
wo

which implies Hng)uno < JJu|lw, because the test function v is arbitrary.

We have completed the proof by density argument. O

Now, we state the key theorem of this section.
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Theorem 4.4. If limsup,_,. cx/k =0, then ng) s a bounded linear map
BW . L2 (C", 7*®)C) - Ker O
with its operator norm smaller than 1.

Proof. By Lemmald3] it remains to show: Claim. Iflimsup,_,. cx/k =0,
then D((nggq)u =0 for allu € L‘%O (c, T*’(O’q)C”)

We may assume u € Q0 (C™) by density argument. Fix p € C2°(C")
to be a cut-off function. By assumption P((kq)) s ng) locally uniformly in
Cc™>,

1O§B D Ul S [PDEIPE ., -

Recall Lemma B.T] and the fact that w() — wo and @) — ¢o locally uni-
()

formly in C*°. We can immediately conclude that the coefficients of D(k) s

(

converge to those of [ q) . locally uniformly on C". By this fact,

P o stllen
Ll

where the second inequality is from ([B:21]). By the relations (B.8) and ([3.20]),

1p05PE ., sl S 1160
~ ||PD(k)

/‘\/-\ AA

q)
k),s
q)
k),

(q)
— HD (k),s (k) Ck,S ”wo,B(\/E)’

ks Mwy, BWE

(9)
D(Z)vsp(k)ack s (\/_Z) lljk SPkJ \Ck»S < (\/_Z))

By changing the variable,
(@) pla) _ 1y n/2
||D(Z)757D(Z)»Ck,su”w(k)aB(\/E) =k ”k; / D Pk \ChsS < (\/_Z)) ||w,B(1)

Define uy, := k™?u(v/kz) which is a section supported in U ¢ M for large
enough k. Furthermore, by changing the variable, observe that ||ug|. =

[ullw, and hence

(q) 1 (@) Ck
||D (k),Ck su”w(k),B(\/_) =k~ ||Dk SPk Chs SukHw,B(l) < ?Huknw

Ck
= 2 ullagy Sl
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Then we apply the assumption limsup,_,, % = 0 to conclude that
HpD((;Qng)unO = 0. Since p is arbitrary, we have D(()?zlggq)u =0. O

Next, our main objective is to demonstrate that B L2, (C", 700 Cn)

— Ker D&g is an orthogonal projection. By Theorem 4] it remains to show
the following statement (cf. |30, theorem 3.1 in section 3.1]):

Statement 4.1. ng)u = for all u € Ker Dgfs.

Remark 4.1. If the statement holds, we are able to complete the proof of

the main theorems as follows.

Under Assumption 1], by Theorem 4] and Statement £, we know
that the operator Bﬁ” defined in Defl.1] must be the Bergman projection
B((fs) in the model case. By the uniqueness of the Schwartz kernel, we have

ng)(z, w) = B(()q)(z, w).

)8
According to Corollary B.6] we know that each subsequence of
P((kq)) csk (z,w) has a subsequence that converges locally uniformly to

B(()Q)’S(z,w) = ed’O(Z)B(()?S)(z,w)e*d’o(w) in C*°. This means that P((kq))’csk(z,w)
(9)s

converges to By (z,w) locally uniformly in C*°. Finally, by applying The-
orem and the relation ([3), we complete the proof of the main theorem.

In the case p ¢ M(q), Theorem tells us that Ker D&g = {0} and

therefore BEQ) is a zero map. As a consequence, Statement 1] automatically
holds, and hence we have the main theorem for the case p ¢ M (q).

Theorem 4.5 (main theorem for p ¢ M(q)). If p ¢ M(q) and
limsupy, ., & =0, then the scaled localized spectral (or Bergman if c; = 0)

kernel P((g))ck J(z,w) — 0 locally uniformly in C* on C". Also, by B3,

P((,g; Csk (z,w) — 0 locally uniformly in C*° on C™.

In the remaining sections, we pay full attention to proving Statement
AT in case p € M(q).

4.3. Asymptotic of the function case

The discussion in Sections 4.1 and 4.2 is mainly in the context of local-
ized spectral and Bergman kernels with localized Kodaira Laplacian. In this
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section, we would like to stay in the context of P((,Z)) ’Csk and B((Z;’s defined in
Def. [[4 rather than the localized kernels. First, we establish some nota-

: (@) .72 #,(0,q) "n k 2
tions. Define P .Lw(k)#)(k) (B(VE), T*00C g LK) — Lw(km(k) (B(VE),

T+09C" @ L0) by
(P((ngcku) (Vkz) = P,i?c)k (u(\/Ew)) .

Denote B\ = P

(k) 7= P(g),o- Then, for n @ sk e Q09 (B(VE), L™), we have

(9) (k) _ (9)s (k)
73(,{)7%(77 ®s\")(z) = /B(\/E) Py e (z, w)n(w)dVy,, @ s

We now treat s(¥) as the trivial section 1 of the trivial vector bundle C —
C™ restricted on B(vk) and define P((ggjk : Li(k)a¢(k) (B(WWk), T09Cn) —
2 *(0,9) 1
P((ggj u :—/ P((/,cq))’cS (z, w)u(w)dVy, -
sCk B(\/E) sCk
For the case ¢, = 0, denote Bgzg’s = 73((,33’8. Recall that Assumption E1]
means P((,Z))’Csk (z,w) — B3 (2, w) ::e¢0(Z)B§q)(z, w)e~? () Jocally uniformly
in C*®. Next, define B(@) . LZO@O (cr, 7+09Cn) — LZO7¢O(C7‘,T*’(O’Q)C”)
by
By (z) = B (2, w)u(w)dV,,.
CYL

By Theorem B3] we have B(9):3 :Lim% (cr, 7+09C") - Ker D(()q) is bounded
with its operator norm smaller than 1. Moreover, Statement [Z1]is equivalent

to following statement:
Statement 4.2.

BWsy =u for all ue Ker ng), (4.1)

In this section, we focus on the case ¢ = 0, p € M(0) and prove the
Statement Note that A; > 0 for all i = 1,...,n under the assumption
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p € M(0). We impose the conditions that limsupy_,,, % = 0 and

2cmin \;k1/2

de < 1such that liminfe cr > 0.

Let x € C°(B(1),[0,1]) be a cut-off function such that x |B(\/§)E 1 where
¢ is a number with ¢ < ¢ < 1. Define
z

Xk = X(W)'

We now embark on the proof of Statement Given u € Ker Dgo), our

strategy is to construct a sequence u() converging to u such that

73((0))7 k) —ug) — 0 and 73(( ): UGy — BEO),SU_M).

Define
’U,(k) = XEU

which is clearly satisfies that ||y — ullwy,go — 0. By Theorem B2l we can
see that

Ker D(()O) = span{z“ }aeny -

It is enough to check Statement E.2lholds for the basis {2*}aeny and hence we
assume that u is of the form z%. Now, we are going to show that 73((23 ’jku(k) —

U(k) — 0.
Theorem 4.6. If u = 2% for some o € Nij, we have

gl

(0),5 _
1PG 1 =10 gy 0y VB = NP o ) =)Dy vy = 0-

As for the case ¢, = 0 for all k, it also holds under the spectral gap condition

2 (Def. 3.

Proof. Define ug(z) = k:”/2U(k)(\/Ez). Observe that u, € C°(B(1)) C

C(M). By rescaling, we see

0),s _
IPG) 2wy = w)e @y, i < I1Ph, (u ® ) =
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By the property of spectral kernel, we have

1P, Can 0 55) = 8512 4y < — (O ur 0 5 0 5%
’ Ck w,ke

1, - - _
@) © 51,1y = | Pgo)e 2,

Recalling the setting that ¢(z) = ¢o(2) + O(|z|*), we get
4
40 1] S go(z) — d9(2)| S B for all J2] < K

Because supp xr C B(k1/4), we can change the metrics e ®® and w(k) by

the estimate:

k= _ k. - k
SN @ugg)e O IR, S T @upe I, S 2| Fug)e 2,

The last inequality is by (B.2I). By direct computation,

I@u)e I, < [ e 0dm
*) B0 VIR <</
< kNefc’-Q min \;-k/2 (42)

where N is an integer depends on «. Hence, by the condition

2cmin \;-k1/2

liminfe ¢, > 0, we obtain

k. = -
—H(aum))e"f’ollwo N N Heme ) min A;-k!/2 — 0 since c< .
c

For the Bergman kernel case ¢, = 0, by the spectral gap condition 2, we

repeat that

< 1B (uy, @ %) — (ug, @ )|

(B gy — wy)e0®)||2 2 o

3 L Ll/2
SchmmAZ k (D/E;O)Uk: ® sk | up, ® Sk) .
w?

< kN+162(c—c’)min X;-k1/2 0. 0

Before proving the main theorem for the function case, we need another
lemma about convergence. The following lemma is in the context of scaled

localized spectral or Bergman kernels and is applicable to the (0, ¢)-forms
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cases for all ¢ =0,...,n.

Lemma 4.7. Let u = zg‘e_Z|/\i||Zi|2d21 for some o € N§j and I € Jy,. For
any v € Q) (€™,

(U | P((Zg,%sx’f“ - BEQ)U) —0 as k— oo.

wo

Proof. Let v € QEO"])(C“). For any fixed positive integer ng € N, observe
that for each k € N with k > ng, we can estimate that

’ <v ] P(gg e s XRU B(q)u>w0

(a) (@) (Q) _nrl@ _
<| (01D = BEOxngt) [0l | (PR o = BE) o = Dt

Moreover, by Lemma [3.3] P(gg o5 Xk A€ uniformly bounded linear function-

als on the space L2 (C*, 7+09C™). For this reason, P((gg s Xk — BY are

also uniformly bounded linear functionals on LZ)O (cn, 709 Cn),

Given an arbitrary number € > 0, since xp,u — u in L?UO (cn, 7%0.9Cm)
as ng — 0o, we can fix ng large enough such that

0]l (P o, Xk = BD) (xng — ully < 2/2 for allk € N.

Furthermore, by the assumption that P((]g)) o J(zw) — B (z,w) locally
uniformly,
9) _ B@
|(U|((k)ck5Xk B) Xnou )0|—>0 as k — oo.
Finally, combining the above estimates, we obtain
‘ <U‘P((g§ s XEU — ng)u) < ¢ for large enough k. O
b k) UJO

To apply the Lemma in the context of P((:;jk and BEZ;’S, we simply

deduce the following corollary by the relation ([3.9) and the fact that ¢,y —
¢o locally uniformly.

Corollary 4.8. Let u = 2% for some o € Nyj. For any v € C°(C"),

< P (), (k) — B(Q)’su) —0as k—0.

(k). wo
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Now, we are able to complete Statement B.1]in Section 4.2 for the func-
tion case when p € M(0).

Theorem 4.9. If ¢, satisfies the conditions limsupy,_, ., % = 0 and

lim inf %¢ min A k*/2
k—o00

c. >0
for some constant ¢ < 1, then
BOsy =4 for all u € Ker D(()O)’S.

As for the Bergman kernel case ¢, = 0 for all k, it also holds under the
spectral gap condition of suitable exponential rate (cf. Def.[I.3).

Proof. Assume that u is of the form u = 2% To show Bgo)u = u, let
v € C°(C™) and observe that

(1800~ 80 )_ (e 1),
+ (v | g — u)wO )

By Theorem A6l Corollary and the fact that wg,) — wo and ¢y — do
locally uniformly, the right-hand side of the equality above tends to zero.
This means B(®)5y, = 4 because v is arbitrary. O

By Remark [£.1], we obtain the main theorem for the function case when
p € M(0).

Theorem 4.10 (main theorem for function case). Suppose ¢y, is a sequence
with
c
lim sup F 0
k—o0
and p € M(0). If there exists a constant ¢ < 1 such that
lim infy_, ezcmm/\1"]““1/201.C > 0, then

P(Q)»S(Z’ w) _ Ao Ay 62( F /\iziwi+2?:q+l Xiztwt =31 /\ilw"|2).
(k) T
locally uniformly in C*° on C™. In the Bergman kernel case ¢, = 0, the

convergence also holds under the small spectral gap condition of suitable
exponential rate in U (cf. Def. [L.3).
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Remark 4.2. The proof in this section is not valid for the (0, ¢)-forms if
g # 0. The reason is that for |z| < dEY* and u € Ker D(()Q), the equation

Fru(Vkz) =0

may not be true if ¢ # 0. In the context of localized Kodaira Laplacian, we

need to adjust u from the space Ker D((fg to the space Ker DEZ) - It is natural

(0) (2)

to orthogonally project u from Ker ;¢ into space Ker D(k:) - However, we
encounter a difficulty as we lack information about the Bergman projection

corresponding to DEZ) o One potential solution is to extend the Laplacian

DEZ)) ; to DEZ))NS defined on the whole C", where the Bergman kernel with
respect to the extended Laplacian DEZ))NS is tractable. This is the main idea
of Section 4.4 and Section 4.5.

4.4. The spectral gap of the extended Laplacian on C"

In this section, we will extend the localized scaled Laplacian DEZ)) s which

is defined on B(v'k) to the whole C". The extended localized Laplacian is
identical to DEZ))’S in B(k¢) where € will be determined later in Section 4.5.
From now on, we fix a cut-off function denoted by x € C°(C") such that
its support is contained within the ball B(2), and is identical to 1 on the
ball B(1). Let us choose a number € such that 0 < e < 1/6 and define the
extended metric data on C™ by

Sy () = ()b (2) + (1= x(5)) 9o

and the extended Hermitian form by

B (2) 1= X iy (2) + (1= X(=) ) wo.

Recall the observations ([8.3) and ([34)). Since € < 1/6, we have the uniform
convergences

[6@) — dollez = 0 and  [|@g) — wolle2 — 0.
Denote

oy - 0CI(Cm) —» ey g a9 (Cm) - e
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to be the localized Cauchy-Riemann operator and its formal adjoint which
are given by

0= 0D+ @0w) A5 O = 57 + (0N

“(k)

respectively. Denote

a(k) sa(k) s T a( k),s 8 (k),s : Dom IjEZ)): C L¢2UO ((C"’ T*»(O»‘I)Cn)

— L2, (C", 709 cn)

~

(q)
L),

as the Gaffney extension of the localized Kodaira Laplacian with respect to
the Hermitian form @) and the weight function qﬁ(k It follows immediately

from the constructions that 5(,?)78 = 5(/&) a(k) = 8(k) and ng)) s ng))

in B(k¢). Reasonably, we call the DEZ))NS extended localized Laplacian. We
suppose \; < O forall ¢ =1,...,q90; A\; >0 forall i =¢qyp+1,...,n. Then

there exists a constant ¢ > 0 such that for all z € C",

P2 2
— =1, ... —
821821( 2)<-e Vi ++e2Go and 0240zt

(2) >¢c Vi=qgo+1,...,n
(4.3)
The following results tell us these estimates create a uniform lower bound of

the first eigenvalues of DEZ))NS

Lemma 4.11. For q # qo, there is a constant ¢ > 0 such that for all

(9)~
u € DomD(k) o

(Dézguru)k 18, sull2,y, + 19 wull?,, > cllull2,,-

Therefore, HDEZ)):“H%@) > cllullag,-

Proof. Note that

18,512, =1 (2 + @Bap)n) uld,, 21 (8+ @A) ullZy;

150,502 =11 (95, + @05, )l 21 (8 +(Od0s)AL, ) ll3,.

(4.4)
Let u = fdz! for some f € C®(C") and I € J,,. Since ¢ # qo,
there exists ¢ € {1,...,n} such that at least one of the following two cases

holds:
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e i ¢ and \; <0
e jc]and \; > 0.
If the first case holds,
51 (9o of <Z5(k;
I (‘9+(3¢<k>)A)uHio 2/ |2+ SO P am
of | 99w f ¢(k) ~
/n(azz S DG + i Pdm
_ of o, z0f 0¢>(k) af a¢ ,

By integration by part, we compute that f(C" |

_8f 3¢> of 9o
/ Jasiaw Tanaa

,Pdwy OF 00, LOf Do)
/ 21 5005~ Taz 0 a9 ™

52 L 2dm = Jon |8z1 |2dm and

Applying these two equations and |8zl %+ |8g;,:) 21 £]? — 2|f||ngZ ||anglf> | >0,
we have
L ) %o
2 20 . (k)
10+ @3 ) ull, = =2 [ 1P dm 2 —ut ( o 1512,
(4.6)
On the other hand, if the second case holds,

I of 09 0
132+ @i, ) ull, = [ (5% %f)( o

k)
0z% 8zi 82’ 822 5z )dm
[ \0f . Of 00w L Of 0w
_/(Cn|8zi| f@zi 0zt f@zl 0zt | | £ dm

By integration by part again, we have f(C" B |2dm f(C" 55 |2dm and

/ _jo1 0Dy JRRED
n U0zt 07 0zt 0z

0% Of by L 0f Dby,
2 ") () (®)
/ W om0z T oz oz oz o
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. 93
Combining equations above and |8zl |2 + |8§Z('f) 212 — 2|f||ng1 I g;'f) | >0,

- L, b 0%
1 (320 + @6z, )l > 2 [ 1975 am mf(azig,;i 1713,

(4.7)
By (#4),@0) and ([@1), we have completed the proof for the case u €
QEO"I)(C“). Next, we are able to prove the lemma by density argument. The

density argument here is somehow technical and based on the Friedrich’s
Lemma (Cf.ﬂa, Chapter 7, Lemma 3.3]). For the details of approximation,
readers may consult |19, Lemma 5]. O

Corollary 4.12. For q # qq, the extended Laplacians DEZ)); 18 bijective and
has inverses

N L2 (€ 709CT) - Dom O

which is a k-uniformly bounded operator.

Proof. According to Lemma [.TT], D(q)N is injective. To show the surjectivity,

we choose an arbitrary v € L2 ( ” ,T09C") and consider the linear

wW(k)
functional 7, on Rang ng)) , given by

%(DEZ))NS u) = (u| U)a}(m Vu € Dom DEZ))NS

Lemma ELIT] implies that [|7o[|z,, < HUHC&““) for a constant ¢ independent
of v and k. By the Hahn-Banach Theorem, the functional 7T, can be ex-
tended to a bounded linear functional on Lu%(k) (€, 7%O09C") with the same
norm. By Riesz representation theorem, there exists a representative v €

Lf}( )(C",T*’(O’Q)C”) such that

_ @~y — (M@~ | 5 ()~
(u | U)w(k) %(D(Z%Su) = <D(Z)75u | U)®<k) Vu € Dom D(Z),S.

This means DEZ))NSTJ = v which proves the surjectivity. Define IV, ,3 such that

Njv = v. Lemma Il implies || N}z, < C for a constant C' independent

We have shown that when ¢ # ¢qo, the extended Laplacian DEZ)): has

a uniform spectral gap spec DEZ))NS C [e,00) for a positive constant ¢ inde-
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pendent of k. Next, in the case ¢ = gy, we should prove that the uniform
spectral gap also holds in the sense that spec DEZ)): C {0} U [e,00). Define

[;,(q)

(k),s w(k)((cn 70 q)(cn) — Ker D(Q) c L2 (anT*»(O,q)Cn)

(k),s @k)
to be the Bergman projection and B((Z; , to be the Bergman kernel. The

~(a)

following representation of B(k:),s is standard.

Theorem 4.13 (Hodge decomposition). We have the expression

B =1 -9 DN o\ g et NGO on 00D (CT). (4.8)

Here, N}l is the inverse of the Laplacian D(q) established in Corollary EI2.

Proof. Note that

(qo)~ 5(q0—1) arqo—1 5%,(q0) *,(qo+1) nrqo+1 5(q0)
Oi.s (Id Iy NI - N a())

3 3 * -1
=001).5001). 0 + Oy w15 — Ok 5Dy w05 NE ™ T
Sk 1
= 0y, 00k s NP D)
:a(k),ségk%ﬁa( ), Oys — Oy OB DY N1

k),
Ax +1)~ +1
— DEZ‘;, NP O,

(k),s

k), s
:a(k)7séz<k) s + 5{](:)’38(]6),8 - (5(16),85*]@75 + 5&:) 5(16),3) = O

o It remains to show
9

So the right-hand side of (4.8]) has its image in Ker DE
)

)
D
that Rang <8((q3) Y yao- 18( qu) 8(k§q0+1)]\7‘5’0+18 > L Ker O qO . Given

ue Q%Y(C") and v € Ker DEZ(;) since 5;‘,6)’811 = a(k;),sv =0,

(D s Ny = O N D) | 0)

W(k)

(N‘IO Dot | Ty 0 ) (N,Z(’Hé(k),su | 5(,6),51;) —0. O

W(k) W(k)

We now deduce some identities which will be frequently utilized. Com-
pute that

~ :* -1 :*
Ha(k),sa(k),sNgO 3(k),SU\I%(k)
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5 S —1 3% A% —1 A%
(3(k) sa(k),sa(k),sNIZO iy st | iy s NS a(k),su)a)(k)
S 1)~ 1 3 1
<a(k)v ng())» : NIZO ak) st | ak) N . a( k),s )w<k)
= = = 1 -
= (9fiy o0yt | Ty N0y ) =0,
(k)
for all u € ol ’qo)((C”) Similarly, we can compute that
H(’?* i s NqOH(? ),s qub(k) =0 for all u € QgO’QO)(C”). Hence, we have

5( ) 5? ) N(IO la(k) s — 07 ézkk)7s§(k),5N]ZO+1§(k),s =0 on Q((:O,qo)((cn).
(4.9)
Moreover, we can apply the two equations above to see that
5 3 —1 A« Sk 5 3 1 n
iy w05 N ™ 00 s =00y 0 0,50y N0 ™ 01y = Oy om0 QL0 (T,
(4.10)

(qo)N)

Theorem 4.14 (uniform spectral gap for D(k) s )+ There exists a constant

c independent of k such that

1B = ulZ,, < e (195" ul,, + 185 ul3, ) on l©(C).

Proof. By Lemma [£.13]

(QO+1)N‘10+18(Q0) on 0:90) (c").

B(‘IO) _J= a(‘]o 1)NQO 18 +(q0) 5 e

(k),s (k),s (k),s (k)

Given u € Q) (Cn),

1058 SN T e, = (N T o | T Ol s N i 1)

@(k) @)

= —1 A%
< HNqO 1‘9 k) suHW(k)Ha (k),s Ok ),sNigo a(k),suH@(k)

The last inequality is from Corollary .12l and (4.10). Symmetrically, we can
show that

Ha (10+1)NQO+18(

= (q0)
ey stl3 gy < el

SU’HLD(k)

The two estimates above imply the theorem. O
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4.5. Asymptotics of the general (0, ¢)-forms cases

In this section, we adopt Assumption dI]in Section 4.2 and consider the
case p € M(q) where g € {1,...,n}. We strengthen the condition of ¢; by

imposing lim sup;, ., % = 0 and
Jd € N such that liminfk%c, > 0.
k—o0

The goal of this section is to show Statement ] in Section EIl By rear-
rangement, we let \; < Oforalli=1,...,gand \; >0foralli=q+1,...,n
for simplicity. Recall

= (21)041 ,,,(zq)aq(zq+1)06q+1 ...(Zn)oén; I = (1, e 7Q) S jq,n-

We now adopt the settings in Section 4.4. It is important to note that in
the construction of w) and gg(k), we impose the condition that 0 < e < 1/6.
Now, we require

1 1
2n +16
The reason is in the proof of Theorem

0 < € < min{

1.

We establish the notations of cut-off functions. Recall that y € C°(C™)
is the cut-off function which is fixed at the beginning of Section 4.4. Choose

p € CX(C") as another cut-off function such that suppp C {z € C;2/7 <
|z| <1} and p =1 on {z € C;3/7 < |2] < 6/7}. Construct a sequence of

cut-off functions by

Tz Tz z

W) =) ) =X ()= pls). (@A)

Observe that supp xr C {z € C; |z| < (2/7)k} and suppxx C {z € C; |2| <
(6/7)k}. Moreover, the derivatives of yj are supported in the annuli {z €
C; (3/7)ke < |z| < (6/7)k} and the support of py are in the annuli {z €
C; (2/7)k® < |z| < k°}. Next, we define the following convention.

Definition 4.2. For any u € L2 (c, 7509C"), define

U(k) = Xk 5'((,(3’8 XkU-
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Now, the stage is set to demonstrate Statement [£.Il The strategy is
similar to Section 4.3 except for the different constructions of u ) resulting
in the different estimates. First, our objective is to show the convergence

Uggy —> u in L2(Cn, 7%00C") as k — oo if u € Ker D(()q).

i|2

Lemma 4.15. Let u = zg‘e_ o all=

a constant C' such that for large enough k,

dz! for some o € Ng. There exists

8 tlusy + 19 ]y < (4.12)

S

for all |z| < k°.

| 2

Proof. Denote u =: fdz! where f = zge” iy ille? By the formulas

BI4),[315) and (BI8]), we can write down the expression of (é(k)ﬁ — (),

and (5{",{3)’5 - 5&:),5)“ as

Qn

(
@

Q)\z

10— Dosu = (9 + (96 km) w— (0= (960)A) u = (D(dgs) — d0) ) A
(s — .s) (

8ZZ(M Aw<k>> u— (95, + (9g0) Ny ) u

39%)
( 97 4 oz >(d ) Ny 42

8‘P0 iy A% g5l
< 5 5 ) (dz') N, dz
—f
f((

—iA* \OF =1
( ClZ /\W(k) 68/821 D) - (dZ /\w )ea/aziw()) dz
(90 A3, —(@d0)As, ) d2".

+

Denote a1(z) and GQ(Z) as the absolute maximum of the coefficients of the

differential operators 8( k) — do.s and 8( - b.s at a point z € C", respec-
tively. By B.3) and (34,
~ |23 +1 - |z] +1
p oy —w 2) < for all |z| < 2k°.
[Pk) — Dole2(2) S 7 k) — wolez(2) N 2|

The coefficients of the differential operators 5(1:) — Ops and 3(k) 5875
consist of the zero and first derivatives of ¢g — gg(k). Moreover, the matrix

of connection forms 6 and the operator A* are smoothly depend on the zero
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and first derivatives of components of Hermitian forms. We can see that

212 +1

VEk

Because any derivatives of u decay exponentially as |z| goes to infinity, there

la;(2)| < V]z| <2k and |a;i(2)]=0 V|z| > 2k"

is a constant ¢ > 0 such that

‘Z’ +1 —c|z|2

Vk

for all z € C". Since |z|3€_c|z|2 is a bounded function, we have completed
the proof. O

‘Z’ +1 —c|z|2
k

|05 = 00,6)1(2) g S ——— and | (9 4=06,6)1(2) |y S =

We can apply Lemma [H.I5] to establish the following theorem which
claims that wg) — u.

Theorem 4.16. If u = zje” Ll il gzt for some o € Nij, then

luwy — ullog, —0 as k— oo.

Proof. Note that [lug) — ullog, < luw) — Xeullog, + [[Xku — ullo,,- Clearly,
the second term tends to zero by the decreasing of u as z — oo. For the first

term,

lugry = Xetullagy =l%RBE i — w)llag, < 1B w — ullag,

S||B(1<;),5Xkru - Xku”&)(k) + IIxpu — U||w(k>-

Since the second term of the right-hand side tends to zero, we only need to

estimate |]BEZ§,SX]§U — Xkullo, - By Theorem E.14]

HB(Q) Xk = xkull3 0 S 100 xkull?,, + 18m),sxnulls, -

It remains to claim ||8(k Xweull2 — 0 and [0 stU”w(k) — 0.

w k)
For Ha k), sxwull2, -, we compute that 5(lc),stU = (Oxx) /\u—|—x5k,5u and

then

D (k)

51{: sXkEU (,% _/ ék:,su?b dVy
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+ / |(5Xk:) Ay + Xék,sU%(k)dV@(k)
{ke/7<|z|<2ke/T}

5/ @wmm+/ 2, dm.
{|z|<2ke/T} {ke/7<|z|<2ke/T}

Clearly, the second term f{k6/7<|z|<2k6/7} |u|30dm tends to zero by the de-
creasing of u as z — oo. By Lemma L5 and the setting € < 1/(2n), the

first term can be dominated by

/ B sulZydm <
{lz|<2ke/T}

2
Wk)

— 0.

(ke)Qn
k

We have proven that ”5(k),stU|| — 0. Next, we will show Hé&kk) Xtla,

— 0in a similar way. Compute 5&),5)(’6“16 =3, %’;’; (dZi)/\:g(k)u—l—Xk 5&),5“

and repeat the above process to get

By wulZm + [ [uf2, dim.

A% 2
1670 el < [
{ke/7<|z|<2ke/T}

{lzl<2ke/7}

The second term clearly tends to zero and the first term also tends to zero

by the fact that e< % and Lemma LT3l We also have ||5Z,stU||w<k> —0.0
In the next step, we will display P((Zgﬁk,su(k) —u@p) — 0in

Lb%(k) (cr, T*’(O’Q)C”). To do this, we need to estimate the decreasing rate of

HDEZ)) SU(k) |y @s (@2) in the proof of Theorem .6l Since <DEZ)) Su(k)> (2) =

0 for all [z < (1/7)k¢, we only need to analyze u, on the annuli {(2/7)k¢ <

|z| < k}. The following lemma tells us that wuy are small on the annuli.

Notably, the proof effectively utilizes the property that supp prNsupp xr = 0.
Lemma 4.17. Consider the functional

PBLD, Jan s L2, (C 70T 5 12 (€, 7+ 00en),

“(k)

For any d € N, there exists a constant C' and ng € N such that the operator

norm

~ C
||Pk5((;z;,5)(k||w(k> < i for all k> nyg.
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Proof. For any u € Q9 (C™), by Theorem [£.13]

prBLY) Xk = pr <Id — 0 NI D s 5(,€),5N,3*15{k)’8> YU

= — k00 N Oy Xkt — POy N Oy Xk (4.13)

Now, we aim to estimate Hpké (), SN 8(k sXkUllg, - Observe that

0Ty NE il
< 5?) ng a(k),stu‘Pké (k), N;g 8(k),stU>

D(k)

_ <Ng+18(k) sXkU ‘ 8 (k), sloka(k) sN 8(](2) st:u> B0
k

= <ﬁkNg+15(k),stu | (i) 5P 5?) NI 3(k),5><ku) o
)

< 1R N Oy s Xkt 0, 1101, 5 PR Oy N 18(k),stqu)(k)7

where g, € C2°(C™) is another cut-off function such that supp gy O supp px
and supp px N supp xx = 0. By direct computation,

5(k),spk8( s Vi 8(k) sXkU
= (0p2) A 8(k) NI 8(@ sXkU + Pka(k) 3(k) N ‘9(k:) sXkU
= (92) N Ty N0 s + PRy sk
= (0P%) A 0y NE Dy sk
where the second equality is from (£I0) and the third is by the fact that

supp px N supp xx = 0. We apply this computation to continue the previous
estimate and get

k0 N Oy sxktell Gy,
< 17k NE Oy il 1OpR) A 0y N O skl
> | PRV (k),s XEW]|© Pk (k),s*Vk (k),s Xk U@ k)
P 415 _ = +1Z
S kNN Oky s xwullay 1k s NE Oky sXiullog, (4.14)
where the term k€ arises during the computation of dpy, since SUpP| (=1 [0 pk|
< k7¢ Moreover, the sequence pj can be taken to satisfy the condition

SUP|q|=1 |0%pr| < k€. To iterate the preceding process , we show the follow-
ing claim:
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Claim. There exists pj, € C°(C™) with supp ok D supp i and supp py N

supp x = 0 such that supjy—, [0°px| < k= and

~ 1 3 15
178N Oy s Xkt 1Dy NI Dy sxiillizs,

Sk GHPkN]?+ 8(k),stqu)(k) Hpka(lc),leg+ a(k),stqu)(k)'
To show the claim, by Lemma [LTT] we get

~ 1:
15K NE Oy s x|
~ _ 1 ~ _ 12
S0y, 5PN 8( XkUllagy + 100y PN Oy sxwtllag,

Moreover, we compute directly that

a(k) PRNET a(k:) sXku = (0pr) N NE a(k) sXEU + Pka(k) SNEF a(k:) sXEU
= (@) A N s

n

) PN Oy sxku = —

Ot w(k) Nq a(lc) sXkU

Substitute these equations into the estimate and then dominate
~ +15
10N Oy sxwullag, by

1@5k) A N Oy, Xkl + |l Z 00 N{T sXEUa

+ Hlaka(k),qu 8( )stqu)(k)

e = = 15
SN ANE Oy sxrtlla, + 15k00 N Oy sxiullag,

for some py, as described above. So,
~ +15 ~ Ax +15
166N Oy, s Xbwllogu 1980000y sNE - O, s Xkl
_ ~ 12 ~ :* 12
Sk o N Oy sxktll s 1550 « N Oy s x| gy

Z A 15
+ 110800y, NE T Ory sl -

For the last term of the right-hand side, we replace the p; by py in @I4)
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and get

Z Ok +15 2
15800, Ny Oy s Xkl

—en = 1 z 2
S.;k HPkngJr a(lc) stun(k) H,Oka (k), qu+ 8( )»SXkuHGJ(k) :

Combining the above estimates, we have completed the claim. Next, by
(£I4) and iterating the claim, we can conclude that for any integer N € N,
there exists a constant C' and pp € C2°(C™) with supppr D supp pr and
supp pr N supp xx = @ such that

:* 1 =
08005 NE 0 s X0l
< CkM|pe N 0 s Xkt 19k« Ni O s Xkt 30

Finally, we need to show the following fact:

Claim. For allv € QEO’Q)(C”)

+ 3 +15
Ha(k) s a(k),SUHGJ(k) < HUH@(k); HN]Z a(k),svHGJ(k) rg HUH@(k)'

For the first term, by (£I0)), we compute that

1
10y, N O

8 Hw(k)

(Nq“(?( k),sU | 5(k),sgﬁkk),sNgH‘§(k)»sv>

W(k)

= <N,ZJr A(iy,sv | d (k),sV > - <5Ekk),sNig+15(k),s” | ”)

<1107, NE Oy, 0 gy 10l

W(k)

We get Ha ()5 q+15(k)7sv|]@<k) < [[v[|lz, - The second term follows by Lemma

[417] that

”ng+ a(k)»é>’v||°7’(k) S |’a(k)7leg+ a(k)»S/UH‘D(k) + ”a(k),s‘]\flgJr a(k),sv”tD(k)

= 412
= |’az<k)7sN]g a(k:),sUHLD(k) < ||U||¢D(k)7

since 5(;6),5N,Z+15(k)78 = 0. We completed the proof of the second claim.

After combining all the above results, we know that for any integer N € N,
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there exists a constant C such that
~ q+1 ~ N
Hpkaék),st a(k),stUHGJ(k) <Ck HUHGJU@)

Symmetrically, we can literally repeat the process to show the analogous
statement:

”pkg(k),leg+18?k),stuHGJ(M < Ck_NHuH@(k).
Then the lemma follows by (£I3) and a density argument. O

Corollary 4.18. For any u € L2 (C", T+09C") and d € N,

B (1950.0u w13, + 19 st I, ) = 0.

Proof. Recall the fact that 5(k) SBE% = 8(k) SBEZ;S =0.

iy, stu(ry = (OXk) A B((Z;,SXW + Xké(k),sg((zg,stu = (OXx) A Bgzg,sxw;

OXk (1-iy ax @) o 5 B
oot =~ 2 0 (d2") N3 By Xt + X Oy 5B o Xk

8><k 3()
- Z Moy By sxt

Observe that derivatives of xj are supported in the annuli {3k¢/7 < |z| <
6k€/7} and py = 1 on the annuli. We can see

1951 12, S MBSkl i 10 st 2., S leeB) xsull?,,,

By Lemma .17 we can immediately derive the corollary. O

Now, we show the theorem claiming that P((kg s U(k) — U(k) = 0 which

is similar to Lemma [4.6] in Section 4.3.

Theorem 4.19. If there exists d € R such that liminf,_,. k%c;, > 0, then
we have

Hp(ii ens (k) — Uk ko =0 as k — oo.

In the case ¢, = 0 for all k, the convergence holds under the local small
spectral gap condition of polynomial rate in U (cf. Def. [I.3).
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Proof. Define uy(z) := k™ Qu(k)(\/Ez) which is a section with compact sup-
port in U. Then we have

1P, k)~ Ukl B(VE V=12 k= gl 5

By the property of spectral kernel,
1 1, = _
PR, e = urlZ gy < = (Of%un | ) = = (195 quell? + 19 stuell2)
k w o Ck
Moreover, note that

(197 st 2 + 1955t 12) = K (1970 510019130, + 19009 5101912, )

by the relation (B.I9). Combine them and get

2 3 2
1P sty = 8, Ry < (||a<k w2, + 100 5009 124, ) -

By the assumption that liminfj,_,. &V ¢, > 0 for some N € N and Corollary
18] the right-hand sides of equations above must tend to zero.

In the Bergman kernel case ¢, = 0, we apply the spectral gap condition
1 and get

1B 1) = s ey = I1Biux — i,
Sk (O ) =k (107, ukuw(k) + 100 <2, ) -
We apply Corollary to complete the proof. O

Now, we are ready to overcome Statement (] for the general cases of
(0, ¢)-forms.

Theorem 4.20. If there exists d € R such that liminf,_,oo k%, > 0,
B(q)u =u forall u € Ker D(q)

As for the Bergman kernel case ¢ = 0, it also holds under the local small
spectral gap condition of polynomial rate in U (cf. Def. [L2l).

Proof. By Theorem 2] we may assume that u is of the form
u = de—ZIAiIIz’IQdEI for some o € Njj by density argument. By Lemma
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B3 Lemma FT6 and the decreasing of u,

1P s Okt = ) Nl S i — gl

<lxrt = ullwy + lu = ugg)llog = 0. (4.15)
To show B = u, let v € Q09 (C™) and observe that

(o189 (o1 Bl e+ (o1 P e

* (” | P((gg,ck,s“w)—wkﬁ +(v [ ug) —u)

wo

wo 0 wo

wo

By Lemma[7], Theorem [£.16, Theorem .19 and (£.I5]), the right-hand side
of the above equation must tend to zero. O

Eventually, we are able to complete the proof of the main theorem for
the case p € M(q) by Remark 11

Theorem 4.21. Suppose ci is a sequence such that

0.

. Ck
limsup — =
k—o0 k

If p € M(q) and liminfy_,o k%, > 0 for some d € N, then
P((l::])):jk (z,w) —
A1 Al (i i Il - S Wil B g5 g Dy
" 0
locally uniformly in C*° on C™. In the case ¢, = 0 for all kK € N, the

convergence also holds if Dg}) satisfies the local small spectral gap condition
of polynomial rate in U (cf. Def. [L2).
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