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Abstract

In this paper, we develop a new scaling method to study spectral and Bergman kernels

for the k-th tensor power of a line bundle over a complex manifold under local spectral

gap condition. In particular, we establish a simple proof of the pointwise asymptotics

of spectral and Bergman kernels. As a new result, in the function case, we obtain the

leading term of Bergman kernel under spectral gap with exponential decay. Moreover, in

the general cases of (0, q)-forms, the asymptotics remain valid while the curvature of the

line bundle is degenerate.

1. Introduction

Let M be a Hermitian complex manifold with dimCM = n and equip M

with a positive Hermitian (1, 1)-form ω. Consider a holomorphic line bundle

L over M with a locally defined weight function φ that gives L a Hermitian

metric h. The Hermitian form ω and the metric h endow the space of L-

valued (0, q)-forms with a L2-inner product. By taking the completion of

this space with respect to the inner product, we obtain the Hilbert space

L2
ω,φ(M,T ∗,(0,q)M ⊗L). Consider �

(q)
ω,φ to be the Kodaira Laplacian induced

by the Hermitian structures ω and h. The Bergman projection

B(q)
ω,φ : L2

ω,φ(M,T ∗,(0,q)M ⊗ L) → Ker�
(q)
ω,φ
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is the orthogonal projection from the space of L2-integrable sections of

T ∗,(0,q)M ⊗ L onto the space of harmonic sections with respect to Kodaira

Laplacian �
(q)
ω,φ. For a Borel set B ⊂ R, we denote by 1B(�(q)

ω,φ) the func-

tional calculus of �
(q)
ω,φ with respect to the indicator function 1B (cf. [11,

section 2]). Given a non-negative constant c, the spectral projection

P(q)
ω,φ,c := 1[0,c](�(q)

ω,kφ) : L
2
ω,φ(M,T ∗,(0,q)M ⊗ L) → E

(q)
≤c

is the orthogonal projection onto the space Rang
(1[0,c](�(q)

ω,kφ)
)
denoted by

E
(q)
≤c . The Bergman kernel B

(q)
ω,φ(z, w) is the Schwartz kernel of B(q)

ω,φ and the

spectral kernel P
(q)
ω,φ,c(z, w) is the Schwartz kernel of P(q)

ω,φ,c.

The Bergman kernel is a fundamental object in complex analysis and

geometry, which plays a central role in some important problems in complex

geometry, geometric quantization, and mathematical physics. However, it

is challenging to study the Bergman kernel directly. Inspired by quantum

mechanics and semi-classical analysis, if we consider the k-th tensor power

Lk of L and replace the Hermitian metric φ by kφ, it is possible to handle

the asymptotic behavior of the Bergman kernel as k goes to infinity. There-

fore, the study of the large k behavior of the Bergman kernel B
(q)
ω,kφ(z, w)

has become prominent in modern research. The asymptotic behavior of the

Bergman kernel B
(q)
ω,kφ(z, w) is rich in geometrical meaning and closely re-

lated to index theory and algebraic geometry. In [1], R. Berman obtained

the local holomorphic Morse inequalities by analyzing the Bergman kernel

on the diagonal part. In [20], C.-Y. Hsiao illustrated a proof of the Kodaira

embedding theorem by the full expansion. Furthermore, the approxima-

tion of Kähler metrics(e.g., [5], [28]), existence of canonical Kähler metrics

(e.g., [7], [8], [13], [14]) and the Berezin-Toeplitz quantization (e.g., [4], [22],

[23], [27]) are impressive applications. We refer readers to the book [25] of

X. Ma and G. Marinescu for a comprehensive study of Bergman kernel and

relative subjects.

For a compact manifold M with a positive line bundle L, T. Bouche

(1990, [5]) and G. Tian (1990, [28]) obtained the leading term of the Bergman

kernel, and D. Catlin proved the full expansion (1997, [6]) later. More pre-

cisely, D.Catlin claimed that

B
(q)
ω,kφ(z, z) ∼ knb(q)n + kn−1b

(q)
n−1 + · · ·+ b

(q)
0 as k → ∞ (1.1)
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for the case q = 0. Furthermore, X. Dai, K. Liu and X. Ma gave another proof

of the full expansion based on localized techniques and heat kernel methods

(2004, [9]),(2008, [10]) and B. Berndtsson, R. Berman and J. Sjöstrand also

offered a different proof (2008, [2]).

In the case of non-degenerate line bundle L which may not be positive,

if M is compact and M = M(q) (cf. Def. 1.1), there is a full asymptotic

expansion of B
(q)
ω,kφ(z, w) proven by R. Berman and J. Sjöstrand (2007, [3]).

Moreover, in (2006, [24]), X. Ma and G. Marinescu established similar results

in the context of spinc-Dirac operators in compact symplectic manifolds. In

a later work, C.-Y. Hsiao and G. Marinescu (2014, [21]) demonstrated that

the Bergman kernel has a local asymptotic expansion at all non-degenerate

points under the local spectral gap condition (cf. Def. 1.2). Also, they showed

that the spectral kernel P
(q)

ω,kφ,k−N has an analogous result.

In this paper, we derive the leading term b
(q)
n of the asymptotic expansion

(cf. (1.1)) by scaling method under the local spectral gap condition (cf.

Def.1.2). For the function case, we can loosen the spectral gap condition

to an exponential decay rate (cf. Def.1.3). It is noteworthy that we do not

require the curvature to be non-degenerate.

As for the spectral kernel, we fix a sequence ck satisfying

lim supk→∞ k−1ck = 0 and consider the asymptotic behavior of P
(q)
ω,kφ,ck

(z, z).

If there exists an integer d such that lim infk→∞ kdck > 0, then we can also

obtain the leading term of the expansion of P
(q)
ω,kφ,ck

(z, z). Furthermore, in

the case q = 0, we only need a weaker condition of ck that

∃c < 1 such that lim inf e2cminλi·k1/2ck > 0 where λi are defined in (1.2).

1.1. Set-up and the main results

Let (M,ω) be a Hermitian manifold with complex dimension n where

ω is a positive Hermitian (1, 1)-form. Denote by 〈·|·〉ω the pointwise Hermi-

tain inner product induced by ω on TCM and dVω the induced Riemannian

volume form given by ωn

n! .

We consider a holomorphic Hermitian line bundle (L, hL) over the man-

ifold M , and denote its k-th tensor power L⊗k by Lk. Let s be a local
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holomorphic trivializing section of L over an open subset U of M . The Her-

mitian metric hL corresponds locally to a weight function φ : U → R such

that |s|2
hL = e−2φ. Denote by sk the k-th tensor power s⊗k of s. Then the

metric of Lk in U can be described as |sk|2kφ := |sk|2
hLk = e−2kφ where sk

trivializes Lk in U with its weight function kφ. Denote by 〈·|·〉kφ := 〈·|·〉
hLk

the pointwise Hermitian inner product hL
k
on Lk for convenience.

We also introduce the holomorphic Hermitian connection ∇L on (L, hL)

that has a curvature form denoted by ΘL. We identify ΘL with a Hermitian

matrix Θ̇L ∈ C∞(M,End (T (1,0)M)) that satisfies the following equation:

〈Θ̇L(z)v1 | v2〉ω := ΘL(z)(v1 ∧ v2) for all v1, v2 ∈ T (1,0)
z M, z ∈ M.

Next, we set the notation describing the signature of the curvature.

Definition 1.1. For any q ∈ {0, 1, . . . , n}, we denote

M(q) := {z ∈ M | Θ̇L(z) ∈ End (T (1,0)
z M) is non-degenerate

and has exactly q negative eigenvalues}.

There is a natural Hermitian structure denoted by 〈·|·〉ω,kφ on the vector

bundle T ∗,(0,q)M ⊗ Lk over M obtained by the Hermitian pointwise inner

product on T ∗,(0,q)M induced by ω (cf. (2.2)) and the local weight func-

tions kφ of the Hermitian metric hL
k
of Lk, where T ∗,(0,q)M denotes the

bundle of (0, q)-forms on M (cf. (2.1)). Let Ω(0,q)(M,Lk) be the space

of smooth (0, q)-forms on M with values in Lk, and let Ω
(0,q)
c (M,Lk) be

the subspace of Ω(0,q)(M,Lk) consisting of elements with compact support

in M . The pointwise inner product 〈·|·〉ω,kφ on T ∗,(0,q)M ⊗ Lk induces a

L2
ω,kφ-inner product (·|·)ω,kφ on the space Ω

(0,q)
c (M,Lk) (cf. (2.5)). Denote

L2
ω,kφ(M,T ∗,(0,q)M ⊗Lk) as the completion of Ω

(0,q)
c (M,Lk) with respect to

(·|·)ω,kφ and denote ‖ · ‖ω,kφ as its norm.

Let ∂̄
(q)
k : Ω(0,q)(M,Lk) → Ω(0,q+1)(M,Lk) be the Cauchy-Riemann op-

erator with values in Lk and ∂̄
∗,(q+1)
k : Ω(0,q+1)(M,Lk) → Ω(0,q)(M,Lk) be

the formal adjoint of ∂̄
(q)
k with respect to (·|·)ω,kφ. Recall that the Kodaira

Laplacian is given by

�
(q)
ω,kφ := ∂̄

∗,(q+1)
k ∂̄

(q)
k + ∂̄

(q−1)
k ∂̄

∗,(q)
k : Ω(0,q)(M,Lk) → Ω(0,q)(M,Lk)
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and it has the Gaffney extension(cf. (2.6)):

�
(q)
ω,kφ : Dom�

(q)
ω,kφ ⊂ L2

ω,kφ(M,T ∗,(0,q)M ⊗Lk) → L2
ω,kφ(M,T ∗,(0,q)M ⊗Lk).

Denote by E
(q)
k,≤c the image of 1[0,c] (�(q)

ω,kφ

)
which is the functional calculus

of �
(q)
ω,kφ with respect to the indicator function 1[0,c]. We specify a non-

negative sequence ck and denote by (cf. (2.7))

P(q)
k,ck

:= 1[0,ck] (�(q)
ω,kφ

)
: L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → E
(q)
k,≤ck

the spectral projection which is the orthogonal projection. Specifically, in

the case ck = 0, denote

B(q)
k : L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → Ker�
(q)
k

to be the Bergman projection. Define P
(q)
k,ck

(z, w) to be the spectral kernel and

B
(q)
k (z, w) to be the Bergman kernel which are the Schwartz kernels of P(q)

k,ck

and B(q)
k , respectively. Now, we choose a suitable holomorphic coordinate

chart U centered at p ∈ M and a holomorphic trivialization s on U such

that (cf. Lemma 2.1)

φ =

n∑

i=1

λi|zi|2 +O(|z|3); ω =
√
−1

n∑

i=1

dzi ∧ dz̄i +O(|z|). (1.2)

Moreover, if λi > 0 for all i = 1, . . . , n, we take the trivialization such that

φ =

n∑

i=1

λi|zi|2 +O(|z|4).

Note that if p ∈ M(q′) for some q′ ∈ {0, . . . , n}, then

q′ = #{i ;λi < 0} and n− q′ = #{i ;λi > 0}.

In this paper, we always assume that λi < 0 for all i = 1, . . . , q′ by rear-

rangement. Next, we introduce the spectral gap conditions.

Definition 1.2 (spectral gap condition 1). For any q ∈ {0, . . . , n} and an

open set U ⊂ M , we say �
(q)
ω,kφ has a small local spectral gap condition of
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polynomial rate on U if there exist d ∈ N and C > 0 such that for all large

enough k,

∥∥∥
(
I − B(q)

k

)
u
∥∥∥
2

ω,kφ
≤ Ckd

(
�

(q)
ω,kφu | u

)
ω,kφ

for all u ∈ Ω(0,q)
c (U,Lk).

For the function case q = 0, we introduce a relaxed condition that allows

for a narrower spectral gap.

Definition 1.3 (spectral gap condition 2). For an open set U ⊂ M , we say

�
(0)
ω,kφ has a small local spectral gap condition of suitable exponential rate

on U if there are constants 0 < c < 1 and C > 0 such that for large enough

k,

∥∥∥
(
I−B(0)

k

)
u
∥∥∥
2

ω,kφ
≤Ce2cmin λi·k1/2

(
�

(0)
ω,kφu | u

)
ω,kφ

for all u ∈ C∞
c (U,Lk).

Let s : U → L be a local non-vanishing holomorphic section defined

on an open set U ⊂ M . We can locally express the spectral and Bergman

kernels on U × U as

P
(q)
k,ck

(z, w) =P
(q),s
k,ck

(z, w) sk(z)⊗ (sk(w))∗;

B
(q)
k (z, w) =B

(q),s
k (z, w) sk(z) ⊗ (sk(w))∗.

(1.3)

Here, P
(q),s
k,ck

(z, w) and B
(q),s
k (z, w) are elements in C∞(U × U, T ∗,(0,q)M ⊠

T ∗,(0,q)M) where T ∗,(0,q)M⊠T ∗,(0,q)M is the vector bundle over U×U whose

fiber at (z, w) ∈ U ×U is the space of linear transformations from T
∗,(0,q)
w M

to T
∗,(0,q)
z M . We now introduce the primary object in our approach.

Definition 1.4. We treat U as a subset in Cn and assume that U is convex.

The scaled spectral kernel P
(q),s
(k),ck

∈C∞
(√

kU×
√
kU, T ∗,(0,q)Cn ⊠ T ∗,(0,q)Cn

)

is defined by

P
(q),s
(k),ck

(z, w) := k−nP
(q),s
k,ck

(
z√
k
,
w√
k
).

Similarly, the scaled Bergman kernel is defined by

B
(q),s
(k) (z, w) := k−nB

(q),s
k (

z√
k
,
w√
k
).

We are ready to illustrate the main results of this paper.
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Theorem 1.1 (main theorem for Bergman kernel). If p /∈ M(q), the scaled

Bergman kernel B
(q),s
(k) (z, w) → 0 locally uniformly in C∞ on Cn. If p ∈ M(q)

and �
(q)
ω,kφ has local small spectral gap condition of polynomial rate in U (cf.

Def. 1.2), then B
(q),s
(k) (z, w) converges to

|λ1 · · · λn|
πn

e2(
∑q

i=1 |λi|z̄iwi+
∑n

i=q+1 |λi|ziw̄i−∑n
i=1 |λi||wi|2)(dz̄1 ∧ · · · ∧ dz̄q)

⊗(
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
)

locally uniformly in C∞ on Cn. Here, we identify (dz̄1 ∧ · · · ∧ dz̄q)⊗ ( ∂
∂w̄1 ∧

· · · ∧ ∂
∂w̄q ) as a section of T ∗,(0,q)Cn ⊠ T ∗,(0,q)Cn over Cn defined by

η 7→ (dz̄1 ∧ · · · ∧ dz̄q)⊗ η(
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
) for all η ∈ T ∗,(0,q)Cn.

In particular, in the case p ∈ M(0), the convergence above for the function

case q = 0 remains valid if �
(0)
ω,kφ has only local small spectral gap condition

of suitable exponential rate in U (cf. Def. 1.3).

Next, the second main theorem is the spectral kernel version. The spec-

tral gap conditions can be dropped and conditions can be imposed on the

sequence ck since

‖
(
I − P(q)

k,ck

)
u‖2ω,kφ ≤ ck

(
�

(q)
ω,kφu | u

)
for all u ∈ L2

ω,kφ(M,T ∗,(0,q)M⊗Lk).

This estimate plays the role of a spectral gap condition.

Theorem 1.2 (main theorem for spectral kernel). Assume that the non-

negative sequence ck satisfies

lim sup
k→∞

ck
k

= 0.

If p /∈ M(q), the scaled spectral kernel P
(q),s
(k),ck

(z, w) → 0 locally uniformly in

C∞ on Cn. If p ∈ M(q) and there exists d ∈ N such that lim infk→∞ kdck > 0,

then P
(q),s
(k),ck

(z, w) converges to

|λ1 · · · λn|
πn

e2(
∑q

i=1 |λi|z̄iwi+
∑n

i=q+1 |λi|ziw̄i−
∑n

i=1 |λi||wi|2)(dz̄1 ∧ · · · ∧ dz̄q)

⊗(
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
).

locally uniformly in C∞ on Cn.
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Particularly, in the case p∈M(0), the convergence above of the function

case q = 0 still holds under a weaker condition of ck that

lim inf e2cmin{λi}k1/2ck > 0 for some c < 1.

Remark 1.1. For a fixed point p ∈ M , observe that B
(q),s
k (p, p) = knB

(q),s
(k)

(0, 0). By Theorem 1.1, under spectral gap conditions, we deduce

B
(q),s
k (p, p) = kn

|λ1 · · ·λn|
πn

(dz̄1 ∧ · · · ∧ dz̄q)⊗ (
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
) + o(kn)

if p ∈ M(q);

B
(q),s
k (p, p) = o(kn) if p /∈ M(q).

In a similar way, by Theorem 1.2, we are able to conclude the same asymp-

totic behavior for the diagonal part of the spectral kernels P
(q),s
k,ck

(p, p) under

the suitable conditions on ck. From our results, if the expansion (1.1) exists,

we can conclude that

b(q)n (p, p) =
|λ1 · · ·λn|

πn
(dz̄1 ∧ · · · ∧ dz̄q)⊗ (

∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
)⊗ sk ⊗

(
sk
)∗

if p ∈ M(q);
b(q)n (p, p) = 0 if p /∈ M(q).

Remark 1.2. Theorem 1.1 provides a purely analytic proof of the Kodaira

embedding theorem (cf. [20]), while Theorem 1.2 can be used to establish

the Demaillys Morse inequality (cf. [21, section 10.5]).

We divide the proof of the main theorems into two steps. First, in Chap-

ter 3, we try to establish local uniform bounds of B
(q),s
(k) (z, w) and P

(q),s
(k),ck

(z, w)

on Cn (cf. Theorem 3.5). In this way, we can infer that any subsequence

of B
(q),s
(k) ( or P

(q),s
(k),ck

) has a C∞ uniformly convergent subsequence by the

Arzelà-Ascoli theorem.

Next, in Chapter 4, we prove that every convergent subsequence of B
(q),s
(k)

(or P
(q),s
(k),ck

) must converge to the Bergman kernel of the model case on Cn

(cf. Theorem 4.5, Theorem 4.10, Theorem 4.21), which is exactly

|λ1 · · · λn|
πn

e2(
∑q

i=1 |λi|z̄iwi+
∑n

i=q+1 |λi|ziw̄i−
∑n

i=1 |λi||wi|2)(dz̄1 ∧ · · · ∧ dz̄q)

⊗(
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
).
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2. Preliminaries and Terminology

2.1. Standard notations

Let N0 be the set N ∪ {0}, and a multi-index α is of the form α =

(α1, α2, . . . , αn) ∈ (N0)
n. Denote |α| := ∑

i αi and α! = α1!α2! · · ·αn!. For

ξ = (ξ1, . . . , ξn) ∈ Rn, ξα := ξα1
1 · · · ξαn

n .

LetM be a n-dimensional complex manifold and TM be the real tangent

bundle of the underlying smooth manifold. Denote by TCM the complex-

ified tangent bundle TM ⊗ C and
∧l T ∗

CM the l-th exterior algebra of the

cotangent bundle T ∗
CM . For a local holomorphic coordinate (z1, . . . , zn) that

has an underlying real coordinate (x1, . . . , x2n) with zj = x2j−1 +
√
−1x2j,

let

∂

∂zj
:=

1

2

(
∂

∂x2j−1
−

√
−1

∂

∂x2j

)
and

∂

∂z̄j
:=

1

2

(
∂

∂x2j−1
+
√
−1

∂

∂x2j

)

as sections of TCM . Therefore, dzj := dx2j−1+
√
−1dx2j and dz̄j := dxj−1−√

−1dx2j are sections of T ∗
CM . For a multi-index α = (α1, . . . , αn) ∈ (N0)

n,

we denote ∂
∂zα := ( ∂

∂z1
)α1 · · · ( ∂

∂zn )
αn and ∂

∂z̄α := ( ∂
∂z̄1

)α1 · · · ( ∂
∂z̄n )

αn . Some-

times, we simply write them as ∂α
z and ∂α

z̄ , respectively. Also, for α ∈ N2n
0 ,

we denote ∂
∂xα := ( ∂

∂x1 )
α1 · · · ( ∂

∂x2n )
α2n and sometimes write it as ∂α

x .

Define

Jq,n := {I = (i1, . . . , iq) : 1 ≤ i1 < i2 < · · · < iq ≤ n} ⊂ (N0)
q.

For any element I = (i1, . . . , iq) ∈ Jq,n, we denote the q-forms dzI := dzi1 ∧
· · · ∧ dziq and dz̄I := dz̄i1 ∧ · · · ∧ dz̄iq .

Consider an open subset U of M . Denote by C∞(U) the space of smooth

functions on U and by C∞
c (U) the subspace of C∞(U) whose elements have

compact support in U . For a vector bundle E over M , we denote C∞(U,E)

as the space of smooth sections of E over U and C∞
c (U,E) as the subspace

of C∞(U,E) whose every element has compact support in U . Let dm be the

standard Lebesgue measure on Cn, and let B(r) be the set {z ∈ Cn; |z| < r}.
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2.2. Complex geometry and Hermitian holomorphic line bundle

Let M be a complex manifold of dimension n. There is a natural

complex structure J : TM → TM such that J2 = −Id . Then TCM =

T (1,0)M ⊕ T (0,1)M where T (1,0)M and T (0,1)M are the i-eigenbundle and

−i-eigenbundle of J , respectively. Similarly, T ∗
CM = T ∗,(1.0)M ⊕ T ∗,(0,1)M

where T ∗,(1.0)M and T ∗,(0,1)M are dual bundles of T (1,0)M and T (0,1)M , re-

spectively. The splitting of the complexified tangent bundle can be extended

to the exterior algebra of the complexified cotangent bundle. Namely,

k∧
T ∗
CM =

⊕

p+q=k

(
p∧
T ∗,(1,0)M

)∧(
q∧
T ∗,(0,1)M

)
. (2.1)

Define T ∗,(p,q)M :=
(∧p T ∗,(1,0)M

)∧ (∧q T ∗,(0,1)M
)
and hence

∧k T ∗
CM =⊕

p+q=k T
∗,(p,q)M . Let Ω(p,q)(M) be the space of smooth (p, q)-forms which

are smooth sections of T ∗,(p,q)M and Ω
(p,q)
c (M) be the subspace of Ω(p,q)(M)

consisting of elements with compact support in M . For a local holomorphic

coordinate (z1, . . . , zn) in U ⊂ M , we have a local frame for T ∗,(p,q)M given

by

T ∗,(p,q)M |U= span{dzI ∧ dz̄J}I∈Jp,n,J∈Jq,n .

Next, we call ω a positive Hermitian (1, 1)-form if:

(i) ω ∈ Ω(1,1)(M) ;

(ii) For any local holomorphic coordinate (z1, . . . , zn), ω can be written as

ω =
√
−1

n∑

i,j=1

hi,jdzi ∧ dz̄j

where [hi,j ] is a positive Hermitian matrix.

A positive Hermitian (1, 1)-form ω induces pointwise Hermitian inner prod-

ucts 〈·|·〉ω on T (1,0)M and T (0,1)M that are locally given by 〈 ∂
∂zi

| ∂
∂zj

〉ω := hi,j

and 〈 ∂
∂z̄i

| ∂
∂z̄j

〉ω := h̄i,j , respectively. Thus, we have a Hermitian inner prod-

uct 〈·|·〉ω on the complexified cotangent bundle TCM = T (1,0)M ⊕ T (0,1)M .

When we restrict the domain of 〈·|·〉ω to the subbundle TM ⊂ TCM , we

obtain a Riemannian metric called gω on the underlying real manifold. The

Riemannian volume form dVω associated with gω is given by dVω = ωn

n! .
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Moreover, The Hermitian inner product 〈·|·〉ω can be naturally extended to

T ∗,(0,q)M by

〈dz̄i1 ∧ · · · ∧ dz̄iq | dz̄j1 ∧ · · · ∧ dz̄jq〉ω =
1

q!
det[hil,jk ]l,k=1...q (2.2)

where [hi,j ] is the inverse matrix of [hi,j]. We can now define the L2-inner

product on the space Ω
(0,q)
c (M) by

(η1 | η2)ω =

∫

M
〈η1 | η2〉ωdVω for all η1, η2 ∈ Ω(0,q)

c (M). (2.3)

Let L2
ω(M,T ∗,(0,q)M) be the completion of Ω

(0,q)
c (M) with respect to the

inner product (·|·)ω and denote by ‖ · ‖ω the corresponding norm. For an

open set U ⊂ M , we define the restriction of the L2-inner product by

(η1 | η2)ω,U :=

∫

U
〈η1 | η2〉ωdVω for all η1, η2 ∈ Ω(0,q)

c (U). (2.4)

In the same manner, we can define L2
ω(U, T

∗,(0,q)M) to be the completion of

Ω
(0,q)
c (U) with respect to (·|·)ω,U and denote ‖ · ‖ω,U to be the corresponding

norm.

Recall that a holomorphic Hermitian line bundle (L, hE) is a 1-dimen-

sional holomorphic Hermitian vector bundle. Let (U, s) be a local trivializa-

tion where U is a holomorphic chart and s : U ⊂ M → L is a holomorphic

local non-vanishing section. Then there exists a local weight φ : U → R

such that 〈s|s〉hL = e−2φ(z). The Chern connection is locally given by the

connection 1-form θ = −2∂φ and the curvature ΘL is locally given by the

(1, 1)-form

ΘL = −2∂̄∂φ = 2

n∑

i,j=1

∂2φ

∂zi∂z̄j
dzi ∧ dz̄j .

Define Θ̇L ∈ C∞(M,End (T (1,0)M)) to be the curvature operator such that

〈Θ̇L(p)v1 | v2〉ω = ΘL(p)(v1 ∧ v2) for all v1, v2 ∈ T (1,0)
p M, p ∈ M.

Now, we introduce a lemma that allows us to simplify the information on

curvature.
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Lemma 2.1 (cf. [26], Lemma III,2.3). Let L → M be a holomorphic line

bundle over a complex manifold M . For any fixed p ∈ M , there exists a

trivialization (U, s) where U ⊂ Cn is a holomorphic chart centered at p and

s : U → L is a non-vanishing holomorphic section such that the Hermitian

form ω and the local weight φ with respect to s can be written as

ω(z) =
√
−1

n∑

i=1

dzi ∧ dz̄i +O(|z|); φ(z) =

n∑

i=1

λi|zi|2 +O(|z|3).

Remark 2.1. If λi 6= 0 for all i = 1, . . . , n, then the trivialization in Lemma

2.1 can be chosen such that

φ(z) =
n∑

i=1

λi|zi|2 +O(|z|4).

Observe that the Hermitian metric hL on L can be identified by a family

of local wights {φi} with respect of a family of trivializing sections {si}. We

will alternatively denote 〈·|·〉φ := 〈·|·〉hL if there is no risk of ambiguity.

We can define the k-th tensor power of L as Lk := L⊗k, and denote the

corresponding trivializing section as sk := s⊗k. It follows that the local

weight of sk with respect to the induced metric hL
k
is given by kφ. The

norm of sk is |sk|kφ := |sk|
hLk = e−kφ.

Fix a positive Hermitian (1, 1)-form ω on M and a Hermitian metric hL

with local weights φ on L. They induce a pointwise Hermitian inner product

〈·|·〉ω,kφ on the bundle T ∗,(0,q)M ⊗ Lk. For a fixed trivialization s : U → L

with local weight φ, if u1 = η1 ⊗ sk and u2 = η2 ⊗ sk where ηi ∈ Ω(0,q)(U),

then

〈u1 | u2〉ω,kφ = 〈η1 ⊗ sk | η2 ⊗ sk〉ω,kφ = 〈η1 | η2〉ωe−2kφ.

Then we can define the L2-inner product on the space Ω
(0,q)
c (M,Lk) by

(u1 | u2)ω,kφ :=

∫

M
〈u1 | u2〉ω,kφdVω for u1, u2 ∈ Ω(0,q)

c (M,Lk). (2.5)

Denote ‖u‖2ω,kφ := (u | u)ω,kφ and L2
ω,kφ(M,T ∗,(0,q)M ⊗ Lk) as the Hilbert

space which is the completion of Ω
(0,q)
c (M,Lk) with respect to the inner

product (·|·)ω,kφ.
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2.3. The spectral and Bergman kernels

Let ∂̄
(q)
k : Ω(0,q)(M,Lk) → Ω(0,q+1)(M,Lk) be the Cauchy-Riemann op-

erator and ∂̄
∗,(q+1)
k : Ω(0,q+1)(M,Lk) → Ω(0,q)(M,Lk) be its formal adjoint

with respect to (·|·)ω,kφ. The Kodaira Laplacian is given by

�
(q)
k = �

(q)
ω,kφ := ∂̄

∗,(q+1)
k ∂̄

(q)
k + ∂̄

(q−1)
k ∂̄

∗,(q)
k : Ω(0,q)(M,Lk) → Ω(0,q)(M,Lk).

Next, we define

Dom ∂̄
(q)
k := {u ∈ L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk); ∂̄
(q)
k u ∈ L2

ω,kφ(M,T ∗,(0,q+1)M

⊗Lk)}

where ∂̄
(q)
k u is defined in distribution sense. Then we can extend ∂̄

(q)
k as

∂̄
(q)
k : Dom ∂̄

(q)
k ⊂ L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → L2
ω,kφ(M,T ∗,(0,q+1)M ⊗ Lk).

Let ∂̄
∗,(q+1)
k : Dom ∂̄

∗,(q+1)
k ⊂ L2

ω,kφ(M,T ∗,(0,q+1)M ⊗ Lk)

→ L2
ω,kφ(M,T ∗,(0,q)M ⊗ Lk) be the L2

ω,kφ-adjoint of ∂̄
(q)
k and denote

Dom�
(q)
k := {u ∈ Dom ∂̄

(q)
k ∩Dom ∂̄

∗,(q)
k | ∂̄(q)

k u ∈ Dom ∂̄
∗,(q+1)
k

and ∂̄
∗,(q)
k u ∈ Dom ∂̄

(q−1)
k }.

We have the Gaffney extension(cf. [15])

�
(q)
k : Dom �

(q)
k ⊂ L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → L2
ω,kφ(M,T ∗,(0,q)M ⊗ Lk).

(2.6)

It is well-known that the extension is semi-positive and self-adjoint(cf. [25,

proposition 3.1.2]). Next, we introduce the spectral theorem.

Theorem 2.2 ([11], Theorem 2.5.1). Let A : DomA ⊂ H → H be a self-

adjoint operator on a Hilbert space H. Then there exists a spectrum set

SpecA ⊂ R , a finite measure µ on SpecA×N and a unitary operator

H : H → L2(SpecA× N, dµ)

with the following properties: Set h : SpecA× N → R by h(s, n) := s. Then

an element f ∈ H is in DomA if and only if h ·H(f) ∈ L2(SpecA×N, dµ).
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In addition, we have

Af = H−1 ◦ (h ·Hf) for all f ∈ Dom A.

By Theorem 2.2, we know that �
(q)
k has the spectrum set Spec�

(q)
k that

lies in [0,∞) since �
(q)
k is semi-positive. Moreover, there is a unitary map

Hk : L2
ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → L2(Spec �

(q)
k × N, dµk)

such that �
(q)
k u = H−1

k ◦ (h ·Hku) for all u ∈ Dom�
(q)
k .

Given non-negative constants ck, we define the spectral projections by

P(q)
k,ck

u := H−1
k ◦ (1[0,ck]×N ·Hku) (2.7)

where 1[0,ck]×N is the indicator function defined on Spec�
(q)
k × N by

{1[0,ck]×N(s, l) = 1 if s ∈ [0, ck];1[0,ck]×N(s, l) = 0 if s /∈ [0, ck].

Clearly, P(q)
k,ck

is an orthogonal projection since Hk is a unitary map. In

fact, the construction of P(q)
k,ck

above coincides with the functional calculus1[0,ck](�(q)
k ) with respect to the indicator function 1[0,ck] (cf. [11, section 2]).

We may denote by E
(q)
k,≤ck

the image of 1[0,ck](�(q)
k ) and then

P(q)
k,ck

= 1[0,ck](�(q)
k ) : L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → E
(q)
k,≤ck

.

For the case ck = 0, we denote

B(q)
k := P(q)

k,0 : L2
ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → Ker�

(q)
k

to be the Bergman projection. To introduce the spectral and Bergman

kernels, we need the following theorem (cf. [18, section 5.2]). Denote by

D′

c(M,E) the space of distribution sections of a vector bundle E over M

whose elements have compact support in M .

Theorem 2.3 (Schwartz Kernel Theorem for smoothing operators). Let E

and F be two vector bundles on a manifold M with a volume form dV . Then
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for any continuous linear operator P : D′
c(M,E) → C∞(M,F ), there exists

a unique smooth kernel KP ∈ C∞(M ×M,F ⊠ E) such that

Pu(x0) =

∫

M
KP (x0, y)(u(y))dV (y)

for all u ∈ D′
c(M ;E). Here, we denote F ⊠E as a vector bundle on M ×M

whose fiber at (x, y) ∈ M × M is the space of linear transformations from

Ex to Fy.

Since Kodaira Laplacian is elliptic, the spectral projection P(q)
k,ck

and the

Bergman projection B(q)
k are smoothing operators in the sense that

P(q)
k,ck

: D′

c(M,T ∗,(0,q)M ⊗ Lk) → C∞(M,T ∗,(0,q)M ⊗ Lk),

B(q)
k : D′

c(M,T ∗,(0,q)M ⊗ Lk) → C∞(M,T ∗,(0,q)M ⊗ Lk)

are continuous maps. In conclusion, the conditions of Theorem 2.3 hold for

P(q)
k,ck

and B(q)
k and hence their distribution kernels are smooth.

Definition 2.1. Define the spectral kernel P
(q)
k,ck

(z, w) and Bergman kernel

B
(q)
k (z, w) which are in C∞ (M ×M, (T ∗,(0,q)M ⊗ Lk)⊠ (T ∗,(0,q)M ⊗ Lk)

)
to

be the Schwartz kernels of the spectral projection P(q)
k,ck

and Bergman pro-

jection B(q)
k , respectively. In this way, for all u ∈ L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk),

we have

P(q)
k,ck

u(z) =

∫

M
P

(q)
k,ck

(z, w)u(w)dVω(w);

B(q)
k u(z) =

∫

M
B

(q)
k (z, w)u(w)dVω(w).

2.4. The Sobolev and G̊arding inequalities

In this section, we consider the
(n
q

)
-dimensional trivial complex vector

bundle T ∗,(0,q)Cn over an open subset U of Cn with a global trivializing

frame {dz̄I}I∈Jq,n . Let

u :=
∑

I∈Jq,n

uIdz̄
I ∈ Ω(0,q)

c (U)
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be a smooth section of T ∗,(0,q)Cn. We consider u as a smooth vector-valued

function

(uI)I∈Jq,n : U ⊂ Cn ≃ R2n → C(
n
q)

by fixing an order of Jq,n. Recall that the Fourier transform of u = (uI)I∈Jq,n

is

û(ξ) := (ûI(ξ))I∈Jq,n

where ûI(ξ) := (2π)−n/2
∫
R2n uI(x)e

−iξ·xdm. For any s ∈ R, the Sobolev

s-norm ‖ · ‖s,U is

‖u‖2s,U = ‖u‖2s :=

∫

R2n

(1 + |ξ|2)s|û(ξ)|2dm(ξ). (2.8)

The Sobolev space Hs(U, T
∗,(0,q)Cn) is the completion of Ω

(0,q)
c (U) with re-

spect to the norm ‖ · ‖s. Since
∫
R2n |ûI |2dm =

∫
R2n |uI |2dm for all I ∈ Jq,n,

we have ‖·‖0,U = ‖·‖0 = ‖·‖dm = ‖·‖dm,U where ‖·‖dm is the L2-norm with

respect to standard Lebesgue measure dm in Euclidean space. The following

proposition induces a variant of the Sobolev norm.

Proposition 2.4 (compatibility). Given u =
∑

I∈Jq,n
uIdz̄

I ∈ Ω
(0,q)
c (U)

and s ∈ N, there exist positive constants C1 and C2 independent of u such

that

C1

∑

I∈Jq,n

∑

|α|≤s

‖∂α
xuI‖20 ≤ ‖u‖2s ≤ C2

∑

I∈Jq,n

∑

|α|≤s

‖∂α
xuI‖20.

The proof of Proposition 2.4 is simply by the fact that |∂̂α
x uI(ξ)| =

|ξαûI(ξ)| where ξα := ξα1
1 · · · ξα2n

2n . Next, we introduce a basic proposition in

the Sobolev theory.

Proposition 2.5. For any s ∈ R, H−s(U, T
∗,(0,q)Cn) is the dual space of

Hs(U, T
∗,(0,q)Cn) and

| (u | v)0 | ≤ ‖u‖−s‖v‖s

for all u ∈ H−s(U, T
∗,(0,q)Cn) and v ∈ Hs(U, T

∗,(0,q)Cn).
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Let Cd(U, T ∗,(0,q)Cn) be the space of d-th differentiable sections. For any

point x ∈ U , define

|u|2Cd(x) :=
∑

I∈Jq,n

∑

|α|≤d

|∂αuI(x)|2 for all u ∈ Cd(U, T ∗,(0,q)Cn). (2.9)

Next, define a norm ‖ · ‖Cd(U) on the space Cd(U, T ∗,(0,q)Cn) by

‖u‖2Cd(U) := sup
x∈U

|u|2Cd(x). (2.10)

The following theorem is well-known and will be applied in Section 3.3.

Theorem 2.6 (Sobolev inequality). Let d ∈ N0 and s ∈ R such that s >

d+ n. If u ∈ Hs(U, T
∗,(0,q)Cn), then u ∈ Cd(U, T ∗,(0,q)Cn) and there exists a

constant Cs,d independent of u such that

‖u‖Cd(U) ≤ Cs,d‖u‖s.

We now consider a second-order differential operator P : Ω(0,q)(U) →
Ω(0,q)(U). By ordering the basis {dz̄I}I∈Jq,n , we can treat P as a

(n
q

)
×
(n
q

)

matrix [Pi,j ] of second-order differential operators Pi,j : C∞(U) → C∞(U).

Let (x1, . . . , x2n) be the standard coordinate on R2n ≃ Cn. We can represent

Pi,j as

Pi,j =
∑

|α|≤2

ai,j,α(x)∂
α
x where ai,j,α ∈ C∞(U).

Define the symbol σ(Pi,j) of Pi,j by

σ(Pi,j)(x, ξ) :=
∑

|α|≤2

√
−1

|α|
ai,j,α(x)ξ

α where x ∈ U , ξ ∈ R2n.

σ(Pi,j) is a polynomial of ξ of degree 2 for any fixed x ∈ U . Furthermore,

we define the symbol σ(P )(x, ξ) of P as the
(n
q

)
×
(n
q

)
matrix [σ(Pi,j)(x, ξ)]

of polynomials of ξ for any x ∈ U .

Definition 2.2 (elliptic operator). We call a second-order differential oper-

ator P : Ω(0,q)(U) → Ω(0,q)(U) is uniform elliptic on U if there exists C > 0

A basic reference for this section is [16], sections 1.1-1.3
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such that

|σ(P )(z, ξ)v| ≥ C|ξ|2|v| ∀x ∈ U, ξ 6= 0 and v ∈ R2n. (2.11)

Theorem 2.7 (G̊arding inequality). Let P be a second-order differential

operator which is uniform elliptic on an open set U ⊂⊂ Cn. Then for any

m ∈ N, there exists a positive constant C̃ such that

‖u‖2m,U ≤ C̃ (‖u‖0,U + ‖Pmu‖0,U ) for all u ∈ H2m(U, T ∗,(0,q)Cn).

Remark 2.2. The settings of this section can be modified to any trivial

vector bundles. In particular, the cotangent bundle T ∗,(p,q)Cn → Ũ ⊂ Cn

with the trivializing frame {dzI ∧ dz̄J}I∈Jp,n,J∈Jq,n . For example, if u =∑n
i,j=1 ui,jdz

i ∧ dz̄j is a smooth (1, 1)-form with compact support in Cn, we

can define

|u|2Cd(x) :=

n∑

i,j=1

∑

|α|≤d

|∂αui,j(x)|2 (2.12)

and the norm

‖u‖2Cd(U) := sup
x∈U

|u|2Cd(x).

3. The Local Uniform Bounds for Scaled Spectral

and Bergman Kernels

In this chapter, our aim is to analyze the behavior of the scaled spectral

and Bergman kernels. Our objective is to establish local uniform bounds on

the scaled kernels, which will allow us to investigate their local convergence

properties. To this end, we will apply the Arzelà-Ascoli theorem.

In Section 3.1, we recall the set-up which has been mentioned in Section

1.1 and construct the scaled bundles. In Section 3.2, we compute the Kodaira

Laplacian on the trivial line bundle and apply the results on the cases of

scaled bundles. In Section 3.3, under the framework set in Sections 3.1

and 3.2, we can eventually control the local behavior of scaled spectral and

Bergman kernels by the analytic tools of Sobolev theory.
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3.1. The scaled bundles

Let (M,ω) be a Hermitian manifold of dimension n and (L, hL) → M be

a holomorphic Hermitian line bundle. Given a non-vanishing holomorphic

section s of L on a holomorphic chart U that trivializes L, there exists a

local weight φ : U → R such that |s|2
hL = e−2φ. Denote |s|φ := |s|hL for

convenience.

Recall that (·|·)ω is the L2-inner product of the Hilbert space

L2
ω(M,T ∗,(0,q)M) (cf. (2.3)) and (·|·)ω,U is the restriction of the inner product

(cf. (2.4)). Also, we can define another Hilbert space L2
ω,kφ(M,T ∗,(0,q)M

⊗Lk) which has the inner product (·|·)ω,kφ(cf. (2.5)).

Denote ∂̄
(q)
k :Ω(0,q)(M,Lk)→Ω(0,q+1)(M,Lk) to be the Cauchy-Riemann

operator and ∂̄
∗,(q+1)
k : Ω(0,q+1)(M,Lk) → Ω(0,q)(M,Lk) to be the formal

adjoint of ∂̄k with respect to (·|·)ω,kφ. Recall that we have the Kodaira

Laplacian �
(q)
k (or �

(q)
ω,kφ) given by

�
(q)
k := ∂̄

∗,(q+1)
k ∂̄

(q)
k + ∂̄

(q−1)
k ∂̄

∗,(q)
k : Dom�

(q)
k → L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk)

which is the Gaffney extension(cf. (2.6)).

Fix a non-negative sequence ck. Denote by E
(q)
k,≤ck

the image of the

functional calculus 1[0,ck](�(q)
k ) with respect to the indicator function 1[0,ck].

The spectral projection is the orthogonal projection

P(q)
k,ck

:= 1[0,ck](�(q)
k ) : L2

ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → E
(q)
k,≤ck

and the Bergman projection is the orthogonal projection

B(q)
k := P(q)

k,0 : L2
ω,kφ(M,T ∗,(0,q)M ⊗ Lk) → Ker�

(q)
k

which is a special case of spectral projection by taking ck = 0. Readers may

consult (2.7) for an explicit definition.

For η1⊗ sk and η2⊗ sk in L2
ω,kφ(U, T

∗,(0,q)M ⊗Lk) where ηi ∈ Ω
(0,q)
c (U),

observe that

(η1 ⊗ sk|η2 ⊗ sk)ω,kφ =

∫

U
〈η1|η2〉ωe−2kφdVω = (η1e

−kφ|η2e−kφ)ω,U .
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This induces a unitary identification

L2
ω,kφ(U, T

∗,(0,q)M ⊗ Lk) ∼= L2
ω(U, T

∗,(0,q)M) by η ⊗ sk ↔ ηe−kφ. (3.1)

Define the localized spectral projection

P(q)
k,ck,s

: L2
ω(U, T

∗,(0,q)M) → L2
ω(U, T

∗,(0,q)M)

satisfying P(q)
k,ck

(η⊗ sk) = ekφP(q)
k,ck,s

(ηe−kφ)⊗ sk for all η ∈ L2
ω(U, T

∗,(0,q)M).

In the case ck = 0, we denote B(q)
k,s := P(q)

k,0,s as the localized Bergman

projection.

Next, let P
(q)
k,ck

(z, w) and B
(q)
k (z, w) be the spectral and Bergman kernels

which are the Schwartz kernels of P(q)
k,ck

and B(q)
k , respectively. We may also

define the localized spectral kernel P
(q)
k,ck,s

(z, w) and localized Bergman kernel

B
(q)
k,s(z, w) to be the Schwartz kernels of P(q)

k,ck,s
and B(q)

k,s, respectively. The

relation between P
(q),s
k,ck

(z, w) and P
(q)
k,ck,s

(z, w) is given by

P
(q)
k,ck,s

(z, w)=P
(q),s
k,ck

(z, w) · |sk(z)|hL · |(sk)∗(w)|hL∗ =e−kφ(z)P
(q),s
k,ck

(z, w)ekφ(w),

(3.2)

where P
(q),s
k,ck

(z, w) is defined in (1.3).

From now on, we fix a point p ∈ M throughout this paper and apply

Lemma 2.1 to obtain a trivialization (U, s) centered at p such that

φ(z) =
n∑

i=1

λi|z|2 +O(|z|3) and ω(z) =
√
−1

n∑

i=1

dzi ∧ dz̄i +O(|z|).

Recall that the set of points with signature q is defined by

M(q) := {p′ ∈ M | Θ̇L(p′) is non-degenerate and has exactly q negative

eigenvalues}

and observe that p ∈ M(q) means q = #{i | λi < 0} and n − q = #{i |
λi > 0}. In the case of p ∈ M(0), we choose the trivialization such that

φ =
∑n

i=1 λi|z|2+O(|z|4) throughout this paper. Without loss of generality,
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we assume B(1) ⊂ U ⊂ Cn and make the following observations. Denote

φ0(z) :=

n∑

i=1

λi|zi|2 and φ(k)(z) := kφ(z/
√
k).

Then for any ǫ < 1/2, there exists a constant C independent of k such that

|φ(k) − φ0|C2(z) ≤ C
|z|3 + 1√

k
∀ |z| ≤ kǫ. (3.3)

where | · |C2 is defined in (2.9). Also, set

ω0 :=
√
−1
∑

i

dzi ∧ dz̄i and ω(k) := ω(
z√
k
).

Then there also exists a constant C ′ such that

|ω(k) − ω0|C2(z) ≤ C ′ |z|+ 1√
k

∀ |z| ≤ kǫ. (3.4)

where | · |C2 for (1, 1)-forms is defined in (2.12). Furthermore, φ(k) → φ0 and

ω(k) → ω0 locally uniformly in C∞ on Cn. φ(k) and ω(k) are defined on B(
√
k)

and are called the scaled metric and scaled Hermitian form, respectively.

Inspired by the observations above, we construct the scaled line bundles.

Define

s(k)(z) := sk(
z√
k
) : B(

√
k) → Lk.

This makes Lk a trivial line bundle over B(
√
k) with a trivializing section

s(k) for any k ∈ N. We denote the scaled line bundle as

L(k) := Lk → B(
√
k) ⊂ Cn

which equipped with the scaled metric φ(k) by

〈s(k) | s(k)〉φ(k)
:= e−2φ(k) = e−2kφ(z/

√
k).

More generally, we consider the trivial vector bundle

T ∗,(0,q)Cn ⊗ L(k) → B(
√
k) ⊂ Cn
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which is a
(n
q

)
-dimensional complex vector bundle with the space of smooth

sections Ω(0,q)(B(
√
k), L(k)) and trivializing frames {dz̄I ⊗ s(k)}I∈Jq,n .

We endow the vector bundle T ∗,(0,q)Cn⊗L(k) → B(
√
k) with a pointwise

Hermitian structure by the scaled metric φ(k) = kφ(z/
√
k) on L(k) and the

scaled Hermitian form ω(k) = ω(z/
√
k) on T ∗,(0,q)B(

√
k). That is, for all

η1, η2 ∈ Ω(0,q)(B(
√
k)),

〈η1 ⊗ s(k)|η2 ⊗ s(k)〉ω(k),φ(k)
(z) := 〈η1(z)|η2(z)〉ω(k)

e−2φ(k)(z).

Similar to the identification (3.1), there is a unitary correspondence

L2
ω(k),φ(k)

(B(
√
k), T ∗,(0,q)Cn ⊗ L(k)) ∼= L2

ω(k)
(B(

√
k), T ∗,(0,q)Cn) by (3.5)

η ⊗ s(k) ↔ ηe−kφ(z/
√
k).

In the meantime, by changing variable, there are unitary identifications

L2
ω,kφ(B(1), T ∗,(0,q)Cn ⊗ Lk) ∼= L2

ω(k),φ(k)
(B(

√
k), T ∗,(0,q)Cn ⊗ L(k)) (3.6)

by η ⊗ sk ↔ k−n/2η(z/
√
k)⊗ s(k)

and

L2
ω(B(1), T ∗,(0,q)Cn) ∼= L2

ω(k)
(B(

√
k), T ∗,(0,q)Cn) by (3.7)

η ↔ k−n/2η(z/
√
k).

So far, we have four unitary identifications (3.1),(3.5),(3.6),(3.7) between the

spaces of sections. In fact, the identifications form a commutative diagram.

We can transform the localized spectral (or Bergman) kernels defined on

B(1) to kernels on the scaled bundles over B(
√
k) by (3.7).

Define the scaled localized spectral projection

P(q)
(k),ck,s

: L2
ω(k)

(B(
√
k), T ∗,(0,q)Cn) → L2

ω(k)
(B(

√
k), T ∗,(0,q)Cn) such that

(
P(q)
(k),ck,s

u
)
(
√
kz) = P(q)

k,ck,s

(
u(
√
kw)

)
(3.8)

and the scaled localized Bergman projection B(q)
(k),s := P(q)

(k),0,s. Define the

scaled localized spectral kernel P
(q)
(k),ck,s

(z, w) to be the Schwartz kernel of
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P(q)
(k),ck,s

which is given by

P
(q)
(k),ck,s

(z, w) = k−nP
(q)
k,ck,s

(
z√
k
,
w√
k
)

and the scaled localized Bergman kernel B
(q)
(k),s(z, w) := P

(q)
(k),0,s. In this way,

we have

P(q)
(k),ck,s

u(z) =

∫

B(
√
k)
P

(q)
(k),ck,s

(z, w)u(w)dVω(k)
where dVω(k)

:=
ωn
(k)

n!
.

The relation between P
(q),s
(k),ck

(z, w) and P
(q)
(k),ck,s

(z, w) is given by

P
(q)
(k),ck,s

(z, w) = e−φ(k)(z)P
(q),s
(k),ck

(z, w)eφ(k)(w) (3.9)

where P
(q),s
(k),ck

is defined in (1.4).

3.2. The Laplacians

The goal of this section is to compute Kodaira Laplacian on a trivial line

bundle. We now temporarily forget the set-up in Section 3.1. Let Ũ be an

open set in Cn and L̃ → Ũ be a trivial line bundle over Ũ with a trivializing

section s̃. Fix a positive Hermitian (1, 1)-form ω̃ on Ũ and a weight function

φ̃ such that 〈s̃|s̃〉φ̃ = e−2φ̃. Consider

T ∗,(0,q)Cn ⊗ L̃ → Ũ ⊂ Cn

to be the Hermitian vector bundle with the pointwise Hermitian structure

〈·|·〉ω̃,φ̃ induced by ω̃ and φ̃. That is, for η1, η2 ∈ Ω
(0,q)
c (Ũ),

〈η1 ⊗ s̃ | η2 ⊗ s̃〉ω̃,φ̃(z) = 〈η1(z) | η2(z)〉ω̃e−2φ̃(z) for all z ∈ Ũ . (3.10)

This defines an inner product on the space on Ω
(0,q)
c (Ũ , L̃). Namely,

(η1 ⊗ s̃ | η2 ⊗ s̃)ω̃,φ̃ :=

∫

Ũ
〈η1 ⊗ s̃ | η2 ⊗ s̃〉ω̃,φ̃dVω̃ where dVω̃ :=

ω̃n

n!
. (3.11)

Let L2
ω̃,φ̃

(Ũ , T ∗,(0,q)Cn ⊗ L̃) be the completion of Ω
(0,q)
c (Ũ ) with respect to

(·|·)ω̃,φ̃. Similarly, we have another Hilbert space L2
ω(Ũ , T ∗,(0,q)Cn) with its
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inner product (·|·)ω̃ (cf. (2.3)). There is a unitary identification

L2
ω̃,φ̃

(Ũ , T ∗,(0,q)Cn ⊗ L̃) ∼= L2
ω̃(Ũ , T ∗,(0,q)Cn), η ⊗ s̃ ↔ ηe−φ̃. (3.12)

For any smooth (0, 1)-form η on Ũ , we can consider the wedge operator

η ∧ · : T ∗,(0,q)
p Ũ → T

∗,(0,q+1)
p Ũ . Moreover, for the positive Hermitian (1, 1)-

form ω̃, we let η∧∗
ω̃ · : T

∗,(0,q+1)
p Ũ → T

∗,(0,q)
p Ũ to be the adjoint of η∧· via the

pointwise inner product 〈·|·〉ω̃ . For η1, η2 ∈ T
∗,(0,1)
p Ũ , we have the identity

(η1∧∗
ω̃)η2 ∧ ·+ η2 ∧ (η1∧∗

ω̃)· = 〈η1|η2〉ω̃ · .
Let ∂̄

(q)

L̃
: Ω(0,q)(Ũ , L̃) → Ω(0,q+1)(Ũ , L̃) be the Cauchy-Riemann oper-

ator with values in L̃ and ∂̄
∗,(q+1)

L̃
: Ω(0,q+1)(Ũ , L̃) → Ω(0,q)(Ũ , L̃) be the

formal adjoint of ∂̄
(q)

L̃
with respect to (·|·)ω̃,φ̃. Under identification (3.12), it

is natural to define the localized Cauchy-Riemann operator ∂̄s̃ : Ω
(0,q)(Ũ) →

Ω(0,q+1)(Ũ ) such that ∂̄L̃(η ⊗ s̃) = eφ̃∂̄s̃(ηe
−φ̃)⊗ s̃. Denote by ∂̄(q) the stan-

dard Cauchy-Riemann operator on Ω(0,q)(Ũ ). Note that

∂̄
(q)
s̃ = e−φ̃∂̄(q)eφ̃. (3.13)

By direct computation, we have

∂̄
(q)
s̃ = ∂̄(q) + (∂̄φ̃) ∧ ·. (3.14)

Of course, we can also define ∂̄
∗,(q)
s̃ : Ω(0,q−1)(Ũ ) → Ω(0,q)(Ũ) satisfying

∂̄∗
L̃
(η⊗ s̃) = eφ̃ ∂̄∗

s̃ (ηe
−φ̃)⊗ s̃. Then ∂̄

∗,(q)
s̃ is the formal adjoint of ∂̄

(q−1)
s̃ with

respect to (·|·)ω̃. Next, define ∂̄
∗,(q)
ω̃ to be the formal adjoint of ∂̄(q−1) with

respect to (·|·)ω̃. Note that

∂̄
∗,(q)
s̃ = ∂̄

∗,(q)
ω̃ + (∂̄φ̃) ∧∗

ω̃ ·. (3.15)

Recall that �
(q)

L̃
:= ∂̄

∗,(q+1)

L̃
∂̄
(q)

L̃
+ ∂̄

(q−1)

L̃
∂̄
∗,(q)
L̃

is the Kodaira Lapla-

cian. We can define the localized Kodaira Laplacian �
(q)
s̃ := ∂̄

∗,(q+1)
s̃ ∂̄

(q)
s̃ +

∂̄
(q−1)
s̃ ∂̄

∗,(q)
s̃ that acts on Ω(0,q)(Ũ ). �

(q)

L̃
and �

(q)
s̃ are compatible under the

identification (3.12) in the sense that

�
(q)

L̃
(η ⊗ s̃) = eφ̃(�

(q)
s̃ ηe−φ̃)⊗ s̃. (3.16)

We can consider the Gaffney extansions of �
(q)

L̃
and �

(q)
s̃ which preserve
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the relation (3.16) and η ⊗ s̃ ∈ Dom�
(q)

L̃
⇐⇒ ηe−φ̃ ∈ Dom�

(q)
s̃ . Next, we

compute the localized Kodaira Laplacian using the settings above.

Lemma 3.1. The localized Kodaira Laplacian can be expressed as

�
(q)
s̃ = ∆ω̃+ ∂̄

(
(∂̄φ̃) ∧∗

ω̃ ·
)
+(∂̄φ̃)∧∗

ω̃ ∂̄+ ∂̄∗
ω̃

(
(∂̄φ̃) ∧ ·

)
+(∂̄φ̃)∧ ∂̄∗

ω̃+〈∂̄φ̃|∂̄φ̃〉·,
(3.17)

where ∆
(q)
ω̃ := ∂̄

∗,(q+1)
ω̃ ∂̄(q) + ∂̄(q−1)∂̄∗,(q) : Ω(0,q)(Ũ) → Ω(0,q)(Ũ ) is the Hodge

Laplacian with respect to ω̃. Furthermore, assume that ω̃n/n! = eϕ̃dm for

some function ϕ̃ and let θ denote the matrix of connection forms of ∇ on

T (q,0)Ũ with respect to the frame {dzI}I∈Jq,n . Then for f ∈ C∞(Ũ ) and

I ∈ Jq,n,

∂̄∗
ω̃fdz̄

I =

(
− ∂f

∂zi
− f

∂ϕ̃

∂zi

)
(dz̄i) ∧∗

ω̃ dz̄I − f (dz̄i∧∗
ω̃)θ

∗
∂/∂z̄idz̄

I . (3.18)

Proof. First, by (3.14) and 3.15),

�s̃ = ∂̄∗
s̃ ∂̄s̃ + ∂̄s̃∂̄

∗
s̃ =

(
∂̄∗
ω̃ + (∂̄φ̃) ∧∗

ω̃ ·
)(

∂̄ + (∂̄φ̃) ∧ ·
)

+
(
∂̄ + (∂̄φ̃) ∧ ·

)(
∂̄∗
ω̃ + (∂̄φ̃) ∧∗

ω̃ ·
)

=∆ω̃+∂̄
(
(∂̄φ̃) ∧∗

ω̃ ·
)
+
(
(∂̄φ̃)∧∗

ω̃

)
∂̄+∂̄∗

ω̃

(
(∂̄φ̃)∧·

)
+(∂̄φ̃)∧∂̄∗

ω̃+〈∂̄φ̃|∂̄φ̃〉 · .

Now, we compute ∂̄∗
ω̃fdz̄

I . By the locality of differential operator, we may

assume f ∈ C∞
c (Ũ). Let g ∈ C∞(Ũ) and J ∈ Jq−1,n then

(
∂̄∗
ω̃(f(z)dz̄

I)
∣∣g(z)dz̄J

)
ω̃
=
(
f(z)dz̄I

∣∣∂̄(g(z)dz̄J )
)
ω̃

=

∫

Ũ
f(z)

(
∂g(z)

∂z̄i

)
〈dz̄I |dz̄i ∧ dz̄J〉ω̃eϕ̃dm

=

∫

Ũ
(
∂ḡ

∂zi
(z))f(z) eϕ̃(z)〈dz̄I |dz̄i ∧ dz̄J 〉ω̃dm

=

∫

Ũ
−ḡ(z)

∂

∂zi

(
f(z) eϕ̃(z)〈dz̄I |dz̄i ∧ dz̄J〉ω̃

)
dm

=

∫

Ũ
−ḡ(z)

(
∂f

∂zi
(z) + f(z)

∂ϕ̃

∂zi
(z)

)
〈(dz̄i) ∧∗

ω̃ dz̄I |dz̄J 〉ω̃ eϕ̃(z)dm

−
∫

Ũ
ḡ(z)f(z)

(
∂

∂zi
〈dz̄I | dz̄i ∧ dz̄J〉ω̃

)
eϕ̃(z)dm.
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By direct computation,

∂

∂zi
〈dz̄I |(dz̄i) ∧ dz̄J〉ω̃ =

∂

∂z̄i
〈dzI |(dzi) ∧ dzJ 〉ω̃ = 〈dzI |∇∂/∂zi(dz

i) ∧ dzJ〉ω̃
= 〈(dzi∧∗

ω̃)θ
∗
∂/∂zi

dzI |dzJ 〉ω̃ = 〈(dz̄i∧∗
ω̃)θ

∗
∂/∂z̄idz̄

I |dz̄J 〉ω̃.

So, we can conclude that

∂̄∗
ω̃fdz̄

I =

(
− ∂f

∂zi
− f

∂ϕ̃

∂zi

)
(dz̄i) ∧∗

ω̃ dz̄I − f (dz̄i∧∗
ω̃)θ

∗
∂/∂z̄idz̄

I . ���

So far, we establish a framework for the localized Cauchy-Riemann op-

erator ∂̄s̃ and the localized Kodaira Laplacian �s̃. They depend only on the

local data ω̃ and φ̃ on Cn. Next, we are going to apply this framework to

the configuration in Section 3.1.

Recall the trivializing neighborhood B(1)⊂U⊂M taken in the previous

section. We insert Ũ = B(1) and s̃ = sk into the above framework. Denote

∂̄k,s := ∂̄sk as the localized Cauchy-Riemann operator. By (3.13), we have

∂̄k,s = e−kφ∂̄ekφ, which is an analogy of the Witten deformation of exterior

derivative on real manifolds (cf. [29]). Moreover, by (3.14) and (3.15),

∂̄k,s = ∂̄ + (∂̄kφ) ∧ ·; ∂̄∗
k,s = ∂̄∗

ω + (∂̄kφ) ∧∗
ω · .

Denote �
(q)
k,s := �

(q)

sk
to be the localized Kodaira Laplacian. The expression

of �
(q)
k,s is given in Lemma 3.1. On the other hand, we can consider the

scaled vector bundle T ∗,(0,q)Cn ⊗ L(k) → B(
√
k) and insert Ũ = B(

√
k) and

s̃ = s(k). Thus, ω̃ = ω(k) and φ̃ = φ(k). Denote ∂̄(k),s := ∂̄s(k) and compute

that

∂̄(k),s = ∂̄ + (∂̄φ(k)) ∧ ·; ∂̄∗
(k),s = ∂̄∗

ω(k)
+ (∂̄φ(k)) ∧∗

ω(k)
· .

Denote �
(q)
(k),s := �

(q)

s(k)
to be the scaled localized Kodaira Laplacian. The

relations between the two sets of operators established above are given by

(∂̄
(q)
(k),su)(

√
kz) =

1√
k
∂̄
(q)
k,s(u(

√
kz)); (∂̄

∗,(q)
(k),su)(

√
kz) =

1√
k
∂̄
∗,(q)
k,s (u(

√
kz))

(3.19)
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and hence
(
�

(q)
(k),su

)
(
√
kz) =

1

k
�

(q)
k,s(u(

√
kz)). (3.20)

Now, recall the Sobolev space Hs(Ũ , T ∗,(0,q)Cn) with its norm ‖·‖s(cf. (2.8)).
By the fact that ω(k) → ω0 and φ(k) → φ0 locally uniformly in C∞, we know

that the coefficients of �
(q)
(k) converge locally uniformly. Therefore, we can

apply Theorem 2.7 to obtain the following proposition.

Proposition 3.2 (k-uniform G̊arding inequalities). For any fixed radius

r ≥ 0 and integers m ∈ N, there is a constant C independent of k such that

‖u‖2m ≤ C
(
‖u‖0 + ‖(�(q)

(k))
mu‖0

)

for all u ∈ H2m(B(r), T ∗,(0,q)Cn) and k ≥ r2.

Remark 3.1. In fact, for any cut-off functions ρ ∈ C∞
c (B(r), [0, 1]), ρ̃ ∈

C∞
c (B(r), [0,∞)) with supp ρ ⊂⊂ supp ρ̃, there is a C > 0 such that

‖ρu‖2m ≤ C
(
‖ρ̃u‖0 + ‖ρ̃(�q

(k))
mu‖0

)
for all u ∈ Ω(0,q)(B(r)).

This property makes the G̊arding inequality applicable to sections without

compact support.

3.3. The uniform bounds

To begin with, we make some observations about compatibility of norms.

Note that there exist positive constants C1 and C2 such that

C1‖u‖ω0,B(1) ≤ ‖u‖ω,B(1) ≤ C2‖u‖ω0,B(1)

for all u ∈ Ω(0,q)(B(1)) since ω and ω0 are both positive bounded Hermitian

(1, 1)-forms on the precompact domain B(1). By scaling the metric, it follows

that

C1‖u‖ω0,B(
√
k) ≤ ‖u‖ω(k),B(

√
k) ≤ C2‖u‖ω0,B(

√
k) (3.21)

for all u ∈ Ω(0,q)(B(k)). Moreover, by the fact that ω(k) converges to ω0

locally uniformly, for any fixed radius r > 0 and positive number ε > 0,
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there exists k0 ∈ N such that

(1− ε)| (u | v)ω0,B(r) | ≤ | (u | v)ω(k),B(r) | ≤ (1 + ε)| (u | v)ω0,B(r) | (3.22)

for all u, v∈Ω
(0,q)
c (B(r)) and k ≥ k0. Now, we enter the core of this section.

Lemma 3.3. Given u ∈ Ω
(0,q)
c (B(

√
k)) for some k ∈ N, we have

‖P(q)
(k),ck ,s

u‖ω(k),B(
√
k) ≤ ‖u‖ω(k),B(

√
k).

Consequently, there exists a constant C independent of k such that the four

inequalities hold:

‖P(q)
(k),ck,s

u‖ω0 orω(k),B(
√
k) ≤ C‖u‖ω0 orω(k),B(

√
k),

for all u ∈ Ω
(0,q)
c (B(

√
k)) and k ∈ N. Moreover, for any radius r > 0 and a

number ε > 0, there exists k0 such that

‖P(q)
(k),ck,s

u‖ω(k),B(
√
k) ≤ (1 + ε)‖u‖ω0,B(r),

for all u ∈ Ω
(0,q)
c (B(r)) and k > k0.

Proof. Let u ∈ Ω
(0,q)
c (B(

√
k)). Inspired by identification (3.7), we define

uk(z) := kn/2u(
√
kz) ∈ Ω(0,q)

c (B(1))

which satisfies ‖uk‖ω = ‖u‖ω(k)
. Since B(1) ⊂ M , we can treat uk as an

element of Ω
(0,q)
c (M). By (3.8),

P(q)
(k),ck,s

u(z) = k−n/2P(q)
k,ck,s

uk(
√
kz).

This means P(q)
(k),ck,s

u corresponds to P(q)
k,ck,s

uk under the identification (3.7)

and hence

‖P(q)
(k),ck,s

u‖ω(k),B(
√
k) = ‖P(q)

k,ck,s
uk‖ω,B(1).

By the identification (3.1) and the definition of P(q)
k,ck

,

‖P(q)
k,ck,s

uk‖ω,B(1) = ‖P(q)
k,ck

(uke
kφ ⊗ sk)‖ω,kφ,B(1)
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≤‖P(q)
k,ck

(uke
kφ ⊗ sk)‖ω,kφ

≤‖ukekφsk‖ω,kφ = ‖uk‖ω.

Combine the above arguments and get

‖P(q)
(k),ck ,s

u‖ω(k),B(
√
k) ≤ ‖u‖ω(k),B(

√
k).

Finally, we apply (3.21) and (3.22) to complete the proof. ���

Observe that

dVω0 =
ωn
0

n!
= 2ndx1 ∧ · · · ∧ dx2n = 2ndm.

The volume form induced by ω0 coincides with the standard Lebesgue mea-

sure dm up to a constant 2n. Consequently, we know that the induced

L2-norms ‖ · ‖ω0 and ‖ · ‖dm (or ‖ · ‖0) are equivalent. Here, ‖ · ‖0 means the

Sobelov 0-norm which is exactly ‖ · ‖dm. We now verify an essential result

of this paper.

Theorem 3.4. (k-uniform smoothing property) Fix functions χ and ρ in

C∞
c (Cn) and real numbers s, t ∈ R. If lim supk→∞

ck
k < ∞, there exists a

constant C independent of k such that

‖χP(q)
(k),ck ,s

ρu‖s ≤ C‖u‖t

for all u ∈ Ht(B(r), T ∗,(0,q)Cn) and k ∈ N with suppχ ∪ suppρ ⊂ B(
√
k).

Proof. It is sufficient to show that for each m ∈ N,

χP(q)
(k),ck,s

ρ : H−2m(B(r), T ∗,(0,q)Cn) → H2m(B(2r), T ∗,(0,q)Cn) (3.23)

is a k-uniformly bounded linear map for all k with suppχ∪ suppρ ⊂ B(
√
k).

We may assume u ∈ Ω
(0,q)
c (Cn) by density argument. By Proposition

3.2 and Remark 3.1,

‖χP(q)
(k),ck,s

ρu‖2m . ‖χ̃P(q)
(k),ck,s

ρu‖0 + ‖χ̃(�(q)
(k),s)

mP(q)
(k),ck,s

ρu‖0
. ‖χ̃P(q)

(k),ck,s
ρu‖ω(k),B(

√
k) + ‖χ̃

(
�

(q)
(k),s

)m
P(q)
(k),ck,s

ρu‖ω(k),B(
√
k). (3.24)
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The second inequality is from (3.21). Define uk(z) := kn/2u(
√
kz), ρk(z) :=

ρ(
√
kz) and χ̃k(z) := χ̃(

√
kz). For large enough k with B(

√
k) ⊃ supp ρ, we

observe that ρkuk ∈ Ω
(0,q)
c (B(1)) ⊂ Ω

(0,q)
c (M) and ‖ρkuk‖ω,B(1)

= ‖ρu‖ω(k),B(
√
k). By Lemma 3.3,

‖χ̃P(q)
(k),ck,s

ρu‖ω(k),B(
√
k) . ‖u‖0. (3.25)

Next, from the relations (3.8) and (3.20), we can see

kn/2
(
�

(q)
(k),s

)m
P(q)
(k),ck,s

ρu(
√
kz) = k−m

(
�

(q)
k,s

)m
P(q)
k,ck,s

ρkuk(z).

By changing variable again, we compute that

‖
(
�

(q)
(k),s

)m
P(q)
(k),ck,s

ρu‖ω(k),B(
√
k) = ‖k−m

(
�

(q)
k,s

)m
P

(q)
k,ck,s

ρkuk‖ω,B(1).

(3.26)

Moreover, by the property of spectral projection, we estimate that

‖k−m
(
�

(q)
k,s

)m
P(q)
k,ck,s

ρkuk‖ω,B(1) ≤ ‖k−m
(
�

(q)
k

)m
P(q)
k,ck

ρke
kφuk ⊗ sk‖ω,kφ,M

≤ (
ck
k
)m‖ρkekφuk ⊗ sk‖ω,kφ,B(1)

= (
ck
k
)m‖ρkuk‖ω,B(1) . ‖u‖0. (3.27)

The last inequality is from the fact that lim supk→∞ ck/k < ∞. Combining

estimates (3.24)-(3.27), we have

‖χP(q)
(k),ck,s

ρu‖2m . ‖u‖0. (3.28)

Next, by the self-adjointness of spectral projection, for all v ∈ Ω
(0,q)
c (Cn),

(
χP(q)

(k),ck,s
ρu | v

)
ω(k)

=
(
χkP(q)

k,ck
ρke

kφuk ⊗ sk | ekφvk ⊗ sk
)
ω,kφ

=
(
ekφuk ⊗ sk | ρkP(q)

k,ck
χke

kφvk ⊗ sk
)
ω,kφ

=
(
u | ρP(q)

(k),ck,s
χv
)
ω(k)

where vk(z) := kn/2v(
√
kz) and χk(z) := χ(

√
kz). By Proposition 2.5 and
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(3.28),

|
(
u | ρP(q)

(k),ck,s
χv
)
0
| ≤ ‖u‖−2m‖ρP(q)

(k),ck,s
χv‖2m . ‖u‖−2m‖v‖0.

By the arguments above and (3.22), we have

‖χP (q)
(k),ck,s

ρu‖0 . ‖u‖−2m (3.29)

since v is arbitrary. By (3.24), it remains to show the following fact:

Claim. χ̃
(
�

(q)
(k),s

)m
P(q)
(k),ck,s

ρ : H−2m(Cn, T ∗,(0,q)Cn)→ L2
ω0
(Cn, T ∗,(0,q)Cn)

is a k-uniformly bounded map.

To prove the claim, we observe that χ̃kuk ∈ Ω
(0,q)
c (B(1)) ⊂ Ω

(0,q)
c (M)

for large enough k, and ‖χ̃kuk‖ω,B(1) = ‖χ̃u‖ω(k)
. By Proposition 3.2 and

(3.21),

‖ρP(q)
(k),ck,s

(�
(q)
(k),s)

mχ̃u‖2m .‖ρ̃P(q)
(k),ck,s

(�
(q)
(k),s)

mχ̃u‖ω(k)

+ ‖ρ̃(�(q)
(k),s)

mP(q)
(k),ck,s

(�
(q)
(k),s)

mχ̃u‖ω(k)
.

By rescaling, the first term on the right-hand side above is

k−m‖ρ̃kP(q)
k,ck,s

(�
(q)
k,s)

mχ̃kuk‖ω,B(1) where ρ̃k(z) := ρ̃(
√
kz). This can be dom-

inated by

k−m‖ρ̃kP(q)
k,ck

(�
(q)
k )mχ̃ke

kφuk⊗sk‖ω,kφ,M ≤ (
ck
k
)m‖χ̃ke

kφuk⊗sk‖ω,kφ . ‖u‖0

since lim supk→∞ ck/k < ∞. For the second term, by rescaling, we write

‖ρ̃(�(q)
(k),s)

mP(q)
(k),ck,s

(�
(q)
(k),s)

mχ̃u‖ω(k)

= k−2m‖ρ̃k(�(q)
k,s)

mP(q)
k,ck,s

(�
(q)
k,s)

mχ̃kuk‖ω,B(1)

which is smaller than

k−2m‖ρ̃k(�(q)
k )mP(q)

k,ck
(�

(q)
k )mχ̃ke

kφuk ⊗ sk‖ω,kφ,M
≤ (

ck
k
)2m‖χ̃ke

kφuk ⊗ sk‖ω,kφ . ‖u‖0.

Combining arguments above, we get

‖ρP(q)
(k),ck ,s

(�
(q)
(k),s)

mχ̃u‖2m . ‖u‖0. (3.30)
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By the self-adjointness of �
(q)
k and P(q)

k,ck
, for any test function v∈Ω

(0,q)
c (Cn),

(
χ̃(�

(q)
(k),s)

mP(q)
(k),ck,s

ρu | v
)
ω(k)

=
(
k−mχ̃k(�

(q)
k,s)

mP(q)
k,ck,s

ρkuk | vk
)
ω

=
(
uk | k−mρkP(q)

k,ck,s
(�

(q)
k,s)

mχ̃kvk

)
ω
=
(
u | ρP(q)

(k),ck,s
(�

(q)
(k),s)

mχ̃v
)
ω(k)

,

where vk(z) := kn/2v(
√
kz). Again, by Proposition 2.5 and (3.30), we have

∣∣∣
(
u | ρP(q)

(k),ck,s
(�

(q)
(k),s)

mχ̃v
)
0

∣∣∣ ≤‖u‖−2m‖ρP(q)
(k),ck,s

(�
(q)
(k),s)

mχ̃v‖2m
. ‖u‖−2m‖v‖0.

Hence, we obtain
(
χ̃(�

(q)
(k),s)

mP(q)
(k),ck,s

ρu | v
)
ω(k)

. ‖u‖−2m‖v‖0 by combin-

ing above arguments. This completes the proof of the claim since v is arbi-

trary. Finally, by estimates (3.24), (3.29) and the claim,

‖χP(q)
(k),ck,s

ρu‖2m .‖χ̃P(q)
(k),ck,s

ρv‖ω(k),B(
√
k)

+ ‖χ̃
(
�

(q)
(k),s

)m
P(q)
(k),ck,s

ρv‖ω(k),B(
√
k) . ‖u‖−2m

for all u ∈ Ω
(0,q)
c (Cn). The theorem follows. ���

With the preliminary work out of the way, we can now address the local

uniform bound of P
(q)
(k),ck,s

(z, w). To do so, we represent P
(q)
(k),ck,s

(z, w) as the

form

P
(q)
(k),ck,s

(z, w) =
∑

I,J∈Jq,n

P
(q),I,J
(k),ck,s

(z, w)dz̄I ⊗ (
∂

∂w̄
)J ,

where P
(q),I,J
(k),ck,s

(z, w) ∈ C∞(B(
√
k)×B(

√
k)). Also, we define the Cd-norm of

P
(q)
(k),ck,s

(z, w) on the bounded domain B(r)×B(r) as

‖P (q)
(k),ck,s

(z, w)‖2Cd(B(r)×B(r)) := sup
x,y∈B(r)

∑

I,J∈Jq,n

∑

|α|+|β|≤d

(
|∂α

x ∂
β
yP

(q),I,J
(k),ck,s

(x, y)|2
)

where the variables x, y represent the real coordinates of Cn ≃ R2n. For

a K(z, w) ∈ C∞(Cn × Cn, T ∗,(0,q)Cn ⊠ T ∗,(0,q)Cn), we say P
(q)
(k),ck,s

(z, w) →
K(z, w) as k → ∞ locally uniformly in C∞ if

‖P (q)
(k),ck ,s

(z, w) −K(z, w)‖Cd(B(r)×B(r)) → 0
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as k → ∞ for all d ∈ N and r > 0.

Theorem 3.5 (The local uniform bounds for scaled spectral and Bergman

kernels). Suppose ck is a non-negative sequence such that

lim sup
k→∞

ck
k

< ∞.

Fix a radius r > 0. For any multi-indices α, β ∈ N2n
0 and I, J ∈ Jq,n, there

exists a constant C independent of k such that

sup
B(r)×B(r)

|∂α
x ∂

β
yP

(q),I,J
(k),ck,s

(x, y)| < C.

Proof. We start from the approximation of identity. For any fixed point

y0 ∈ B(r), we set fl as an approximation of identity with its mass con-

centrated at y0 as l → ∞. For example, let fl = lnf(
√
l(y − y0)) where

f ∈ C∞
c (B(r); [0,∞)) and

∫
B(r) fdm = 1. By the property of approximation

of identity, it is sufficient to establish the following estimate:

sup
x∈B(r),k>r2,

l∈N

|
∫

B(r)
∂α
x ∂

β
yP

(q),I,J
(k),ck,s

(x, y)fl(y)dm(y)| < C.

We hope the C is independent of u and the point y0 ∈ B(r) chosen above.

By integration by part, we just need to find an upper bound of

sup
x∈B(r),k>r2,

l∈N

|∂α
x

∫

B(r)
P

(q),I,J
(k),ck,s

(x, y)∂β
y fl(y)dm(y)|.

Choose χ ∈ C∞
c (B(2r)) so that χ ≡ 1 on B(r). Observe that

sup
x∈B(r),k>r2,

l∈N

|∂α
x

∫

B(r)
P

(q),I,J
(k),ck,s

(x, y)(∂β
y fl(y))dm(y)|

≤ sup
k>r2,l∈N

‖P(q)
(k),ck,s

(
(∂βfl)dz̄

J
)
‖C|α|(B(r))

≤ sup
k>r2,l∈N

‖χP(q)
(k),ck,s

(
(∂βfl)dz̄

J
)
‖C|α|(B(2r)),

where the norm ‖ · ‖C|α|(B(2r)) we adopted is defined in (2.10). By Sobolev
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inequality, for any integer m with 2m ≥ |α| + n, we have

‖χP(q)
(k),ck,s

(
(∂βfl)dz̄

J
)
‖C|α|(B(2r)) . ‖χP(q)

(k),ck,s

(
(∂βfl)dz̄

J
)
‖2m.

Note that |f̂l(ξ)| . |
∫
R2n e

−
√
−1x·ξfl(x)dx| . O(1) and hence |(̂∂βfl)| .

|ξ||β||f̂l| . |ξ||β|. This implies that for large enough m ∈ N,

‖(∂βfl)dz̄
J‖−2m . O(1).

After combining this fact with Theorem 3.4, we know that for large enough

m ∈ N,

‖χP(q)
(k),ck ,s

(∂βfl)dz̄
J‖2m . ‖χP(q)

(k),ck,s
ρ(∂βfl)dz̄

J‖2m
. ‖(∂βfl)dz̄

J‖−2m . O(1),

where ρ is a bump function which has value 1 around the point y0. We have

completed the proof. ���

We end this section with the following extremely important corollary,

which is an immediate consequence of the Arzelà-Ascoli theorem and Theo-

rem 3.5.

Corollary 3.6. If ck is a non-negative sequence such that

lim sup
k→∞

ck
k

< ∞,

then any subsequence of the scaled localized spectral kernel P
(q)
(k),ck,s

(z, w) (or

Bergman kernel B
(q)
(k),s(z, w) in the case ck = 0) has a C∞ locally uniformly

convergent subsequence in Cn.

By the identity (3.9), we have the same results for P
(q),s
(k),ck

(z, w) and

B
(q),s
(k) (z, w).

4. Asymptotics of Spectral and Bergman Kernels

Recall the Corollary 3.6. We have established that P
(q)
(k),ck,s

(z, w) (or

P
(q),s
(k),ck

(z, w)) is a sequence such that every subsequence has a C∞ uniformly
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convergent subsequence. To show that P
(q)
(k),ck,s

(z, w) (or P
(q),s
(k),ck

(z, w)) is it-

self a uniformly convergent sequence in C∞, it suffices to demonstrate that

every convergent subsequence of P
(q)
(k),ck,s

(z, w) converges to the same limit.

Therefore, without loss of generality, we may assume that P
(q)
(k),ck,s

(z, w) is a

C∞ uniformly convergent sequence, and our goal is to prove that the limit

must be the Bergman kernel in a model case which will be thoroughly in-

vestigated in Section 4.1. From now on, we make the following assumption

throughout this chapter.

Assumption 4.1. The scaled localized spectral kernel P
(q)
(k),ck,s

(z, w) con-

verges to B
(q)
s (z, w) locally uniformly in C∞ on Cn, where B

(q)
s (z, w) ∈

C∞(Cn × Cn, T ∗,(0,q)Cn ⊠ T ∗,(0,q)Cn). Equivalently, the scaled spectral ker-

nel P
(q),s
(k),ck

(z, w) converges to B(q),s(z, w) := eφ0(z)B
(q)
s (z, w)e−φ0(w) locally

uniformly in C∞.

To maintain the validity of Corollary 3.6, we must specify a non-negative

sequence ck such that lim supk→∞
ck
k < ∞. However, we will require a

stronger condition that lim supk→∞
ck
k = 0. We will see the reason in Lemma

4.4. Clearly, the scaled localized Bergman kernels B
(q)
(k),s(z, w) can be treated

as a spacial case of localized spectral kernels when ck = 0 and they satisfy

the above condition. Before investigating the properties of B
(q)
s (z, w), we

study the space of sections in the model case on Cn.

4.1. The model case

We now consider the trivial vector bundle T ∗,(0,q)Cn⊗C → Cn which is

equipped with a pointwise Hermitian structure induced by the weight func-

tion φ0 =
∑n

i=1 λi|zi|2 on the trivial line bundle C → Cn and the standard

Hermitian form ω0 =
√
−1
∑n

i=1 dz
i ∧ dz̄i on T ∗,(0,q)Cn → Cn(cf. (3.10)).

We can define the Hilbert space L2
ω0,φ0

(Cn, T ∗,(0,q)Cn) with an inner

product (·|·)ω0,φ0
(cf. (2.5)) and another space L2

ω0
(Cn, T ∗,(0,q)Cn) with (·|·)ω0

as its inner product (cf. (2.3)). There is an unitary identification

L2
ω0,φ0

(Cn, T ∗,(0,q)Cn ⊗ C) ∼= L2
ω0
(Cn, T ∗,(0,q)Cn) by η ↔ ηe−φ0 .

Let ∂̄
(q)
0 : Ω(0,q)(Cn,C) → Ω(0,q+1)(Cn,C) and ∂̄

∗,(q+1)
0 : Ω(0,q+1)(Cn,C) →

Ω(0,q)(Cn,C) be the Cauchy-Riemann operator and its formal adjoint with
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respect to (·|·)ω0,φ0 , respectively. Then

�
(q)
0 := ∂̄

∗,(q+1)
0 ∂̄

(q)
0 + ∂̄

(q−1)
0 ∂̄

∗,(q)
0 : Dom�

(q)
0 → L2

ω0,φ0
(Cn, T ∗,(0,q)Cn ⊗ C)

is the Gaffney extension of the Kodaira Laplacian with respect to the Hermi-

tian structure. As in (3.14) and (3.15), we can define the localized Cauchy-

Riemann operator ∂̄0,s and its formal adjoint ∂̄∗
0,s with respect to (·|·)ω0 which

are given by

∂̄
(q)
0,s = ∂̄(q) + (∂̄φ0) ∧ ·; ∂̄

∗,(q)
0,s = ∂̄∗,(q)

ω0
+ (∂̄φ0)∧∗

ω0
,

respectively. The localized Kodaira Laplacian is

�
(q)
0,s := ∂̄

∗,(q+1)
0,s ∂̄

(q)
0,s + ∂̄

(q−1)
0,s ∂̄

∗,(q)
0,s : Dom�

(q)
0,s → L2

ω0
(Cn, T ∗,(0,q)Cn)

which satisfies �
(q)
0 (η ⊗ 1) = eφ0�

(q)
0,s(ηe

−φ0)⊗ 1. Next, we denote

B(q)
0 : L2

ω0,φ0
(Cn, T ∗,(0,q)Cn ⊗ C) → Ker�

(q)
0 ⊂ L2

ω0,φ0
(Cn, T ∗,(0,q)Cn ⊗ C)

to be the Bergman projection and

B(q)
0,s : L

2
ω0
(Cn, T ∗,(0,q)Cn) → Ker�

(q)
0,s ⊂ L2

ω0
(Cn, T ∗,(0,q)Cn)

to be the localized Bergman projection satisfying B(q)
0 (η⊗1)=eφ0B(q)

0,s(ηe
−φ0)

⊗1. Furthermore, denote by B
(q)
0 (z, w) the Bergman kernel and B

(q)
0,s(z, w)

the localized Bergman kernel which are Schwartz kernels of B(q)
0 and B(q)

0,s , re-

spectively. Our main goal of this section is to compute the localized Bergman

kernel B
(q)
0,s(z, w). Proposition 4.1 below tells us that �

(q)
0,s is diagonal with

respect to the basis {dz̄I}I∈Jq,n .

Proposition 4.1. For f ∈ C∞(Cn,C) and I ∈ Jq,n,

�
(q)
0,sfdz̄

I =

n∑

i=1

(
− ∂2f

∂z̄i∂zi
+

∂φ0

∂zi
∂f

∂z̄i
− ∂φ0

∂z̄i
∂f

∂zi

)
dz̄I

+

(∑

i∈I
λi −

∑

i/∈I
λi + |∂̄φ0|2ω0

)
fdz̄I .
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Proof. Since the metric ω0 is flat, the Hodge Laplacian ∆ω0u of u := fdz̄I is

(
∂̄∗
ω0
∂̄ + ∂̄∂̄∗

ω0

)
u = −

∑

i

∂2f

∂z̄i∂zi
dz̄I .

We compute the remaining terms of equation (3.17) in Lemma 3.1.

∂̄
(
(∂̄φ0) ∧∗

ω0
u
)
+ (∂̄φ0) ∧∗

ω0
∂̄u

=∂̄

(∑

i

∂φ0

∂zi
fdz̄i ∧∗

ω0
dz̄I

)
+ (∂̄φ0) ∧∗

ω0

∑

j

∂f

∂z̄j
dz̄j ∧ dz̄I

=
∑

i,j

(
∂2φ0

∂z̄j∂zi
f+

∂φ0

∂zi
∂f

∂z̄j

)
dz̄j∧(dz̄i∧∗

ω0
)dz̄I+

∑

i,j

∂φ0

∂zi
∂f

∂z̄j
(dz̄i∧∗

ω0
)dz̄j∧dz̄I

=
∑

i∈I
λifdz̄

I +
∑

i

∂φ0

∂zi
∂f

∂z̄i
dz̄I .

On the other hand,

∂̄∗
ω0

(
(∂̄φ0) ∧ u

)
+ (∂̄φ0) ∧ ∂̄∗

ω0
u

= ∂̄∗
ω0

(∑

j

∂φ0

∂z̄j
fdz̄j ∧ dz̄I

)
+ (∂̄φ0) ∧

∑

i

− ∂f

∂zi
dz̄i ∧∗

ω0
dz̄I

= −
∑

i/∈I
λifdz̄

I −
∑

i

∂φ0

∂z̄i
∂f

∂zi
dz̄I .

Applying Lemma 3.1, we have

�
(q)
0,sfdz̄

I =
∑

i

(
− ∂2f

∂z̄i∂zi
+

∂φ0

∂zi
∂f

∂z̄i
− ∂φ0

∂z̄i
∂f

∂zi

)
dz̄I

+
(∑

i∈I
λi −

∑

i/∈I
λi + |∂̄φ0|2ω0

)
fdz̄I . ���

We now try to find the complete orthonormal system of the space

Ker�
(q)
0,s. By Proposition 4.1, to consider the equation �

(q)
0,su = 0, we can

assume u is of the form

u(z) := fI(z)dz̄
I where dz̄I := dz̄1 ∧ · · · ∧ dz̄q.

That is, we fix the multi-index I := (1, . . . , q) ∈ Jq,n and let fI ∈ L2
dm(Cn)∩
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C∞(Cn). Note that �
(q)
0,su = 0 if and only if ∂̄

(q)
0,su = 0 and ∂̄

∗,(q)
0,s u = 0 which

are equivalent to

∂fI
∂zi

− λiz̄
ifI = 0 ∀ i ∈ I and

∂fI
∂z̄i

+ λiz
ifI = 0 ∀ i /∈ I.

Thus, �
(q)
0,su = 0 if and only if

FI(z) := fI(z̄1, . . . , z̄q, z
q+1, . . . , zn)e−

∑q
i=1 λi|zi|2+

∑n
i=q+1 λi|zi|2

is a holomorphic function on Cn. If we write FI(z) as the form FI(z) =
∑

α∈Nn
0
aαz

α for some coefficients aα ∈ C, then

fI(z̄1, . . . , z̄q, z
q+1, . . . , zn) =

∑

α∈Nn
0

aαz
αe

∑q
i=1 λi|zi|2−

∑n
i=q+1 λi|zi|2 .

We can apply Fubini’s theorem and introduce polar coordinates by setting

zi = rie
√
−1θi to compute that for all α,α′ ∈ Nn

0 ,

(
zαe

∑q
i=1 λi|zi|2−

∑n
i=q+1 λi|zi|2 | zα′

e
∑q

i=1 λi|zi|2−
∑n

i=q+1 λi|zi|2
)
ω0

=2n
∫

Cn

zαz̄α
′
e2(

∑q
i=1 λi|zi|2−

∑n
i=q+1 λi|zi|2)dm

=2n

(
n∏

i=1

∫ 2π

0
e
√
−1(αi−α′

i)θidθi

)(
q∏

i=1

∫ ∞

0
r
αi+α′

i+1
i e2λir

2
i dri

)

×
(

n∏

i=q+1

∫ ∞

0
r
αi+α′

i+1
i e−2λir2i dri

)
,

which is zero if α 6= α′. By the Parseval’s identity, we can compute that:

‖u‖2ω0
= 2n

∫

Cn

|fI |2dm = 2n
∑

α∈Nn
0

|aα|2
∫

Cn

|zα|2e2(
∑q

i=1 λi|zi|2−
∑n

i=q+1 λi|zi|2)dm

= 2n(2π)n
∑

α∈Nn
0

|aα|2
(

q∏

i=1

∫ ∞

0
r2αi+1
i e2λir

2
i dri ·

n∏

i=q+1

∫ ∞

0
r2αi+1
i e−2λir

2
i dri

)
.

By the assumption that ‖u‖2ω0
is a finite number, we can conclude that if

u is not identically zero, then λi < 0 for all i ∈ {1, . . . , q} and λi > 0 for

all i ∈ {q + 1, . . . , n}. As a result, there exist nontrivial solutions of the
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equation �
(q)
0,su = 0 in L2

ω0
(Cn, T ∗,(0,q)Cn) only when p ∈ M(q). In other

words, if p /∈ M(q), then

Ker�
(q)
0,s = {0} and B

(q)
0,s(z, w) ≡ 0.

Now, we focus on case p ∈ M(q). Suppose λi < 0 for all i ∈ {1, . . . , q} and

λi > 0 for all i ∈ {q + 1, . . . , n}. For brevity, we set

zαq := (z̄1)α1 · · · (z̄q)αq (zq+1)αq+1 · · · (zn)αn ; I := (1, . . . , q) ∈ Jq,n.

Observe that fIdz̄
I is an element in Ker�

(q)
0,s if and only if fI is in the set

{F̃I(z̄1, . . . , z̄q, z
q+1, . . . , zn)e−

∑n
i=1 |λi||zi|2 ; F̃I is a holomorphic

function on Cn}.

Therefore, we can see that the orthogonal basis of Ker�
(q)
0,s is given by

{zαq e−
∑n

i=1 |λi||zi|2dz̄I}α∈Nn
0
.

Next, we denote

[λ] := (|λ1|, . . . , |λn|) ∈ Rn.

We now compute the length of the orthogonal basis to normalize them. By

Fubini’s theorem and changing the variables by letting zi = rie
√
−1θi and

ui = 2|λi|r2i ,

‖zαq e−
∑n

i=1 |λi||zi|2dz̄I‖2ω0

= 2n
∫

Cn

n∏

i=1

|zi|2αie−2
∑n

i=1 |λi||zi|2dm = 2n
n∏

i=1

(2π)

∫ ∞

0
r2αi+1
i e−2|λi|r2i dri

= 2n
n∏

i=1

π

(2|λi|)αi+1

∫ ∞

0
uαi
i e−uidui = 2n

n∏

i=1

π Γ(αi + 1)

(2|λi|)αi+1

= 2n
n∏

i=1

παi!

(2|λi|)αi+1
=

πnα!

2|α|[λ]α+1
.

Consequently,

{Ψα :=

√
2|α|[λ]α+1

πnα!
zαq e

−∑n
i=1 |λi||zi|2dz̄I}α∈Nn

0
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is the orthonormal basis of Ker�
(q)
0,s and

B
(q)
0,s(z, w) =

∑

α∈Nn
0

Ψα(z) ⊗Ψ∗
α(w)

=
∑

α∈Nn
0

2|α|[λ]α+1

πnα!
zαq w

α
q e

−
∑n

i=1 |λi|(|zi|2+|wi|2)dz̄I ⊗ (
∂

∂w̄
)I

=
|λ1 · · · λn|

πn

∑

|α|∈Nn
0

(
2|α|

α!
[λ]αzαq w̄

α
q

)
e−

∑n
i=1 |λi|(|zi|2+|wi|2)dz̄I ⊗ (

∂

∂w̄
)I

=
|λ1 · · · λn|

πn
e2(

∑q
i=1 |λi|z̄iwi+

∑n
i=q+1 |λi|ziw̄i)−

∑n
i=1 |λi|(|zi|2+|wi|2)dz̄I ⊗ (

∂

∂w̄
)I .

We summarize the results in the following theorem.

Theorem 4.2 (Bergman kernel for the model case). Consider the trivial

vector bundle T ∗,(0,q)Cn ⊗ C → Cn endowed with the standard Hermitian

form ω0 and the weight function φ0 . In the case p ∈ M(q), we assume

λi < 0 for all i ≤ q and λi > 0 for all i > q. The localized Bergman Kernel

B
(q)
0,s(z, w) for (0, q)-forms is given by

|λ1 · · ·λn|
πn

e2(
∑q

i=1 |λi|z̄iwi+
∑n

i=q+1 |λi|ziw̄i)−
∑n

i=1 |λi|(|zi|2+|wi|2)(dz̄1 ∧ · · · ∧ dz̄q)

⊗(
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
).

Furthermore,

{Ψα :=

√
2|α|[λ]α+1

πnα!
zαq e

−
∑n

i=1 |λi||zi|2dz̄1 ∧ · · · ∧ dz̄q}α∈Nn
0

is the orthonormal basis of Ker�
(q)
0,s ⊂ L2

ω0
(Cn, T ∗,(0,q)Cn). However, if p /∈

M(q), then

Ker�
(q)
0,s = {0} and hence B

(q)
0,s(z, w) ≡ 0.

4.2. Mapping properties of the approximated integral operator

Returning to Assumption 4.1, the kernel section B
(q)
s (z, w) is unknown

to us so far. Our objective is to demonstrate that it must be precisely the

Bergman kernel B
(q)
0,s(z, w) in a model case established above. We embark on
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the proof by the following definition and lemma which helps us to translate

B
(q)
s (z, w) from an unknown kernel section to an operator on the Hilbert

space L2
ω0
(Cn, T ∗,(0,q)Cn).

Definition 4.1. Define the approximated integral operator as

B(q)
s u(z) :=

∫

Cn

B(q)
s (z, w)u(w)dm(w) for all u ∈ L2

ω0
(Cn, T ∗,(0,q)Cn).

Lemma 4.3 (Well-definition of the integral operator). For any u ∈ L2
ω0
(Cn,

T ∗,(0,q)Cn), the integral B(q)
s u(z) converges for almost every z ∈ Cn. Fur-

thermore, the integral operator

B(q)
s : L2

ω0
(Cn, T ∗,(0,q)Cn) → L2

ω0
(Cn, T ∗,(0,q)Cn)

is a bounded linear map with its operator norm smaller than 1.

Proof. Let u, v ∈ Ω
(0,q)
c (Cn) and observe that

(
v | B(q)

s u
)
ω0

=

∫

supp v

∫

suppu
〈v(z)|B(q)

s (z, w)u(w)〉ω02
2ndm(w)dm(z).

Let ε > 0. By (3.22) and the fact that ω(k) → ω0 and P
(q)
(k),ck,s

(z, w) →
B

(q)
s (z, w) uniformly on supp v×suppu, the above integral can be dominated

as

∣∣∣
(
v | B(q)

s u
)
ω0

∣∣∣ ≤ (1 + ε)
∣∣∣
(
v | P(q)

(k),ck,s
u
)
ω0

∣∣∣

≤ (1 + ε)2
∣∣∣
(
v | P(q)

(k),ck,s
u
)
ω(k)

∣∣∣ ≤ (1 + ε)2‖v‖ω(k)
‖P(q)

(k),ck ,s
u‖ω(k)

for large enough k. We apply (3.22) and Lemma 3.3 to obtain

‖v‖ω(k)
‖P(q)

(k),ck
u‖ω(k)

≤ (1 + ε)2‖v‖ω0‖u‖ω0 for large enough k.

Since ε>0 is arbitrary, the estimates above mean |
(
v |B(q)

s u
)
ω0

|≤‖v‖ω0‖u‖ω0

which implies ‖B(q)
s u‖ω0 ≤ ‖u‖ω0 because the test function v is arbitrary.

We have completed the proof by density argument. ���

Now, we state the key theorem of this section.
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Theorem 4.4. If lim supk→∞ ck/k = 0, then B(q)
s is a bounded linear map

B(q)
s : L2

ω0
(Cn, T ∗,(0,q)Cn) → Ker�

(q)
0,s

with its operator norm smaller than 1.

Proof. By Lemma 4.3, it remains to show: Claim. If lim supk→∞ ck/k = 0,

then �
(q)
0,sB

(q)
s u = 0 for all u ∈ L2

ω0
(Cn, T ∗,(0,q)Cn)

We may assume u ∈ Ω
(0,q)
c (Cn) by density argument. Fix ρ ∈ C∞

c (Cn)

to be a cut-off function. By assumption P
(q)
(k),ck,s

→ B
(q)
s locally uniformly in

C∞,

‖ρ�(q)
0,sB(q)

s u‖ω0 . ‖ρ�(q)
0,sP

(q)
(k),ck,s

u‖ω0 .

Recall Lemma 3.1 and the fact that ω(k) → ω0 and φ(k) → φ0 locally uni-

formly in C∞. We can immediately conclude that the coefficients of �
(q)
(k),s

converge to those of �
(q)
0,s locally uniformly on Cn. By this fact,

‖ρ�(q)
0,sP

(q)
(k),ck,s

u‖ω0 . ‖ρ�(q)
(k),sP

(q)
(k),ck,s

u‖ω0

. ‖ρ�(q)
(k),sP

(q)
(k),ck,s

u‖ω(k),B(
√
k) ≤ ‖�(q)

(k),sP
(q)
(k),ck,s

u‖ω0,B(
√
k),

where the second inequality is from (3.21). By the relations (3.8) and (3.20),

�
(q)
(k),sP

(q)
(k),ck,s

u(
√
kz) = k−1�

(q)
k,sP

(q)
k,ck,s

(
u(
√
kz)
)
.

By changing the variable,

‖�(q)
(k),sP

(q)
(k),ck,s

u‖ω(k),B(
√
k) = k−1‖kn/2�(q)

k,sP
(q)
k,ck,s

(
u(
√
kz)
)
‖ω,B(1).

Define uk := kn/2u(
√
kz) which is a section supported in U ⊂ M for large

enough k. Furthermore, by changing the variable, observe that ‖uk‖ω =

‖u‖ω(k)
and hence

‖�(q)
(k),sP

(q)
(k),ck,s

u‖ω(k),B(
√
k) = k−1‖�(q)

k,sP
(q)
k,ck,s

uk‖ω,B(1) ≤
ck
k
‖uk‖ω

=
ck
k
‖u‖ω(k)

.
ck
k
‖u‖ω0 .
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Then we apply the assumption lim supk→∞
ck
k = 0 to conclude that

‖ρ�(q)
0,sB

(q)
s u‖ω0 = 0. Since ρ is arbitrary, we have �

(q)
0,sB

(q)
s u ≡ 0. ���

Next, our main objective is to demonstrate that B(q)
s :L2

ω0
(Cn, T ∗,(0,q)Cn)

→ Ker�
(q)
0,s is an orthogonal projection. By Theorem 4.4, it remains to show

the following statement (cf. [30, theorem 3.1 in section 3.1]):

Statement 4.1. B(q)
s u = u for all u ∈ Ker�

(q)
0,s.

Remark 4.1. If the statement holds, we are able to complete the proof of

the main theorems as follows.

Under Assumption 4.1, by Theorem 4.4 and Statement 4.1, we know

that the operator B(q)
s defined in Def.4.1 must be the Bergman projection

B(q)
0,s in the model case. By the uniqueness of the Schwartz kernel, we have

B
(q)
s (z, w) ≡ B

(q)
0,s(z, w).

According to Corollary 3.6, we know that each subsequence of

P
(q),s
(k),ck

(z, w) has a subsequence that converges locally uniformly to

B
(q),s
0 (z, w) = eφ0(z)B

(q)
0,s(z, w)e

−φ0(w) in C∞. This means that P
(q),s
(k),ck

(z, w)

converges to B
(q),s
0 (z, w) locally uniformly in C∞. Finally, by applying The-

orem 4.2 and the relation (3.9), we complete the proof of the main theorem.

In the case p /∈ M(q), Theorem 4.2 tells us that Ker�
(q)
0,s = {0} and

therefore B(q)
s is a zero map. As a consequence, Statement 4.1 automatically

holds, and hence we have the main theorem for the case p /∈ M(q).

Theorem 4.5 (main theorem for p /∈ M(q)). If p /∈ M(q) and

lim supk→∞
ck
k = 0, then the scaled localized spectral (or Bergman if ck = 0)

kernel P
(q)
(k),ck,s

(z, w) → 0 locally uniformly in C∞ on Cn. Also, by (3.9),

P
(q),s
(k),ck

(z, w) → 0 locally uniformly in C∞ on Cn.

In the remaining sections, we pay full attention to proving Statement

4.1 in case p ∈ M(q).

4.3. Asymptotic of the function case

The discussion in Sections 4.1 and 4.2 is mainly in the context of local-

ized spectral and Bergman kernels with localized Kodaira Laplacian. In this
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section, we would like to stay in the context of P
(q),s
(k),ck

and B
(q),s
(k) defined in

Def. 1.4 rather than the localized kernels. First, we establish some nota-

tions. Define P(q)
(k),ck

: L2
ω(k),φ(k)

(B(
√
k), T ∗,(0,q)Cn⊗L(k))→ L2

ω(k),φ(k)
(B(

√
k),

T ∗,(0,q)Cn ⊗ L(k)) by

(
P(q)
(k),ck

u
)
(
√
kz) = P(q)

k,ck

(
u(
√
kw)

)
.

Denote B(q)
(k)

:= P(q)
(k),0

. Then, for η ⊗ s(k) ∈ Ω
(0,q)
c (B(

√
k), L(k)), we have

P(q)
(k),ck

(η ⊗ s(k))(z) =

∫

B(
√
k)
P

(q),s
(k),ck

(z, w)η(w)dVω(k)
⊗ s(k).

We now treat s(k) as the trivial section 1 of the trivial vector bundle C →
Cn restricted on B(

√
k) and define P(q),s

(k),ck
: L2

ω(k),φ(k)
(B(

√
k), T ∗,(0,q)Cn) →

L2
ω(k),φ(k)

(B(
√
k), T ∗,(0,q)Cn) by

P(q),s
(k),ck

u :=

∫

B(
√
k)
P

(q),s
(k),ck

(z, w)u(w)dVω(k)
.

For the case ck = 0, denote B(q),s
(k) := P(q),s

(k),0. Recall that Assumption 4.1

means P
(q),s
(k),ck

(z, w)→B(q),s(z, w) :=eφ0(z)B
(q)
s (z, w)e−φ0(w) locally uniformly

in C∞. Next, define B(q),s : L2
ω0,φ0

(Cn, T ∗,(0,q)Cn) → L2
ω0,φ0

(Cn, T ∗,(0,q)Cn)

by

B(q),su(z) :=

∫

Cn

B(q),s(z, w)u(w)dVω0 .

By Theorem 4.3, we have B(q),s :L2
ω0,φ0

(Cn, T ∗,(0,q)Cn)→Ker�
(q)
0 is bounded

with its operator norm smaller than 1. Moreover, Statement 4.1 is equivalent

to following statement:

Statement 4.2.

B(q),su = u for all u ∈ Ker�
(q)
0 , (4.1)

In this section, we focus on the case q = 0, p ∈ M(0) and prove the

Statement 4.2. Note that λi > 0 for all i = 1, . . . , n under the assumption
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p ∈ M(0). We impose the conditions that lim supk→∞
ck
k = 0 and

∃c < 1 such that lim inf e2cmin λik
1/2

ck > 0.

Let χ ∈ C∞
c (B(1), [0, 1]) be a cut-off function such that χ |B(

√
c′)≡ 1 where

c′ is a number with c < c′ < 1. Define

χk := χ(
z

k1/4
).

We now embark on the proof of Statement 4.2. Given u ∈ Ker�
(0)
0 , our

strategy is to construct a sequence u(k) converging to u such that

P(0),s
(k),ck

u(k) − u(k) → 0 and P(0),s
(k),su(k) − B(0),s

s u → 0.

Define

u(k) := χku

which is clearly satisfies that ‖u(k) − u‖ω0,φ0 → 0. By Theorem 4.2, we can

see that

Ker�
(0)
0 = span{zα}α∈Nn

0
.

It is enough to check Statement 4.2 holds for the basis {zα}α∈Nn
0
and hence we

assume that u is of the form zα. Now, we are going to show that P(0),s
(k),ck

u(k)−
u(k) → 0.

Theorem 4.6. If u = zα for some α ∈ Nn
0 , we have

‖(P(0),s
(k),ck

u(k)−u(k))‖ω(k),φ(k),B(
√
k) :=‖(P(0),s

(k),ck
u(k)−u(k))e

−φ(k)‖ω(k),B(
√
k)→0.

As for the case ck = 0 for all k, it also holds under the spectral gap condition

2 (Def. 1.3).

Proof. Define uk(z) := kn/2u(k)(
√
kz). Observe that uk ∈ C∞

c (B(1)) ⊂
C∞
c (M). By rescaling, we see

‖(P(0),s
(k),ck

u(k) − u(k))e
−φ(k)‖ω(k),B(

√
k) ≤ ‖P(0)

k,ck
(uk ⊗ sk)− uk ⊗ sk‖ω,kφ.
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By the property of spectral kernel, we have

‖P(0)
k,ck

(uk ⊗ sk)− uk ⊗ sk‖2ω,kφ ≤ 1

ck

(
�

(0)
k uk ⊗ sk|uk ⊗ sk

)
ω,kφ

=
1

ck
‖(∂̄uk)⊗ sk‖2ω,kφ =

k

ck
‖(∂̄u(k))e−φ(k)‖2ω(k)

.

Recalling the setting that φ(z) = φ0(z) +O(|z|4), we get

|eφ0(z)−φ(k)(z) − 1| . |φ0(z)− φ(k)(z)| .
|z|4
k

for all |z| ≤ k1/4.

Because suppχk ⊂ B(k1/4), we can change the metrics e−φ(k) and ω(k) by

the estimate:

k

ck
‖(∂̄u(k))e−φ(k)‖2ω(k)

.
k

ck
‖(∂̄u(k))e−φ0‖2ω(k)

.
k

ck
‖(∂̄u(k))e−φ0‖2ω0

.

The last inequality is by (3.21). By direct computation,

‖(∂̄u(k))e−φ0‖2ω0
.

∫
√
c′k1/4<|z|<k1/4

|∂̄χk|2|zα|2e−2φ0dm

. kNe−c′·2minλi·k1/2 , (4.2)

where N is an integer depends on α. Hence, by the condition

lim inf e2cminλi·k1/2ck > 0, we obtain

k

ck
‖(∂̄u(k))e−φ0‖ω0 . kN+1e2(c−c′)minλi·k1/2 → 0 since c < c′.

For the Bergman kernel case ck = 0, by the spectral gap condition 2, we

repeat that

‖(B(0),s
(k) u(k) − u(k))e

−φ(k)‖2
ω(k),B(

√
k)

≤ ‖B(0)
k (uk ⊗ sk)− (uk ⊗ sk)‖2ω,kφ

. e2cmin λi·k1/2
(
�

(0)
k uk ⊗ sk | uk ⊗ sk

)
ω,kφ

. kN+1e2(c−c′)minλi·k1/2 → 0. ���

Before proving the main theorem for the function case, we need another

lemma about convergence. The following lemma is in the context of scaled

localized spectral or Bergman kernels and is applicable to the (0, q)-forms
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cases for all q = 0, . . . , n.

Lemma 4.7. Let u = zαq e
−

∑
|λi||zi|2dz̄I for some α ∈ Nn

0 and I ∈ Jq,n. For

any v ∈ Ω
(0,q)
c (Cn),

(
v | P(q)

(k),ck,s
χku− B(q)

s u
)
ω0

→ 0 as k → ∞.

Proof. Let v ∈ Ω
(0,q)
c (Cn). For any fixed positive integer n0 ∈ N, observe

that for each k ∈ N with k > n0, we can estimate that

∣∣∣
(
v | P(q)

(k),ck,s
χku− B(q)

s u
)
ω0

∣∣∣

≤
∣∣∣
(
v |(P(q)

(k),ck ,s
χk−B(q)

s )χn0u
)
ω0

∣∣∣+‖v‖ω0‖(P
(q)
(k),ck ,s

χk−B(q)
s )(χn0 − 1)u‖ω0 .

Moreover, by Lemma 3.3, P(q)
(k),ck,s

χk are uniformly bounded linear function-

als on the space L2
ω0
(Cn, T ∗,(0,q)Cn). For this reason, P(q)

(k),ck,s
χk − B(q)

s are

also uniformly bounded linear functionals on L2
ω0
(Cn, T ∗,(0,q)Cn).

Given an arbitrary number ε > 0, since χn0u → u in L2
ω0
(Cn, T ∗,(0,q)Cn)

as n0 → ∞, we can fix n0 large enough such that

‖v‖ω0‖(P
(q)
(k),ck ,s

χk − B(q)
s )(χn0 − 1)u‖ω0 < ε/2 for all k ∈ N.

Furthermore, by the assumption that P
(q)
(k),ck,s

(z, w) → B
(q)
s (z, w) locally

uniformly,

|
(
v | (P(q)

(k),ck,s
χk − B(q)

s )χn0u
)
ω0

|→ 0 as k → ∞.

Finally, combining the above estimates, we obtain
∣∣∣
(
v|P(q)

(k),ck,s
χku− B(q)

s u
)
ω0

∣∣∣ < ε for large enough k. ���

To apply the Lemma in the context of P(0),s
(k),ck

and B(0),s
(k) , we simply

deduce the following corollary by the relation (3.9) and the fact that φ(k) →
φ0 locally uniformly.

Corollary 4.8. Let u = zα for some α ∈ Nn
0 . For any v ∈ C∞

c (Cn),

(
v|P(q),s

(k),ck
u(k) − B(q),su

)
ω0

→ 0 as k → 0.
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Now, we are able to complete Statement 4.1 in Section 4.2 for the func-

tion case when p ∈ M(0).

Theorem 4.9. If ck satisfies the conditions lim supk→∞
ck
k = 0 and

lim inf
k→∞

e2cmin λi·k1/2ck > 0

for some constant c < 1, then

B(0),su = u for all u ∈ Ker�
(0),s
0 .

As for the Bergman kernel case ck = 0 for all k, it also holds under the

spectral gap condition of suitable exponential rate (cf. Def. 1.3).

Proof. Assume that u is of the form u = zα. To show B
(0)
s u = u, let

v ∈ C∞
c (Cn) and observe that

(
v | B(0),su− u

)
ω0

=
(
v | B(0),su−P(0),s

(k),ck
u(k)

)
ω0

+
(
v | P(0),s

(k),ck
u(k)−u(k)

)
ω0

+
(
v | u(k) − u

)
ω0

.

By Theorem 4.6, Corollary 4.8 and the fact that ω(k) → ω0 and φ(k) → φ0

locally uniformly, the right-hand side of the equality above tends to zero.

This means B(0),su ≡ u because v is arbitrary. ���

By Remark 4.1, we obtain the main theorem for the function case when

p ∈ M(0).

Theorem 4.10 (main theorem for function case). Suppose ck is a sequence

with

lim sup
k→∞

ck
k

= 0

and p ∈ M(0). If there exists a constant c < 1 such that

lim infk→∞ e2cminλi·k1/2ck > 0, then

P
(q),s
(k)

(z, w) → λ1 · · ·λn

πn
e2(

∑q
i=1 λiz̄iwi+

∑n
i=q+1 λiziw̄i−

∑n
i=1 λi|wi|2).

locally uniformly in C∞ on Cn. In the Bergman kernel case ck = 0, the

convergence also holds under the small spectral gap condition of suitable

exponential rate in U (cf. Def. 1.3).
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Remark 4.2. The proof in this section is not valid for the (0, q)-forms if

q 6= 0. The reason is that for |z| < c′k1/4 and u ∈ Ker�
(q)
0 , the equation

∂̄∗
ku(

√
kz) = 0

may not be true if q 6= 0. In the context of localized Kodaira Laplacian, we

need to adjust u from the space Ker�
(q)
0,s to the space Ker�

(q)
(k),s. It is natural

to orthogonally project u from Ker�
(0)
0,s into space Ker�

(q)
(k),s. However, we

encounter a difficulty as we lack information about the Bergman projection

corresponding to �
(q)
(k),s. One potential solution is to extend the Laplacian

�
(q)
(k),s to �

(q)∼
(k),s defined on the whole Cn, where the Bergman kernel with

respect to the extended Laplacian �
(q)∼
(k),s is tractable. This is the main idea

of Section 4.4 and Section 4.5.

4.4. The spectral gap of the extended Laplacian on Cn

In this section, we will extend the localized scaled Laplacian �
(q)
(k),s which

is defined on B(
√
k) to the whole Cn. The extended localized Laplacian is

identical to �
(q)
(k),s in B(kǫ) where ǫ will be determined later in Section 4.5.

From now on, we fix a cut-off function denoted by χ ∈ C∞
c (Cn) such that

its support is contained within the ball B(2), and is identical to 1 on the

ball B(1). Let us choose a number ǫ such that 0 < ǫ < 1/6 and define the

extended metric data on Cn by

φ̃(k)(z) := χ(
z

kǫ
)φ(k)(z) +

(
1− χ(

z

kǫ
)
)
φ0

and the extended Hermitian form by

ω̃(k)(z) := χ(
z

kǫ
)ω(k)(z) +

(
1− χ(

z

kǫ
)
)
ω0.

Recall the observations (3.3) and (3.4). Since ǫ < 1/6, we have the uniform

convergences

‖φ̃(k) − φ0‖C2 → 0 and ‖ω̃(k) − ω0‖C2 → 0.

Denote

˜̄∂
(q)
(k),s : Ω

(0,q)(Cn) → Ω(0,q+1)(Cn); ˜̄∂
(q)
(k),s : Ω

(0,q)(Cn) → Ω(0,q−1)(Cn)
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to be the localized Cauchy-Riemann operator and its formal adjoint which

are given by

˜̄∂
(q)
(k),s

= ∂̄(q) + (∂̄φ̃(k)) ∧ ·; ˜̄∂
∗,(q)
(k),s

= ∂̄
∗,(q)
ω̃(k)

+ (∂̄φ̃(k))∧∗
ω̃(k)

,

respectively. Denote

�
(q)∼
(k),s =

˜̄∂∗
(k),s

˜̄∂(k),s +
˜̄∂(k),s

˜̄∂∗
(k),s : Dom �̃

(q)∼
(k),s ⊂ L2

ω0
(Cn, T ∗,(0,q)Cn)

→ L2
ω0
(Cn, T ∗,(0,q)Cn)

as the Gaffney extension of the localized Kodaira Laplacian with respect to

the Hermitian form ω̃(k) and the weight function φ̃(k). It follows immediately

from the constructions that ∂̄(k),s ≡ ˜̄∂(k),s, ∂̄
∗
(k),s ≡ ˜̄∂∗

(k),s and �
(q)∼
(k),s ≡ �

(q)
(k),s

in B(kǫ). Reasonably, we call the �
(q)∼
(k),s extended localized Laplacian. We

suppose λi < 0 for all i = 1, . . . , q0 ; λi > 0 for all i = q0 + 1, . . . , n. Then

there exists a constant c > 0 such that for all z ∈ Cn,

∂2φ̃(k)

∂zi∂z̄i
(z) < −c ∀ i = 1, . . . , q0 and

∂2φ̃(k)

∂zi∂z̄i
(z) > c ∀ i = q0 + 1, . . . , n.

(4.3)

The following results tell us these estimates create a uniform lower bound of

the first eigenvalues of �
(q)∼
(k),s.

Lemma 4.11. For q 6= q0, there is a constant c > 0 such that for all

u ∈ Dom�
(q)∼
(k),s,

(
�

(q)∼
(k),su | u

)
ω̃(k)

= ‖ ˜̄∂(k),su‖2ω̃(k)
+ ‖ ˜̄∂∗

(k),su‖2ω̃(k)
> c‖u‖2ω̃(k)

.

Therefore, ‖�(q)∼
(k),su‖ω̃(k)

> c‖u‖ω̃(k)
.

Proof. Note that

‖ ˜̄∂(k),su‖2ω̃(k)
=‖
(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω̃(k)

& ‖
(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω0

;

‖ ˜̄∂∗
(k),su‖2ω̃(k)

=‖
(
∂̄∗
ω̃(k)

+(∂̄φ̃(k))∧∗
ω̃(k)

)
u‖2ω̃(k)

& ‖
(
∂̄∗
ω0
+(∂̄φ̃(k))∧∗

ω0

)
u‖2ω0

.

(4.4)

Let u = fdz̄I for some f ∈ C∞
c (Cn) and I ∈ Jq,n. Since q 6= q0,

there exists i ∈ {1, . . . , n} such that at least one of the following two cases

holds:
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• i /∈ I and λi < 0;

• i ∈ I and λi > 0.

If the first case holds,

‖
(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω0

≥
∫

Cn

| ∂f

∂z̄i
+

∂φ̃(k)

∂z̄i
f |2 dm

=

∫

Cn

(
∂f

∂z̄i
+

∂φ̃(k)

∂z̄i
f)(

∂f̄

∂zi
+

∂ ¯̃φ(k)

∂zi
f̄)dm

=

∫

Cn

| ∂f
∂z̄i

|2 + f̄
∂f

∂z̄i
∂
¯̃
φ(k)

∂zi
+ f

∂f̄

∂zi
∂φ̃(k)

∂z̄i
+ |∂φ̃(k)

∂z̄i
|2|f |2dm. (4.5)

By integration by part, we compute that
∫
Cn | ∂f∂z̄i

|2dm =
∫
Cn | ∂f∂zi

|2dm and

∫

Cn

f̄
∂f

∂z̄i
∂
¯̃
φ(k)

∂zi
+ f

∂f̄

∂zi
∂φ̃(k)

∂z̄i
dm

=

∫

Cn

−2|f |2
∂2φ̃(k)

∂zi∂z̄i
− f

∂f̄

∂z̄i
∂
¯̃
φ(k)

∂zi
− f̄

∂f

∂zi
∂φ̃(k)

∂z̄i
dm.

Applying these two equations and | ∂f
∂zi

|2 + |∂φ̃(k)

∂z̄i
|2|f |2 − 2|f || ∂f

∂zi
||∂φ̃(k)

∂z̄i
| ≥ 0 ,

we have

‖
(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω0

≥ −2

∫

Cn

|f |2
∂2φ̃(k)

∂zi∂z̄i
dm & − inf

(
∂2φ̃(k)

∂zi∂z̄i

)
‖f‖2ω̃(k)

.

(4.6)

On the other hand, if the second case holds,

‖
(
∂̄∗
ω0

+ (∂̄φ̃(k))∧∗
ω0

)
u‖2ω0

≥
∫

Cn

(− ∂f

∂zi
+

∂φ̃(k)

∂zi
f)(− ∂f̄

∂z̄i
+

∂ ¯̃φ(k)

∂z̄i
f̄)dm

=

∫

Cn

| ∂f
∂zi

|2 − f̄
∂f

∂zi
∂
¯̃
φ(k)

∂z̄i
− f

∂f̄

∂z̄i
∂φ̃(k)

∂zi
+ |∂φ̃(k)

∂zi
|2|f |2dm.

By integration by part again, we have
∫
Cn | ∂f∂zi

|2dm =
∫
Cn | ∂f∂z̄i

|2dm and

∫

Cn

−f̄
∂f

∂zi
∂
¯̃
φ(k)

∂z̄i
− f

∂f̄

∂z̄i
∂φ̃(k)

∂zi
dm

=

∫

Cn

2|f |2 ∂
2φ̃(k)

∂zi∂z̄i
+ f

∂f̄

∂zi
∂
¯̃
φ(k)

∂z̄i
+ f̄

∂f

∂z̄i
∂φ̃(k)

∂zi
dm.
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Combining equations above and | ∂f
∂z̄i

|2 + |∂φ̃(k)

∂zi
|2|f |2 − 2|f || ∂f

∂z̄i
||∂φ̃(k)

∂zi
| ≥ 0,

‖
(
∂̄∗
ω0

+ (∂̄φ̃(k))∧∗
ω̃(k)

)
u‖2ω0

≥ 2

∫

Cn

|f |2 ∂
2φ̃(k)

∂zi∂z̄i
dm & inf

(
∂2φ̃(k)

∂zi∂z̄i

)
‖f‖2ω̃(k)

.

(4.7)

By (4.4),(4.6) and (4.7), we have completed the proof for the case u ∈
Ω
(0,q)
c (Cn). Next, we are able to prove the lemma by density argument. The

density argument here is somehow technical and based on the Friedrich’s

Lemma (cf.[12, Chapter 7, Lemma 3.3]). For the details of approximation,

readers may consult [19, Lemma 5]. ���

Corollary 4.12. For q 6= q0, the extended Laplacians �
(q)∼
(k),k is bijective and

has inverses

N q
k : L2

ω̃(k)
(Cn, T ∗,(0,q)Cn) → Dom�

(q)∼
(k),s

which is a k-uniformly bounded operator.

Proof. According to Lemma 4.11, �
(q)∼
(k),s

is injective. To show the surjectivity,

we choose an arbitrary v ∈ L2
ω̃(k)

(Cn, T ∗,(0,q)Cn) and consider the linear

functional Tv on Rang �
(q)∼
(k),s given by

Tv(�(q)∼
(k),s u) = (u | v)ω̃(k)

∀u ∈ Dom �
(q)∼
(k),s.

Lemma 4.11 implies that ‖Tv‖ω̃(k)
≤

‖v‖ω̃(k)

c for a constant c independent

of v and k. By the Hahn-Banach Theorem, the functional Tv can be ex-

tended to a bounded linear functional on L2
ω̃(k)

(Cn, T ∗,(0,q)Cn) with the same

norm. By Riesz representation theorem, there exists a representative ṽ ∈
L2
ω̃(k)

(Cn, T ∗,(0,q)Cn) such that

(u | v)ω̃(k)
= Tv(�(q)∼

(k),su) =
(
�

(q)∼
(k),su | ṽ

)
ω̃(k)

∀u ∈ Dom �
(q)∼
(k),s.

This means �
(q)∼
(k),sṽ = v which proves the surjectivity. Define N q

k such that

N q
kv = ṽ. Lemma 4.11 implies ‖N q

k‖ω̃(k)
≤ C for a constant C independent

of k. ���

We have shown that when q 6= q0, the extended Laplacian �
(q)∼
(k),s has

a uniform spectral gap spec �
(q)∼
(k),s ⊂ [c,∞) for a positive constant c inde-
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pendent of k. Next, in the case q = q0, we should prove that the uniform

spectral gap also holds in the sense that spec �
(q)∼
(k),s ⊂ {0} ∪ [c,∞). Define

B̃(q)
(k),s : L

2
ω̃(k)

(Cn, T ∗,(0,q)Cn) → Ker �
(q)∼
(k),s ⊂ L2

ω̃(k)
(Cn, T ∗,(0,q)Cn)

to be the Bergman projection and B̃
(q)
(k),s to be the Bergman kernel. The

following representation of B̃
(q)
(k),s is standard.

Theorem 4.13 (Hodge decomposition). We have the expression

B̃(q0)
(k),s=Id− ˜̄∂

(q0−1)
(k),s N q0−1

k
˜̄∂
∗,(q0)
(k),s − ˜̄∂

∗,(q0+1)
(k),s N q0+1

(k)
˜̄∂
(q0)
(k),s onΩ(0,q)

c (Cn). (4.8)

Here, N q
k is the inverse of the Laplacian �

(q)∼
k,s established in Corollary 4.12.

Proof. Note that

�
(q0)∼
(k),s

(
Id − ˜̄∂

(q0−1)
(k),s N q0−1

k
˜̄∂
∗,(q0)
(k),s − ˜̄∂

∗,(q0+1)
(k),s N q0+1

k
˜̄∂
(q0)
(k),s

)

=˜̄∂(k),s
˜̄∂∗
(k),s +

˜̄∂∗
(k),s

˜̄∂(k),s − ˜̄∂(k),s
˜̄∂∗
(k),s

˜̄∂(k),sN
q0−1
k

˜̄∂∗
(k),s

− ˜̄∂∗
(k),s

˜̄∂(k),s
˜̄∂∗
(k),sN

q0+1 ˜̄∂(k),s

=˜̄∂(k),s
˜̄∂∗
(k),s +

˜̄∂∗
(k),s

˜̄∂(k),s − ˜̄∂(k),s�
(q0−1)∼
(k),s N q0−1

k
˜̄∂∗
(k),s

− ˜̄∂∗
(k),s�

(q0+1)∼
(k),s N q0+1

k
˜̄∂(k),s

=˜̄∂(k),s
˜̄∂∗
(k),s +

˜̄∂∗
(k),s

˜̄∂(k),s − ( ˜̄∂(k),s
˜̄∂∗
(k),s +

˜̄∂∗
(k),s

˜̄∂(k),s) = 0.

So the right-hand side of (4.8) has its image in Ker�
(q)∼
(k),s. It remains to show

that Rang
(
˜̄∂
(q0−1)
(k),s N q0−1 ˜̄∂

∗,(q0)
(k),s − ˜̄∂

∗,(q0+1)
(k),s N q0+1 ˜̄∂

(q0)
(k),s

)
⊥ Ker�

(q0)∼
(k),s . Given

u ∈ Ω
(0,q)
c (Cn) and v ∈ Ker�

(q0)∼
(k),s , since ˜̄∂∗

(k),sv = ˜̄∂(k),sv = 0,

(
( ˜̄∂(k),sN

q0−1
k

˜̄∂∗
(k),s − ∂̄∗N q0+1

k ∂̄)u | v
)
ω̃(k)

=
(
N q0−1

k
˜̄∂(k),su | ˜̄∂∗

(k),sv
)
ω̃(k)

+
(
N q0+1

k
˜̄∂(k),su | ˜̄∂(k),sv

)
ω̃(k)

= 0. ���

We now deduce some identities which will be frequently utilized. Com-

pute that

‖ ˜̄∂(k),s ˜̄∂∗
(k),sN

q0−1
k

˜̄∂∗
(k),su‖2ω̃(k)



✐

“BN18N34” — 2023/10/23 — 11:18 — page 352 — #54
✐

✐

✐

✐

✐

352 YUEH-LIN CHIANG [September

=
(
˜̄∂∗
(k),s

˜̄∂(k),s
˜̄∂∗
(k),sN

q0−1
k

˜̄∂∗
(k),su | ˜̄∂∗

(k),sN
q0−1
k,s

˜̄∂∗
(k),su

)
ω̃(k)

=
(
˜̄∂∗
(k),s�

(q0−1)∼
(k),s N q0−1

k
˜̄∂∗
(k),su | ˜̄∂∗

(k),sN
q0−1
k

˜̄∂∗
(k),su

)
ω̃(k)

=
(
˜̄∂∗
(k),s

˜̄∂∗
(k),su | ˜̄∂∗

(k),sN
q0−1
k

˜̄∂∗
(k),su

)
ω̃(k)

= 0,

for all u ∈ Ω
(0,q0)
c (Cn). Similarly, we can compute that

‖ ˜̄∂∗
(k),s

˜̄∂(k),sN
q0+1
k

˜̄∂(k),su‖2ω̃(k)
= 0 for all u ∈ Ω

(0,q0)
c (Cn). Hence, we have

˜̄∂(k),s
˜̄∂∗
(k),sN

q0−1
k

˜̄∂∗
(k),s = 0; ˜̄∂∗

(k),s
˜̄∂(k),sN

q0+1
k

˜̄∂(k),s = 0 on Ω(0,q0)
c (Cn).

(4.9)

Moreover, we can apply the two equations above to see that

˜̄∂∗
(k),s

˜̄∂(k),sN
q0−1
k

˜̄∂∗
(k),s=

˜̄∂∗
(k),s;

˜̄∂(k),s
˜̄∂∗
(k),sN

q0−1
k

˜̄∂(k),s=
˜̄∂(k),s on Ω(0,q0)

c (Cn).

(4.10)

Theorem 4.14 (uniform spectral gap for �
(q0)∼
(k),s ). There exists a constant

c independent of k such that

‖B̃(q0)
(k),su− u‖2ω̃(k)

≤ c
(
‖ ˜̄∂∗,(q0)

(k),s u‖2ω̃(k)
+ ‖ ˜̄∂(q0)

(k),su‖2ω̃(k)

)
on Ω(0,q0)

c (Cn).

Proof. By Lemma 4.13,

B̃(q0)
(k),s − I = − ˜̄∂

(q0−1)
(k),s N q0−1

k
˜̄∂
∗,(q0)
(k),s − ˜̄∂

∗,(q0+1)
(k),s N q0+1

k
˜̄∂
(q0)
(k),s on Ω(0,q0)

c (Cn).

Given u ∈ Ω
(0,q0)
c (Cn),

‖ ˜̄∂(q0−1)
(k),s N q0−1

k
˜̄∂
∗,(q0)
(k),s u‖2ω̃(k)

=
(
N q0−1

k
˜̄∂∗
(k),su | ˜̄∂∗

(k),s
˜̄∂(k),sN

q0−1
k

˜̄∂∗
(k),su

)
ω̃(k)

≤ ‖N q0−1
k

˜̄∂∗
(k),su‖ω̃(k)

‖ ˜̄∂∗
(k),s

˜̄∂(k),sN
q0−1
k

˜̄∂∗
(k),su‖ω̃(k)

. ‖ ˜̄∂∗
(k),su‖2ω̃(k)

.

The last inequality is from Corollary 4.12 and (4.10). Symmetrically, we can

show that

‖ ˜̄∂∗,(q0+1)
(k),s N q0+1

k
˜̄∂
(q0)
(k),su‖

2
ω̃(k)

≤ c‖ ˜̄∂(q0)
(k),su‖

2
ω̃(k)

.

The two estimates above imply the theorem. ���
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4.5. Asymptotics of the general (0, q)-forms cases

In this section, we adopt Assumption 4.1 in Section 4.2 and consider the

case p ∈ M(q) where q ∈ {1, . . . , n}. We strengthen the condition of ck by

imposing lim supk→∞
ck
k = 0 and

∃d ∈ N such that lim inf
k→∞

kdck > 0.

The goal of this section is to show Statement 4.1 in Section 4.1. By rear-

rangement, we let λi < 0 for all i = 1, . . . , q and λi > 0 for all i = q+1, . . . , n

for simplicity. Recall

zαq := (z̄1)α1 · · · (z̄q)αq (zq+1)αq+1 · · · (zn)αn ; I := (1, . . . , q) ∈ Jq,n.

We now adopt the settings in Section 4.4. It is important to note that in

the construction of ω̃(k) and φ̃(k), we impose the condition that 0 < ǫ < 1/6.

Now, we require

0 < ǫ < min{ 1

2n + 1
,
1

6
}.

The reason is in the proof of Theorem 4.16.

We establish the notations of cut-off functions. Recall that χ ∈ C∞
c (Cn)

is the cut-off function which is fixed at the beginning of Section 4.4. Choose

ρ ∈ C∞
c (Cn) as another cut-off function such that supp ρ ⊂ {z ∈ C; 2/7 <

|z| < 1} and ρ ≡ 1 on {z ∈ C; 3/7 < |z| < 6/7}. Construct a sequence of

cut-off functions by

χk(z) := χ(
7z

kǫ
); χ̃k(z) := χ(

7z

3kǫ
); ρk(z) := ρ(

z

kǫ
). (4.11)

Observe that suppχk ⊂ {z ∈ C; |z| < (2/7)kǫ} and supp χ̃k ⊂ {z ∈ C; |z| <
(6/7)kǫ}. Moreover, the derivatives of χ̃k are supported in the annuli {z ∈
C; (3/7)kǫ < |z| < (6/7)kǫ} and the support of ρk are in the annuli {z ∈
C; (2/7)kǫ < |z| < kǫ}. Next, we define the following convention.

Definition 4.2. For any u ∈ L2
ω0
(Cn, T ∗,(0,q)Cn), define

u(k) := χ̃k B̃(q)
(k),s χku.
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Now, the stage is set to demonstrate Statement 4.1. The strategy is

similar to Section 4.3 except for the different constructions of u(k) resulting

in the different estimates. First, our objective is to show the convergence

u(k) → u in L2
ω̃(C

n, T ∗,(0,q)Cn) as k → ∞ if u ∈ Ker�
(q)
0 .

Lemma 4.15. Let u = zαq e
−

∑n
i=1 |λi||zi|2dz̄I for some α ∈ Nn

0 . There exists

a constant C such that for large enough k,

| ˜̄∂(q0)
(k),su|ω0 + | ˜̄∂∗,(q0)

(k),s u|ω0 ≤ C√
k

(4.12)

for all |z| < kǫ.

Proof. Denote u =: fdz̄I where f = zαq e
−∑n

i=1 |λi||zi|2 . By the formulas

(3.14),(3.15) and (3.18), we can write down the expression of ( ˜̄∂(k),s− ∂̄(k),s)u

and ( ˜̄∂∗
(k),s − ∂̄∗

(k),s)u as

( ˜̄∂(k),s − ∂̄0,s)u =
(
∂̄ + (∂̄φ̃(k))∧

)
u−

(
∂̄ − (∂̄φ0)∧

)
u =

(
∂̄(φ̃(k) − φ0)

)
∧ u;

( ˜̄∂∗
(k),s − ∂̄∗

0,s)u =
(
∂̄∗
ω̃(k)

+ (∂̄φ̃(k))∧∗
ω̃(k)

)
u−

(
∂̄∗
ω0

+ (∂̄φ0) ∧∗
ω0

·
)
u

=

(
− ∂f

∂zi
− f

∂ϕ̃(k)

∂zi

)
(dz̄i) ∧∗

ω̃(k)
dz̄I

−
(
− ∂f

∂zi
− f

∂ϕ0

∂zi

)
(dz̄i) ∧∗

ω0
dz̄I

− f
(
(dz̄i∧∗

ω̃(k)
)θ

∗
∂/∂z̄i,ω̃(k)

− (dz̄i∧∗
ω0
)θ

∗
∂/∂z̄i,ω0

)
dz̄I

+ f
(
(∂̄φ̃(k)) ∧∗

ω̃(k)
−(∂̄φ0)∧∗

ω0

)
dz̄I .

Denote a1(z) and a2(z) as the absolute maximum of the coefficients of the

differential operators ˜̄∂(k),s − ∂̄0,s and ˜̄∂∗
(k),s − ∂̄∗

0,s at a point z ∈ Cn, respec-

tively. By (3.3) and (3.4),

|φ̃(k) − φ0|C2(z) .
|z|3 + 1√

k
; |ω̃(k) − ω0|C2(z) .

|z|+ 1√
k

for all |z| < 2kǫ.

The coefficients of the differential operators ˜̄∂(k),s − ∂̄0,s and ˜̄∂∗
(k),s − ∂̄∗

0,s

consist of the zero and first derivatives of φ0 − φ̃(k). Moreover, the matrix

of connection forms θ and the operator ∧∗
· are smoothly depend on the zero
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and first derivatives of components of Hermitian forms. We can see that

|ai(z)| .
|z|3 + 1√

k
∀ |z| < 2kǫ and |ai(z)| = 0 ∀ |z| > 2kǫ.

Because any derivatives of u decay exponentially as |z| goes to infinity, there

is a constant c > 0 such that

|( ˜̄∂(k),s− ˜̄∂0,s)u(z)|ω0 .
|z|3+1√

k
e−c|z|2 and |( ˜̄∂∗

(k),s− ˜̄∂∗
0,s)u(z)|ω0 .

|z|3+1√
k

e−c|z|2

for all z ∈ Cn. Since |z|3e−c|z|2 is a bounded function, we have completed

the proof. ���

We can apply Lemma 4.15 to establish the following theorem which

claims that u(k) → u.

Theorem 4.16. If u = zαq e
−

∑n
i=1 |λi||zi|2dz̄I for some α ∈ Nn

0 , then

‖u(k) − u‖ω̃(k)
→ 0 as k → ∞.

Proof. Note that ‖u(k) − u‖ω̃(k)
≤ ‖u(k) − χ̃ku‖ω̃(k)

+ ‖χ̃ku− u‖ω̃(k)
. Clearly,

the second term tends to zero by the decreasing of u as z → ∞. For the first

term,

‖u(k) − χ̃ku‖ω̃(k)
=‖χ̃k(B̃(q)

(k),sχku− u)‖ω̃(k)
≤ ‖B̃(q)

(k),sχku− u‖ω̃(k)

≤‖B̃(q)
(k),sχku− χku‖ω̃(k)

+ ‖χku− u‖ω̃(k)
.

Since the second term of the right-hand side tends to zero, we only need to

estimate ‖B̃(q)
(k),sχku− χku‖ω̃(k)

. By Theorem 4.14,

‖B̃(q)
(k),sχku− χku‖2ω̃(k)

. ‖ ˜̄∂∗
(k),sχku‖2ω̃(k)

+ ‖ ˜̄∂(k),sχku‖2ω̃(k)
.

It remains to claim ‖ ˜̄∂∗
(k),sχku‖2ω̃(k)

→ 0 and ‖ ˜̄∂(k),sχku‖2ω̃(k)
→ 0.

For ‖ ˜̄∂(k),sχku‖2ω̃(k)
, we compute that ˜̄∂(k),sχku = (∂̄χk)∧u+χ ˜̄∂k,su and

then

‖ ˜̄∂(k),sχku‖2ω̃(k)
=

∫

{|z|<kǫ/7}
| ˜̄∂k,su|2ω̃(k)

dVω̃(k)
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+

∫

{kǫ/7<|z|<2kǫ/7}
|(∂̄χk) ∧ u+ χ ˜̄∂k,su|2ω̃(k)

dVω̃(k)

.

∫

{|z|<2kǫ/7}
| ˜̄∂k,su|2ω0

dm+

∫

{kǫ/7<|z|<2kǫ/7}
|u|2ω0

dm.

Clearly, the second term
∫
{kǫ/7<|z|<2kǫ/7} |u|2ω0

dm tends to zero by the de-

creasing of u as z → ∞. By Lemma 4.15 and the setting ǫ < 1/(2n), the

first term can be dominated by

∫

{|z|<2kǫ/7}
| ˜̄∂(k),su|2ω0

dm .
(kǫ)2n

k
→ 0.

We have proven that ‖ ˜̄∂(k),sχku‖2ω̃(k)
→ 0. Next, we will show ‖ ˜̄∂∗

(k),sχku‖ω̃(k)

→ 0 in a similar way. Compute ˜̄∂∗
(k),sχkuk =

∑n
i=1

∂χk

∂zi
(dz̄i)∧∗

ω̃(k)
u+χk

˜̄∂∗
(k),su

and repeat the above process to get

‖ ˜̄∂∗
(k),sχku‖2ω̃(k)

.

∫

{|z|<2kǫ/7}
| ˜̄∂∗

(k),su|2ω0
dm+

∫

{kǫ/7<|z|<2kǫ/7}
|u|2ω0

dm.

The second term clearly tends to zero and the first term also tends to zero

by the fact that ǫ< 1
2n and Lemma 4.15. We also have ‖ ˜̄∂∗

k,sχku‖ω̃(k)
→0. ���

In the next step, we will display P(q)
(k),ck,s

u(k) − u(k) → 0 in

L2
ω̃(k)

(Cn, T ∗,(0,q)Cn). To do this, we need to estimate the decreasing rate of

‖�(q)
(k),su(k)‖ω(k)

as (4.2) in the proof of Theorem 4.6. Since
(
�

(q)
(k),su(k)

)
(z) =

0 for all |z| < (1/7)kǫ, we only need to analyze u(k) on the annuli {(2/7)kǫ <
|z| < kǫ}. The following lemma tells us that u(k) are small on the annuli.

Notably, the proof effectively utilizes the property that supp ρk∩supp χ̃k = ∅.

Lemma 4.17. Consider the functional

ρkB̃(q)
(k),sχk : L2

ω̃(k)
(Cn, T ∗,(0,q)Cn) → L2

ω̃(k)
(Cn, T ∗,(0,q)Cn).

For any d ∈ N, there exists a constant C and n0 ∈ N such that the operator

norm

‖ρkB̃(q)
(k),sχk‖ω̃(k)

≤ C

kd
for all k ≥ n0.
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Proof. For any u ∈ Ω
(0,q)
c (Cn), by Theorem 4.13,

ρkB̃(q)
(k),sχku = ρk

(
Id − ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),s − ˜̄∂(k),sN
q−1
k

˜̄∂∗
(k),s

)
χku

= −ρk
˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku− ρk
˜̄∂(k),sN

q+1
k

˜̄∂∗
(k),sχku. (4.13)

Now, we aim to estimate ‖ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖ω̃(k)
. Observe that

‖ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖2ω̃(k)

=
(
ρk

˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku | ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku
)
ω̃(k)

=
(
N q+1

k
˜̄∂(k),sχku | ˜̄∂(k),sρ2k ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku
)
ω̃(k)

=
(
ρ̃kN

q+1
k

˜̄∂(k),sχku | ˜̄∂(k),sρ2k ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku
)
ω̃(k)

≤ ‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ ˜̄∂(k),sρ2k ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)
,

where ρ̃k ∈ C∞
c (Cn) is another cut-off function such that supp ρ̃k ⊃ supp ρk

and supp ρ̃k ∩ suppχk = ∅. By direct computation,

˜̄∂(k),sρ
2
k
˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku

= (∂̄ρ2k) ∧ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku+ ρ2k
˜̄∂(k),s

˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku

= (∂̄ρ2k) ∧ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku+ ρ2k
˜̄∂(k),sχku

= (∂̄ρ2k) ∧ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku,

where the second equality is from (4.10) and the third is by the fact that

suppρk ∩ suppχk = ∅. We apply this computation to continue the previous

estimate and get

‖ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖2ω̃(k)

≤ ‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖(∂̄ρ2k) ∧ ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)

. k−ǫ‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ρ̃k ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)
, (4.14)

where the term k−ǫ arises during the computation of ∂̄ρk since sup|α|=1 |∂αρk|
. k−ǫ. Moreover, the sequence ρ̃k can be taken to satisfy the condition

sup|α|=1 |∂αρ̃k| . k−ǫ. To iterate the preceding process , we show the follow-

ing claim:
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Claim. There exists ˜̃ρk ∈ C∞
c (Cn) with supp ˜̃ρk ⊃ supp ρ̃k and supp ˜̃ρk ∩

suppχk = ∅ such that sup|α|=1 |∂α ˜̃ρk| . k−ǫ and

‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ρ̃k ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)

. k−ǫ‖ ˜̃ρkN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ ˜̃ρk ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)
.

To show the claim, by Lemma 4.11, we get

‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)

. ‖ ˜̄∂(k),sρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
+ ‖ ˜̄∂∗

(k),sρ̃kN
q+1
k

˜̄∂(k),sχku‖ω̃(k)
.

Moreover, we compute directly that

˜̄∂(k),sρ̃kN
q+1
k

˜̄∂(k),sχku =(∂̄ρ̃k) ∧N q+1
k

˜̄∂(k),sχku+ ρ̃k
˜̄∂(k),sN

q+1
k

˜̄∂(k),sχku

=(∂̄ρ̃k) ∧N q+1
k

˜̄∂(k),sχku;

˜̄∂∗
(k),sρ̃kN

q+1
k

˜̄∂(k),sχku = −
n∑

i=1

∂ρ̃k
∂zi

dz̄i ∧∗
ω̃(k)

N q+1
k

˜̄∂(k),sχku

+ ρ̃k
˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku.

Substitute these equations into the estimate and then dominate

‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
by

‖(∂̄ρ̃k) ∧N q+1
k

˜̄∂(k),sχku‖ω̃(k)
+ ‖

n∑

i=1

∂ρ̃k
∂zi

dz̄i ∧∗
ω̃(k)

N q+1
k

˜̄∂(k),sχku‖ω̃(k)

+ ‖ρ̃k ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖ω̃(k)

. k−ǫ‖ ˜̃ρkN q+1
k

˜̄∂(k),sχku‖ω̃(k)
+ ‖ ˜̃ρk ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)

for some ˜̃ρk as described above. So,

‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ρ̃k ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)

. k−ǫ‖ ˜̃ρkN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ ˜̃ρk ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)

+ ‖ ˜̃ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖2ω̃(k)
.

For the last term of the right-hand side, we replace the ρk by ˜̃ρk in (4.14)
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and get

‖ ˜̃ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖2ω̃(k)

.k−ǫ‖ ˜̃̃ρkN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ ˜̃̃ρk ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)
.

Combining the above estimates, we have completed the claim. Next, by

(4.14) and iterating the claim, we can conclude that for any integer N ∈ N,

there exists a constant C and ρ̃k ∈ C∞
c (Cn) with supp ρ̃k ⊃ supp ρk and

supp ρ̃k ∩ suppχk = ∅ such that

‖ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖2ω̃(k)

≤Ck−N‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ρ̃k ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)
.

Finally, we need to show the following fact:

Claim. For all v ∈ Ω
(0,q)
c (Cn)

‖ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sv‖ω̃(k)
≤ ‖v‖ω̃(k)

; ‖N q+1
k

˜̄∂(k),sv‖ω̃(k)
. ‖v‖ω̃(k)

.

For the first term, by (4.10), we compute that

‖ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sv‖2ω̃(k)
=
(
N q+1

k
˜̄∂(k),sv | ˜̄∂(k),s ˜̄∂∗

(k),sN
q+1
k

˜̄∂(k),sv
)
ω̃(k)

=
(
N q+1

k
˜̄∂(k),sv | ˜̄∂(k),sv

)
ω̃(k)

=
(
˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sv | v
)
ω̃(k)

≤ ‖ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sv‖ω̃(k)
‖v‖ω̃(k)

.

We get ‖ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sv‖ω̃(k)
≤ ‖v‖ω̃(k)

. The second term follows by Lemma

4.11 that

‖N q+1
k

˜̄∂(k),sv‖ω̃(k)
. ‖ ˜̄∂(k),sN q+1

k
˜̄∂(k),sv‖ω̃(k)

+ ‖ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sv‖ω̃(k)

= ‖ ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sv‖ω̃(k)
≤ ‖v‖ω̃(k)

,

since ˜̄∂(k),sN
q+1
k

˜̄∂(k),s = 0. We completed the proof of the second claim.

After combining all the above results, we know that for any integer N ∈ N,
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there exists a constant C such that

‖ρk ˜̄∂∗
(k),sN

q+1
k

˜̄∂(k),sχku‖ω̃(k)
≤ Ck−N‖u‖ω̃(k)

.

Symmetrically, we can literally repeat the process to show the analogous

statement:

‖ρk ˜̄∂(k),sN q+1
k

˜̄∂∗
(k),sχku‖ω̃(k)

. Ck−N‖u‖ω̃(k)
.

Then the lemma follows by (4.13) and a density argument. ���

Corollary 4.18. For any u ∈ L2
ω0
(Cn, T ∗,(0,q)Cn) and d ∈ N,

kd
(
‖ ˜̄∂∗

(k),su(k)‖2ω̃(k)
+ ‖ ˜̄∂(k),su(k)‖2ω̃(k)

)
→ 0.

Proof. Recall the fact that ˜̄∂(k),sB̃(q)
(k),s = 0 and ˜̄∂∗

(k),sB̃
(q)
(k),s = 0.

˜̄∂(k),su(k) = (∂̄χ̃k) ∧ B̃(q)
(k),sχku+ χ̃k

˜̄∂(k),sB̃(q)
(k),sχku = (∂̄χ̃k) ∧ B̃(q)

(k),sχku;

˜̄∂∗
(k),su(k) = −

n∑

i=1

∂χ̃k

∂zi
(dz̄i) ∧∗

ω̃(k)
B̃(q)
(k),sχku+ χ̃k

˜̄∂∗
(k),sB̃

(q)
(k),sχku

= −
n∑

i=1

∂χ̃k

∂zi
(dz̄i) ∧∗

ω̃(k)
B̃(q)
(k),sχku.

Observe that derivatives of χ̃k are supported in the annuli {3kǫ/7 < |z| <
6kǫ/7} and ρk ≡ 1 on the annuli. We can see

‖ ˜̄∂(k),su(k)‖2ω̃(k)
. ‖ρkB̃(q)

(k),sχku‖2ω̃(k)
; ‖ ˜̄∂∗

(k),su(k)‖2ω̃(k)
. ‖ρkB̃(q)

(k),sχku‖2ω̃(k)
.

By Lemma 4.17, we can immediately derive the corollary. ���

Now, we show the theorem claiming that P(q)
(k),ck,s

u(k) − u(k) → 0 which

is similar to Lemma 4.6 in Section 4.3.

Theorem 4.19. If there exists d ∈ R such that lim infk→∞ kdck > 0, then

we have

‖P(q)
(k),ck,s

u(k) − u(k)‖ω(k)
→ 0 as k → ∞.

In the case ck = 0 for all k, the convergence holds under the local small

spectral gap condition of polynomial rate in U (cf. Def. 1.2).
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Proof. Define uk(z) := kn/2u(k)(
√
kz) which is a section with compact sup-

port in U . Then we have

‖P(q)
(k),ck,s

u(k) − u(k)‖ω(k),B(
√
k) = ‖P(q)

k,ck,s
uk − uk‖ω,B(1).

By the property of spectral kernel,

‖P(q)
k,ck,s

uk − uk‖2ω,B(1) ≤
1

ck

(
�

(q)
k,suk | uk

)
ω
=

1

ck

(
‖∂̄∗

k,suk‖2ω + ‖∂̄k,suk‖2ω
)
.

Moreover, note that

(
‖∂̄∗

k,suk‖2ω + ‖∂̄k,suk‖2ω
)
= k

(
‖ ˜̄∂∗

(k),su(k)‖2ω̃(k)
+ ‖ ˜̄∂(k),su(k)‖2ω̃(k)

)

by the relation (3.19). Combine them and get

‖P(q)
(k),ck ,s

u(k) − u(k)‖ω(k),B(
√
k) ≤

k

ck

(
‖ ˜̄∂∗

(k),su(k)‖2ω̃(k)
+ ‖ ˜̄∂(k),su(k)‖2ω̃(k)

)
.

By the assumption that lim infk→∞ kN ck > 0 for some N ∈ N and Corollary

4.18, the right-hand sides of equations above must tend to zero.

In the Bergman kernel case ck = 0, we apply the spectral gap condition

1 and get

‖B(q)
(k),su(k) − u(k)‖ω(k)

= ‖B(q)
k,suk − uk‖2ω,B(1)

. kd
(
�

(q)
k,suk | uk

)
ω
= kd+1

(
‖ ˜̄∂∗

(k),suk‖2ω̃(k)
+ ‖ ˜̄∂(k),suk‖2ω̃(k)

)
.

We apply Corollary 4.18 to complete the proof. ���

Now, we are ready to overcome Statement 4.1 for the general cases of

(0, q)-forms.

Theorem 4.20. If there exists d ∈ R such that lim infk→∞ kdck > 0,

B(q)
s u = u for all u ∈ Ker�

(q)
0,s.

As for the Bergman kernel case ck = 0, it also holds under the local small

spectral gap condition of polynomial rate in U (cf. Def. 1.2).

Proof. By Theorem 4.2, we may assume that u is of the form

u = zαq e
−∑ |λi||zi|2dz̄I for some α ∈ Nn

0 by density argument. By Lemma
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3.3, Lemma 4.16 and the decreasing of u,

‖P(q)
(k),ck ,s

(χku− u(k))‖ω0 . ‖χku− u(k)‖ω0

≤‖χku− u‖ω0 + ‖u− u(k)‖ω0 → 0. (4.15)

To show B(q)
s u = u, let v ∈ Ω

(0,q)
c (Cn) and observe that

(
v | B(q)

s u−u
)
ω0

=
(
v | B(q)

s u−P(q)
(k),ck,s

χku
)
ω0

+
(
v | P(q)

(k),ck,s
(χku−u(k))

)
ω0

+
(
v | P(q)

(k),ck,s
u(k)−u(k)

)
ω0

+
(
v | u(k)−u

)
ω0

.

By Lemma 4.7 , Theorem 4.16, Theorem 4.19 and (4.15), the right-hand side

of the above equation must tend to zero. ���

Eventually, we are able to complete the proof of the main theorem for

the case p ∈ M(q) by Remark 4.1.

Theorem 4.21. Suppose ck is a sequence such that

lim sup
k→∞

ck
k

= 0.

If p ∈ M(q) and lim infk→∞ kdck > 0 for some d ∈ N, then

P
(q),s
(k),ck

(z, w) →
|λ1 · · ·λn|

πn
e2(

∑q
i=1 |λi|z̄iwi+

∑n
i=q+1 |λi|ziw̄i−

∑n
i=1 |λi||wi|2)dz̄I ⊗ (

∂

∂w̄
)I

locally uniformly in C∞ on Cn. In the case ck = 0 for all k ∈ N, the

convergence also holds if �
(q)
k satisfies the local small spectral gap condition

of polynomial rate in U (cf. Def. 1.2).
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