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Abstract

In this paper, we deal with reflected backward doubly stochastic differential equa-
tions (RBDSDEs in short) with one rcll reflecting barrier when the coefficient f satisfies a
stochastic Lipschitz condition, via penalization method we prove the existence and unique-
ness of solutions. The comparison theorem is also established. Via an inf-convolution
approximation and comparison theorem, we show the existence of a minimal solution to
the RBDSDE under continuous and stochastic linear growth condition, also we provide a

minimal solution to RBDSDE with left continuous and stochastic linear growth condition.

1. Introduction

In 1994 Pardoux and Peng m] found a class of backward doubly stochas-
tic differential equations (BDSDEs for abbreviation) of the form

—dY; = f(t,Y;, Z) dt + g (4, Vi, Z)dB, — ZdW,,  0<t<T,
Yr = €.

with a backward stochastic integral d%t and a forward stochastic integral
dWy, where £ is a square integrable random variable and f is an progressively
measurable process, a so-called driver, the authors proved the result of ex-

istence and uniqueness solution under uniformly Lipschitz conditions, their
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goal was to give a probabilistic interpretation of a solution to some quasi-
linear stochastic partial differential equation. After almost twenty years Shi
et al ﬂﬁ] provided a comparison theorem for this kind of equation, they ap-
plied the principle of comparison to prove that there is a minimal solution
for BDSDE with continuous coefficient. After several years, Bahlali et al ﬂ]
prove the existence and uniqueness of solutions for reflected backward dou-
bly stochastic differential equations (RBDSDEs in short) with continuous
reflecting barrier and Lipschitz coefficients of the form

—dY, = f(t, Y, Z) dt + g (t,Y0, Z))dBy — ZydW,,  0<t<T,
YT - ga
Y; > Ly a.s. forany  t€[0,T].

The role of the continuous and increasing process (Kt)te[o,T] is to push up-
ward the process Y in order to keep it above L, it satisfies the Skorokhod

condition
Jo (¥s = Ly)dK, =0,

also, by using the inf-convolution approximation the authors showed that
there is a minimal solution of backward doubly stochastic differential equa-
tion with one continuous reflecting barrier when the driver f is continuous
with linear growth see ] and ﬂQ] If g(s,Ys,Zs): = 0, the RBDSDEs
convert to reflected backward stochastic differential equations (RBSDEs in
short), this type of equations has been studied in 1997 by El Karoui et al
f)

In 2002, Hamadene ﬁ] studies the RBSDEs with one right continuous
and left limited barrier. By using Snell envelope notion, the author proved
the existence and the uniqueness of the solution in the case where the gen-
erator f was Lipschitz and presented the comparison theorem between two
solutions and he used this last theorem to find an existence result of solu-
tions for RBSDEs under continuous and linear growth assumptions. In this
article we mainly deal with the existence and uniqueness result of the solu-
tion for RBDSDEs with rcll reflecting barrier. The difficulty of the task is
related to the non-positive jumps of process L which express that the solu-
tion Y component of the solution may have non-positive jumps and hence
no continuous but only rcll. Via a penalization method we prove the exis-
tence and uniqueness solution when the generator f is stochastic Lipschitz
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with respect to (y, z) . Also by inf-convolution approximation and compari-
son theorem, we show the existence result of this kind of equation when the

driver f satisfying the continuous and stochastic linear growth condition.

This paper is organized as follows. In section 2, we present the basic
concepts that we will use throughout this work that help us solve our main
problem. The third section is devoted to study the BDSDE with one rcll
reflecting barrier when the driver f is stochastic Lipschitz with respect to
(y, z), we show that this type of equation admits a unique solution, in the
proof we use the penalization technique. In section 4, we try to compare
two solutions of RBDSDE with rcll barrier if we compare the barriers as
well as the generator f in the same sense. The fifth section is devoted
to proving the existence solution of RBDSDE with rcll barrier, but in the
case where the coefficient f satisfies the continuity with stochastic linear
growth, in the proof, we have approximated f by a sequence of functions f,,
which are stochastic Lipschitz. Finally in the last section, we studied the
existence of the minimal solution for BDSDE with rcll reflecting barrier and

left continuous and stochastic linear growth condition.

2. Setting of the Problem

Throughout this paper, let (2, F,P) be a complete probability
space. For T' > 0, let {W;,0 <t <T} and {B;,0 <t <T} be two inde-
pendent standard Brownian motion defined on (2, F, P) with values in R?
and R!, respectively. Let F}V := o(W,;0 < s < t) and .FET = 0(Bs—By;t <
s < T), completed with P-null sets. We put, F; := ftW \Y ffT, it should be
noted that (F;) is not an increasing family of sub o—fields, and hence it is
not a filtration. For each ¢ € [0, 7], we define

G = FVVFE,

the collection (gt)te[O,T] is a filtration. Also, we define an non-decreasing

process {A¢},( such that A; = fg aZds < oo, where {a? is a stochastic

Fiso
process with values in R such that a? is F;-measurable for a.e t > 0

Now, for any k, d > 1 and § > 0, we consider the following spaces of

precesses:
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o A? is the set of rcll and increasing, F;-progressively measurable process
K :[0,T] x Q = [0, +00( with Ky = 0 and E (K7)* < 400.

o L2 (8, Fr,R) is the set of Fr- measurable random variables £ : Q — R
with EetA7 |¢]* < +o0.

° ./\/lg (A, T, Rd) is the set of F;—progressively measurable stochastic pro-
cesses {0t € [0,T]}, such that

1942 =E J €™ [0, dt < oc.

. Mg’a (A, T,R?) is the set of jointly measurable processes {ty;t € [0, 7]},
such that ¥ is F;—measurable for a.e.t € [0,7] with

1912 = E [ a?ed |9,* dt < oo.

e We denote by Sg (A, T, Rd), the set of rcll and F;—measurable stochastic
processes {¥;;t € [0,T]}, which satisfy

19]|g2 = E ( sup edA W?) < 0.
J 0<t<T

o For o = (Y1)cp € S (AT, RY), ¢_ = (¢1—);<r is a process such that
Vt €]0,T7, ¢— = lim, ~ips, Yo— = 1pp and Agtp = Yy — ;.

For simplicity, we use the following notation for spaces of processes:
H3 (a,T) = M5 (A, T,RY) x M3 (A, T,RF?)

with the norm

1Y 2l = ¥z + 1121 -
Also, we denote the space

M2, (a.T) = (sg (A, T, RY) N M2 (A, T, Rd)> x M2 (A, T, RF*d)
with the norm

10V, 2)llg, = 1Y llsg + 1Y 1l g2 + 1121 gz

is a Banach space.
d,¢

Finally, ”Hi . (a,T) endowed with the norm H (15, 5) )
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Remark 1. If (a (), and (b(t));>( are two random processes with posi-
tive values such that a (t) and b (¢)are F;—measurable for a.e. t € [0, T, with
b > a, then

MY (A, T, RY) € M3* (A, T,RY),
Therefore,

’H%’C (b,T) C ”Hic (a,T).
In this work, we will mainly be interested to study the following RBDSDE

Y= 4 J] f(5, Ve Za)dst [ (s, Ve Z)dB o+ f] A~ [ Zd W,

0<t<T, L <Y, Vte|0,T],

the Skorokhod condition:

i) fOT (Y; — L) dK{ = 0, where K¢ is the continuous part of K,

ii) if K% is the discontinuous part of K, then K¢ is predictable
and K{' = Yo<s<t Yoo — Lso)” AL <o}

(1)

In this situation, the jumping times of the process Y come from the
process L. Then the process K is rcll.

Remark 2. If K = K¢+ K? where K¢ (resp. K% ) is the non-discontinuous
(resp. purely discontinuous) part of K, then K¢ is predictable. Therefore,
K¢ only works when the process Y has a predictable jump that occurs at a

predictable positive jump point of L. This means that
AK =-AY == (Yo — L) 1y, —y, 3

Remark 3. The following condition is equivalent to the Skorokhod condition
defined in (1)

T
/ (Vi — L) dK; = 0.
0
Indeed
T T T
|t royar = [ - poarg+ [ (i - Lo ax,
0 0 0

T
[ ti-Ldri+ 3 (- L) AKY
0 0<t<T
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T
_2
:/ (Y;g — Lt) thC + Z }(Y;— - Lt—) ‘ 1{ALS<0}
0 0<t<T

3. Irregular Barrier Reflected BDSDE with Stochastic
Lipschitz Coefficient

In this section, we mainly deal with the existence and uniqueness so-
lution for RBDSDEs with one rcll reflecting barrier ([Il) under stochastic

Lipschitz conditions.

3.1. Assumptions and definition

Assume the coefficient f: Q x [0,T] x R¥ x RF¥>4 5 RF g: Q x [0,T] x
RF x RExd _ RF*I and the terminal value &: Q — RF.

For § > 0 and (k,d) € (N*)?, we say that the data (&, f,g, L) satisfies
assumptions (H1) if the following holds:

(H1.1) f and g are jointly measurable and there exist theree non-negative
processes {1 (t) }g<y<rs {0 (1) fo<i<7> 1V (1) fo<i<7 and a constant 0 < o < 1,
such that:

(1) For any 0 <t < T, r(t), 0 (t) and v (t) are F}¥-measurable.

(2) Forall 0 <t <T, (y,4) € R¥ x R¥ and (2, %) € (R¥*4)”  we have

{ f(ty,2) = F( 0,9 <r () ly—gl+0(t) |z — 4],
’g(tvyvz)_g(tvy/)é)F SV(t)|y—y|2+a]z—é|2
(H1.2) Forall 0 <t <T,af =7 (t)+6*(t) +v(t) >0,

and A (t) :fg aZds < oo.

(H1.3) The barrier L: = (L;),~, is a consist of F;—progressively measur-
able real valued process and rcll processes satisfying that

(i) E (SupOStSTeQ‘SAz ‘Lﬂ2> < +oo, with L; :=max(L;,0),
and
(il) Ly < &, P almost surely.
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(H1.4) The integrability condition holds

E (/OTeaAtOfé?F + ]g(t)|2)dt> < 00,

where v(t): =~(¢,0,0) with v = {f, g}.
(H1.5) ¢ € L2 (6, Fr,R).
Now, let us give a definition of the solution of this reflected BDSDEs.

Definition 1. A solution of equation (@) is a (RF x R**? x R} )-valued
JFi—progressively measurable process (Y, Z, K') which satisfies (2.1) and such
that (Y, Z,K) € H}_(a,T) x A%

3.2. Uniqueness

In this subsection, we show the uniqueness of the solutions to reflected
BDSDEs. For that, let (Y!, Z! K') and (Y2, 72 K?) be two solutions of
the RBDSDE () with data (¢, f, g, L).

Proposition 1. Assume that (H1.1)-(H1.3) hold. Then there exists at
most one triplet (Y, Z, K) solution of the RBDSDE ().

Proof. If (Y1, Z', K') and (Y2, 22, K?) be two solutions of RBDSDE ().
Using the fact that ftT e (VL —Y2) (g9 (s, YY) —g(s, Y2, Y2)) d%s
and ftT ed4s (Y;, - Yf,) (ZS1 — ZS2) dWyg are two martingales with zero ex-
pectation, then by It6’s formula for discontinuous semimartingales and (H1.1),
we obtain

2 T 2 T
e(SAt }Y'tl o Yf‘ + 5/ 65A5 Y;l _ Y;Q‘ dAs +/ eéAS
t t

+ Y (AT - A YY)

t<s<T

7t — 72| ds

<2E/T€‘”“S (YL =Y2) (r(o) [¥) = Y[ +0(s)[2; — 22]) ds
t
+E/T65As (1/(5) Ve -V +alzl - Z§}> ds

T
+2E / e (YL —V2) (dK! — dK?). (2)
t
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Also thanks to Skorokhod condition ( see, e.g., B, Theorem 1.3, p. 587] for
more details), we obtain

T
[t (- v2) (axt - dx?) <o,
t

then, by Burkholder-Davis-Gundy inequality we get

T
E( sup 04 }Ytl—Yfﬁ—i-/ 04 (01 })/51—}/52}2dA5+02 }Z;—Z§}2d5)> <0,
0<t<T 0

with01:5—2—%and02:1—e—a. Choosing €, § > 0 such that o; >0

and o9 > 0, we have

T
E ( sup eH Yt1_Yt2‘2+/ A
0

z}— 72 ds | =o.
0<t<T

Finally, we get Y,! =Y;? and Z}! = Z? P a.s . O

3.3. Existence results via penalization method

In this subsection, we will prove the existence of a solution to reflected

BDSDE () via the penalization technic and the fixed point.

3.3.1. The independent case

Our main goal in this part of the subsection is to show that the RBDSDE
(@) has a solution when the coefficients f, g does not depend on (y, z), i.e.,

P—a.s., f(t,y,z) = f(t) and g (t,y,2) = g (t), for any t, y and z.

Theorem 1. Under (H1.3)-(H1.5). There exists a triplet of processes

Y,Z,K) € H? (a,T) x A? solve the following reflected BDSDEs with one
d,c
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rcll reflecting barriers

(Vi=c+ [T f(s)ds+ [T g(s)dB, + [T dK, — [T Z,dw,,
Ly <Yy Vtel0,T],
the Skorokhod condition:
i) fOT (Y; — L) dKf = 0, where K¢ is the continuous part of K,
i) if K is the discontinuous part of K, then K% is predictable
and K = > 0<s<t Ysm = Lo—) " Liar, <o}

(3)

For any n > 1, we consider the following BDSDE, which is a penalized
version of equation ().

Let (Y}", Z{*) be the solution of the following BDSDEs

e | " fs)ds + / U g()dB,+ / "k / Czraw,, @

where K" = n [} (Ls — Y/) " ds, f: Q% [0,7] = R and g: Q x [0,T] — R".

According to the result of Pardoux & Peng (1994) M], the BDSDE (4)
has a unique solution (Y",Z") € S2 (A,T, Rd) x M2 (A,T, RkXd), for any
n € Nand Vt € [0,7].

To proof this theorem we need the following three lemmas.

Lemma 1. Under (H1.3)-(H1.5), there exists a positive constant C' in-
dependent of n such that

Y™, z"l , +E(K}H <C.

2
d,c

Proof. Applying It&’s formula for rcll semimartingales to e?4t |Y;™ 2 we get
pplying t

T
S |}/tn’2+6/ A5 VT2 dA, + Z A5 (ALY™)?
t t<s<T

T T
gtz [y pds +2 [ Y gl)dB,
t t
T T T
_2/t Ay 7AW, _/t A ]Z;LFds—i—/t e g (s)* ds

T
o / MY KT, (5)
t
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Using the inequalities 2ab < ea? + %bQ, 2ab < %a2 + ng and taking the

expectation, then for t = 0, we obtain

2 0 g 2 ’ 2
E(!YO”I +§/0 M Y dA5+/O | Z7| ds)

2 (T 2 1
<E<6MT €12 + —/ %4 fs) ds + e( sup €204 }Lﬂ2> + = | KR
o Jo as 0<t<T €
T 2
[ lgoas), (6)
0
Furthermore,

Kn=Yo—¢— [T f(s)ds — [T g(s)dB + [T Zndw..
By the Cauchy—Schwarz inequality and isometry formula, we have

"2 R A e ROl 2 {om2
E|K7|"<CE { e [§]°+[Yg'["+ . 51 He(s)I"+|Z]7 |ds ¢
S

(7)

Combining (@) with (@), we have

T T
E(/ s ]YS”|2dA5+/ 65A5|Z§]2ds+|K%]2)
0 0

T 2
<CE (eMT o [t (2] R Jas o sup }Lff)-

0<t<T
Using again equation (Bl), by (H1.3)-(H1.5) and the Burkholder-Davis-

Gundy inequality we deduce that

E ( sup €4t || +/ 04s 1y d A, +/ 04s |z ds+ | K2 > O
0<t<T

Lemma 2. For each n € N*, we get

. 2
limy, s ool (SuPogthewAt [(Le = V)" ) =
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Proof. Using the following transformation

& =E+ [T f(s)ds + [ g(s)dB.,
Li=1L;+ f(f f(s)ds + f(f g(s)d%s,
Vo =Y+ fL f(s)ds + [ g(s)d B,

We conclude that
- - T T
v — g, +n/ (Lo — V)" ds — / ZrdW,.
t t
Let
dVn = n (ES - Yt") dt + Zrdw,,
Y = Lrp.
Since Ly < &7, then the comparison theorem (see, ﬂ, Lemma 3.1]) shows

that, for t € [0,T], Y;* < Y/ a.s.

Now, let o be a G;—stopping time, and put 7 = o A T. The integration
by parts formula implies that

T T

es_”(s_ﬂ[_/sds—i—/ e_”(S_T)ngWS.

e—n(t—T)f/tn _ e—n(T—T)er} +n/
t

t

Taking ¢ = 7 and the conditional expectation, the sequence V" satisfies the

following equality

T
Y'=E {e_"(T_T)LT + n/ e_”(S_T)LSds]QT} . (8)

T

In the other hand we obtain that

n—-+00 n—-+0o

T
lim (n/ e_"(s_T)Lsds>: lim (I{'+1I3),

where

It = nfTT e~ n(s=T) (f/s — LT) ds,
and
13 = nfTT e 5= L ds.
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Firstly, we calculate the limit of I

T — —
THIES n/ e nsT) (Ls — L;) ds

T
Sn/ e 5=V ds,

where sup ‘I_/u — I_/T} = Vs, using again the integration by parts formula,
u€|[r,s]
we have

T T
lim ne_"(s_T)VSdS: lim (—e_"(T_T)VT—{—/ e_”(S_T)dVS> =0,

n—-+00o . n—-+00

so, we have

lim I7 = 0.
n—-+00

On the other hand, it’s clear that lim I} = L., which implies that

n—oo

i (cmothr

T

T — —
e"(ST)LSds> =L,

consequently by Lebesgue’s dominated convergence theorem, we obtain
A -_— T o —
lim ¥"= lim E {e"<TT>LT +n / e”(ST)LSds|QT} =L, as.
n—+00 n—+00 .

From (8), Jensen’s inequality and Doob’s maximal quadratic inequality (see
ﬂﬂ, Theorem 20, p. 11]), we get
o NH]?
(Lt - Yt"> ‘ <E|[ sup ¥4
0<t<T

<J4E [ sup 204
0<t<T

E ( sup 204

0<t<T

e ( (L —yf)+)gt))2>
(L —@f)+)2> ,

where
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The sequence is defined by

T
(A7), ny = { L — e T9L0 1 / (L ds} ,
a t n>1

using the fact that (7}'),~; and (625At7rf)n are uniform convergent in ¢.

>1

Lebesgue’s dominated convergence theorem implies that

n—,oo OStST n—oQ OStST

_ N+ P
(Lt — Yt”) 0
n—oo

Using the fact ¥;» < ¥;* for all t < T, we deduce that

_ 2
lim E ( sup e24 | (L, —@f)*‘ ) < lim E ( sup e204 }wﬁﬁ) = 0.

Then

E| sup 204
0<t<T

n—oo

E ( sup 204

N b
(Le-¥)) = 0.
0<t<T
Finally, we get

E ( sup 24 (Lt — Y;”)JF}Q) — 0. (i

In the following lemma, we prove that the triplet (Y™, Z™, K™) converge

to (Y, Z, K).

Lemma 3. There exists (Y, Z,K) € Hic (a,T) x A? such that,

T
E ( Sup e(SAz ’}/t'r‘b . }/t|2 +/ 65145 |}/S1'L _ Yg|2 dA5>
0

0<t<T

T
+E (/ s |70 — Z, ) ds + sup ny—KtF) — 0.
0 0<t<T n—oo

Proof. For any n > p, it follows by It6’s formula for discontinuous semi-
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martingale that
) T T
B (0 =y s [ vl aa, s [ o1z - zzRas)
t ¢
T
<8 [ (V2 - V7)) (@K? - dK?).
¢
It is clearly seen that

T
B[ (v - Y2) KT - aK)
t

S

<E|[ sup s (Y — Ly)~ KP + sup A (YP - L) K2 .
0<t<T 0<t<T

Then by virtue of Lemma 2, we obtain
T T
B[ e ovipan s [ etz - zkas)
¢ t

S

<9E ( sup s (Y — L)~ Kb 4 sup ? (YP — L)~ K;k) ,
0<t<T 0<t<T

— 0.
n,p—>00

It follows that (Y™, Z™) is a Cauchy sequence in H? (a,T). Then there exists

a couple of processes (Y, Z) € HZ (a,T) such that

T T
limE</ ed4s |YS”—Y5|2dAS+/ s yzg—zs|2ds) =0.
t t

n—oo

Using the Burkholder-Davis-Gundy inequality we deduce that

lim E ( sup €4t |Y; — Yt|2) =0.

Now, we show prove that lim, K] = K; for any t € [0,T] a.s., where

K € A2. Since

t t t
Kt:YO_Y;t_/O f(s)ds_/o g(s)d§s+/0 ZsdWs,
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we have
2 2 2 t 2
KP — Ky <33 (e‘“‘t Y =Y + Y5 - Yy +/ |20 — 7 ds) :
0

Then it easy to get that

E ( sup |K}' — Kt]2> — 0,as n — 0.
0<t<T
Finally, we deduce that

n n n n 2
IY"=Yllsz + Y=Yl y20 + 2" =2 ps2 + E (021;£T|Kt — K| > 0
O

Proof. of Theorem 1 It remains to prove that L; < Y}, Vt € [0,T], a.s,
and the Skorokhod conditions.

e Using Lemma 2, we have for n € N, L; <Y}, then L; <Y;.
e Now, we prove that, [; (Y; — L) dK{ = [ (Vi — L,—)dK{ = 0. We

define the processes

pr = Lily<ry + =7y + f[f f(s)ds + f[f Q(S)dgs

Note that p are rcll processes and uniformly square integrable. Using the

Snell envelope notion, we have that S (p): = esssupE (p; |G;), where
TE'R),T

To,r is the set of G stopping time, such that
Tor: = {7 stopping time with 0 <7 < T a.s}.

Now, S (p) is a the smallest discontinuous supermartingale which domi-
nates the process p. Then, by the Doob—Meyer decomposition theorem,
there exists an Gi-uniformly integrable martingale M and a unique G-
adapted rcll non-decreasing process K = Kf — K{ with E (Kr) < oo and
Ky =0, such that S (p;) = M; — K. Then

S(p) =E (¢ + fy F(8)ds + [} g(s)dB. + Kr|G: ) — Ko
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Using E, Theorem 2.34] or B, Proposition A.4], we obtain
{AKY=K? =K% #0} C{S_(p) =p-}.
Then the following holds
Jo (S—(p) = p-)dK{ =0.
By some property of the Snell envelope (see ﬂ§, Lemma A.4]), we get
Jo (S(p) = p)dEs = [ (Yy = Ly) dEK§ = 0.
Theorem 3.1 is then proved. O

The main result of this section is the following.

3.3.2. THE GENERAL CASE

We now state the existence and uniqueness result for equation ().

Theorem 2. Under (H1), the reflected BDSDE with one rcll reflecting
barriers associated with (&, f,g, L) has a unique solution (Y, Zs, Kt).

Proof. We will show the existence of the solution to (1) by applying the
fixed point theorem. Let H? (a,T) be the space of F-measurable processes
(Y, Z) endowed with the norm

T 3
]|(Y,Z)]|5:{E/ S (af]Yt|2—|—|Zt]2>dt} 6> 0.
0

Let ® be the map from H2(a,T) into itself, which to (Y,Z) associates
o (Y,Z2) = (Y, Z ) where (Y, Z, K) is the solution of the following reflected
BDSDE

T T
Y, = §+/ sts,Z>ds+/ g(s,Ys,Zs>d§5+/ dF,
t t

/_Kmm, 0<t<T.

Let (Y/, Z/) be another couple of H2 (a,T) and @ (Y, Z) = (17/, Z’) .
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Then using It6’s formula for discontinuous semimartingales, we obtain,

for any t € [0,7],
9 T
A +6 / ed4s
t

Y-V,

Using the fact that T e04s Y. — Y. ) (dKs —dK.) <0 and 2ab < a2+
t S S €

eb?, then taking expectation, we get for any € > 0 :

Zs— 7,

9 T
ds + / eaASaz
t

;12

175—}75/ ds

’ ds)

2 T
ds + « / e4s
t

Y, -Y.

S

Zy— 7.

T
—l—e/ 04s
t
T
—I—IE(/ e‘;ASaz
t

Yts_Yts/ ZS_Z;

2
ds) .
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This implies that,

T 2
IE/ e4s <((5 —-1- efl) ag > ds
t

T 2 T
< QE/ 45 g2 ds + (e + «) E/ ed4s
t t

- 12 - -,
VY| +|2.- 2

/ /2
Y, - Y, Zy— Z.| ds.

Choosing 6 > 0, such that § > 14+ ¢~ + GJ%Q and define ( = Hia, we obtain

T 2 T 2
E (C/ 452 ds + / s ds>
t t
T 2 T 2
<(e+a)E (C/ s 2 ds + / s ds) .
t t

Therefore, choosing € > 0 such that (e + a) < 1, then ® is a contraction on

}75—)75/ ZS_Z.;

Y, - 7.~ 2,

H2 (a,T) and it has a unique fixed point on H2 (a,T’), which is the unique
solution of RBDSDE ([l) with data (£, f,g,L). a

4. Comparison Theorem

In this section, we show a comparison theorem for the reflected BDSDEs
with rcll barrier ().

Theorem 3. Suppose that L, L' be two obstacles and HLf "be two stochastic

Lipschitz drivers. We assume, in addition, the following assumption

£<¢,
(H1'6) f (S7y7 Z) S f/ (S’ y’ Z) )
Y (s, y, z) €[0,T] x RF x R¥*4 4P x dt a. s.

Let (Y, Z,K) and (Y, Z,K)be two solutions to the reflected BDSDE associ-
ated with (&, f, g, L) and (respectively (§, f, g, L)), then we have

vtel0,T], Y, <Y, P—as.

Proof. Let us show that Y; < Y;/, by Meyer-Itd’s formula (see, e.g., ,
Theorem 66 p. 214] or E, p. 349]) with the convex function z — (z1)?
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implies that, for 0 <t < T,

((Yt—Yt’)+>2+ 3 { (vo-¥) - ((Y —Y;)+>2

t<s<T

~((e- g’>+)2 ¥ z/tT (Voo =) (46,700 20) = F5,Y2, 20)) ds
+2/tT (YS, _y;_) (g(s,YS,ZS) 9(s,Y.,Z}) ) iB,
+ Q/tT(YS_—Y;_)Jr (dKS - dK;) —Q/tT<YS_ —:s’_f (ZS—ZS) AW,
T
+/t 1{YS>Y;})9(37Y;7ZS) 9(5,Ys, Z,) st—/t Ly,
Since (YS—YS'>2— <<YS—Y5'>+)2—2 (1@,—1/;,>+AS (Y—Y’) > 0 and
(5 — §/>+ = 0, then the integration by parts formula give
A ((Yt - Y{)+)2 +5/T65As <(Y - Y;)+)2dAs
t
+ /tT 1{YS>Y5’}6M s 2ds
<2/ Ce (v =) (Y Z0) = (5., Z0) s
t
n 2/tT ¢SAs (YS, - YS’,)+ (dKS - dK;)
+ 2/tT SAs (YS, - Yg’_)+ (g(s,YS,ZS) 9(s,Y. . Z. )) 4B,
- 2/tT ¢dAs (Ys_ - YS/_)+ (ZS - ZS) AW,

T
+/ 1{YS>Y5/}65A5 ‘g(s’Y;’ZS) (S’Y:97Zs)
t

2
Zs| ds,

2
ds.

Using the Burkholder-Davis-Gundy inequality (see, ﬂa IE we deduce that
; \ T
the process fg e4s (Ys_ - Ys_> (g(s,YS, Zs) —g(s,Y., Z.) ) d§
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;N\t ,
and [T ed4s Y. —Y _ Zs — Zs) dWy are uniformly integrable martin-
t s

gales, then taking the expectation on both sides, we obtain
A2 T A+ 2
E eéAt <<Yt_Yt> > +5/ ecSAs ((YS_YS> > dA,
t

T oA 2
+ 1 / s d
/t {ye>v] }e 5

<2E /tT M (Yo = Y1) (£ Yer Z) = £,V 2)) ds

T ot /
+2F / e (Yoo =) (aK, - dK])
t
T / / 2
+/ 1{Yg>Y’}eMS )Q(Says,zs) —9(s,Y5,Z)| ds |.
t © S
Note that if Y > Y, then Y > L, which implies that dK¢ = 0 and thus
T o+
/ (st - st) dK¢ = 0.
t

Also, when the purely discontinuous K¢ increases at s, we should have L,_ =

Zy — Z,

Y,_, which implies that

s\t s\ T
S (v -vl) ari= > (1o -vl) aKi=o.
t<s<T t<s<T

In the same way, we obtain

T PNT
/ (Ys_—YS,) dK. = 0.
t
Since f (t,Y{,Z;) — f (t,Yt/, Zg) < 0, therefore for any t < T
) 2 T ) 2
E{eéAt<<)/t_)/t) ) +5/ eéAs ((}/S_)/s) ) dA,
t

+ ! 1 1y e04s ’ ds
\ {vs>v!}

Zs— 7,
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<28 [ 6 (v =¥ (Ve 2a) — flo ¥, Z) ds
t

2

T
+E/t Lyooyy € os.Ye, 20) = (.Y, 20)| s,

we obtain from (H1.1) and (H1.2) that
A

Ee“t((yt Y, >+5/ (Y Ys>>dA5

T 2
+/ e s ds}

¢
T

SQE/ ed4s (r(s) (s)
¢

;)ds
T 2 T
+E</ v (s) s f ds+a/ 4
t t
1b2

2
o ds) .
Using the inequality 2ab < ea? + <

A2 r A2
E{e‘mt<<Yt—Yt) ) +al/ eMs((Y;—YS) > dA,
t
T 2
+02/ 4 s| dsp <0
t

Withalzé—e—Zandagzl—%—a. Choosing523+eande:1% we

o

Yo Y,

, we have

derive by Gronwall’s lemma that

((Y; - Yt')+>2] ~0.

Finally, Vt € [0,T],Y; <Y/, P —a.s. O

E |24t

Corollary 1. Assume that:

i) f independent of z,
ii) f and g satisfy (H1.1), ¢ < 5/ and Ly < L;, forany t <T,

i) f (t,y;’) <f (t,y;’,zg).
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Let (Y, Z,K) and (Y, Z, K) be two solutions to the RBDSDE associated with
(&, f, g, L) and (respectively (5, f, g, L)) Then we have

P—as. Y;<Y.

5. Irregular Barrier Reflected BDSDE with Continuous and
Stochastic Linear Growth Coefficients

Our goal in this section is to prove an existence theorem for BDSDEs
with one rcll reflecting barrier ({l) when the coefficient f is continuous with
stochastic linear growth.

5.1. Assumptions, approximation lemma and definition

Now, we assume the following assumptions

e (A1.6) For all (t,w,y,2) € [0,T] x Q x R¥ x RF*d_ f (¢t w,y, 2) is
JFi:—measurable.

e (A1.7) For fixed w and ¢, f(t,w,, ) is continuous.
e (A1.8) For all (t,w,y,2) € [0,T] x Q x RF x RF*xd

) 1w, 2)| < e+ O)lyl+0(0) ],
i) 1g(t,w,9,2) = gt 9, AP <v (@) (ly— 9P ) +a (12 = 2P)

with 0 < a < 1. Where ¢, r, 8 and v are four nonnegative processes
such that for a.e. t € [0,T], ¢ (t), r (), 6 (t) and v (t) F}V —measurable.

e (A1.9) The integrability condition holds:

T 2
SAs 1 £12 sa, (@)l 2)
E(e €] +/0 e ( 2 +|g(t,w,0,0)|" )dt | < oco.

Before to state our main result, we first give the following technical ap-
proximation lemma, which generalizes the corresponding result of Lepeltier
and San Martin ﬂ]

Lemma 4. Let f: Q x [0,T] x R¥ x R¥*4 — R¥ be a measurable function
such that:
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For a.s. every (t,w) € [0,T] x Q, f (t,w,y, z) is continuous.
For every (t,w,y, z) € [0,T] x  x RF x Rkxd

[f (tw,y,2)[ <o) +7 () [yl +6(8)]2].

where @, T and 6 are three nonnegative processes such that for a.e. t € [0,T],
o (t), r(t) and 0 (t) ]-}W—measumble.

Then there exists the sequence of functions fy

fo(tw,y,2) = inf {f(t,w,5,2)+n(r@)|y—7g+0()]z— 2]},
(4,2)€Q

are well defined for n > 1 and satisfy the following conditions

(i) For allmn > 1, (t,w,y,2) € [0,T] x Q x RF x RF>xd

[fn (b w,y,2)| <@ (8) 47 (8) ly[ + 0 (2) |2

(ii) For any (t,w,y,z), fn(t,w,y,z) is non-decreasing in n.
(iii) For all (t,w,y,2) € [0,T] x @ x RF x RF*4 if (t,w, yn, 2n) — (t,w,y,2),
then

In (t)w)yn,zn) = f (t)w)y)z) .
(iv) For anyn > 1, (t,w) € [0,T] x Q, for all (t,w,y,z) € [0,T] x Q x R* x
R*¥4 and (t,w,§,2) € [0,T] x Q x R¥ x RF*4we have

’fn(t7w7y7z) _fn (t7w7g7§)| < ”(T(t)|y—2~7| +0(t)|2—§’).

Now, we will introduce the definition of a minimal solution to the
BDSDE with one rcll reflecting barrier.

Definition 2. A triplet of processes (Y, Z, K) of H2_(a,T) x A% is called a
minimal solution of () if for any other solution (Y, Z, K), we have Y; <Y,.

5.2. Existence result
Now, by the inf-convolution approximation of the function f (Lemma

4) and the comparison theorem (Theorem 3), we establish the following
existence theorem.
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Theorem 4. Assume that (A1.6)-(A1.9) and (H1.2), (H1.3) hold.
Then, the RBDSDE () has a minimal solution (if, Z, If) € Hg,c (a,T)x A2

From Lemma 4 there exists a sequence of functions f, associated with
f, which is of stochastic Lipschitz-continuous and non-decreasing in n. Now,
for every n € N*, let ¢ and A™ be two stochastic processes with nonnegative

values defined by

Then, from (A1.6)-(A1.8) and (H1.2), a? and A} are 7}V —measurable,
for a.e. t € [0,T] such that Vn € N*, 0 < a < a,, and A < A" < n2A. Thus,
by Remark 2.1, for any n > 1

H5.(a",T) C Hj.(a,T). (9)

Furthermore, from (A1.9), it is easy to see that the data (&, f,,9)
satisfy the following properties Vn € N*

E (47 [¢[2) < (47 |¢2) < oo,
E fy ¢4 (L2leSO8 1 jg(t,0,0,0)?) dt
< Jy et (9L 4 16(t,,0,0)[2) dt < oo,

Therefore, using section 3 ( stochastic Lipschitz case), we get that for every
n € N* there exists a unique solution (Y™, Z", K") € HZ _(a™,T) x A? for
the following RBDSDE

T T
Vi =€+ / fuls, Y1, Z0)ds + / o(s, Y7, Z0)d B,
t t
T T
+/ ng—/ ZrdwW,,  0<t<T. (10)
t t

Consequently, by @) Vn > 1, (Y™, Z" K") € ’Hg’c (a,T) x A2.

Also, the existence and uniqueness result for stochastic Lipschitz case

implies that there exists a unique solution (U,V, K) € ’Hic (a,T) x A? for
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following reflected BDSDEs
T T
U, = g+/ H(s US,V)ds+/ g(s,Us,%)d§5+/ dK,
t t
/ VidW,, —0<t<T,

because, the function H (t) = ¢ (t)+7r (t) |y|+ 6 (t) |z| is stochastic Lipschitz.
Secondly, since for fixed (t,w,y, z) and Vn € N*,

fn (tawaya Z) < fn+1 (t,W,y, Z) <H (t) ’
it follows from the comparison theorem (Theorem 3) that for every n > 1,
Y"<Y"™ <U, dP®dt—a. s. (11)

The idea of the proof is to establish that the limit of the sequence
(Y™, Z™ K") is a solution of the reflected BDSDE ([IJ). In the next lemma,
we prove that the norm ||(Y, Z )HH2 is bounded independently of n.

d,c

Lemma 5. Under (A1.6)-(A1.9) and (H1.2), (H1.3). There exists
a constant C' > 0 independent of n such that

¥ 2l,, <. (12)
d,c

Proof. For any 6 > 0, 1t6’s formula for applied to e’ ]Ylt"|2 provides

T
v a[ h praa s [ zPas s Y o (o
t t

t<s<T

T T
= 2 AV g v 2 s 2 V(5,7 204,
t

T
- 2/ 5A9YZZ_Z;LCZW +/ 0As ’g(S,st,Zg)F ds + 2/ eéAsY's’ﬂ_ng‘
¢ t
(13)

Taking expectation and t = 0, we get

T T
IE<|Y0”|2+6/ e4s ]YS”|2dA5+/ e4s |zgy2ds>
0 0
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T
<E (e‘“T € +2 / AV f(s, Y, Z?Ms)
0

T T
cu ([ et tasee [Tty ary).
0 0

Using the inequalities 2ab < Lla? + €b?, (a+ b)? < (1+¢)a®+ f’—je and

hypothesis (A1.8), (H1.2), we get
T T
E<|Y0"y2+5/ eH4s ]YS"|2dAS+/ et |Z§]2ds>
0 0

SAT 1012 N [T saL ong2 LTy — T sale(s)
SB[ (242 ) [ 040 |VI P dA e 20 ds+ | A s
€7Jo 0 0

a?

T T
+E<(1+e)/ a2 |V ds+(1+e) a/ s | 272 ds
0 0

1y (7 g
+(1+—>/ el !g(s,w,0,0)12d8> +2E/ YK
€ 0 0

Therefore, choosing €, § such that (1—e— (1+€)a) > 0 and (2+1) +

(1+¢€) <0, we obtain
T T
E (yyon|2 +/ s Y12 dA, +/ e4s yzg|2ds)
0 0

T 2
<CE<€5AT |§’2+/ 65A5|()D(S)’ ds
0

2
asg

T
1
+/ ¢ |g(5,0,0)|” ds + —  sup ¢ \L?}2)+6|K%I2>- (14)
0 € \o<t<T

By equation (I0)), we have
T T T 2
E ]K%|2:IE<YO"—§—/ (s, Y, Z0)ds —/ g(s, Y], Zg)d§5+/ Z;LdWS) ,
0 0 0
Using the Cauchy—Schwarz inequality, isometry formula and the inequalites

2
ra(zt) < a? and 0 (t) < a?, we provide the existence of a positive constant C
t
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independent of n such that

2
s

2 2 SA 2 g 5A |<P(S)’2
E|K7|" <CE( 1+ |Y3'|" + T |¢] +/ e?s T ——ds
0 a
T T
+/0 eMSa§|YS”]2ds+/O s |z ds . (15)

So, combining ([[4) with (I5) and using assumptions (H1.3), (A1.9), we
obtain

T T
E(]Y()”!2+/ eMSaiyy;"FdH/ e4s yzg|2ds)
0 0

SA 2 T §A ’SO(S)|2 g §A 2
<CE[ 1+ ™7 |¢] +/ e STds—i—/ e’ |g(s,w,0,0)|" ds
0 a 0

S

1

2 uil))
€ \o<t<T

<C < 0.

Hence HYHM?G + HZ||M§ < C < o0. Now, we prove that HYHS(? <C < 0.

Using Burkholder-Davis-Gundy inequality provides

Y " ls2 + 1Y + 12" pp < C < o0, O

HMga

In the following lemma, we prove that the couple (Y™, Z™) converge to
(Y, Z) in H (0, T).
Lemma 6. Under (A1.6)-(A1.9) and (H1.2), (H1.3), we have

V"= Yllge + V" = Yl pze + 12" = Zllpe = 0.

Proof. From ([IIl) and (I2), there exists a process Y such that ;" 7Y,
a.s. for all ¢t € [0, 7). Therefore, it follows from Fatou’s lemma together with
the Lebesgue’s dominated convergence theorem that

Ylss <C and T [[Y" = Y[ g2 = 0. (16)

n—oo

Next, for all n > 1, by It6’s formula applied to discontinuous semimartingale
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eéAt ‘Y;n—l-l _ Yinf

, we get

}/SnJrl . }/Sn‘2 dAS

OA ‘Yth B Ytn‘2 N 5/T A

¢
T

+/ (s | znt1 —Z§}2ds+ Z o04s (A Y —ASY”)2

t t<s<T

T
= / A (Y — V) (g (s, YL, 20 — fo(s, Y, Z1)) ds
t

T
+2 / A (Y =Y (g(s, YO, 2040 — g(s, Y, 20)) d B
t

T
~2 / s (Y — Y ) (20— Z) W
t

T
+ / e4s
t

T
1o / A (Y YT ) (KT — dKTY | (17)
t

n n 2
g(s, Y Z0Y) — g(s, Y, Z1)| " ds

Letting t = 0 and taking the expectation in ([I7]), it follows from property
(i) in Lemma 4, Cauchy-Schwartz inequality and assumptions (A1.8),
(H1.2) that

T T
E(}YO"“—YO”\QM/ eMSai\Y;H—)@"}?dH/ e’
0 0

Z§+1—2§}2d3>
T on(le(s)” 2 2

<o (B (5 wa o) (v P ) + 20t P12 ) ds
0 s

T
X (E/ e4s
0

T T
—i—aIE/ e Zg+1—zg}2ds+21a/ e (Y -y ) (K —dKY) .
0 t

1
2

1
3 T
YS”'H—YS"}QdS> +E/ 65A3a2(s)‘Y5”+1—Y9"}2d3
0

Therefore, using the fact that ftT s (Y — vy ) (dKPH —dK?) < 0
and from ([2)) and assumptions (A1.9), we provide the existence of a con-

stant C' > 0 independent of n such that

T
(1-— a)E/ s
0

1

T 2
Zmt Zg}st <C (E/O e‘SASag y/ YS”‘2 ds>
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Consequently, it follows from (I6) that (Z"),., is a Cauchy sequence in
./\/l?g (A, T, Rd). Then there exists an process Z € ./\/l?g (A, T, Rd) such that

Jim [[Z7 = Z][ p2 = 0.

On the other hand, taking supremum and expectation in (I7), we deduce

from the Burkholder-Davis-Gundy inequality that

T
E ( sup <€6At v+ _Ytn}2>> <c (E/ oOAs
0<t<T 0

from ([I6]) the right-hand side converges to 0 as — 400, from which we deduce

1
Yol oy s )
s s‘ § ’

that P-almost surely, Y converges uniformly to Y. So Y is rcll and we have
E (supeo et Yi[?) < C. O

Proof of Theorem 4. Now, we show that the triplet (Y, Z, K) verifies a
reflected BDSDE with one rcll reflecting barrier (Il). Since (Y",2") — (Y, 2)

in H2_(a,T) ( see, Lemma 6), along a subsequence which we still denote
(Y™ Z™), we get

Y™, zZ" — (Y, Z) dt ® dP a.e.,

and there exists y € /\/lg (A,T, RkXd) such that for all n > 1, |Z"| < x
dt @ dP a.e. Therefore, by property (ii7) in Lemma 4, we have

Fa (LY Z0) = £ (4 Y Z0) dt @ dP ae.,

Moreover, from property (i) in Lemma 4 and inequality (III), we have

|fr (6, Y, Z1)] < X (t) < oo dt @ dP a.e.,
with
S (t) =)+ @) (| +I1U) +0 () [xi -

Then it follows from the (A1.6) and Lebesgue’s dominated convergence
theorem that

T
E/ o (5,7, Z0) — (s, Ya, Z,) ds — 0, as n— .
0
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We have also
r 2
B [ 19(s,Y7.20) ~ 9 (5. Ye, 20 ds
t

T T
501@(/ e5ASa§|Y:—YS|2ds+a/ eMsyzg—zsﬁds),
t t

Let

B T T T T

Yt=§+/ f(s,Ys,Zs)ds+/ g(s,m,zs)d§s+/ sz—/ Z,dw,,
t t t t

where K = K¢+ K9 defined as before, (Y, Z) € Hg,c (a,T) such that Y; > L;
vt € [0,T) and [ (V; — L;) dK; = 0. By 1t&’s formula, we obtain

T T
E <€6At ‘Y;" — Yt‘2 + 5/ e‘;ASai ‘st - 17;}2613 +/ %4 VA Zs}2ds>
t t
T —
<8 [ e (VI = Vi) (s Y2 20) — J (s Vi Z0) ds
t
T — —
+2E / e (YL - Y,_) (dK7 — dK,)
t
T
+IE/ s |g (s, Y, Z%) — g (s, Ys, Zo)| ds.
t

Using the fact that ftT ed4s (Y — Y, ) (dK} — dK,) <0, we have

T
E (eMt |y — f/}}Q —l—/ %4
t

Z — Z5‘2ds>
T —

<9E / A (Y~ Vil) (fuls, YT Z0) — (s, Y, Z,)) ds
t

T
+E / €5 |g (5, Y7, Z7) — g (s, Y, Zo)|2 ds,
t

— 0.

n—oo

Furthermore,

T
(17 = )P = (07 = Vi = [ (s, Y2 22) = (5.5 20)) ds— K =Ky
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T T B
- / (9(s, Y, Z0) —g(s, Yo, Z)dBurt [ (20— 2,) dW,)2.
t t

Using B-D-G inequality, we get

K" = Kl gp SC(IY™ = ¥ lgs + (s, Y35 Z2) = £ (5, Y0 Zo)l s

0. Y2 22— g5, Yo Z) g + 1127~ 2] )-

Finally, passing to the limit we get K" — K = K¢+ K% Consequently we
obtainV; =Y, and Z, = Z, dP ® dt — a.s.

Now, we show that the triplet (Y, Z, K) is minimal solution of RBDSDE
@.

Let (17, Z, f() € 7—[30 (a,T) x A? be any solution of reflected BDSDE (II)
and let us consider for any n > 1 the reflected BDSDE ([0 with its solution
(Y™, Z™ K™), which converges to (Y, Z, K). Since f, < f for all n > 1, we
get by virtue of the comparison theorem (Theorem 3) that Y < Y for
all n > 1. Therefore, Y < Y. That proves that (Y, Z,K) is the minimal
solution for reflected BDSDE ([I). O

6. Minimal Solution of Irregular Barrier Reflected BDSDEs with

Left Continuous and Stochastic Linear Growth Generators

In this section, we mainly deal with the result that prove the existence
of a minimal solution for reflected BDSDEs () under left continuous and

stochastic linear growth conditions.

6.1. Assumption and definition

We assume that f and g satisfy the following assumptions:

e (H1.10) Stochastic linear growth: There esists a nonnegative process
¢ € M3 (A,T, Rd) such that f satisfies (H1.8)(7).

e (H1.11) f(t,-,2) : R — Ris left continuous and f (¢,v,-) is continuous.

e (H1.12) There exists a continuous function 7 : [0, 7] x (R)* x R? sat-
isfying for y1 > y2,
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2
(y1,92) € (R)?, (21, 22) € (Rd)
[m(ty,2) < (@) |yl +0(1) |z,
f (t7w7y17 Zl) - f (t7w7y27 ZQ) > T (t7y1 —Y2,21 — ZQ) .

e (H1.13) g satisfies (H1.8)(i7) and ¢(¢,0,0,0) = 0.

6.2. Existence result

In this subsection, we show the existence solutions to BDSDEs. Now

we prove a technical Lemma before we introduce the main theorem (see ﬂa]

and [13)).

Lemma 7. Let 7 (t,y, z) satisfies (H1.12), g satisfies (H1.13), h belongs
mn Mg (O,T, Rd). For a discontinuous function of finite variation S belong
in A2, we consider the processes (Y, Z) € Hg,c (a,T) such that:

V—et [T (W (s,w,?;,Zs) +h(s)) ds + [T ds,

+ 19 (s.0.Y0, 2,) dBy - [ Zaw,, 0 <t <T, (18)
S e4vdS, > 0.

Then we have

(i) The BDSDE ([I8) has a least one solution (Y, Z) € ’Hic (a,T).
(ii) if h(t) >0 and & > 0, we have Y; > 0, dP x dt — a.s.

Proof. (i) Obtained from a previous part.

(ii) Applying It6’s- Meyer formula to e’

5A; v —|? T sas o2 g 5A 2
E(e t Y;_) —|—5/ e’ s szi) dA5+/ 1{?5<0}€ s dS)
t t
T T
—F (eMT \5*}2) —21E/t A (Y;W(S,YS, Z5) + h(s)) ds—Q/t Ay =4S,

T
i 5A,
+ E/t 1{YS<0}6

-2
Yt_) , we have

Zy

2

g(s,ffs, Zs) ds.
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Since h (t) > 0, £ > 0 and using the fact that fT MY ~dS, > 0, we obtain

2 T
t
T
< E(Q/ eéAS ) ( Y, Zs) d8+/ 1{)7S<0}66A
t t

According to assumptions (H1.12), we get ‘7’[’ (3,375,25>
0 (t)

?_

S

Y,

S

Y,

< r(t)

_l’_

, by assumption (H1.13) for g and Young’s inequality, we have

2
ds)

2 g A
ds+(a+mE/ 15,0y
Rt

Zy
E (%4 |y~ 2+ Tl > s
t ] {vi<0}

1 T
< <3+ —) E/ eaASai
B ¢

Therefore, choosing 8+ a < 1, we get

E <65At th) < (3+ %) IE/ g
t

Therefore, choosing 3 such that 0 < 3—1—% < 1 and using Gronwall’s inequal-

Zs

\ Z,

S

-2
ity, we have, E (e‘mf Y;_‘ > =0, dP x dt — a.s. for all t € [0,7]. Finally

implies that Y;~ > 0, dP x dt — a.s. for all t € [0,T]. 0O

Now by the above theorem, we consider the processes (ﬁO,Z?,K?) ;

(Yto, A8 K?) and sequence of processes (f@", Zf, f(tn)n>o respectively min-

imal solution of the following RBDSDEs for all ¢ € [0, 7]

;

=+ [T (s (5) Y] +0.(5) |22 + ] ds+ [T (s, Y0, 29)d B,
+ [T~ [T 20w, 0 <t <T, Y2 > L, ¥t €[0,T],
the Skorokhod condition:
i) fOT (V0 — Ly) dK)° =0, where K% is the continuous part of K°,
i) if K% is the discontinuous part of K°, then K%¢ is predictable

and K% =37 (V) — L) L{ar,<o)-

(19)
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é“—i-ft [ —0(s) (ps}ds+ft 3170 Zo)d§
+ft dKY — ft ZOdWS, 0<t<T, Y?>L, Vtel0,T],
the Skorokhod condition:
fo ( Lt> dK 0.c =0, where K¢ is the continuous part of K 0,
ii) if K% is the discontinuous part of K 0. then K04 ig predictable

and K04 = ZO<S<t( Ls—) Lar,<oy-

(20)

and

=&+ [ F, VP e s (5, VR -V, 20 - 207t | ds
+ [ g(s, Y0, Z?)dgs + [laR? — [T Zraw,—, 0<t<T,
Y/" > L, vt €[0,T]
the Skorokhod condition:
i) foT (ﬁ”—LO df(f’cz(), where K™€ is the continuous part of K™,
ii) if K™ is the discontinuous part of K " then K ig predictable

and K™% = Zo<s<t< Ls—) 1AL, <0}

(21)

For these solutions above, we get the following lemma.

Lemma 8. Under the assumptions (H1.1)—(H1.3) and
(H1.10)—(H1.13), we have for anyn > 1 and t € [0,T]

Yy <yt <y

Proof. We will prove Y/t” < f/t”H at first. For any n > 0. For any n > 0,

we set

Spp = pptt = pp,

and

AP (s, 0¥ 620 ) =4 (s, OV Y, 620+ Z0) (s, Y, Z1).

Using equation (21I), we have

syt = /t ' (7r (3,5?;”“,52;1“) +9g+1) ds — /t T(sZngWs
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T ~ T ~ ~
+ / a(sR) + / Ag' (s, 674 6271 d B,
t t

where 67! = Af" (3,5)@”,52?) - (s,éf@”,éZ?) and 09 = IIL,vn > 0.

According to the assumptions on f and g, we can show that 62 and Ag"*!,

Vn > 0 satisfy all assumptions of above Lemma. Moreover, since K" =
K™+ K™% where K™ (resp. K™% ) is the non-discontinuous (resp. purely
discontinuous) part of K™, In first part, we can show that

T ~ ~
/ (Vi - L) k7 =0,
0

Using the above Lemma, we deduce that 5?}”“ > 0, i.e. ?t” < ?t"‘*'l,
vt € [0,T]. Now we want to prove Y, < Y;". By equations (20) and (), we
have

F1oyo — /tT (W(s,aﬁl,azg)+n;)ds+/tTd(f<;_kg)
[ (o (7 2) o (70 20)) B [ ozaw,

where T} = f(s, V2, 29) 47 (s) [72] +6(5)
we have II > 0, because (}7;0’ ZP) is the solution of Eq. (I8), we get II! €
Mg (O,T, Rd). Therefore, from Lemma 7, we get f/tl > }7,50. So, we have

]

+ 5. By hypothesis (Hl.l())

Y2 <Yr<yrt vielo, T

Now we shall prove that ﬁ”“ <Y ¥n >0, by Egs. ([3) and 1))
B T
Y0 — gt :/ (—r(s)
t
T o T B
o (a5, ¥2,29) - 9077, 2)) d B [ a (0K )
t t

T
n / (ZQ _ Zg“) AW,
t

v? =¥ =0 (s)

- ZQ“) + 1 %) ds

where

=1 (s)

v? -V 40 (s)

20— 200 1 (s) V2] +0.(5) | 2°)
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(s, Y2 — (s,mﬂ,az;ﬂ) .

By Lemma 7 we deduce that Y — Y"™ > 0, ie. Y > V"' for all
t € [0,7]. Thus we have for all n > 0

YO > Y >V > Y0 dP x dt —a.s. Yt € [0,T].
The proof of Lemma 8 is complete. O

Theorem 5. Let ¢ € L2(5,Fr,R) and t € [0,T]. Under assumption
(H1.1)—(H1.3) and (H1.10)—(H1.13), the RBDSDEs (@) has a min-
imal solution (Y,Z) € Hg,c (a,T).

Proof. From Lemma 8, we know (Y/t”) is increasing and bounded in

n>0
M3 (A, T,RY).

Since ‘f/t”) < max (ﬁO,YtO) < ‘}*/to‘ + |Y?| for all ¢ € [0, 7], we have

2 2 12
<E| sup A Yto‘ +E( sup A Y;O‘ <00,
0<t<T 0<t<T

then according to the Lebesgue’s dominated convergence theorem, we deduce
that (Y/t”) - converges in Sg (A,T , ]Rd). We denote by Y the limit of

supE| sup e’ Y/t”
n 0<t<T

(ﬁ”)nm. On the other hand from equation (21I), we deduce that
~ T ~ ~ ~ ~ ~ ~
Yy =¢ +/ [f(S,YS”, ZN)ds+7 (S,YS”Jrl -Y", Z;H'I—Zg)] ds
t
T : T T
+/ g(s, YL Zg+1)d§5+/ dK™ —/ ZMdW,—, 0<t < T,
t t t

Applying 1t6’s formula, we obtain

~n+1
Zs

- 2 T
B [¥g+| +6IE/ eHAs ds

- 2 T 2
Y'Sn-l-l‘ dAs + E/ eéAs )
0 0

T
< B (e Jgf?) 4 2 | ST (5, T 22) o (.07, 62071 ) s
0

T - _ 2 T .
_HE/ 65A5 g(S, Y'SnJrl, Z;LJrl)) ds + 2 + / Y:gn+1ng+1.
0 t
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From assumptions (H1.10), (H1.12) and (H1.13) and Young’s inequal-

ity, we get

1—ﬁ1—0& /
1 1 T
o) <+—+E+m/
9 T o2
+2E/ 94 (ﬂ0+ﬂ2)E/ e4s 5) ds—i—E/ e‘;AS—;ds,
0 0 0

T ~ S
<C+ (Bo +62)E/ e |20
0

1|2
Y ‘ds

2
ds.

Choosing « such that 1 — 51 > « and divided by it, we obtain

E(/ 0As

0
~ |12
0

Now choosing 3 and 2 such that fy+ 52 < 1 and noting fOT Z

S
T
supE (/ %4
neN 0

Now we shall prove that Z" is a Cauchy sequence in Mg (0, T, Rd) . Applying

il sale _ 2
oY, =t Y =Y/, we have

T
S+E/ e4s
0

- N2
g(s,Yf,Z?) —qg (s,YSm,Z:”‘N ds.

j=n—1
Z”“) ds><CZ (Bo+P2) +(Bo+527ﬁ€,(/ 0As

),

ds < 0.

Obtain

T
SZ;”F‘ ds | < oo,

[to’s formula to €94t
- -2 T
E (e‘mt Y;"—th‘ ) +(5IE/ %4
0

T T
:QIE/ s (YS”—YSm> ey —T7"ds —l—/ 4
0 0

where I'* = f(s, Y1, 201 4+ 7 (s, 5Y ", 62?) By the Holder’s inequality
and hypothesis (H1.13), we deduce that

T
E / ed4s
0
T
<2E ( / e4s
0

2

Y o g g 6A 2 2
YIr-y" ds> E </ e’ Iy = T d3>
0

S S
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T
—HE/ eaASai
0

The boundedness of the sequence (f/”, Z"), we deduce that the
A = sup,,cy [IE fOT s ds] < 00, this yields that

T 2
(1—a) IE/ ed4s ds
0

T 2 % T
<A4AE </ ed4s ds) + IE/ e‘;ASai
0 0

which yields that (Z”)n>0 is a Cauchy sequence in M3 (O,T, Rd). Then

there exists ./\/l?g (O, T, Rd) such that

T
E / e4s
0

On the other hand, by Burkholder-Davis-Gundy inequality we get

2

Yr Y™ ds.

Zy -y

~ ~ ~ ~ 2
A Ve v ds,

- 2
Z¢ —Zs| ds — 0 asn— oo.

2
2
<E TedAs Z—Zg|"ds — 0, as n— o0,
0 s

( Tom T
E sup | Zzaw,— [ Z,aw,
0<t<T

2

T - - —
E sup | [ (g(s. Y2, 22) = (s,Y2, Z)) d B,
0<t<T

<Efy a3

V-

Zn

S

2
ds + olE fOT edAs

2
— Zg| ds — 0, as n — oo.

\

Therefore, from the properties of f and w

s =

T2 = f(s, V07 2070 (5,077,027 ) = f(5,Ys0 Zo),

P —a.s., for all t € [0,T] as n — co. Then follows by Lebesgue’s dominated

convergence theorem that

T
IE/ %4 |F§—f(s,Y5,ZS)]2ds—>O, n — oo
0

Since (Y;, Zs,T7) converges in H2 (a,T) x M2 (0,T,R%) . Furthermore
s d,c 19

T

(Ro-r) =07 =Y+ [ (6T 2070 = f(5.¥02)) ds
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T ~ ~ ~ ~ ~
+/ W(S,YS”—YZL_I,Z;L—ZQ_I) ds — Ky — Kr
t
T o T
+ [ (a7 20 (.Y 20)) B [ (2242 )2
t t

Using B-D-G inequality, we get

Jiv-x

S

O™ =Yg+ |[£(5, 727 2870 = f(,Y5, 2)

i

+ HW (3717571 - ?'Sn—l’Z;L - Z?_1>HM2 + Hg(s’?'sn,Z;L) - g(S?YYSaZs)
0

e
112" Z||p2)-

Finally, passing to the limit we get K" — K = K+ K1 Letting n — +o0 in
equation (21II), we prove that (Y, Z) is solution to equation (). Let (Y™, Z*)
be any solution of the BDSDE (1), we have Y < Y*, for all n > 0 and
therefore, Y. < Y* i.e., Y is the minimal solution. Oa

7. Conclusion

In this work, we have studied, reflected backward doubly stochastic dif-
ferential equations with one lower rcll reflecting barrier. In the first part, via
a penalization method we prove the existence and uniqueness of a solution
under stochastic Lipschitz condition, also we proved the comparison theo-
rem. In the second part, by inf-convolution approximation and comparison
theorem we proved the existence of a minimal solution when the generator
f is assumed to be continuous with stochastic linear growth condition, thus,
our method in this case is a similar technique to that done by H] with some
suitable changes. Finally, we studied the existence of the minimal solution
for BDSDE with rcll reflecting barrier and left continuous and stochastic

linear growth condition.
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