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cE-mail: joel.merker@universite-paris-saclay.fr
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Abstract

We study 2-nondegenerate constant Levi rank 1 rigid Cω hypersurfaces M5 ⊂ C
3

with 0 ∈ M5 given in coordinates (z, ζ, w = u + iv) as u = F
(

z, ζ, z, ζ
)

under rigid

biholomorphisms:

(z, ζ, w) 7−→
(

f(z, ζ), g(z, ζ), ρw + h(z, ζ)
)

=: (z′, ζ′, w′).

In a previous article, a Cartan-type reduction to an {e}-structure was done by Foo-

Merker-Ta. Three relative invariants appeared: V0, I0 (primary) and Q0 (derived).

On the other hand, a Poincaré-Moser complete normal form:

u =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1−ζζ
+

∑

a,b,c,d∈N

a+c>3

Ga,b,c,d

(

F•

)

z
a
ζ
b
z
c
ζ
d
,

with 0 = Ga,b,0,0 = Ga,b,1,0 = Ga,b,2,0 and 0 = G3,0,0,1 = ImG1,1,3,0, has been recently

obtained by the authors.

The model u =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1−ζζ
is equivalent to the future light cone (Im z0)

2 =

(Im z1)
2 + (Im z2)

2 with Im z0 > 0 deeply investigated by Sergeev.
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In order to compare the two approaches, we compute (relative) invariants at every

point, not only at the central point, and we ‘discover’ the proportionalities:

G0,1,4,0

(

F•

)

∝ V0, G0,2,3,0

(

F•

)

∝ I0, ReG1,1,3,0

(

F•

)

∝ Q0.

With this, a bridge Poincaré ←→ Cartan is constructed.

In terms of F , the numerators of V0, I0, Q0 incorporate 11, 52, 824 differential

monomials.

1. Introduction

The problem of equivalence for CR manifolds was begun by Poincaré [44]

in 1907, who, by a counting argument, pointed out that real hypersurfaces

M3 ⊂ C
2 must a priori possess infinitely many invariants under biholomor-

phic transformations. In [1], Beloshapka argues that Poincaré’s approach

remains competitive in the study of infinite-dimensional geometry, and the

present article will confirm this statement.

The study of real hypersurfaces M2n+1 ⊂ C
n+1 is a classical subject,

and there is an intensive activity since the seminal article [8] of Chern-Moser,

devoted to Levi nondegenerate ones. Moser’s part produces normal forms.

Chern’s part sets up an {e}-structure and even a Cartan connection. The

link between these two parts is usually understood at the origin.

In the recent years, beyond [8], remarkable achievements appeared.

• Determination by Beloshapka [2] of universal models of CR manifolds

of finite type and computation of their Lie algebras of infinitesimal CR

automorphisms.

• Completion by Loboda [29, 30, 31], after a twenty-five-years study, of

the full classification of locally homogeneous real hypersurfaces in C
3

(cf. [9, 37, 42]).

• Cartan reduction and normal form for 6-dimensional generic submani-

folds M6 ⊂ C
4 of codimension 2 and CR dimension 2 [10, 12].

• Normal forms for finite type hypersurfaces M3 ⊂ C
2 [11, 24, 25].

• Normal form for a real hypersurface in C
2n+1 at a generic (not uniform)

Levi-degeneracy in the sense of Webster [28].

• Survey of these and of several other results [27].

• Cartan-type reduction for constant Levi rank 1 and 2-nondegenerate

hypersurfaces M5 ⊂ C
3 [15, 23, 32, 33, 37, 38].
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• Normal forms for constant Levi rank 1 and 2-nondegenerate hypersur-

faces M5 ⊂ C
3 which are not necessarily rigid [3, 17, 26].

• Cartan-type reduction and normal form for constant Levi rank 1 and

2-nondegenerate hypersurfaces M5 ⊂ C
3 that are rigid [5, 16].

Most of the time, articles applying Cartan’s method and articles ap-

plying Moser’s method are published separately. On Cartan’s side, com-

putations are known to 〈〈 explode 〉〉. For instance [36], the numerator of

the Cartan curvature of a Levi nondegenerate hypersurface M3 ⊂ C
2 has

∼ 1 500 000 monomials. The present article therefore focuses on certain CR

structures, call rigid as defined below, for which actual computations remain

tamed. The largest number of numerator monomials will be 824.

Cartan’s method studies geometric structures at every point of the base

manifold, and there is a 〈〈 complexity price 〉〉 to pay for this generality.

Moser’s method is more ‘simple’, computationally speaking, since it usu-

ally proceeds at only one point, often the origin, of a manifold, by manipu-

lating power series expanded at that point.

In comparison to Cartan’s method, Moser’s method seems to capture

invariants only at one point.

But recently, Chen-Merker [6] found an alternative (probably known)

method to capture differential invariants at all points while working only

at one point. This method avoids to move the origin everywhere nearby by

translations, and it works most of the times, namely when the group of trans-

formations is (only) assumed to contain all translations, see especially [6,

Sec. 12]. Hence this method clearly applies to the group of rigid biholo-

morphisms. Chen-Merker studied mainly parabolic (real) surfaces S2 ⊂ R
3

under the group of special affine transformations of R3, and developed an

analog of Moser’s method in this context, see also [7].

Since the technique of [6] seems not to have been well developed or

understood by CR geometers up to now, we decided to write up the present

memoir. Its main goal is to construct a bridge:

Cartan’s method Moser’s method,
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and to exhibit how (relative) differential invariants pass from one side of

the river to the other side, computationally. Reading the simple Section 2

below is enough to understand the key “arch-ideas” of such a bridge. We in-

deed first focus on the ‘toy’ case of rigid equivalences of rigid hypersurfaces

in C
2 (easily reached results), before passing to the not so simple case of

rigid equivalences in the rigid class denoted C2,1 by Alexander Isaev which

consists, as written above, of 2-nondegenerate constant Levi rank 1 hyper-

surfaces M5 ⊂ C
3.

Such CR structures whose Levi form degenerates everywhere, but are

not even locally straightenable, were deeply investigated by Sergeev and his

collaborators in several memoirs — e.g. [45, 46, 47] — to study for instance

integral representations of solutions to the ∂-equation in the future tube.

Throughout all of this memoir, concentrated on CR geometry, all CR

manifolds will be assumed embedded, real analytic (C ω), and rigid.

The interest of studying rigidly equivalent — in Alexander Isaev’s ter-

minology — rigid hypersurfaces was pointed out to us during his February

2019 stay in Orsay. In recent publications [19, 20, 21, 22], Alexander Isaev

integrated Pocchiola’s zero CR curvature equations W = 0 = J of tube and

rigid 2-nondegenerate constant Levi rank 1 hypersurfaces M5 ⊂ C
3.

Relevant background on CR geometry may be found in [34, 35, 39].

A local hypersurfaceM2n+1 in C
n+1 with coordinates z = (z1, . . . , zn+1)

is said to be rigid if there exists an infinitesimal CR automorphism, namely

a vector field T tangent to M of the form T = X + X with a nonzero

holomorphic vector field X =
∑n+1

i=1 ai(z) ∂zi , which is transversal to the

complex tangent space T cM in the sense that TM = T cM ⊕ RT . After

a local biholomorphic straightening, one makes X = i ∂
∂w with w = zn+1,

and tangency of X +X = ∂
∂v to M shows that, restricting considerations to

dimensions n + 1 = 2, 3, writing coordinates C2 ∋ (z, w) and C
3 ∋ (z, ζ, w),

the right-hand side C ω graphing functions:

M3 : u = F (z, z), M5 : u = F (z, ζ, z, ζ),

are independent of v, where w = u+ i v:
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Alexander Isaev’s concept of rigid biholomorphic transformation is as

follows. In C
2 and in C

3, such are biholomorphisms of the form:

(z, w) 7−→
(
f(z), ρw+g(z)

)
, (z, ζ, w) 7−→

(
f(z, ζ), g(z, ζ), ρw+h(z, ζ)

)
,

where f , g, h are holomorphic of their arguments, independently of w, and

where ρ ∈ R
∗. The interest is that rigid biholomorphisms send rigid hyper-

surfaces to rigid hypersurfaces: they respect the pre-given CR symmetry.

In C
2, on the Cartan side of the bridge, we construct in Section 2 an

absolute parallelism on P 5 := M3×C equipped with coordinates (z, z, v, c, c)

consisting of 5 differential 1-forms:

{
ρ, ζ, ζ, π, π

}
(ρ=ρ),

which satisfy invariant structure equations of the shape:

dρ = (π + π) ∧ ρ+ i ζ ∧ ζ,

dζ = π ∧ ζ, dζ = π ∧ ζ,

dπ = 1
cc

R ζ ∧ ζ, dπ = − 1
cc

R ζ ∧ ζ,

where there is only one (relative) invariant function:

R :=
Fzzzz Fzz − Fzzz Fzzz

(Fzz)2
.

We show that M is rigidly equivalent to {u = zz} if and only if R(F ) ≡ 0.

On the Moser side of the bridge, starting from a given

u =
∑

j+k>1 Fj,k z
jzk passing by the origin, we perform as said above a few

normalizing biholomorphisms in order to reach:

0 = Fj,0 = F0,k (j > 1, k > 1),

1 = F1,1,

0 = Fj,1 = F1,k (j > 2, k > 2),

and the key feature of the method is to keep track of all performed rigid



✐

“BN18N22” — 2023/7/19 — 9:41 — page 138 — #6
✐

✐

✐

✐

✐

138 ZHANGCHI CHEN, WEI GUO FOO, JOËL MERKER AND THE-ANH TA [June

biholomorphic transformations, which will give us at the end:

u = zz +
[F2,2 F1,1 − F2,1 F1,2

F 3
1,1

]

z2z2 + z2z3
(
· · ·
)
+ z3z2

(
· · ·
)
.

From this rational expression of the final F ′2,2 coefficient at the origin, it is

easy to recognize
/
reconstitute

/
translate Cartan’s invariant R(F ) at every

point (up to a nowhere vanishing factor const · Fzz).

Now, pass to C
3. The class of (local) hypersurfaces M5 ⊂ C

3 passing

by the origin 0 ∈ M that are 2-nondegenerate and whose Levi form has

constant rank 1 is denoted:

C2,1.

The right graphed equation for the model light cone MLC ⊂ C
3 in C2,1

was set up by Gaussier-Merker1 in [18]:

MLC : u =
zz + 1

2 z
2ζ + 1

2 z
2ζ

1− ζζ
=: m

(
z, ζ, z, ζ

)
.

Here, the letter m is from model. By luck, MLC is rigid!

Start with M5 ⊂ C
3, with 0 ∈M , rigid, graphed as:

u = F (z, ζ, z, ζ).

Constant Levi rank 1 means, possibly after a linear transformation in C
2
z,ζ,

that:

Fzz 6= 0 ≡

∣
∣
∣
∣
∣

Fzz Fzζ

Fζz Fζζ

∣
∣
∣
∣
∣
=: Levi(F ), (1.1)

while 2-nondegeneracy means that:

0 6=

∣
∣
∣
∣
∣

Fzz Fzζ

Fzzz Fzzζ

∣
∣
∣
∣
∣
. (1.2)

By direct symbolic computations, Propositions 3.1 and 3.2 in [5] establish

1Fels-Kaup showed in [13, 14], that the Gaussier-Merker model is locally biholomorphically equiv-
alent to the tube over the light cone.
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invariancy of these vanishing
/
nonvanishing properties under rigid changes

of holomorphic coordinates.

Since the Gaussier-Merker function:

m(z, ζ, z, ζ) =
zz + 1

2 z
2ζ + z2ζ

1− ζζ

is homogeneous of degree 2 in (z, z), it is natural to assign the following

weights to the coordinate variables:

[z] := 1 =: [z], [ζ] := 0 =:
[
ζ
]
, [w] := 2 =: [w].

In [5], the authors showed that every C ω hypersurface M5 ∈ C2,1 is

equivalent, through a local rigid biholomorphism, to a rigid C ω hypersurface

M ′5 ⊂ C
′3 which, dropping primes for target coordinates, is a perturbation

of the Gaussier-Merker model:

u =
zz + 1

2 z
2ζ + 1

2 z
2ζ

1− ζζ
+

∑

a,b,c,d∈N

a+c>3

Ga,b,c,d z
aζbzcζ

d
,

with a simplified remainder G which:

(1) is normalized to be an Oz,z(3);

(2) satisfies the prenormalization conditions G = Oz(3)+Oζ(1) = Oz(3)+

Oζ(1):

Ga,b,0,0 = 0 = G0,0,c,d,

Ga,b,1,0 = 0 = G1,0,c,d,

Ga,b,2,0 = 0 = G2,0,c,d;

(3) satisfies in addition the sporadic normalization conditions:

G3,0,0,1 = 0 = G0,1,3,0,

ImG3,0,1,1 = 0 = ImG1,1,3,0.

Furthermore, two such rigid C ω hypersurfaces M5 ⊂ C
3 and M ′5 ⊂

C
′3, both brought into such a normal form, are rigidly biholomorphically



✐

“BN18N22” — 2023/7/19 — 9:41 — page 140 — #8
✐

✐

✐

✐

✐

140 ZHANGCHI CHEN, WEI GUO FOO, JOËL MERKER AND THE-ANH TA [June

equivalent if and only if there exist two constants ρ ∈ R
∗
+, ϕ ∈ R, such that

for all a, b, c, d:

Ga,b,c,d = G′a,b,c,d ρ
a+c−2

2 eiϕ(a+2b−c−2d).

When producing such a normal form, calculations are done only at one

point (the origin), by manipulating only Taylor coefficients.

On the other hand, Cartan’s method of equivalence manipulates func-

tions defined in some neighborhood of the origin. So, Cartan’s method seems

to be stronger.

Our first goal in this article is to show that a suitable enhancement of

Moser’s method enables one to recover Cartan’s curvatures at every point

near the origin while working only at the origin.

Indeed, starting from a 2-nondegenerate constant Levi rank 1 rigid C ω

hypersurface M5 ⊂ C3 with 0 ∈M5 in coordinates (z, ζ, w = u+ iv):

u = F
(
z, ζ, z, ζ

)
=

∑

a,b,c,d∈N

a+b+c+d>1

Fa,b,c,d z
aζbzcζ

d
,

we perform a reduction to normal form with conditions (1), (2), (3), and we

keep track of all intermediate changes of coordinates in order to express the

final power series coefficients in terms of the initial power series coefficients:

u =
zz + 1

2 z
2ζ + 1

2 z
2ζ

1− ζζ
+

∑

a,b,c,d∈N

a+c>3

Ga,b,c,d

(
F•

)
zaζbzcζ

d
,

and we express the Ga,b,c,d explicitly in terms of the initial F• =
{
Fa,b,c,d

}
.

For this, we apply the method of Chen-Merker [6], which enables us to

compute (relative) invariants at every point, not only at the central point.

Theorem 1.3. The three normalized Taylor coefficients:

G0,1,4,0

(
F•

)
G0,2,3,0

(
F•

)
ReG1,1,3,0

(
F•

)

are explicit rational expressions whose numerators have 11, 52, 824 mono-

mials in the initial coefficients Fa,b,c,d.
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More details are given in Section 4, in which the method is explained,

and the first two numerators are typed. Beyond, we can create further

normalization branches caused by the valued of I0 and of V0, see below.

We then ‘discover’ that the obtained coefficients:

G0,1,4,0

(
F•

)
∝ V0, G0,2,3,0

(
F•

)
∝ I0, ReG1,1,3,0

(
F•

)
∝ Q0,

are proportional — in fact equal after adjustment — to the (relative) invari-

ants V0, I0, Q0 found by a completely different approach, namely Cartan’s

method.

Before explaining this, let us survey the results of the article [16], from

Cartan’s side of the river, inspired and guided by Olver’s works [40, 41].

Consider as before a rigidM5 ⊂ C
3 with 0 ∈M , which is 2-nondegenerate

and has Levi form of constant rank 1, i.e. belongs to the class C2,1, and which

is graphed as:

u = F
(
z1, z2, z1, z2

)
.

The letter ζ is protected, hence not used instead of z2, since ζ will denote a

1-form. The two natural generators of T 1,0M and T 0,1M are:

L1 := ∂z1 − i Fz1 ∂v and L2 := ∂z2 − i Fz2 ∂v,

in the intrinsic coordinates (z1, z2, z1, z2, v) on M . The Levi kernel bundle

K1,0M ⊂ T 1,0M is generated by:

K := k L1 + L2, where k := −
Fz2z1

Fz1z1

,

is the slant function. The hypothesis of 2-nondegeneracy is equivalent to the

nonvanishing:

0 6= L 1(k).

Also, the conjugate K generates the conjugate Levi kernel bundle K0,1 ⊂

T 0,1M .

There is a second fundamental function, and no more:

P :=
Fz1z1z1

Fz1z1

.
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In the rigid case, it looks so simple! But in the nonrigid case, P has a

numerator involving 69 differential monomials!

Foo-Merker-Ta produced in [16] reduction to an {e}-structure for the

equivalence problem, under rigid (local) biholomorphic transformations, of

such rigid M5 ∈ C2,1. They constructed an invariant 7-dimensional bundle

P 7 −→M5 equipped with coordinates:

(
z1, z2, z1, z2, v, c, c

)
,

with c ∈ C, together with a collection of seven complex-valued 1-form which

make a frame for T ∗P 7, denoted:

{
ρ, κ, ζ, κ, ζ, α, α

}
(ρ=ρ),

which satisfy 7 invariant structure equations of the form:

dρ =
(
α+ α

)
∧ ρ+ i κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ =
(
α− α

)
∧ ζ +

1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ −
1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ,

conjugate structure equations for dκ, dζ, dα being easily deduced. Since α

is not real, there is no obvious reason that Q0 should be real. But the fact

that, on the other side, Re G1,1,3,0 is real, led us to suspect that Q0 is real

too.

Here, as in Pocchiola’s Ph.D. [43] partly published as [38], there are

exactly two primary Cartan-curvature invariants:

V0 := −
1

3

L 1

(
L 1

(
L 1(k)

))

L 1(k)
+

5

9

(
L 1

(
L 1(k)

)

L 1(k)

)2

−
1

9

L 1

(
L 1(k)

)
P

L 1(k)
+

1

3
L 1(P)−

1

9
P P,

I0 := −
1

3

K
(
L 1

(
L 1(k)

))

L 1(k)2
+

1

3

K
(
L 1(k)

)
L 1

(
L 1(k)

)

L 1(k)3

+
2

3

L1

(
L1(k)

)

L1(k)
+

2

3

L1

(
L 1(k)

)

L 1(k)
.
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One can check that Pocchiola’s relative invariant W0 (see [38]) which occurs

under general biholomorphic transformations of C3 (not necessarily rigid!),

when written for a rigid M5 ⊂ C
3, identifies with:

I0
(
F (z1, z2, z1, z2)

)
≡ W0

(
F (z1, z2, z1, z2)

)
.

Furthermore, there is one secondary invariant whose unpolished expres-

sion is:

Q0 :=
1

2
L 1

(
I0
)
−
1

3

(

P−
L1

(
L1(k)

)

L1(k)

)

I0−
1

6

(

P−
L 1

(
L 1(k)

)

L 1(k)

)

I0−
1

2

K (V0)

L 1(k)
.

Visibly indeed, the vanishing of I0 and V0 implies the vanishing of Q0. In

fact, a consequence of Cartan’s general theory is:

0 ≡ V0 ≡ I0 ⇐⇒ M is rigidly equivalent to the Gaussier-Merker model.

However, it is not visible from its expression that Q0 is real.

In [16], by deducing new relations from the structure equations above,

it was proved indirectly that Q0 is real-valued, but a finalized expression

was missing there. A clean finalized expression of Q0, in terms of only

the two fundamental functions k, P (and their conjugates), from which one

immediately sees real-valuedness, is:

Q0 := 2Re

{
1

9

K
(
L 1(k)

)
L 1

(
L 1(k)

)2

L 1(k)4
−
1

9

K
(
L 1

(
L 1(k)

))
L 1

(
L 1(k)

)

L 1(k)3

−
1

9

K
(
L 1(k)

)
L 1

(
L 1(k)

)
P

L 1(k)3
−
1

9

L1

(
L 1(k)

)
L 1

(
L 1(k)

)

L 1(k)2

+
1

9

K
(
L 1

(
L 1(k)

))
P

L 1(k)2
−
2

9

L1

(
L 1(k)

)
P

L 1(k)
−
1

9

L 1

(
L 1(k)

)
P

L 1(k)

+
1

3

L1

(
L 1

(
L 1(k)

))

L 1(k)
+
1

6
L 1(P)

}

−
1

9

∣
∣P
∣
∣2+

1

3

∣
∣
∣
∣

L 1

(
L 1(k)

)

L 1(k)

∣
∣
∣
∣

2

.

Section 6 discusses briefly the details of the necessary, nontrivial computa-

tions, see also [4].

Having Q0 in finalized form shows that Cartan’s method and Moser’s

method bring complementary information. With this, a bridge between the
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two methods is constructed.

Lastly, we pursue the normalizations as follows, see Theorem 5.1 for a

complete statement.

Theorem 1.4. Within the branch I0 6= 0, the hypersurface is, in a unique

way, equivalent to:

u = z z + 1
2 z

2 ζ + 1
2 ζ z

2 + 1
6

Q0
|I0|2

z ζ z3 + 1
6

Q0
|I0|2

z3 z ζ

+ 1
24

V0

I0
2 ζ z

4 + 1
24

V0

I20
z4 ζ + 1

12 ζ
2 z3 + 1

12 z
3 ζ

2

+ ζ ζ (· · · ) +
∑

a+b+c+d>6, b d=0

Fa,b,c,d

a!b!c!d! z
a ζb zc ζ

d
,

without any harmonic monomial zj ζn−j, ∀n > 0, 0 6 j 6 n and any mono-

mial za ζb zc, ∀a+ b > 2, c ∈ {1, 2}. Collections of coefficients: V0

I0
2 ,

Q0
|I0|2

and
{
Fa,b,c,d

}

a+b+c+d>6, b d=0
, are in one-to-one correspondence with biholomor-

phic equivalent classes.

2. Rigid Equivalences of Rigid Hypersurfaces in C
2: A Toy Study

We first consider the equivalence problem of rigid hypersurfaces in C
2

under the action of rigid biholomorphic transformations. We will solve this

problem with both Cartan’s method of equivalence and Moser’s method of

normal forms. The calculations here are simple, and they will serve as a

toy study for our more substantial problem in C
3 later. Throughout this

section, we use the complex coordinates (z, w) on C
2 with w = u+ iv, where

u, v ∈ R.

We recall that a real analytic hypersurface in C
2 is called rigid if it can

be written
{
u = F (z, z)

}
, where F is a converging power series in z, z. A

local biholomorphic map of C2 of the form:

(z, w) 7−→
(
f(z), aw + g(z)

)
, (2.1)

with a ∈ R
∗, c ∈ R, will be called rigid. Most of the times, we will assume

that the origin is fixed, whence 0 = f(0) = g(0).

Since rigid transformations send rigid hypersurfaces to hypersurfaces

which are again rigid, it then makes sense to consider rigid equivalences of

rigid hypersurfaces in C
2, as we do here. The homogeneous model here is
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(still) the Heisenberg sphere {u = zz}, whose rigid automorphisms fixing

the origin can be extracted from the set of general automorphisms of the

sphere (exercise).

As a starter, consider a rigid biholomorphic map (z, w) 7−→
(
f(z), aw+

g(z)
)
=: (z′, w′) between two hypersurfaces {u = F (z, z)} in C

2 and {u′ =

F ′(z′, z′)} in C
2 too. From:

F ′
(
f(z), f(z)

)
= F ′

(
z′, z′

)
= u′ = a u+Re g(z) = aF (z, z)+ 1

2 g(z)+
1
2 g(z),

it comes the fundamental equation, identically satisfied:

F ′
(
f(z), f(z)

)
≡ aF (z, z) + 1

2 g(z) +
1
2 g(z). (2.2)

Lemma 2.3. Through a rigid biholomorphism between two rigid hypersur-

faces {u = F} and {u′ = F ′} in C
2, it holds:

Fzz =
1
a

∣
∣fz
∣
∣2 F ′z′z′ .

Proof. Applying ∂z∂z eliminates g and g above and yields the result. ���

Thus, Fzz is a relative invariant: it is nonvanishing in one system of

coordinates if and only if it is nonvanishing in any other system of coordi-

nates. Of course, M is Levi nondegenerate in the classical sense if and only

if Fzz 6= 0. We will constantly assume that this holds at every point.

2.4. Cartan’s method of equivalence

Consider a real analytic graphed hypersurface M3 = {u = F (z, z)}

passing through the origin in C
2. Its holomorphic tangent space T 1,0M :=

(C⊗TM)∩T 1,0
C is a 1-dimensional complex vector bundle on M . One can

check directly that the vector field L := ∂
∂z − iFz

∂
∂v generates T 1,0M , in

the intrinsic coordinates (z, z, v) on M . We abbreviate A := −i Fz so that

L = ∂
∂z +A ∂

∂v and L = ∂
∂z +A ∂

∂v .

Assume that M is everywhere Levi nondegenerate, namely Fzz 6= 0.

Next, define the real vector field T on M by T := −i [L ,L ] = ℓ ∂
∂v , where
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ℓ := −2Fzz. As in [16], introduce also the auxiliary function on M :

P :=
ℓz
ℓ

=
Fzzz

Fzz
.

Lemma 2.5. The vector fields T ,L ,L constitute a frame on C ⊗ TM ,

with Lie brackets:

[
T ,L

]
= −P T ,

[
T ,L

]
= −P T ,

[
L ,L

]
= − iT .

Next, denote by ρ0, ζ0, ζ0 the (complex) 1-forms on M which are dual

to the (complex) vector fields T ,L ,L , respectively. More precisely, the

expressions of ρ0, ζ0, ζ0 in terms of dv, dz, dz are:

ρ0 :=
1
ℓ

(
dv −Adz −Adz

)
, ζ0 := dz, ζ0 = dz.

This gives us an initial coframe for C⊗ TM having structure equations:

dρ0 = P ρ0 ∧ ζ0 + P ρ0 ∧ ζ0 + i ζ0 ∧ ζ0,

dζ0 = dζ0 = 0.

We now look at the action of rigid transformations on M in order

to set up an initial G-structure. Observe that if a rigid biholomorphism

h : (z, w) 7−→
(
f(z), aw + g(z)

)
=: (z′, w′) fixing the origin maps a rigid

hypersurface M ⊂ C
2 to another rigid hypersurface M ′ ⊂ C

′2, then h sends

T 1,0M to T 1,0M ′, i.e. h∗(T
1,0M) = T 1,0M ′. Without loss of generality,

we can assume that the target M ′ = {u′ = F ′(z′, z′)} is also graphed, and

is equipped with a similar frame {T ′,L ′,L
′
}. It follows that there ex-

ists a uniquely defined nowhere vanishing function c′ : M ′ −→ C
∗ so that

h∗(L ) = c′L ′.

Similary, h∗(T ) = a′T +b′L +b
′
L
′
. From Definition 2.1, it is clear that

h∗(∂v) = a ∂v′ . Since T = ℓ ∂v and T ′ = ℓ′ ∂v′ , it comes h∗(T ) = a ℓ
ℓ′ T ′.

Hence b′ = 0. Furthermore:

h∗(T )=h∗
(
− i [L ,L ]

)
=− i

[
h∗(L ), h∗(L )

]
=− i

[
c′L ′, c′L

′]
=c′c′T ′,

with necessarily 0 ≡ L ′(c′) while expanding the bracket thanks to b′ = 0,

and we conclude that the function a′ = c′c′ is determined.
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Consequently, under the action of h, the frame {T ,L ,L } changes as:

h∗






T

L

L




 =






c′c′ 0 0

0 c′ 0

0 0 c′











T ′

L ′

L
′




 (c′ 6=0).

This gives us the transfer relation between the two dual coframes, in terms

of a nowhere vanishing function c : M −→ C
∗:

h∗






ρ′0
ζ ′0
ζ
′
0




 =






cc 0 0

0 c 0

0 0 c











ρ0
ζ0
ζ0




 .

The initial G-structure is now obtained as follows. Such a function c

is replaced by a free variable c ∈ C
∗, an unknown of the problem. The

structure group is the 2-dimensional Lie group of matrices of the form:

g =






cc 0 0

0 c 0

0 0 c




 (c 6=0),

and we introduce the lifted coframe:






ρ

ζ

ζ




 := g ·






ρ0
ζ0
ζ0




 .

We are now in the position to apply Cartan’s method of equivalence to

the G-structure just obtained. First, we compute the Maurer-Cartan matrix

as:

dg · g−1 =






dc
c
+ dc

c
0 0

0 dc
c

0

0 0 dc
c




 ,

and there is only one (complex-valued) Maurer-Cartan form α := dc
c
. The
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structure equations are as follows:

dρ =
(
α+ α

)
∧ ρ+

1

c
P ρ ∧ ζ +

1

c
P ρ ∧ ζ + i ζ ∧ ζ,

dζ = α ∧ ζ,

dζ = α ∧ ζ.

We proceed to absorption of torsion by introducing themodified Maurer-

Cartan form:

π := α− 1
c

P ζ,

in terms of which the structure equations contract as:

dρ = (π + π) ∧ ρ+ i ζ ∧ ζ,

dζ = π ∧ ζ, dζ = π ∧ ζ.

At this point, no more absorption can be performed, because if one

modifies the 1-form π as π̃ := π − Aρ − B ζ − C ζ, which transforms the

structure equations into:

dρ =
(
π̃ + π̃

)
∧ ρ− (B +C) ρ ∧ ζ − (B + C) ρ ∧ ζ + i ζ ∧ ζ,

dζ = π̃ ∧ ζ +Aρ ∧ ζ − C ζ ∧ ζ,

all the functions A, B, C must be zero to conserve the same shape. In other

words, the prolongation reduces to identity, and π is uniquely defined.

Therefore, Cartan’s process stops, and to finish, it remains to finalize

the expression of:

dπ = dα◦ +
1
c

dc
c

P ∧ ζ − 1
c
dP ∧ ζ − 1

c
P dζ

= 0 + 1
c

(
π + 1

c
P ζ
)

P ∧ ζ − 1
c

(
Pz dz + Pz dz

)
∧ ζ − 1

c
Pπ ∧ ζ

= − 1
c

(
Pz

1
c
ζ + Pz

1
c
ζ
)
∧ ζ,

where we need to know
/
abbreviate just:

Pz =
FzzzzFzz−Fzzz Fzzz

(Fzz)2
=: R,

whence:

dπ = 1
cc

R ζ ∧ ζ.
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Visibly, R = R is real, because F = F is, whence Fzazc = Fzazc .

Theorem 2.6. The equivalence problem under local rigid biholomorphisms

for C ω rigid real hypersurfaces {u = F (z, z)} in C2 whose Levi form is

everywhere nondegenerate reduces to classifying {e}-structures on the 5-

dimensional bundle M3 × C equipped with coordinates (z, z, v, c, c) together

with a coframe of 5 differential 1-forms:

{
ρ, ζ, ζ, π, π

}
(ρ=ρ),

which satisfy invariant structure equations of the shape:

dρ = (π + π) ∧ ρ+ i ζ ∧ ζ,

dζ = π ∧ ζ, dζ = π ∧ ζ,

dπ = 1
cc

R ζ ∧ ζ, dπ = − 1
cc

R ζ ∧ ζ.

Another way to see that R = R is real from the structure equations is

as follows, using Poincaré’s relation:

0=d ◦ dρ =
(
dπ + dπ

)
∧ ρ−

(
π + π

)
∧ dρ+ i dζ ∧ ζ − i ζ ∧ dζ

=
1

cc
R ζ ∧ ζ ∧ ρ+

1

cc
R ζ ∧ ζ ∧ ρ−

(
π+π

)[(
π+π

)

◦
∧ ρ+ i ζ ∧ ζ

]

+ i π ∧ ζ ∧ ζ − i ζ ∧ π ∧ ζ

=
1

cc

(
R − R

)
ρ ∧ ζ ∧ ζ.

Thus, the only invariant here is:

R :=
Fzzzz Fzz − Fzzz Fzzz

(Fzz)2
. (2.7)

When R ≡ 0, the structure equations have constants coefficients, which

shows, by Cartan’s theory, that all rigid hypersurfaces with R ≡ 0 are rigidly

equivalent to each other, and equivalent to the model {u = zz}. There also

are direct arguments to get this.

Proposition 2.8. A rigid M = {u = F (z, z)} in C
2 is rigidly biholomor-

phically equivalent to the Heisenberg sphere {u′ = z′z′} if and only if:

0 ≡ R(F ) ≡ Fzzzz Fzz − Fzzz Fzzz.
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Proof. Recall that the condition R(F ) ≡ 0 is invariant under rigid biholo-

morphisms.

Trivially, F := zz implies R(F ) ≡ 0.

For the converse, Lemma 2.3 guarantees that M is of course Levi-

nondegenerate too, and by invariancy of R = 0, we can assume that F =

zz +Oz,z(3).

Set G := Fzz, a function which is also real-valued, with G(0) = 1. Thus:

0 ≡ Gzz G−Gz Gz ⇐⇒
(
log G

)

zz
≡ 0.

Consequently log G(z, z) = ϕ(z) +ϕ(z) for some holomorphic function with

ϕ(0) = 0, whence G(z, z) = ψ(z) · ψ(z) with ψ(0) = 1, and

F (z, z) =

∫ z

0
ψ(ζ) dζ ·

∫ z

0
ψ(ζ) dζ =: f(z) · f(z),

with f(z) = z + Oz(2). Thus u = f(z) f(z), and the rigid biholomorphism

z′ := f(z) terminates. ���

We know from Lemma 2.3 that Fzz is a relative invariant. What about

R? It suffices to examine how the numerator of R behaves under transfor-

mations.

Lemma 2.9. Through a rigid biholomorphism (z, w) 7−→
(
f(z), aw+ g(z)

)

=: (z′, w′) between two rigid hypersurfaces {u = F} and {u′ = F ′} in C
2, it

holds:

Fzzzz Fzz − Fzzz Fzzz ≡
1
a2

(
fz f z

)3
[

F ′z′z′z′z′ F
′
z′z′ − F ′z′z′z′ F

′
z′z′z′

]

.

Proof. Differentiate the fundamental identity (2.2) four appropriate times:

aFzz ≡ fz fz F
′
z′z′ ,

a Fzzz ≡ fzz f z F
′
z′z′+fzfzfz F

′
z′z′z′ ,

a Fzzz ≡ fzf zz F
′
z′z′+fzfzfz Fz′z′z′ ,

a Fzzzz ≡ fzzfzz F
′
z′z′+fzzf zf z F

′
z′z′z′+fzf zzfz F

′
z′z′z′ + fzf zfzfz F

′
z′z′z′z′ ,
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perform the necessary products, substract, and get the result. ���

2.10. Method of normal forms of Moser

In this subsection, following the method of Moser, we will approach the

equivalence problem for rigid hypersurfaces in C
2 under rigid biholomor-

phisms by constructing a normal form. Notice that although the problem is

(much) simpler than that considered by Moser for general hypersurfaces in

C2, our problem here is not a special case of what is already known.

The goal is to simplify the defining function u = F (z, z) of a given

hypersurface M3 ⊂ C2 as much as possible by applying rigid holomorphic

changes of variables (z, w) 7→
(
f(z), ρw+ g(z)

)
=: (z′, w′), with ρ ∈ R

∗. We

will find step by step changes, so that the transformed graphing functions

F ′ for successive M ′ =
{
u′ = F ′(z′, z′)

}
will contain more and more zero

coefficients.

Take a real analytic hypersurface M = {u = F (z, z)} passing through

the origin in C
2, and expand:

u = 1
2

(
w + w

)
=
∑

j+k>1

Fj,k z
jzk,

with Fj,k = F k,j. At first, set z
′ := z and:

w′ := w − 2
∑

j>1

Fj,0 z
j ,

in order to subtract all harmonic monomials Fj,0 z
j and F0,k z

k to obtain:

u′ =
∑

j>1
k>1

Fj,k z
jzk = F1,1 zz +

∑

j+k>3
j>1 and k>1

Fj,k z
jzk.

The invariant property F1,1 6= 0 characterizes Levi nondegeneracy of M

at the origin (hence in a neighborhood). Switching u 7−→ −u if necessary,

we may assume F1,1 > 0.

Next, make the rigid biholomorphism z′ :=
√
F1,1 z with w′ := w, drop

the prime, single out monomials of degree 1 in either z or z, factorize, and
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point out remainders:

u = zz +
∑

j+k>3
j>1 and k>1

Fj,k
√
F1,1

j+k
zjzk

= zz+z

(
F2,1

F
3/2
1,1

z2+
∑

j>3

Fj,1

F
(j+1)/2
1,1

zj
)

+z

(
F1,2

F
3/2
1,1

z2+
∑

k>3

F1,k

F
(1+k)/2
1,1

zk
)

+
F2,2

F 2
1,1

z2z2+
∑

j+k>5
j>2 and k>2

Fj,k

F
(j+k)/2
1,1

zjzk

=

(

z+
F2,1

F
3/2
1,1

z2+
∑

j>3

Fj,1

F
(j+1)/2
1,1

zj
)(

z+
F1,2

F
3/2
1,1

z2+
∑

k>3

F1,k

F
(1+k)/2
1,1

zk
)

−
F2,1 F1,2

F 3
1,1

z2z2−z2z3
(
· · ·
)
−z3z2

(
· · ·
)

+
F2,2

F 2
1,1

z2z2+z2z3
(
· · ·
)
+z3z2

(
· · ·
)
.

Such a factorization suggests to perform the rigid biholomorphism:

z′ := z +
F2,1

F
3/2
1,1

z2 +
∑

j>3

Fj,1

F
(j+1)/2
1,1

zj ,

again with untouched w′ := w. Its inverse is of the form z = z′
(
1+z′2(· · · )

)
,

so O
(
zlzm

)
= O

(
z′lz′m

)
, and finally, dropping primes, we have proved the

Proposition 2.11. Any rigid M =
{
u =

∑
Fj,kz

jzk
}
can be brought, by a

rigid biholomorphic transformation fixing the origin, to:

u = zz +
[F2,2 F1,1 − F2,1 F1,2

F 3
1,1

]

z2z2 + z2z3
(
· · ·
)
+ z3z2

(
· · ·
)
.

In other words:

0 = Fj,0 = F0,k (j > 1, k > 1),

1 = F1,1,

0 = Fj,1 = F1,k (j > 2, k > 2).

Can one normalize the graphing function F further? For instance, can

one annihilate some other Fj,k? Not much freedom is left, as states the next



✐

“BN18N22” — 2023/7/19 — 9:41 — page 153 — #21
✐

✐

✐

✐

✐

2023]LIE-CARTAN DIFFERENTIAL INVARIANTS AND POINCARÉ-MOSER ... 153

Lemma 2.12. If two rigid hypersurfaces in C
2 having the form:

u = zz +
∑

j,k>2

Fj,k z
jzk and u′ = z′z′ +

∑

j,k>2

F ′j,k z
′jz′

k
,

are equivalent through a rigid biholomorphism fixing the origin, then there

exist ρ ∈ R
∗
+ and ϕ ∈ R such that:

z′ = ρ1/2 eiϕ z, w′ = ρw.

In particular, this shows that the group of rigid transformations fixing

the origin of the Heisenberg sphere {u = zz} is 2-dimensional, generated by

these obvious rotation
/
dilation commuting transformations (solution of the

exercise).

Proof. Write as above (z′, w′) =
(
f(z), ρw + g(z)

)
, with f(0) = 0 = g(0).

The fundamental equation reads:

ρF (z, z) + 1
2 g(z) +

1
2 g(z) ≡ F ′

(
f(z), f(z)

)
.

Put z := 0, get g(z) ≡ 0. Thus:

ρ
(
zz + z2z2(· · · )

)
≡ f(z)f(z) + f(z)2f(z)2

(
· · ·
)
,

and using f(z) = O(z):

ρ zz ≡ f(z)f(z) + z2z2
(
· · ·
)
.

Invertibility of the Jacobian yields fz(0) 6= 0. Apply ∂z
∣
∣
0
and get:

ρ z ≡ f(z) f
′
(0),

so f(z) = λ z for some λ ∈ C
∗. Lastly, ρ = λλ, which concludes. ���

Corollary 2.13. Two rigid hypersurfaces in C
2:

u = zz+
∑

j,k>2

Fj,k z
jzk and u′ = z′z′+

∑

j,k>2

F ′j,k z
′jz′

k
,
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are rigidly biholomorphically equivalent if and only if there exist ρ ∈ R
∗
+ and

ϕ ∈ R such that:

Fj,k = ρ
j+k−2

2 ei ϕ (j−k) F ′j,k (j>2, k>2).

At any point (z0, w0) ∈ M close to the origin, all these results are also

valid, and using the recentered holomorphic coordinates z − z0 and w−w0,

one obtains:

u−u0 =(z − z0)
(
z − z0

)

+
4Fzzzz(z0)Fzz(z0)−2Fzzz(z0)2Fzzz(z0)

Fzz(z0)3
(z−z0)

2
(
z − z0

)2
+· · · .

The (2, 2)-coefficient at various points z0 is, up to a power of Fzz in the

denominator, exactly equal to the relative invariant function R found in (2.7)

by applying Cartan’s method.

3. Caves Beneath a Waterfall

This section (whose title will be explained at its end) displays the tech-

nique of calculating differential invariants under infinite-dimensional Lie

group actions thanks to finite-dimensional (power series) approximations.

First, we introduce some notations.

Definition 3.1. The (local) rigid transformation group of C2+1 fixing the

origin will be denoted:

G :=
{
(z, ζ, w) 7→ (z′, ζ ′, w′) =

(
f(z, ζ), g(z, ζ), ρw

)}
,

where ρ ∈ R
∗ and f , g are holomorphic functions near 0 ∈ C

2 with f(0, 0) =

g(0, 0) = 0 and with nonzero Jacobian determinant:

0 6=

∣
∣
∣
∣
∣

fz fζ
gz gζ

∣
∣
∣
∣
∣
.

Multiplications and inversions are induced by compositions and inver-

sions of transformations.
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Proposition 3.2. A map (z, ζ) 7−→
(
f(z, ζ), g(z, ζ)

)
defines a biholomor-

phism between two neighborhoods of 0 ∈ C
2 and 0′ ∈ C

′2 if and only if its

Jacobian matrix is invertible at the origin.

We will denote the inverse map as:

f̃(z′, ζ ′) = z, g̃(z′, ζ ′) = ζ.

The power series expansions of f̃ and g̃ can be calculated homogeneous

degree by homogeneous degree from the identities:

f
(
f̃(z′, ζ ′), g̃(z′, ζ ′)

)
≡ z′, g

(
f̃(z′, ζ ′), g̃(z′, ζ ′)

)
≡ ζ ′.

At each degree, a linear system has to be solved, for example at degree 1:

(

f1,0 f0,1
g1,0 g0,1

)

·

(

f̃1,0 f̃0,1
g̃1,0 g̃0,1

)

=

(

1 0

0 1

)

.

Next, recall that w = u+ i v.

Definition 3.3. The space of all Levi-rank 1 and 2-non-degenerate CR

graphed hypersurfaces passing by the origin in C
3 will be denoted:

H :=
{
u = F (z, ζ, z, ζ)

}
,

where:

• (real-valued analytic) F is an analytic real-valued function in a neigbor-

hood of (0, 0, 0, 0) ∈ C
4, so that F

(
z, ζ, z, ζ

)
≡ F

(
z, ζ, z, ζ

)
;

• (passing by the origin) F (0, 0, 0, 0) = 0;
• (no harmonic monomials) ∂az∂

b
ζF (0, 0, 0, 0) = 0 for any a, b ∈ N and

∂cz∂
d
ζ
F (0, 0, 0, 0) = 0 for any c, d ∈ N;

• (Levi-rank 1) the matrix
(

Fz z Fz ζ

Fζ z Fζ ζ

)

has rank 1 everywhere;

• (2-nondegenerate) the matrix
(

Fz z Fz ζ

Fz z z Fz z ζ

)

is invertible at the origin.
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There is a natural action of the group G of local rigid transformations

on the space H . Indeed, from w′ = ρw whence u′ = ρ u, a graphed hyper-

surface u = F (z, ζ, z, ζ) is transformed into another graphed hypersurface

u′ = F ′(z′, ζ ′, z′, ζ ′) when F and F ′ are linked by the fundamental equation:

F ′
(
f(z, ζ), g(z, ζ), f (z, ζ), g(z, ζ)

)
≡ ρF

(
z, ζ, z, ζ

)
.

Equivalently in terms of the inverse (f̃ , g̃):

F ′
(
z′, ζ ′, z′, ζ

′)
≡ ρF

(
f̃(z′, ζ ′), g̃(z′, ζ ′), f̃(z′, ζ

′
), g̃(z′, ζ

′
)
)
.

This second identity brings convenience to obtain explicit information on

the action.

Both the group G and the space H are infinite-dimensional in the sense

that they depend on infinitely many independent parameters.

Concerning G, any transformation is defined by ρ ∈ R
∗ and two holo-

morphic functions f , g with expansions:

f(z, ζ) =

∞∑

n=1

n∑

j=0

fj,n−j

j! (n−j)! z
j ζn−j,

g(z, ζ) =
∞∑

n=1

n∑

j=0

gj,n−j

j! (n−j)! z
j ζn−j,

where fj,k, gj,k ∈ C, f1,0g0,1−f0,1g1,0 6= 0. The group G is hence parametrized

by fj,k, gj,k and ρ.

Concerning H , any graphed hypersurface in H admits an expansion:

u = F (z, ζ, z, ζ) =
∞∑

n=2

∑

a+b+c+d=n

Fa,b,c,d

a! b! c! d! z
a ζb zc ζ

d
,

where Fa,b,c,d ∈ C, Fc,d,a,b = Fa,b,c,d, Fa,b,0,0 = 0 and conditions of con-

stant Levi-rank 1 and of 2-nondegeneracy are satisfied. The space is hence

parametrized by Fa,b,c,d.

Fortunately these infinite-dimensional objects have finite-dimensional

approximations. They can be truncated by degrees in expansions. Then
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they can be viewed as inverse or projective limits of those finite-dimensional

truncations.

Definition 3.4. The δth residue group Hδ is the subgroup of G with

f(z, ζ) = z +O(δ), g(z, ζ) = ζ +O(δ), ρ = 1.

One can verify

Proposition 3.5. The group Hδ is a normal subgroup of G.

Definition 3.6. The δth approximation group Gδ is the quotient group

G/Hδ+1. Each element has a polynomial representative:

f(z, ζ) =

δ∑

n=1

n∑

j=0

fj,n−j

j! (n−j)! z
j ζn−j,

g(z, ζ) =

δ∑

n=1

n∑

j=0

gj,n−j

j! (n−j)! z
j ζn−j.

The group Gδ is a finite-dimensional Lie group parametrized by ρ and

fj,n−j, gj,n−j with 1 6 n 6 δ, 0 6 j 6 n. Here is a table.

δ 1 2 3 4 5 6 7 δ

dimRGδ 9 21 37 57 81 109 141 2 δ2 + 6 δ + 1

Multiplication and inversion in Gδ are obtained by dropping terms of

degree > δ + 1 in the multiplication and inversion of G.

Proposition 3.7. For any δ, δ′ ∈ Z+ with δ > δ′ there is a projection

Gδ −→ Gδ′ induced by the injection Hδ −→ Hδ′ . For any δ, δ′, δ′′ ∈ Z+ with

δ > δ′ > δ′′ the following diagram commutes:

Gδ
//

""❉
❉
❉
❉
❉
❉
❉
❉

Gδ′

��
Gδ′′ .

These projections define a projective system {Gδ}δ∈Z+ . Projections πδ :

G −→ Gδ are compatible with this system. By the universal property of the
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projective limit, there is an injective morphism:

G −→ lim
←−
δ

Gδ .

Now, pass to truncations of hypersurfaces.

Definition 3.8. For any δ > 2, the δth approximation of H is the algebraic

polynomial hypersurface:

Hδ :=
{

u = F (z, ζ, z, ζ) =

δ∑

n=2

∑

a+b+c+d=n

Fa,b,c,d

a! b! c! d! z
a ζb zc ζ

d
}

,

where:

• (real-valued) Fa,b,c,d = Fc,d,a,b for any a, b, c, d > 0 ;

• (passing by the origin) F0,0,0,0 = 0;

• (no harmonic monomials) Fa,b,0,0 = F0,0,c,d = 0 for any a, b, c, d > 0;

• (2-non-degenerate) the matrix:

(

F1,0,1,0 F1,0,0,1

F2,0,1,0 F2,0,0,1

)

is invertible.

• (Levi-rank 1 until degree δ) F1,0,1,0, F1,0,0,1 = F0,1,1,0 and F0,1,0,1 are not

all 0 and the complex Hessian of F (z, ζ, z, ζ) vanishes up to order δ− 2,

i.e.:
∣
∣
∣
∣
∣

Fzz Fζz

Fzζ Fζζ

∣
∣
∣
∣
∣
= Fz z Fζ ζ − Fz ζ Fζ z = O(δ − 1).

The last condition may look questionable, but it is reasonable, as Propo-

sition 3.10 will show in a while.

But before and as a preparation we must introduce dependent and in-

dependent power series coefficients. The manifolds H and Hδ are covered

by 3 open subsets: {F1,0,1,0 6= 0}, {F1,0,0,1 = F0,1,1,0 6= 0} and {F0,1,0,1 6= 0}.

We only treat the case F1,0,1,0 6= 0 because the other two cases can be trans-

formed into this one by changes of coordinates (z′, ζ ′) = (z + ζ, z − ζ) or

(z′, ζ ′) = (z, ζ) preserving the Levi-rank.
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When F1,0,1,0 6= 0 we have Fz,z 6= 0 in a neighborhood of the origin. The

Levi-rank 1 condition is now equivalent to:

Fζ ζ ≡
Fz ζ Fζ z

Fz z
.

By differentiating both sides, all terms F
za ζb zc ζ

d with b > 1 and d > 1 can

be uniquely expressed as rational functions of F
za′ ζb′ zc

′ with a′ + b′ + c′ 6

a + b + c + d and F
za′′ zc

′′
ζ
d′′ with a′′ + b′′ + c′′ 6 a + b + c + d. Moreover,

only powers of Fz z appears in the denominators. For example:

Fz ζ,ζ ≡
Fz ζ z Fz ζ

Fz z
+
Fz2 ζ Fζ z

Fz z
−
Fz2 z Fz ζ Fζ z

F 2
z z

.

Taking values at the origin, the coefficients Fa,b,c,d with b > 1 and d > 1 can

be uniquely expressed as rational functions of Fa′,b′,c′,0 with a′ + b′ + c′ 6

a+ b+ c+ d and Fa′′,0,c′′,d′′ with a
′′+ b′′+ c′′ 6 a+ b+ c+ d. Moreover, only

powers of F1,0,1,0 appear in the denominators. For example:

F1,1,0,1 =
F1,1,1,0 F1,0,0,1

F1,0,1,0
+
F2,0,0,1 F0,1,1,0

F1,0,1,0
−
F2,0,1,0 F1,0,0,1 F0,1,1,0

F 2
1,0,1,0

.

Definition 3.9. A coefficient Fa,b,c,d will be called dependent if b > 1 and

d > 1. Otherwise, it will be called independent.

Elements in the open subset {F1,0,1,0 6= 0} of H and Hδ are uniquely

determined by the independent coefficients Fa,b,c,d with b d = 0. Since F is

real-valued, i.e. Fc,d,a,b = Fa,b,c,d, one has:

dimR Hδ = #
{
(a, b, c, d) : a+ b > 1, c+ d > 1, a+ b+ c+ d 6 δ, b d = 0

}
,

with values given by:

δ 2 3 4 5 6 7 8 δ

dimR Hδ 3 11 26 50 85 133 196 1
6 (2 δ

3 + 3 δ2 − 5 δ)

We can now state the promised

Proposition 3.10. A polynomial

F (z, ζ, z, ζ) =

δ∑

n=2

∑

a+b+c+d=n

Fa,b,c,d

a! b! c! d! z
a ζb zc ζ

d
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is a degree δ truncation of a formal power series F̃ (z, ζ, z, ζ) with F̃z z F̃ζ ζ −

F̃z ζ F̃ζ z = 0 if and only if Fz z Fζ ζ − Fz ζ Fζ z = O(δ − 1).

Proof. (only if) When calculating the complex Hessian of a power series:

F̃ (z, ζ, z, ζ) =

∞∑

n=2

∑

a+b+c+d=n

F̃a,b,c,d

a! b! c! d! z
a ζb zc ζ

d
,

the δ − 2 degree terms of F̃z z F̃ζ ζ − F̃z ζ F̃ζ z involve only coefficients F̃a,b,c,d

with a+ b+ c+ d 6 δ.

Let F (z, ζ, z, ζ) be its degree δ truncation:

F (z, ζ, z, ζ) :=
δ∑

n=2

∑

a+b+c+d=n

F̃a,b,c,d

a! b! c! d! z
a ζb zc ζ

d
.

Then Fz z Fζ ζ − Fz ζ Fζ z = F̃z z F̃ζ ζ − F̃z ζ F̃ζ z +O(δ − 1) = O(δ − 1).

To prove the ‘if’ part, one shall construct a power series:

F̃ (z, ζ, z, ζ) = F (z, ζ, z, ζ) +
∞∑

n=δ+1

∑

a+b+c+d=n

F̃a,b,c,d

a!b!c!d! z
aζbzcζ

d

with F̃z z F̃ζ ζ − F̃z ζ F̃ζ z = 0. This can be achieved by taking all the inde-

pendent coefficients F̃a,b,c,d = 0 with a + b+ c + d > n + 1 and b d = 0 and

by calculating all the dependent coefficients F̃a,b,c,d with b > 1 and d > 1 by

their rational expressions in terms of the independent ones. ���

Proposition 3.11. For any δ, δ′ ∈ Z+ with δ > δ′ there is a projection

Hδ −→ Hδ′ by dropping terms of degree > δ′ + 1. For any δ, δ′, δ′′ ∈ Z+

with δ > δ′ > δ′′ the following diagram commutes:

Hδ

""❊
❊
❊
❊
❊
❊
❊
❊

// Hδ′

��
Hδ′′ .

These projections define a projective system {Hδ}δ∈Z+ . Projections

πδ : H −→ Hδ are compatible with this system. By the universal property
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of the projective limit, there is an injective morphism:

H −→ lim
←−
δ

Hδ.

The manifold Hδ is a finite-dimensional manifold parametrized by the

independent coefficients Fa,b,c,d with a + b + c + d 6 δ and b d = 0. The

action of the group G on H induces an action on each manifold Hδ:

H
πδ //

(f,g,ρ)
��

Hδ

��
H

πδ // Hδ.

More precisely, a polynomial F (z, ζ, z, ζ) ∈ Hδ is a degree δ truncation of

a (not unique) power series F̃ (z, ζ, z, ζ) ∈ H , which is then transformed to

another convergent power series F̃ ′(z, ζ, z, ζ) by the fundamental equation:

F̃ ′
(
z′, ζ ′, z′, ζ

′)

= ρ F̃
(
f̃(z′, ζ ′), g′(z′, ζ ′), ¯̃f(z′, ζ

′
), g̃(z′, ζ

′
)
)

= ρ

δ∑

n=2

∑

a+b+c+d=n

Fa,b,c,d

a!b!c!d!

(
f̃(z′, ζ ′)

)a(
g̃(z′, ζ ′)

)b( ¯̃
f(z′, ζ

′
)
)c(
g̃(z′, ζ

′
)
)d
+O(δ+1).

The degree δ truncation of F̃ ′
(
z′, ζ ′, z′, ζ

′
), denoted F ′(z′, ζ ′, z′, ζ

′
) ∈ Hδ, is

then defined as being the image of F (z, ζ, z, ζ) ∈ Hδ after the group action.

To ensure that this group action is well defined, let us verify that it is

independent of the choice of a representative F̃ (z, ζ, z, ζ) and that it depends

only on the coefficients Fa,b,c,d with a+ b+ c+ d 6 δ.

Proposition 3.12. There is a group action of Gδ−1 on Hδ. The group

action of G on Hδ factors through the projection G −→ Gδ−1, i.e. the

following diagram commutes:

G× Hδ
//

πδ−1

��

Hδ

Gδ−1 × Hδ.

99ssssssssss
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Proof. When calculating the Taylor coefficients F ′a,b,c,d in:

F̃ ′
(
z′, ζ ′, z′, ζ

′)
=

δ∑

n=2

F ′

a,b,c,d

a!b!c!d! z
′a ζ ′b z′c ζ

′d
+O(δ + 1),

we are calculating the coefficients of z′a ζ ′b z′c ζ
′d
with a+ b+ c+d 6 δ from:

ρ
δ∑

n=2

∑

a+b+c+d=n

Fa,b,c,d

a!b!c!d!

(
f̃(z′, ζ ′)

)a (
g′(z′, ζ ′)

)b ( ¯̃f(z′, ζ
′
)
)c (

g̃(z′, ζ
′
)
)d
.

Each monomial is a product of at least 2 terms among f̃(z′, ζ ′), g̃(z′, ζ ′),
¯̃
f(z′, ζ

′
), g̃(z′, ζ

′
)
}
. The two power series in z′, ζ ′:

f̃
(
z′, ζ ′

)
=

∞∑

n=1

f̃j,n−j

j!(n−j)!z
′j ζ ′n−j,

g̃
(
z′, ζ ′

)
=
∞∑

n=1

g̃j,n−j

j!(n−j)!z
′j ζ ′n−j,

start from degree 1. So only f̃j,n−j, g̃j,n−j and their conjugates
¯̃
fj,n−j, g̃j,n−j

with n 6 δ− 1 and 0 6 j 6 n do contribute to F ′a,b,c,d with a+ b+ c+ d 6 δ.

Thus the group action of Gδ−1 on Hδ is well defined and the diagram is

indeed commutative. ���

Now, compare the two tables of dimensions:

δ 2 3 4 5 6 7 8

dimRGδ−1 9 21 37 57 81 109 141

dimR Hδ 3 11 26 50 85 133 196

Therefore, the theory of differential invariants of finite-dimensional Lie

group actions applies: the orbit dimension of Gδ−1 on Hd is at most equal to

dimRGδ−1 and the equality is achieved only when the action is locally free.

We see immediately that the dimension of (local) transversals to the orbits,

which is equal to the number of linearly independent differential invariants

up to order δ, is positive when δ > 6.

Now, let us explain the title of this Section 3. The infinite-dimensional

Lie group G can be interpreted as an infinitely long flow of water. The space
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H can be interpreted as an infinitely high valley. At the beginning, water

fills the space up. But later on as the waterfall grows wider, water cannot

fill the space. Some caves, corresponding to the transversal dimension, or

differential invariants, show up.

∗

�� !!❈
❈
❈
❈
❈
❈
❈
❈

∗

��

∗

!!❇
❇
❇
❇
❇
❇
❇
❇

∗

��

inv ∗

��   ❆
❆
❆
❆
❆
❆
❆
❆

∗

��

inv ∗

��

∗

  ❆
❆
❆
❆
❆
❆
❆
❆

∗ inv ∗ inv ∗

4. Invariants I0, V0, Q0 at Every Point

Since the G action on Hδ factors through πδ−1 : G −→ Gδ−1, we have

the

Proposition 4.1. A rational function on Hδ is invariant under the G action

if and only if it is invariant under the Gδ action.

Thus, to calculate differential invariants of order δ under G is equiv-

alent to calculate those under the finite-dimensional Lie group Gδ−1. The

algorithm goes as follows.

(1) Write down how (f, g, ρ) ∈ Gδ−1 acts on some independent parameters

Fa,b,c,d.

(2) Choose certain (f, g, ρ) ∈ Gδ−1 to normalize as many independent pa-

rameters Fa,b,c,d to 0 or 1 as possible, i.e. (f, g, ρ) send Fa,b,c,d to F
(1)
a,b,c,d

and some F
(1)
a,b,c,d = 0 or 1.

(3) Calculate how the other independent parameters F
(1)
a,b,c,d are changed

under this special (f, g, ρ) action, i.e. express them as rational functions

of Fa,b,c,d, fj,n−j, gj,n−j and ρ.
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(4) Calculate the “stabilizer”, i.e. the subgroup G
(1)
δ−1 of Gδ−1 which pre-

serves the current normalizations.

(5) Repeat steps (2), (3), (4) by studying the G
(1)
δ−1 action on F

(1)
a,b,c,d, the

G
(2)
δ−1 action on F

(2)
a,b,c,d, and so on, until no more terms can be normalized,

i.e. G
(k)
δ−1 fixes all F

(k)
a,b,c,d.

(6) Express those non-constant F
(k)
a,b,c,d in terms of the initial Fa,b,c,d. Obtain

rational functions fixed by Gδ−1, i.e. differential invariants of order 6 δ.

We fix δ = 5 in this section. The goal is to show the existence of order

5 invariants and to compute their explicit expressions. Lastly, we compare

the results with similar invariant obtained in [16] through the (completely)

different Cartan method of equivalence.

4.2. First normalization: degree 2 terms = z z

We may assume that F1,0,1,0 6= 0. In this case:

F (z, ζ, z, ζ) = F1,0,1,0 z z + F1,0,0,1 zζ + F0,1,1,0 ζ z +
F1,0,0,1 F0,1,1,0

F1,0,1,0
ζ ζ +O(3)

= F1,0,1,0

(
z +

F0,1,1,0

F1,0,1,0
ζ
) (
z +

F1,0,0,1

F1,0,1,0
ζ
)
+O(3)

=
(
F

1/2
1,0,1,0 z +

F0,1,1,0

F
1/2
1,0,1,0

ζ
)

︸ ︷︷ ︸

=: z′

(
F

1/2
1,0,1,0 z +

F1,0,0,1

F
1/2
1,0,1,0

ζ
)

︸ ︷︷ ︸

=: z′

+O(3).

After the rigid transformation:

z′ = F
1/2
1,0,1,0 z +

F0,1,1,0

F
1/2
1,0,1,0

ζ, ζ ′ = ζ, w′ = w,

the polynomial F (z, ζ, z, ζ) becomes F (1)(z′, ζ ′, z′, ζ ′) = z′ z′ + O(3). The

other independent parameters F
(1)
a,b,c,d with a + b > 1, c + d > 1, b d = 0

can also be uniquely expressed as rational functions of Fa,b,c,d through the

fundamental equation.

Since all the independent parameters F
(1)
a,b,c,d have b d = 0 and F

(1)
c,d,a,b =

F
(1)
a,b,c,d, it suffices to calculate F

(1)
a,b,c,0 in terms of Fa,b,c,d. The inverse trans-

formation is:

z = 1

F
1/2
1,0,1,0

z′ −
F0,1,1,0

F1,0,1,0
ζ ′, ζ = ζ ′, w = w′.
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In the fundamental equality

∑

a,b,c,d

F
(1)
a,b,c,d

a!b!c!d! z
′a ζ ′b zc ζ ′

d
=

∑

a,b,c,d

Fa,b,c,d

a!b!c!d! z
a ζb zc ζ

d

=
∑

a,b,c,d

Fa,b,c,d

a!b!c!d!

(
1

F
1/2
1,0,1,0

z′ −
F0,1,1,0

F1,0,1,0
ζ ′
)a
ζ ′b
(

1

F
1/2
1,0,1,0

z′ −
F1,0,0,1

F1,0,1,0
ζ ′
)c
ζ ′

d
,

we calculate the coefficient of z′a ζ ′b z′
c
. On the left hand side, it is F

(1)
a,b,c,0.

On the right hand side only Fj,a+b−j,c,0 with a 6 j 6 a+b contribute. Since:

Fj,a+b−j,c,0

j!(a+b−j)!c!

(
1

F
1/2
1,0,1,0

z′−
F0,1,1,0

F1,0,1,0
ζ ′
)a
ζ ′a+b−j

(
1

F
1/2
1,0,1,0

z′ −
F1,0,0,1

F1,0,1,0
ζ ′
)c

=
Fj,a+b−j,c,0

j!(a+b−j)!c!
j!

a!(j−a)!

(
1

F
1/2
1,0,1,0

z′
)a (

−
F0,1,1,0

F1,0,1,0
ζ ′
)j−a

ζ ′a+b−j
(

1

F
1/2
1,0,1,0

z′
)c

+ irrelevant monomials,

we get

F
(1)
a,b,c,0 =

a+b∑

j=a

Fj,a+b−j,c,0

a!(j−a)!(a+b−j)!c!

(
1

F
1/2
1,0,1,0

)a (
−

F0,1,1,0

F1,0,1,0

)j−a ( 1

F
1/2
1,0,1,0

)c

=
b∑

j=0

Fa+j,b−j,c,0

a!j!(b−j)!c!

(
1

F
1/2
1,0,1,0

)a+c (
−

F0,1,1,0

F1,0,1,0

)j
.

We define:

H
(1)
5 :=

{
u = F (1)(z, ζ, z, ζ) = z z +O(3)

}
,

a codimension 3 submanifold of H5 since we have normalized F
(1)
1,0,1,0 = 1

and F
(1)
1,0,0,1 = F

(1)
0,1,1,0 = 0. So dimR H

(1)
5 = 50− 3 = 47.

Its stabilizer group G
(1)
4 consists of (f, g, ρ) such that

f(z, ζ) = r eiθ z +O(2), g(z, ζ) = O(1), ρ = r2,

where r ∈ R+, θ ∈ [0, 2π). It is a codimension 3 subgroup of G4, hence

dimRG
(1)
4 = 57− 3 = 54.

4.3. Second normalization: F
(2)
a,b,1,0 = 0 for (a, b) 6= (1, 0)
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Now, we study the group action of G
(1)
4 on H

(1)
5 . Any element in H

(1)
5

has expansion:

F (1)(z, ζ, z, ζ)

= z z + z
( ∑

26a+b64

F
(1)
a,b,1,0

a!b! za ζb
)

+ z
(

∑

26a+b64

F
(1)
a,b,1,0

a!b! zc ζ
d
)

+R(z, ζ, z, ζ)

=
(
z +

∑

26a+b64

F
(1)
a,b,1,0

a!b! za ζb
)

︸ ︷︷ ︸

=: z′

(
z +

∑

26a+b64

F
(1)
a,b,1,0

a!b! za ζ
b)

︸ ︷︷ ︸

=: z′

+R(z, ζ, z, ζ)

whose the remainder R(z, ζ, z, ζ) contains only terms za ζb zc z′
d
with either

(a, b) or (c, d) /∈ {(0, 0), (1, 0)}. After the rigid transformation in G
(1)
4 :

z′ = z +
∑

26a+b64

F
(1)
a,b,1,0

a!b! za ζb, ζ ′ = ζ, w′ = w, (4.4)

the polynomial F (1)(z, ζ, z, ζ) becomes F (2)(z′, ζ ′, z′, ζ ′) = z′ z′+R′(z′, ζ ′, z′,

ζ ′). It remains to show that the remainder R′(z′, ζ ′, z′, ζ ′) contains only

terms za ζb zc zd with either (a, b) or (c, d) /∈ {(0, 0), (1, 0)}.

Lemma 4.5. The inverse of the transformation (4.4) in G
(1)
4 is of the form:

z = z′ +
4∑

n=2

n∑

j=0

f̃j,n−j

j!(n−j)!z
j ζn−j, ζ = ζ ′, w = w′.

Proof. It suffices to show that z := f̃(z′, ζ ′) = z′ +Oz′,ζ′(2). From (4.4):

z = z′−
∑

26a+b64

F
(1)
a,b,1,0

a!b! za ζb = z′−
∑

26a+b64

F
(1)
a,b,1,0

a!b! f̃(z′, ζ ′)a ζ ′b = z′+Oz′,ζ′(2).

���

In the remainder R(z, ζ, z, ζ), each term za ζb zc zd is transformed to
(
z′ + Oz′,ζ′(2)

)a
ζ ′b
(
z′ + Oz′,ζ′(2)

)
ζ ′

d
, whose expansion still contains only

terms z′a ζ ′b z′
c
ζ ′

d
with either (a, b) or (c, d) /∈ {(0, 0), (1, 0)}.

The terms F
(2)
a,b,c,0 such that 2 6 a+b+c 6 5, (a, b), (c, 0) /∈ {(0, 0), (1, 0)}
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can be solved in terms of F
(1)
a,b,c,d:

F
(2)
0,1,2,0 =F

(1)
0,1,2,0,

F
(2)
0,1,3,0 = − 3F

(1)
0,1,2,0F

(1)
1,0,2,0 + F

(1)
0,1,3,0,

F
(2)
0,1,4,0 =15F

(1)
0,1,2,0(F

(1)
1,0,2,0)

2 − 4F
(1)
0,1,2,0F

(1)
1,0,3,0 − 6F

(1)
0,1,3,0F

(1)
1,0,2,0 + F

(1)
0,1,4,0,

F
(2)
0,2,2,0 = − F

(1)
0,2,1,0F

(1)
1,0,2,0 + F

(1)
0,2,2,0,

F
(2)
0,2,3,0 =3F

(1)
0,2,1,0(F

(1)
1,0,2,0)

2 − F
(1)
0,2,1,0F

(1)
1,0,3,0 − 3F

(1)
0,2,2,0F

(1)
1,0,2,0 + F

(1)
0,2,3,0,

F
(2)
0,3,2,0 =3F

(1)
0,2,1,0F

(1)
1,0,2,0F

(1)
1,1,1,0 − 3F

(1)
0,2,1,0F

(1)
1,1,2,0 − F

(1)
0,3,1,0F

(1)
1,0,2,0 + F

(1)
0,3,2,0,

F
(2)
1,1,2,0 = − F

(1)
1,0,2,0F

(1)
1,1,1,0 + F

(1)
1,1,2,0,

F
(2)
1,1,3,0 =3(F

(1)
1,0,2,0)

2F
(1)
1,1,1,0 − 3F

(1)
1,0,2,0F

(1)
1,1,2,0 − F

(1)
1,0,3,0F

(1)
1,1,1,0 + F

(1)
1,1,3,0,

F
(2)
1,2,2,0 =F

(1)
0,2,1,0F

(1)
1,0,2,0F

(1)
2,0,1,0 + 2F

(1)
1,0,2,0(F

(1)
1,1,1,0)

2 − F
(1)
0,2,1,0F

(1)
2,0,2,0

− F
(1)
1,0,2,0F

(1)
1,2,1,0 − 2F

(1)
1,1,1,0F

(1)
1,1,2,0 + F

(1)
1,2,2,0,

F
(2)
2,0,2,0 = − F

(1)
1,0,2,0F

(1)
2,0,1,0 + F

(1)
2,0,2,0,

F
(2)
2,0,3,0 =3(F

(1)
1,0,2,0)

2F
(1)
2,0,1,0 − 3F

(1)
1,0,2,0F

(1)
2,0,2,0 − F

(1)
1,0,3,0F

(1)
2,0,1,0 + F

(1)
2,0,3,0,

F
(2)
2,1,2,0 =3F

(1)
1,0,2,0F

(1)
1,1,1,0F

(1)
2,0,1,0 − F

(1)
1,0,2,0F

(1)
2,1,1,0 − 2F

(1)
1,1,1,0F

(1)
2,0,2,0

− F
(1)
1,1,2,0F

(1)
2,0,1,0 + F

(1)
2,1,2,0,

F
(2)
3,0,2,0 =3F

(1)
1,0,2,0(F

(1)
2,0,1,0)

2 − F
(1)
1,0,2,0F

(1)
3,0,1,0 − 3F

(1)
2,0,1,0F

(1)
2,0,2,0 + F

(1)
3,0,2,0.

Next, define:

H
(2)
5 :=

{
u = F (2)(z, ζ, z, ζ) = z z +O(3): F

(2)
a,b,1,0 = 0 ∀ (a, b) 6= (1, 0)

}
,

a codimension 24 submanifold of H
(1)
5 . So dimR H

(2)
5 = 47− 24 = 23.

It will be a bit strange to talk about stabilizer group in this step. We

in fact need to introduce a new definition of stabilizer. But after the final

step, we will recover the stabilizer in the standard sense.

Definition 4.6. For any fixed element F (2)(z, ζ, z, ζ) ∈ H
(2)
5 , the subset

of G
(1)
0,4 consisting of elements f, g, ρ which send F (2)(z, ζ, z, ζ) to another

element in H
(2)
5 , is defined as G

(2)
0,4(F

(2)). It depends on the choice of the

original element F (2).
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The stabilizer G
(2)
4 (F (2)) is a codimension 24 subgroup of G

(1)
4 hence

dimRG
(2)
4 (F (2)) = 54 − 24 = 30. It contains elements (f, g, ρ) =

(
r ei θ z +

O(2), g, r2
)
∈ G

(1)
4 such that:

f2,0 = −r ei θ F
(2)
2,0,0,1 g1,0 g

−1
0,1 ,

f3,0 = −r ei θ F
(2)
3,0,0,1 g1,0 g

−1
0,1 ,

f4,0 = −r ei θ F
(2)
4,0,0,1 g1,0 g

−1
0,1 ,

f0,2 = 0, f1,1=0, f0,3=0, f1,2=0, f2,1=0, f0,4=0, f1,3=0, f2,2=0, f3,1 = 0,

which are in total 12 conditions on complex coefficients.

4.7. Third normalization: F
(3)
2,0,0,1 = F

(3)
0,1,2,0 = 1

Any element in H
(2)
5 has expansion:

F (2)(z, ζ, z, ζ) = z z +
F

(2)
2,0,0,1

2 z2 ζ +
F

(2)
2,0,0,1

2 z2 ζ +O(4).

By 2-non-degeneracy F
(2)
2,0,0,1 6= 0. So after the rigid transformation:

z′ = z, ζ ′ = F
(2)
2,0,0,1 ζ = F

(2)
0,1,2,0 ζ, w′ = w,

this element becomes a graph u = F (3)(z, ζ, z, ζ) = z z+ 1
2z

2 ζ+ 1
2z

2 ζ+O(4).

The relations are F
(3)
a,b,c,0 = F

(2)
a,b,c,0 (F

(2)
0,1,2,0)

−b.

Next, define:

H
(3)
5 :=

{
u = F (3)(z, ζ, z, ζ) = z z + 1

2z
2 ζ + 1

2z
2 ζ +O(4):

F
(3)
a,b,1,0 = 0 ∀ (a, b) 6= (1, 0)

}
,

a codimension 2 submanifold of H
(2)
5 . So dimR H

(3)
5 = 23− 2 = 21.

For any fixed element F (3) ∈ H
(3)
5 , there exists some F (2) ∈ H

(2)
5 whose

third normalization is equal to F (3). For example, we can take F (2) = F (3).

The stabilizer G
(3)
4 (F (3)) is a codimension 2 subgroup of G

(2)
4 (F (3)). Hence

dimRG
(3)
4 (F (3)) = 30 − 2 = 28. It contains elements (f, g, ρ) ∈ G

(2)
4 (F (3))
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satisfying g0,1 = e2 i θ, i.e.:

f(z, ζ) = r eiθ z − 1
2 r e

3 i θ g1,0 z
2 − 1

6 r e
3 i θ F

(3)
3,0,0,1 g1,0 z

3

− 1
24 r e

3 i θ F
(3)
4,0,0,1 g1,0 z

4

g(z, ζ) = g1,0 z + e2 i θ ζ +O(2), ρ = r2.

4.8. Fourth normalization: F
(4)
2,0,2,0 = 0

Any element in H
(3)
5 has expansion:

F (3)(z, ζ, z, ζ) = z z + 1
2z

2 ζ + 1
2z

2 ζ + 1
4F

(3)
2,0,2,0z

2 z2 +R(z, ζ, z, ζ)

= z z + 1
2z

2
(
ζ + 1

4F
(3)
2,0,2,0 z

2
)

︸ ︷︷ ︸

=: ζ
′

+1
2z

2
(
ζ + 1

4F
(3)
2,0,2,0 z

2
)

︸ ︷︷ ︸

=: ζ′

+R(z, ζ, z, ζ),

whose remainder R(z, ζ, z, ζ) = O(4) contains no z2 z2 term. After the rigid

transformation in G
(3)
4 :

z′ = z, ζ ′ = ζ + 1
4F

(3)
2,0,2,0 z

2, w′ = w, (4.9)

the polynomial F (3)(z, ζ, z, ζ) becomes F (4)(z′, ζ ′, z′, ζ ′) = z′ z′ + 1
2z
′2 ζ ′ +

1
2z
′2 ζ ′ +R′(z′, ζ ′, z′, ζ ′). The inverse of (4.9) is:

z = z′, ζ = ζ ′ − 1
4F

(3)
2,0,2,0 z

′2, w = w′.

So R′(z′, ζ ′, z′, ζ ′) = R
(
z′, ζ ′ − 1

4F
(3)
2,0,2,0 z

′2, z′, ζ ′ − 1
4F

(3)
2,0,2,0 z

′2
)
= O(4) with-

out z′2 z′
2
term.

The relations are:

F
(4)
0,1,3,0 = F

(3)
0,1,3,0, F

(4)
0,2,2,0 = F

(3)
0,2,2,0, F

(4)
1,1,2,0 = F

(3)
1,1,2,0, F

(4)
0,1,4,0 = F

(3)
0,1,4,0,

F
(4)
0,2,3,0 = F

(3)
0,2,3,0, F

(4)
0,3,2,0 = F

(3)
0,3,2,0, F

(4)
1,2,2,0 = F

(3)
1,2,2,0,

F
(4)
2,1,2,0 = −1

2F
(3)
0,2,2,0 F

(3)
2,0,2,0 + F

(3)
2,1,2,0,

F
(4)
3,0,2,0 = −3

2F
(3)
1,1,2,0 F

(3)
2,0,2,0 −

1
2F

(3)
3,0,0,1 F

(3)
2,0,2,0 + F

(3)
3,0,2,0,

F
(4)
1,1,3,0 = −3

2F
(3)
2,0,2,0 + F

(3)
1,1,3,0,

F
(4)
2,0,3,0 = −1

2F
(3)
0,1,3,0 F

(3)
2,0,2,0 −

3
2F

(3)
2,0,1,1 F

(3)
2,0,2,0 + F

(3)
2,0,3,0.
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We define H
(4)
5 , a codimension 1 submanifold of H

(3)
5 by requiring

F
(4)
2,0,2,0 = 0. So dimR H

(2)
5 = 21− 1 = 20.

For any fixed element F (4) ∈ H
(4)
5 , the stabilizer G

(4)
4 (F (4)) is a codi-

mension 1 subgroup of some G
(3)
4 (F (4)). Hence dimRG

(4)
4 (F (3)) = 28 − 1 =

27. It contains elements (f, g, ρ) ∈ G
(3)
4 (F (4)) satisfying:

g2,0 = e−2 i θ F
(4)
0,2,2,0 g

2
1,0 + e6 i θ F

(4)
2,0,0,2 g1,0

2 − e−4 i θ g0,2 g
2
1,0 − e8 i θ g0,2 g1,0

2

− 2F
(4)
1,1,2,0 g1,0 − 2 e4 i θ F

(4)
2,0,1,1 g1,0 + 2 e−2 i θ g1,0 g1,1 + 2 e6 i θ g1,0 g1,1

+ 3 e2 i θ g1,0 g1,0 − e4 i θ g2,0.

In other words

Re
(
e−2 i θ g2,0

)
= Re

{
− e−4 i θ F

(4)
0,2,2,0 g

2
1,0 − e−6 i θ g0,2 g

2
1,0

− 2 e−2 i θ F
(4)
1,1,2,0 g1,0 + 2 e−4 i θ g1,0 g1,1 +

3
2 g1,0 g1,0

}
.

4.10. Fifth normalization: F
(5)
a,b,2,0 = 0 for 2 6 a + b 6 3 and (a, b) 6=

(2, 0)

Any element in H
(4)
5 has expansion:

F (4)(z, ζ, z, ζ) = z z + 1
2z

2
(

ζ +
∑

26a+b63

F
(4)
2,0,a,b

a!b! za ζ
b
)

︸ ︷︷ ︸

=: ζ′

+ 1
2z

2
(

ζ +
∑

26a+b63

F
(4)
a,b,2,0

a!b! za ζb
)

︸ ︷︷ ︸

=: ζ′

+R
(
z, ζ, z, ζ

)
,

whose remainder R(z, ζ, z, ζ) = O(4) contains no za ζb z2 term for any 2 6

a+ b 6 3. After the rigid transformation in G
(4)
4 (F (4)):

z′ = z, ζ ′ = ζ +
∑

26a+b64

F
(4)
a,b,2,0

a!b! za ζb, w′ = w, (4.11)

the polynomial F (4)(z, ζ, z, ζ) becomes F (5)(z′, ζ ′, z′, ζ ′) = z′ z′ + 1
2z
′2 ζ ′ +
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1
2z
′2 ζ ′ +R′(z′, ζ ′, z′, ζ ′). The inverse of (4.11) is:

z = z′, ζ = ζ ′ +Oz′,ζ′(2), w = w′.

So R′(z′, ζ ′, z′, ζ ′) = R
(
z′, ζ ′ + Oz′,ζ′(2), z′, ζ ′ + Oz′,ζ′(2)

)
= O(4) without

z′a ζ ′b z′
2
terms for any 2 6 a+ b 6 3.

The relations are:

F
(5)
0,1,3,0 = F

(4)
0,1,3,0, F

(5)
0,1,4,0 = F

(4)
0,1,4,0,

F
(5)
0,2,3,0 = −2F

(4)
0,1,3,0F

(4)
0,2,2,0+F

(4)
0,2,3,0, F

(5)
1,1,3,0 = −2F

(4)
0,1,3,0F

(4)
1,1,2,0 + F

(4)
1,1,3,0.

We define H
(5)
5 a codimension 12 submanifold of H

(4)
5 where F

(5)
a,b,2,0 = 0

for:

(a, b) ∈
{
(1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)

}
.

So dimR H
(5)
5 = 20− 12 = 8.

For any fixed element F (5) ∈ H
(5)
5 , the stabilizer G

(5)
4 (F (5)) is a codi-

mension 12 subgroup of some G
(4)
4 (F (5)). Hence dimRG

(5)
4 (F (5)) = 27−12 =

15. It contains element (f, g, ρ) ∈ G
(4)
4 (F (5)) satisfying:

g0,2 =0, g1,1 = −2 e4 i θ g1,0, g0,3 = 0, g1,2 = 0,

g2,1 =2 e6 i θ g1,0
2 − 2 e4 i θ F

(5)
3,0,0,1 g1,0,

g3,0 = − 5 e2 i θ F
(5)
3,0,0,1 g1,0 g1,0 + e6 i θ F

(5)
3,0,0,2 g1,0

2 − 2 e4 i θ F
(5)
3,0,1,1 g1,0

− e4 i θ F
(5)
3,0,0,1 g2,0.

Since (f, g, ρ) ∈ G
(4)
4 (F (5)) we have

Re
(
e−2 i θ g2,0

)
= Re

(
− 5

2 g1,0 g1,0
)
.

Thus e−2 i θ g2,0 = −5
2 g1,0 g1,0 + i b2,0 for some b2,0 ∈ R. So the last equation

becomes

g3,0 = − 5
2 e

2 i θ F
(5)
3,0,0,1 g1,0 g1,0 + e6 i θ F

(5)
3,0,0,2 g1,0

2 − 2 e4 i θ F
(5)
3,0,1,1 g1,0

− i e2 i θ F
(5)
3,0,0,1 b2,0.
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The stabilizer G
(5)
4 (F (5)) is parametrized by 3 real variables b2,0, r, θ and 6

complex variables g1,0, gj,4−j for 0 6 j 6 4.

4.12. Final normalization: F
(6)
0,1,3,0 = 0 and ImF

(6)
1,1,3,0 = 0

Any element in H
(5)
5 has expansion:

F (5)(z, ζ, z, ζ) = zz+ 1
2z

2ζ+ 1
2ζz

2+ 1
6F

(5)
0,1,3,0ζz

3+ 1
6F

(5)
3,0,0,1z

3ζ

+ 1
6F

(5)
1,1,3,0zζz

3+ 1
6F

(5)
3,0,1,1z

3zζ+ 1
24F

(5)
0,1,4,0ζz

4

+ 1
24F

(5)
4,0,0,1z

4ζ+ 1
12F

(5)
0,2,3,0ζ

2z3+ 1
12F

(5)
3,0,0,2z

3ζ
2
+ζζ(· · · ).

We study how g1,0 and b2,0 act on this object, i.e. we consider an arbitrary

(f, g, ρ) ∈ G
(5)
4 (F (5)) with r = 1 and θ = gj,4−j = 0. They have the form:

f(z, ζ) = z − 1
2 g1,0 z

2 +O(3),

g(z, ζ) = g1,0 z + ζ + 1
2 (−

5
2 g1,0 g1,0 + i b2,0) z

2 +O(3),

ρ = 1.

This transformation sends F (5) to F ′(5) ∈ H
(5)
5 such that:

F
′(5)
3,0,0,1 = F

(5)
3,0,0,1 + 3 g1,0,

F
′(5)
3,0,1,1 = F

(5)
3,0,1,1 − 3F

(5)
3,0,0,1 g1,0 − F

(5)
3,0,0,2 g1,0 +

15
2 g1,0 g1,0 − 3 i b2,0.

So by a unique choice of g1,0 and b2,0, namely:

g1,0=−1
3F

(5)
0,1,3,0, b2,0=

i
18

(
F

(5)
0,2,3,0 F

(5)
0,1,3,0−F

(5)
3,0,0,2F

(5)
3,0,0,1+3F

(5)
1,1,3,0−3F

(5)
3,0,1,1

)
,

we can normalize F
′(5)
3,0,0,1 to 0 and F

′(5)
3,0,1,1 to a real number. The polynomial

F (5)(z, ζ, z, ζ) becomes:

F (6)(z′, ζ ′, z′, ζ ′)

= z′z′ + 1
2z
′2ζ ′ + 1

2ζ
′z′

2
+ 1

6F
(6)
1,1,3,0z

′ζ ′z′
3
+ 1

6F
(6)
3,0,1,1z

′3z′ζ ′+ 1
24F

(6)
0,1,4,0ζ

′z′
4

+ 1
24F

(6)
4,0,0,1z

′4ζ ′ + 1
12F

(6)
0,2,3,0ζ

′2z′
3
+ 1

12F
(6)
3,0,0,2z

′3ζ ′
2
+ ζ ′ζ ′(· · · )

= z′z′ + 1
2z
′2ζ ′ + 1

2ζ
′z′

2
+ 1

6Q0z
′ζ ′z′

3
+ 1

6Q0z
′3z′ζ ′

+ 1
24V0ζ

′z′
4
+ 1

24V0z
′4ζ ′+ 1

12I0ζ
′2z′

3
+ 1

12I0z
′3ζ ′

2
+ ζ ′ζ ′(· · · ),
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where I0 := F
(6)
0,2,3,0 ∈ C, V0 := F

(6)
0,1,4,0 ∈ C, Q0 := F

(6)
1,1,3,0 ∈ R.

The relations are:

I0 = F
(5)
0,2,3,0 + 2F

(5)
3,0,0,1,

V0 = −5
3 (F

(5)
0,1,3,0)

2 + F
(5)
0,1,4,0,

Q0 =
1
6F

(5)
0,2,3,0F

(5)
0,1,3,0+

1
2F

(5)
3,0,0,1F

(5)
0,1,3,0+

1
6F

(5)
3,0,0,2F

(5)
3,0,0,1+

1
2F

(5)
1,1,3,0+

1
2F

(5)
3,0,1,1.

We define N = H
(6)
5 a codimension 3 submanifold of H

(5)
5 by requiring

F
(6)
0,3,1,0 = 0 and Im (F

(6)
1,1,3,0) = 0.

For any fixed element F (6) ∈ N , the stabilizer G
(6)
4 (F (6)) is a codimen-

sion 3 subgroup of some G
(5)
4 (F (6)). Hence dimRG

(6)
4 (F (6)) = 15 − 3 = 12.

It contains elements (f, g, ρ) ∈ G
(5)
4 (F (6)) of the form:

f(z, ζ) = r ei θ z, g(z, ζ) = e2 i θ s+O(4), ρ = r2.

This group sends I0, V0, Q0 to I′0, V′0, Q′0 with relations:

I′0 = r−1 e−i θ I0, V′0 = r−2 e2 i θ V0, Q′0 = r−2 Q0

So if we ignore dilations and rotations (z′, ζ ′, w′) = (r ei θ z, e2 i θ ζ, r2w), then

I0, V0, Q0 are invariants.

Each F
(t)
a,b,c,d is a rational function of F

(t−1)
a′,b′,c′,d′ for t = 5, 4, 3, 2 and each

F
(1)
a,b,c,d is a rational function of Fa′,b′,c′,d′ . By composing these rational func-

tions, one can express I0, V0, Q0 in terms of original coordinates Fa,b,c,d:

I0=
52 terms in degree 9

F
3/2
1,0,1,0(F0,1,1,0F1,0,2,0−F0,1,2,0F1,0,1,0)3(F1,0,0,1F2,0,1,0−F1,0,1,0F2,0,0,1)

,

V0=
11 terms in degree 4

3F1,0,1,0(F0,1,1,0F1,0,2,0 − F0,1,2,0F1,0,1,0)2
,

Q0=
824 terms in degree 18

6F 3
1,0,1,0(F0,1,1,0F1,0,2,0−F0,1,2,0F1,0,1,0)4(F1,0,0,1F2,0,1,0−F1,0,1,0F2,0,0,1)4

.

The numerator of I0 is shown in [4], and the numerator of V0 is:

3F 2
0,1,1,0F1,0,2,0F1,0,4,0 − 5F 2

0,1,1,0F
2
1,0,3,0 − 3F0,1,1,0F0,1,2,0F1,0,1,0F1,0,4,0

+ 12F0,1,1,0F0,1,2,0F1,0,2,0F1,0,3,0 + 10F0,1,1,0F0,1,3,0F1,0,1,0F1,0,3,0
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− 12F0,1,1,0F0,1,3,0F
2
1,0,2,0 − 3F0,1,1,0F0,1,4,0F1,0,1,0F1,0,2,0

− 12F 2
0,1,2,0F1,0,1,0F1,0,3,0 + 12F0,1,2,0F0,1,3,0F1,0,1,0F1,0,2,0

+ 3F0,1,2,0F0,1,4,0F
2
1,0,1,0 − 5F 2

0,1,3,0F
2
1,0,1,0

We define H
(6)
5 a codimension 3 submanifold of H

(5)
5 by requiring

F
(6)
0,3,1,0 = 0 and ImF

(6)
1,1,3,0 = 0.

For any fixed element F (6) ∈ H
(6)
5 , the stabilizer G

(6)
4 (F (6)) is a codi-

mension 3 subgroup of some G
(5)
4 (F (6)). Hence dimRG

(6)
4 (F (6)) = 15 − 3 =

12. It contains elements (f, g, ρ) ∈ G
(5)
4 (F (6)) of the form:

f(z, ζ) = r ei θ z, g(z, ζ) = e2 i θ ζ +O(4), ρ = r2.

Note that this stabilizer group no longer depends on the choice of F (6) ∈

H
(6)
5 . We simply write it as G

(6)
4 .

4.13. Passing to the infinite dimension

After these six normalizations, we have killed f0,1 and g1,0. It is a

miracle that now we can work directly on the infinite-dimensional objects.

We define H (7) to be the subspace of H consisting of all power series

u = F (7)(z, ζ, z, ζ) =
F

(7)
a,b,c,d

a!b!c!d! z
a ζb zc ζ

d
such that:

• F
(7)
a,b,1,0 = 0, ∀(a, b) 6= (1, 0); F

(7)
1,0,1,0 = 1;

• F
(7)
a,b,2,0 = 0, ∀(a, b) 6= (0, 1); F

(7)
0,1,2,0 = 1;

• F
(7)
3,0,0,1 = 0, F

(7)
3,0,1,1 = F

(7)
1,1,3,0.

It is both infinite-dimensional and infinite-codimensional in H , but it

has a finite-dimensional stabilizer.

By definition, any element in H (7) has its degree 5 truncation in H
(6)
5 .

Theorem 4.14. Any element u = F (z, ζ, z, ζ) in H can be sent to some

element u = F (7)(z, ζ, z, ζ) in H (7) by some (but not unique) element in

G. The ambiguity can be controlled in the following sense: any element

(f, g, ρ) ∈ G sending one element F (7) ∈ H (7) to another F ′(7) ∈ H (7) has

the form f(z, ζ) = r ei θ z, g(z, ζ) = e2 i θ ζ, ρ = r2.
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Proof. One shall simply use the six normalizations above with a slight

modification: in the second (killing Fa,b,1,0) and the fifth (killing Fa,b,2,0)

normalization, we normalize for infinitely many (a, b). More precisely, we

start from u = F (z, ζ, z, ζ) in H . After the six normalizations above we get

u = F (6)(z, ζ, z, ζ) whose degree 5 truncation π5
(
F (6)(z, ζ, z, ζ)

)
is in H

(6)
5 ,

i.e.:

• F
(6)
a,b,1,0 = 0, ∀2 6 a+ b 6 4; F

(6)
1,0,1,0 = 1;

• F
(6)
a,b,2,0 = 0, ∀2 6 a+ b 6 4; F

(6)
0,1,2,0 = 1;

• F
(6)
3,0,0,1 = 0, F

(6)
3,0,1,1 = F

(6)
1,1,3,0.

Then we do 2 more normalizations. First:

z′ = z +
∑

a+b>5

F
(6)
a,b,1,0

a!b! za ζb, ζ ′ = ζ, w′ = w,

gives us u′ = F ′(z′, ζ ′, z′, ζ ′) with:

• F ′a,b,1,0 = 0, ∀a+ b > 2; F ′1,0,1,0 = 1;

• F ′a,b,2,0 = 0, ∀2 6 a+ b 6 4; F ′0,1,2,0 = 1;

• F ′3,0,0,1 = 0, F ′3,0,1,1 = F ′1,1,3,0.

Then:

z′′ = z′, ζ ′′ = ζ ′ +
∑

a+b>5

F ′

a,b,2,0

a!b! za ζb, w′ = w,

gives us u′′ = F ′′(z′′, ζ ′′, z′′, ζ ′′) with:

• F ′′a,b,1,0 = 0, ∀a+ b > 2; F ′′1,0,1,0 = 1;

• F ′′a,b,2,0 = 0, ∀a+ b > 2; F ′′0,1,2,0 = 1;

• F ′′3,0,0,1 = 0, F ′′3,0,1,1 = F ′′1,1,3,0.

So u′′ = F ′′(z′′, ζ ′′, z′′, ζ ′′) is in H (7). It is the form we want.

Now suppose that (f, g, ρ) ∈ G sends one element F (7) ∈ H (7) to

another F ′(7) ∈ H (7). In the truncated setting, π4(f, g, ρ) ∈ G4 sends

π5(F
(7)) ∈ H

(6)
5 to π5(F

′(7)) ∈ H
(6)
5 . So the truncated action π4(f, g, ρ)

should be in the stabilizer G
(6)
4 . That is to say:

f(z, ζ) = r ei θ z +O(5), g(z, ζ) = e2 i θ ζ +O(4), ρ = r2.
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Recall the fundamental equation:

ρF (7)(z, ζ, z, ζ) = F ′(7)
(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)
.

When we compare the coefficients of zj ζn−j z for any n > 2 and 0 6 j 6 n:

0 = Coefzj ζn−j z

{
F ′(7)

(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)}

= Coefzj ζn−j z

{
f(z, ζ) f(z, ζ)

}
+Coefzj ζn−j z

{ ∑

c=0,d=1

(· · · ) g(z, ζ)
d}

+Coefzj ζn−j z

{ ∑

c+d>2

(· · · ) f(z, ζ)
c
g(z, ζ)

d}
,

the last two terms are 0 because they only contain monomials with degz =

0 or degz +degζ > 2. The first term gives us 0 = r e−i θ
fj,n−j

j!(n−j)! . Hence

f(z, ζ) = r ei θ z.

When we compare the coefficients of zj ζn−j z2 for any n > 2 and 0 6

j 6 n:

0=Coefzjζn−jz2
{
F ′(7)

(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)}

=Coefzjζn−jz2
{
f(z, ζ)f(z, ζ)

}
+Coefzjζn−jz2

{ ∑

c=0,d=1

(· · · )g(z, ζ)
}

+Coefzjζn−jz2
{
1
2g(z, ζ)f(z, ζ)

2}
+Coefzjζn−jz2

{ ∑

c=1,d=1

(· · · )f(z, ζ)g(z, ζ)
}

+Coefzjζn−jz2
{∑

c=0,d=2

(· · · )g(z, ζ)
2}

+Coefzjζn−jz

{∑

c+d>3

(· · · )f(z, ζ)
c
g(z, ζ)

d}
, .

each term, except the third, is 0. The third term gives us 0 = 1
2r

2 gj,n−j

j!(n−j)! .

Hence g(z, ζ) = e2 i θ ζ. ���

5. Branches I0 6= 0, V0 6= 0 and I0 ≡ 0 ≡ V0

To get a normal form under the full rigid transformation group, including

rotations and dilations:

z′ = r eiθ z, ζ ′ = e2 i θ ζ, ρ = r2,

we should normalize I0 or V0. Such a rotation and a dilation would send
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(I0,V0,Q0) to (I′0,V
′
0,Q

′
0) with:

I′0 = r−1 e−i θ I0, V′0 = r−2 e2 i θ V0, Q′0 = r−2 Q0.

We avoid the mixed type and focus on the 3 possible branches:

• I0 6= 0;

• I0 ≡ 0 but V0 6= 0;

• I0 ≡ 0 ≡ V0.

5.1. Branch I0 6= 0

In this branch we can normalize I0 to 1 by choosing r ei θ = I0. More

precisely, for any surface in H (7) graphed by:

F (7)(z, ζ, z, ζ) = z z + 1
2 z

2 ζ + 1
2 ζ z

2 + 1
6 Q0 z ζ z

3 + 1
6 Q0 z

3 z ζ + 1
24 V0 ζ z

4

+ 1
24 V0 z

4 ζ + 1
12 I0 ζ

2 z3 + 1
12 I0 z

3 ζ
2
+ ζ ζ (· · · ) + O(6),

where I0 6= 0, after the transformation

z′ = I0 z, ζ ′ =
I20
|I0|2

ζ, ρ = |I0|
2,

the polynomial F (7)(z, ζ, z, ζ) becomes:

F (8,1)(z′, ζ ′, z′, ζ ′) = z′ z′ + 1
2 z
′2 ζ ′ + 1

2 ζ
′ z′

2
+ 1

6 Q̃0 z
′ ζ ′ z′

3
+ 1

6 Q̃0 z
′3 z′ ζ ′

+ 1
24 Ṽ0 ζ

′ z′
4
+ 1

24 Ṽ0 z
′4 ζ ′ + 1

12 ζ
′2 z′

3
+ 1

12 z
′3 ζ ′

2

+ ζ ′ ζ ′ (· · · ) + O(6),

where

Ṽ0 =
V0

I0
2 , Q̃0 =

Q0

|I0|2
,

We define H (8,1) a codimension 2 submanifold of H (7) by requiring

I0 = 1.

For any fixed element F (8,1) ∈ H (8,1), the stabilizer G(8,1) is the identity.
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5.2. Branch I0 ≡ 0 but V0 6= 0

In this branch we can normalize V0 to 1 by choosing r2 e−2 i θ = V0. This

equation has two solutions: r ei θ = ±x, where x2 = V0 and arg(x) ∈ [0, π).

More precisely, for any surface in H (7) graphed by:

F (7)(z, ζ, z, ζ) = z z + 1
2 z

2 ζ + 1
2 ζ z

2 + 1
6 Q0 z ζ z

3 + 1
6 Q0 z

3 z ζ

+ 1
24 V0 ζ z

4 + 1
24 V0 z

4 ζ + 1
12 I0 ζ

2 z3 + 1
12 I0 z

3 ζ
2

︸ ︷︷ ︸

=0, when I0 ≡ 0

+ ζ ζ (· · · ) + O(6),

where V0 6= 0, after the transformation

z′ = x z, ζ ′ =
V0

|V0|
ζ, ρ = |V0|,

the polynomial F (7)(z, ζ, z, ζ) becomes

F (8,2)(z′, ζ ′, z′, ζ ′) = z′ z′ + 1
2 z
′2 ζ ′ + 1

2 ζ
′ z′

2
+ 1

6 Q̃0 z
′ ζ ′ z′

3
+ 1

6 Q̃0 z
′3 z′ ζ ′

+ 1
24 ζ

′ z′
4
+ 1

24 z
′4 ζ ′ + ζ ′ ζ ′ (· · · ) + O(6),

where Q̃0 =
Q0
|V0|

. We define H (8,2) a codimension 2 submanifold of H (7) by

requiring V0 = 1. For any fixed element F (8,2) ∈ H (8,2), the stabilizer G(8,2)

is a group of two elements: the identity and (−z, ζ, 1).

5.3. Branch I0 ≡ 0 ≡ V0

Since Q0 can be generated by I0, V0 and their differentials, we have

Q0 ≡ 0. The structure equations degenerate to the model case. The surface

is equivalent as the Gaussier-Merker model u =
z z+ 1

2
ζ2 z+ 1

2
z2 ζ

1−ζ ζ
.

To conclude, we draw the branches from our root assumption.

I0 6= 0 V0 6= 0

Fz z 6= 0 ≡ Fz z Fζ ζ − Fζ,z Fz ζ

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
// I0 ≡ 0

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥
// V0 ≡ 0

where I0 and V0 are relative invariants of order 5.
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Theorem 5.1. The following three statements hold true.

(1) Within the branch I0 6= 0, the surface is, in a unique way, equivalent to:

u = z z + 1
2 z

2 ζ + 1
2 ζ z

2 + 1
6

Q0
|I0|2

z ζ z3 + 1
6

Q0
|I0|2

z3 z ζ

+ 1
24

V0

I0
2 ζ z

4 + 1
24

V0

I20
z4 ζ + 1

12 ζ
2 z3 + 1

12 z
3 ζ

2

+ ζ ζ (· · · ) +
∑

a+b+c+d>6, b d=0

Fa,b,c,d

a!b!c!d! z
a ζb zc ζ

d
,

without any harmonic monomial zj ζn−j, ∀n > 0, 0 6 j 6 n and any mono-

mial za ζb zc, ∀a+ b > 2, c ∈ {1, 2}. Collections of coefficients: V0

I0
2 ,

Q0
|I0|2

and
{
Fa,b,c,d

}

a+b+c+d>6, b d=0
, are in one-to-one correspondence with biholomor-

phic equivalent classes.

(2) When I0 ≡ 0 6= V0, the surface is, up to z 7→ −z, equivalent to:

u = z z + 1
2 z

2 ζ + 1
2 ζ z

2 + 1
6

Q0
|V0|

z ζ z3 + 1
6

Q0
|V0|

z3 z ζ + 1
24 ζ z

4 + 1
24 z

4 ζ

+ ζ ζ (· · · ) +
∑

a+b+c+d>6, b d=0

Fa,b,c,d

a!b!c!d! z
a ζb zc ζ

d
,

without any harmonic monomial zj ζn−j, ∀n > 0, 0 6 j 6 n and any

monomial za ζb zc, ∀a+ b > 2, c ∈ {1, 2}. Pairs of collection of coefficients:

Q0

|V0|
,
{
Fa,b,c,d

}

a+b+c+d>6, b d=0
,

Q0

|V0|
,
{
(−1)a+c Fa,b,c,d

}

a+b+c+d>6, b d=0

are in one-to-one correspondence with biholomorphic equivalent classes.

(3) When I0 ≡ 0 ≡ V0, the surface is equivalent to the Gaussier-Merker

model u =
z z+ 1

2
ζ2 z+ 1

2
z2 ζ

1−ζ ζ
, and conversely.

6. Finalized Expression of Q0

In this section, we briefly revisit the secondary invariant Q0. Our goal

is to transform Q0 into a new expression which makes transparent two in-

teresting features of Q0: that it is real-valued and that it is of order 5 (not

6 as it was first obtained by Cartan’s method in [16]).
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Proposition 6.1. The secondary invariant Q0 can be brought into the fol-

lowing form

Q0 = BI0+BI0−BB+
2

3
Re

{

L1

[
L 1L 1(k)

L 1(k)

]}

+
1

3
Re
(

L 1(P)
)

. (6.2)

Let us first recall the formulas of I0,V0,Q0 from [16].

I0 =−
1

3

K L 1L 1(k)

(L 1(k))2
+
1

3

K L 1(k)L 1L 1(k)

(L 1(k))3
+
2

3

L1L1(k)

L1(k)
+
2

3

L1 L 1(k)

L 1(k)
,

(6.3)

V0 =−
1

3

L 1 L 1L 1(k)

L 1(k)
+
5

9

(L 1 L 1(k))
2

(L 1(k))2
−
1

9

L 1L 1(k)P

L 1(k)
+
1

3
L 1(P)−

1

9
PP,

(6.4)

and

Q0 =
1

2

{

B I0 + L 1(I0)−
B K (I0)

L1(k)
−

K (V0)

L 1(k)

}

, (6.5)

where

B =
1

3

(
L 1 L 1(k)

L 1(k)
− P

)

and B =
1

3

(
L1 L1(k)

L1(k)
− P

)

.

In order to transform the expression of 18
∣
∣L 1(k)

∣
∣2Q0, one makes use of

the following identities.

Lemma 6.6. We have the following identities:

(1) K (P) = −P L 1(k)− L 1 L1(k),

(2) K L 1(P) = −L 1(k) · 2Re
(
L 1(P)

)
− P L 1 L 1(k)− L 1 L 1 L1(k),

(3) K (I0) = (−2) I0 · L1(k).

Proof. The identities (1) and (3) are obtained in Lemma 2.7 and Lemma

10.6 of [16], respectively.

For the identity (2), we use the relation [K ,L 1] = K L 1 − L 1 K =

−L 1(k)L1 from (2.9) of [16] to deduce that

K L 1(P) = L 1 K (P)− L 1(k)L1(P)

= L 1

[

− P L 1(k)− L 1 L1(k)
]

− L 1(k)L1(P) (using (1))
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= −L 1(P)L 1(k)− P L 1 L 1(k)− L 1 L 1 L1(k)− L 1(k)L (P)

= −L 1(k)
[

L 1(P) + L1(P)
]

− P L 1 L 1(k)− L 1 L 1 L1(k)

= −L 1(k) · 2Re
(
L 1(P)

)
− P L 1 L 1(k)− L 1 L 1 L1(k). ���

Proof of Proposition 6.1. Intermediate computations appear at the end

of [4], until we reach

18
∣
∣L 1(k)

∣
∣2Q0 = 2

∣
∣L 1(k)

∣
∣2
(

3B 3I0 + 3B 3I0 − 3B 3B
)

+ 12
∣
∣L 1(k)

∣
∣2 Re

{

L1

[
L 1 L 1(k)

L 1(k)

]}

+ 6
∣
∣L 1(k)

∣
∣2 Re

(

L 1(P)
)

.

(6.7)

Finally, simplifying the factor 18
∣
∣L 1(k)

∣
∣2 on both sides of (6.7) gives

us the desired expression (6.2) of Q0. ���

When we fully expand Q0 from the expression (6.2) using the formulas

of I0 and B, we arrive at the following long expression of Q0, which only

involves in the fundamental functions k and P, and their derivatives:

Q0 =
2

9
Re

{
K L 1(k) (L 1 L 1(k))

2

(L 1(k))4

}

−
2

9
Re

{
K L 1 L 1(k) L 1 L 1(k) + K L 1(k) L 1 L 1(k) P

(L 1(k))3

}

+
2

9
Re

{
2L 1 L 1(k) L 1 L1(k) + K L 1 L 1(k) P

(L 1(k))2

}

−
2

9
Re

{
2L1 L 1(k) P + L 1 L 1(k) P

L 1(k)

}

−
1

9
|P|2 +

1

3

∣
∣
∣
∣

L 1 L 1(k)

L 1(k)

∣
∣
∣
∣

2

+
2

3
Re

{

L1

[
L 1 L 1(k)

L 1(k)

]}

+
1

3
Re
(

L 1(P)
)

. (6.8)
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