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Abstract

In a previous paper we have defined a second basis of the Grothendieck group of

unipotent representations of a split reductive group over a finite field. In this paper we

extend this to the case of non-split special orthogonal groups.

Introduction

0.1. Let S be the set of (isomorphism classes of irreducible) unipotent

representations of

(a) a symplectic or odd special orthogonal group over a finite field, or

(b) an even split full orthogonal group over a finite field, or

(c) an even non-split full orthogonal group over a finite field.

(In cases (b), (c) we say that an irreducible representation is unipotent if its

restriction to the corresponding special orthogonal group is unipotent; we

further assume that this restriction is irreducible.)

Let W be the corresponding Weyl group and let Ce(W ) be the set of

two-sided cells of W , which in cases (b), (c) are stable under the graph

automorphism of W induced by an element in the full orthogonal group

which is not in the special orthogonal group.
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From [1] (or a slight extension) one deduces a natural partition

S = ⊔c∈Ce(W )Sc.

Thus, the Grothendieck group of the category of unipotent representations

of (a), (b) or (c) is a direct sum ⊕c∈Ce(W )Z[Sc] where for a finite set Y , Z[Y ]

denotes the free abelian group with basis Y .

We now fix c ∈ Ce(W ). In [2, 3] a new basis of Z[Sc] with strong

positivity properties with respect to Fourier transform was defined in case

(a). Here we shall call it the “second basis”. In case (b) there were two

versions of such a basis in [2] and the second one was adopted in [3] under

the name “second basis”.

In this paper we give a somewhat different presentation and refinements

of the results of [2, 3] and extend them to include case (c).

From [1] (or a slight extension), to c one can attach a pair of finite subsets

U ′ ⊂ U ofN with |U−U ′| odd in case (a) and even in cases (b), (c), so that Sc

is identified with the set Sy(U ′, U) of “symbols”, that is ordered pairs (S, T )

where S, T are finite subsets of U such that S ∪ T = U,S ∩ T = U ′, 0 /∈ U ′

and

(d) |S| − |T | is in 2Z+1 in case (a), in 4Z in case (b), in 4Z+2 in case (c).

(The cardinal of a finite set Y is denoted by |Y |.) We can identify Sy(U ′, U)

with Sy(∅, [1,D + 1]) where D + 1 = |U − U ′|. (For i, j in Z we set

[i, j] = {z ∈ Z, i ≤ z ≤ j}.)

Namely, to (S, T ) ∈ Sy(U ′, U) we associate (S′, T ′) ∈ Sy(∅, [1,D+1]) where

S′, T ′ are the images of S − U ′, T − U ′ under the unique order preserving

bijection U −U ′ → [1,D+1]. In this way Z[Sc] becomes Z[Sy(∅, [1,D+1])]

and our task becomes that of defining a second basis of Z[Sy(∅, [1,D + 1])].

We shall write SyD (resp. Sy+D, Sy
−
D) instead of Sy(∅, [1,D+1]) in case

(a) (resp. (b), (c)). Thus,

SyD is the set of ordered pairs (S, T ) of disjoint subsets of [1,D + 1] such

that S ∪ T = [1,D + 1], |S| − |T | ∈ 2Z+ 1, D even ≥ 0;
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Sy+D is the set of ordered pairs (S, T ) of disjoint subsets of [1,D + 1] such

that S ∪ T = [1,D + 1], |S| − |T | ∈ 4Z, D odd ≥ 1;

Sy−D is the set of ordered pairs (S, T ) of disjoint subsets of [1,D + 1] such

that S ∪ T = [1,D + 1], |S| − |T | ∈ 4Z+ 2, D odd ≥ 1.

Under our identification, the partition of Sc according to Harish-Chandra

series corresponds to the partition

SyD = ⊔s∈2N+1Sy
s
D, Sy

s
D = {(S, T ) ∈ SyD; abs(|S| − |T |) = s} in case (a);

Sy+D = ⊔s∈4ZSy
s
D, Sy

s
D = {(S, T ) ∈ Sy+D; |S| − |T | = s} in case (b);

Sy−D = ⊔s∈4Z+2Sy
s
D, Sy

s
D = {(S, T ) ∈ Sy−D; |S| − |T | = s} in case (c).

Here, the absolute value of an integer z is denoted by abs(z).

1. The second basis

1.1. Let F be the field consisting of two elements. Let D ≥ 0 be an integer.

We set N = D+1 if D is even, N = D+2 if D is odd. Thus N is odd. When

N ≥ 3, for any k ∈ [1,D] we define an (injective) map ιk : [1, N−2] → [1, N ]

by ιk(i) = i for i ∈ [1, k − 1], ιk(i) = i+ 2 for i ∈ [k,N − 2]. Note that

ιk(1) < ιk(2) < · · · < ιk(N − 2) and ιk(i) = imod 2 for all i ∈ [1, N − 2].

Let ẼN be the set of subsets of [1, N ] viewed as an F -vector space in which

the sum of A,B is (A∪B)− (A∩B). Let EN = {X ∈ ẼN ; |X| = 0mod 2}, a

codimension 1 subspace of ẼN . Let 2EN be the set of all 2 element subsets

of [1, N ]. When N ≥ 3, k ∈ [1,D], we define an F -linear map ẼN−2 → ẼN

by {i} 7→ {ιk(i)} for all i ∈ [1, N − 2]; this map is denoted again by ιk. It

restricts to an F -linear map EN−2 → EN .

A subset {i, j} ∈ 2EN will be often written as ij if

i < j and i− j = 1mod 2 (we then say that ij ∈ 2E′
N ) or if

i > j and i− j = 0mod 2 (we then say that ij ∈ 2E′′
N ).

In this way, 2EN = 2E′
N ⊔ 2E′′

N is identified with a subset of EN × EN . For

ij ∈ 2EN we set

⌊i, j⌋ = [i, j] if i < j, i− j = 1mod 2 and
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⌊i, j⌋ = [i,N ] ⊔ [1, j] if i > j, i = jmod2.

We have

|⌊i, j⌋| = j − i+ 1 if i < j, |⌊i, j⌋| = N − i+ 1 + j if i > j.

Thus, |⌊i, j⌋| = 0mod 2 that is, ⌊i, j⌋ ∈ EN .

When N ≥ 3, k ∈ [1,D] and ij ∈ 2EN−2 we have, using the definitions,

in EN :

(a) ⌊ιk(i), ιk(j)⌋ = ιk(⌊i, j⌋) + c{k, k + 1} where c ∈ {0, 1}

1.2. Let PN be the set of all unordered sequences X1,X2, . . . ,Xt in 2EN

such that Xa ∩Xb = ∅ for any a 6= b. (We have necessarily t ≤ (N − 1)/2.)

For B ∈ PN let supp(B) = ∪ij∈B{i, j} ⊂ [1, N ] (this is a disjoint union)

and B1 = B ∩ 2E′
N , B0 = B ∩ 2E′′

N ; if B0 6= ∅ we denote by iB the largest

number i such that ij ∈ 2E′′
N for some j.

We define a subset PrD of PN as follows: if D = 0, PrD consists of

Q0
D = ∅. If D is even ≥ 2, PrD consists of Q0

D = ∅ and of

B = Qt
D = {{D + 1, 1}, {D, 2}, . . . , {D + 2 − t, t}} with t ∈ [2,D/2], t even

(we have |B0| = t),

B = Q−t
D = {{D+1, 1}, {D, 2}, . . . , {D+3− t, t−1}} with t ∈ [2, (D+2)/2],

t even (we have |B0| = t− 1).

If D is odd, PrD consists of Q0,+
D = ∅, Q0,−

D = {D + 1,D + 2} and of

B = Qt,+
D = {{D + 1, 2}, {D, 3}, {D − 1, 4}, . . . , {D + 3− t, t}} with t even,

t ∈ [2, (D + 1)/2]

(we have |B0| = t− 1, iB ∈ 2N, N /∈ supp(B)),

B = Q−t,+
D = {{D, 1}, {D − 1, 2}, {D − 2, 3}, . . . , {D + 2 − t, t− 1}} with t

even, t ∈ [2, (D + 1)/2] (we have |B0| = t− 1, iB ∈ 2N+ 1, N /∈ supp(B)),

B = Q−t,−
D = {{D + 2, 1}, {D + 1, 2}, {D, 3}, . . . , {D + 4 − t, t− 1}} with t

even, t ∈ [2, (D + 3)/2], (we have |B0| = t− 1, iB = N),

B = Qt,−
D = {{D + 1,D + 2}, {D, 1}, {D − 1, 2}, . . . , {D + 1 − t, t}} with t

even, t ∈ [2, (D − 1)/2] (we have |B0| = t, iB < N , N ∈ supp(B)).

For example,
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Pr2 consists of ∅ and {31};

Pr4 consists of ∅ and {51}, {51, 42};

Pr6 consists of ∅ and {71}, {71, 62}, {71, 62, 53};

Pr8 consists of ∅ and {91}, {91, 82}, {91, 82, 73}, {91, 82, 73, 64};

Pr1 consists of ∅ and {31}, {23};

Pr3 consists of ∅ and {42}, {31}, {51}, {45};

Pr5 consists of ∅ and {62}, {51}, {71}, {71, 62, 53}, {67}, {67, 51, 42};

Pr7 consists of ∅ and

{82}, {82, 73, 64}, {71}, {71, 62, 53}, {91}, {91, 82, 73}, {89}, {89, 71, 62}.

When N ≥ 3 and k ∈ [1,D] we define a map Ik : PN−2 → PN by

(i1j1, i2j2, . . . , itjt) 7→ (ιk(i1)ιk(j1), ιk(i2)ιk(j2), . . . , ιk(it)ιk(jt), {k, k + 1}).

(This is well defined since ιk : [1, N − 2] → [1, N ] is injective with image not

containing k, k + 1.)

We define a subset XD of PN by induction on D as follows. We set

X0 = P1; it consists of ∅. We set X1 = Pr1 ⊔ {12}. Assume now that D ≥ 2

so that N ≥ 3. Let B ∈ PN . We say that B ∈ XD if either B ∈ PrD or if

there exists B′ ∈ XD−2 and k ∈ [1,D] such that B = Ik(B
′). We see that

PrD ⊂ XD and that Ik(XD−2) ⊂ XD for D ≥ 2, k ∈ [1,D].

In the remainder of this subsection we fix B ∈ PN and J ⊂ [1, N ] such

that either J = [i, j] for some i ≤ j or that J = ∅; define e ∈ {0, 1} by

|J | = emod 2. We say that J is e-covered by B if

(a) there exists a sequence a1 < b1 < a2 < b2 < · · · < am < bm in [1, N ] such

that a1b1, a2b2, . . . , ambm are in B1 and we have

J = [a1, b1] ⊔ [a2, b2] ⊔ . . . ⊔ [am, bm] ⊔ J0

where J0 ⊂ J satisfies |J0| = e.

1.3. For B ∈ PN we consider the following property:

(P1) There exists a sequence i1 < i2 < · · · < i2s in [1, N ] such that

B0 = {i2si1, i2s−1i2, . . . , is+1is} (it is automatically unique).
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1.4. For B ∈ PN we define ηB ∈ {0, 1} as follows. If D is even or if D is

odd and |B0| = 0 we have |B0| = ηB mod2. If D is odd and |B0| 6= 0 we set

ηB = 0 if N ∈ supp(B) and iB 6= N and ηB = 1 if N /∈ supp(B) or iB = N .

We consider the following property:

(P2) We have |B0| = ηB mod2.

1.5. In this subsection we fix B ∈ PN such that (P1) holds for B. Let

i1 < · · · < i2s be as in (P1). We consider the following property:

(P3) The following subsets of [1, N ] are 0-covered by B:

[i+ 1, j − 1] for any ij ∈ B1,

[i1 + 1, i2 − 1], [i2 + 1, i3 − 1], . . . , [is−1 + 1, is − 1], [is+1 + 1, is+2 − 1],

[is+2 + 1, is+3 − 1], . . . , [i2s−1 + 1, i2s − 1] (if s ≥ 1).

(In particular any two consecutive terms of i1, i2, . . . , is have different par-

ities, hence any two consecutive terms of is+1, is+2, . . . , i2s have different

parities.) In addition, [1, i1 − 1], [i2s + 1, N ] are 0-covered by B if D is odd

and N ∈ supp(B) or if D is even; if D is odd and N /∈ supp(B), iB ∈ 2N+1,

then [1, i1 − 1] is 0-covered by B and [i2s + 1, N − 1] is 1-covered by B; if

D is odd and N /∈ supp(B), iB ∈ 2N, then [1, i1 − 1] is 1-covered by B and

[i2s + 1, N − 1] is 0-covered by B (again, if s ≥ 1).

1.6. Let X̃D be the set of all B ∈ PN that satisfy (P1), (P2), (P3). We

show:

(a) If B ∈ XD then B ∈ X̃D.

We argue by induction on D. If D ∈ {0, 1} or if D ≥ 2 and B ∈ PrD, the

result is obvious. Thus we can assume that D ≥ 2 and B = Ik(B
′) for some

k ∈ [1,D] and some B′ ∈ XD−2. Then (P1) for B follows immediately from

the analogous statement for B′.

To prove (P2) for B we can assume that D is odd and |B0| 6= 0. As-

sume first that |B0| ∈ {2, 4, 6, . . . }. We have |B0| = |B′0| so that |B′0| ∈

{2, 4, 6, . . . }. From the induction hypothesis we see that N − 2 ∈ supp(B′)

and iB′ 6= N − 2. It follows that N ∈ supp(B) and iB 6= N as de-

sired. Next we assume that |B0| ∈ {1, 3, 5, . . . }. We have |B0| = |B′0|
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so that |B′0| ∈ {1, 3, 5, . . . }. From the induction hypothesis we see that

N − 2 /∈ supp(B′) or iB′ = N − 2. It follows that N /∈ supp(B) or iB = N

as desired. We see that (P2) holds for B. It is easy to verify that if (P3)

holds for B′ then it holds for B. This completes the proof of (a).

1.7. We show:

(a) If B ∈ X̃D then B ∈ XD.

We argue by induction on D. If D ≤ 1, (a) is easily verified. Now assume

that D ≥ 2. Let ∗B be B0 if D is even and B0 ∪ {N − 1, N} if D is odd. In

the first part of the proof we assume that B = ∗B.

If B0 = ∅ then B is either ∅ or D is odd and B = {N − 1, N}; in both

cases we have B ∈ PrD and we are done. Thus we can assume that B0 6= ∅.

Let i1 < · · · < i2s be as in (P1); note that s ≥ 1. If r ∈ {1, 2, . . . , s −

1, s + 1, s + 2, . . . , 2s} and ir+1 − ir > 1, then by (P3), [ir + 1, ir+1 − 1]

is 0-covered by B and is nonempty, so that there exists ab ∈ B1 such that

[a, b] ⊂ [ir + 1, ir+1 − 1]. We have ab ∈ B − ∗B, contradicting B = ∗B. We

see that ir+1 = ir + 1 and

(i1, i2, . . . , is, is+1, is+2, . . . , i2s)

= (i1, i1 + 1, . . . , i1 + s− 1, i2s − s+ 1, . . . , i2s − 1, i2s).

Assume now that D is even. If i1 ≥ 2 then by (P3), [1, i1 − 1] is 0-covered

by B and is nonempty so that there exists ab ∈ B1 with [a, b] ⊂ [1, i1 − 1].

This contradicts B = ∗B. We see that i1 = 1. If N − i2s ≥ 2 then by (P3),

[i2s + 1, N ] is 0-covered by B and is nonempty so that there exists ab ∈ B1

with [a, b] ⊂ [i2s +1, N ]. This contradicts B = ∗B. We see that i2s = N − 1

hence

(i1, i2, . . . , is, is+1, is+2, . . . , i2s) = (1, 2, . . . , s,N − s, . . . , N − 2, N − 1),

so that B ∈ PrD.

We now assume that D is odd and N ∈ supp(B) or N /∈ supp(B), iB ∈

2N+1. If i1 ≥ 2 then by (P3), [1, i1 − 1] is 0-covered by B and is nonempty

so that there exists ab ∈ B1 with [a, b] ⊂ [1, i1 − 1]. We have ab ∈ B − ∗B,

contradicting B = ∗B. We see that i1 = 1.
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We now assume that D is odd and N /∈ supp(B), iB ∈ 2N. If i1 ≥ 3

then by (P3), [1, i1 − 1] is 1-covered by B and has at least 2 elements, so

that there exists ab ∈ B1 with [a, b] ⊂ [1, i1 − 1]. We have ab ∈ B − ∗B,

contradicting B = ∗B. We see that i1 ≤ 2. Since i1 = i2smod2 and i2s ∈ 2N

we see that i1 = 2.

We now assume thatD is odd andN /∈ supp(B), iB ∈ 2N. IfN−i2s ≥ 3,

then by (P3), [i2s + 1, N − 1] is 0-covered by B and is nonempty so that

there exists ab ∈ B1 with [a, b] ⊂ [i2s + 1, N − 1]. We have ab ∈ B − ∗B,

contradicting B = ∗B. We see that i2s ≥ N − 2 hence i2s = N − 1. Thus we

have

(i1, i2, . . . , is, is+1, is+2, . . . , i2s) = (2, . . . , s+ 1, N − s, . . . , N − 2, N − 1),

with s odd (see (P2)), so that B ∈ PrD.

We now assume that D is odd and N /∈ supp(B), iB ∈ 2N + 1. If

N − i2s ≥ 3, then by (P3), [i2s+1, N − 1] is 1-covered by B and has at least

2 elements (since i2s + 1 = N − 1mod 2) so that there exists ab ∈ B1 with

[a, b] ⊂ [i2s + 1, N − 1]. We have ab ∈ B − ∗B, contradicting B = ∗B. We

see that i2s ≥ N − 2; since i2s = 1mod 2, i2s 6= N , we must have i2s = N − 2

in this case. Thus we have

(i1, i2, . . . , is, is+1, is+2, . . . , i2s) = (1, 2, . . . , s,N − s− 1, . . . , N − 3, N − 2),

with s odd (see (P2)), so that B ∈ PrD.

We now assume that D is odd and N ∈ supp(B), iB 6= N . If N−i2s ≥ 3,

then by (P3), [i2s + 1, N ] is 0-covered by B and contains at least three

elements so that there exists ab ∈ B1 other than {N − 1, N} with [a, b] ⊂

[i2s + 1, N ]. We have ab ∈ B − ∗B, contradicting B = ∗B. We see that

i2s ≥ N − 2. As we have seen earlier, in this case we have i1 = 1. Since

i2s = i1mod 2 we see that i2s is odd. Since i2s ≥ N − 2 and i2s < N we see

that i2s = N − 2. Thus we have

(i1, i2, . . . , is, is+1, is+2, . . . , i2s) = (1, 2, . . . , s,N − s− 1, . . . , N − 3, N − 2),

with s even (see (P2)). By (P3), [i2s + 1, N ] = [N − 1, N ] is 0-covered by

B. It follows that {N − 1, N} ∈ B. We see that B ∈ PrD.

We now assume that D is odd and iB = N hence N ∈ supp(B). In this

case we have
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(i1, i2, . . . , is, is+1, is+2, . . . , i2s) = (1, 2, . . . , s,N − s+ 1, . . . , N − 1, N),

with s odd (see (P2)) so that B ∈ PrD.

We have thus proved that if B = ∗B then B ∈ PrD; in particular we have

B ∈ XD. We see that it is enough to prove (a) assuming that B 6= ∗B. Then

we can find ab ∈ B1 such that when D is odd we have {a, b} 6= {N − 1, N}.

We can assume in addition that b−a is minimum possible. If b−a > 1 then

b− a ≥ 3 and by (P3), [a + 1, b − 1] is 0-covered by B and is nonempty so

that we can find a′b′ ∈ B1 with [a′, b′] ⊂ [a + 1, b − 1]; if D is odd we have

automatically {a′, b′} 6= {N−1, N}. This contradicts the minimality of b−a.

We see that b − a = 1. Thus there exists k ∈ [1,D] such {k, k + 1} ∈ B.

If cd ∈ B − {k, k + 1} then {c, d} ∩ {k, k + 1} = ∅ (since B ∈ PN ). Hence

there are unique c′, d′ in [1, N − 2] such that c = ιk(c
′), d = ιk(d

′). We have

c′d′ ∈ 2EN−2. Let B′ ∈ PN−2 be the set consisting of all c′d′ associated

as above to the various cd ∈ B − {k, k + 1}. Note that B = Ik(B
′). One

can verify that (P1), (P2), (P3) hold for B′ since they hold for B. By the

induction hypothesis we have B′ ∈ XD−2. It follows that B ∈ XD. This

proves (a).

1.8. For B ∈ XD we show:

(a) If ab ∈ B, cd ∈ B are distinct (so that {a, b} ∩ {c, d} = ∅) then ⌊a, b⌋ ∩

⌊c, d⌋ = ∅ or ⌊a, b⌋ ⊂ ⌊c, d⌋ or ⌊c, d⌋ ⊂ ⌊a, b⌋.

We argue by induction on D. If D ∈ {0, 1} or if D ≥ 2 and B ∈ PrD, the

result is obvious. Thus we can assume that D ≥ 2 and B = Ik(B
′) for some

k ∈ [1,D] and some B′ ∈ XD−2. Then (a) for B follows immediately from

the analogous statement for B′.

Let B ∈ PN and let J ⊂ [1, N ] with J = [i, j] for some i ≤ j be

such that J is e-covered by B (where e = |J |mod 2, e ∈ {0, 1}) and let

a1 < b1 < a2 < b2 < · · · < am < bm be as in 1.2(a). We show that:

(b) the sequence a1 < b1 < a2 < b2 < · · · < am < bm is unique.

We argue by induction on |J |. If |J | ≤ 1, the result is obvious. Now

assume that |J | ≥ 2 so that J = [i, j] for some i < j. Let a′1 < b′1 <

a′2 < b′2 < · · · < a′m′ < b′m′ be a sequence with the same properties as

a1 < b1 < a2 < b2 < · · · < am < bm. Now i equals a1 or a1 + 1 so that
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i ∈ [a1, b1]. Similarly, i ∈ [a′1, b
′
1]. Using (a) we see that [a1, b1] = [a′1, b

′
1].

Let J ′ = J − [a1, b1]. We have |J ′| < |J |. The induction hypothesis is

applicable to J ′ instead of J ; we see that (b) holds for J .

In the case where e = 1, the unique element in J which is not in

[a1, b1] ⊔ [a2, b2] ⊔ . . . ⊔ [am, bm] is said to be the distinguished element of J .

1.9. Assume first that D is even. We have a partition XD = ⊔t∈2ZX
t
D where

X t
D consists of all B ∈ XD such that |B0| = t (if t ≥ 0), |B0| = −t − 1 (if

t < 0). The subsets X t
D are said to be the pieces of XD. Note that when

t ∈ 2Z, Qt
D is the unique element in PrD ∩ X t

D.

In the remainder of this subsection we assume that D is odd. We have

a partition XD = X+
D ⊔ X−

D where

X+
D = {B ∈ XD;N /∈ supp(B)}, X−

D = {B ∈ XD;N ∈ supp(B)}.

For t ∈ 2Z we define a subset X t,+
D of X+

D to be

{B ∈ X+
D ; |B0| = 0} if t = 0,

{B ∈ X+
D ; |B0| = t− 1, iB ∈ 2N} if t ∈ {2, 4, 6, . . . },

{B ∈ X+
D ; |B0| = −t− 1, iB ∈ 2N+ 1} if t ∈ {−2,−4,−6, . . . }.

For t ∈ 2Z we define a subset X t,−
D of X−

D to be

{B ∈ X−
D ; |B0| = 0} if t = 0,

{B ∈ X−
D ; |B0| = t, iB 6= N} if t ∈ {2, 4, 6, . . . },

{B ∈ X−
D ; |B0| = −t− 1, iB = N} if t ∈ {−2,−4,−6, . . . }.

Note that when t ∈ 2Z, Qt,+
D (resp. Qt,−

D ) is the unique element of PrD∩X t,+
D

(resp. PrD ∩ X t,−
D ). From (P3) we see that the subsets X t,+,X t,− of XD

(with t ∈ 2Z) form a partition of XD; these subsets are said to be the pieces

of XD.

1.10. In this subsection we asssume that D is odd and that B ∈ XD is

such that |B0| > 0 and N /∈ supp(B). Let i1 < · · · < i2s be as in (P1);

here s ≥ 1. If i2s ∈ 2N + 1 (so that i2s + 1 = N − 1mod 2) then by (P3),

[i2s+1, N −1] is 1-covered by B; we denote by uB the distinguished element

of [i2s+1, N−1]. Note that [i2s+1, uB−1] and [uB+1, N−1] are 0-covered
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by B. If i2s ∈ 2N (so that i1 − 1 = 1) then by (P3), [1, i1 − 1] is 1-covered

by B; we denote by uB the distinguished element of [1, i1 − 1]. Note that

[1, uB − 1] and [uB + 1, i1 − 1] are 0-covered by B.

1.11. For any B ∈ XD we define B ∈ EN as follows. If D is even we set

B = ∅. If D is odd and B /∈ ∪t∈2Z−{0}X
t,+
D , we set B = ∅. If D is odd and

B ∈ X t,+
D for some t ∈ {−2,−4,−6, . . . }, we set B = ⌊uB , N⌋ = [uB , N ]; if

D is odd and B ∈ X t,+
D for some t ∈ {2, 4, 6, . . . }, we set B = ⌊N,uB⌋ =

{N} ∪ [1, uB ].

For any B ∈ XD we define ǫ(B) ∈ EN by

(a) ǫ(B) =
∑

ij∈B⌊i, j⌋ +B.

(Sum in EN .) We show:

(b) If N ≥ 3, k ∈ [1,D], B′ ∈ XD−2 then ǫ(Ik(B
′)) = ιk(ǫ(B

′)) + c{k, k + 1}

for some c ∈ F .

We have:

ǫ(Ik(B
′)) =

∑

ij∈B′⌊ιk(i), ιk(j)⌋ + {k, k + 1}+ Ik(B
′),

ιk(ǫ(B
′)) =

∑

ij∈B′ ιk(⌊i, j⌋) + ιk(B
′).

Using 1.1(a), we see that it is enough to show that

Ik(B
′) = ιk(B

′) + c1{k, k + 1}

for some c1 ∈ F . If D is even, both sides are zero (and c1 = 0). Thus

we can assume that D is odd. From the definitions we have uB = ιk(uB′),

N = ιk(N − 2) so that the desired equality follows again from 1.1(a). This

proves (b).

1.12. Define γ : EN → Z by γ(X) = |X ∩ (2Z)| − |X ∩ (2Z+1)|. Note that

the image of γ is contained in 2Z. We show:

(a) If N ≥ 3, k ∈ [1,D], B′ ∈ XD−2 then γ(ǫ(Ik(B
′))) = γ(ǫ(B′)).

Using 1.11(b), we see that it is enough to prove that for any c ∈ F we have

γ(ιk(ǫ(B
′)) + c{k, k + 1}) = γ(ǫ(B′)).

It is also enough to show that for any X ∈ EN−2 we have γ(ιk(X)+ c{k, k+

1}) = γ(X). From the definitions we have γ(ιk(X)) = γ(X) for any X ∈
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EN−2. It is then enough to show that γ(ιk(X) + {k, k + 1}) = γ(X). From

the definition we have ιk(X) ∩ {k, k + 1} = ∅ hence γ(ιk(X) + {k, k + 1}) =

γ(ιk(X))+γ({k, k+1}) = γ(X)+γ({k, k+1}) = γ(X), since γ({k, k+1}) =

0. This proves (a).

1.13. We now describe ǫ(B) and γ(ǫ(B)) when B ∈ PrD. If B = ∅, then

ǫ(B) = ∅ ∈ EN , γ(ǫ(B)) = 0.

If D is even and B = Qt
D with t ∈ [2,D/2], t even, we have

ǫ(B) = {2, 4, 6, . . . , t,D + 2− t,D + 4− t, . . . ,D}, γ(ǫ(B)) = t.

If D is even and B = Q−t
D with t ∈ [2, (D + 2)/2], t even, we have

ǫ(B) = {1, 3, . . . , t− 1,D + 3− t,D + 5− t, . . . ,D + 1}, γ(ǫ(B)) = −t.

We now assume that D is odd. If B = Q0,−
D then ǫ(B) = {D+1,D+2}

and γ(ǫ(B)) = 0.

If B = Qt,+
D with t even, t ∈ [2, (D + 1)/2], we have

ǫ(B) = {2, 4, 6, . . . , t,D + 3− t,D + 5− t, . . . ,D + 1}, γ(ǫ(B)) = t.

If B = Q−t,+
D with t even, t ∈ [2, (D + 1)/2], then

ǫ(B) = {1, 3, . . . , t− 1,D + 2− t,D + 4− t, . . . ,D}, γ(ǫ(B)) = −t.

If B = Q−t,−
D with t even, t ∈ [2, (D + 3)/2], then

ǫ(B) = {1, 3, . . . , t− 1,D + 4− t,D + 6− t, . . . ,D + 2}, γ(ǫ(B)) = −t.

If B = Qt,−
D with t even, t ∈ [2, (D − 1)/2], then

ǫ(B) = {2, 4, 6, . . . , t,D+1−t,D+3−t, . . . ,D−1,D+1,D+2}, γ(ǫ(B)) = t.

1.14. We show:

(a) If N ≥ 3, k ∈ [1,D], D odd, B′ ∈ XD−2, B = Ik(B
′) ∈ XD, then

N ∈ ǫ(B) if and only if N − 2 ∈ ǫ(B′).

Recall from 1.11 that ǫ(B) = ιk(ǫ(B
′))+c{k, k+1} for some c ∈ {0, 1}. Note

that N /∈ {k, k + 1} so that we have N ∈ ǫ(B) if and only if N ∈ ιk(ǫ(B
′))

and this happens if and only if N − 2 ∈ ǫ(B′). (From the definitions we see

that for X ⊂ [1, N − 2] we have N ∈ ık(X) if and only if N − 2 ∈ X.) This

proves (a).
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1.15. When D is even we have a partition EN = ⊔t∈2ZE
t
D where

E t
D = {X ∈ EN ; γ(X) = t}.

Now assume that D is odd. We define a partition EN = E+
D ⊔ E−

D by

E+
D = {X ∈ EN ;N /∈ X}, E−

D = {X ∈ EN ;N ∈ X}.

We have E+
D = ⊔t∈2ZE

t,+
D , E−

D = ⊔t∈2ZE
t,
D where

E t,+
D = {X ∈ E+

D ; γ(X) = t}, E t,−
D = {X ∈ E−

D ; γ(X) = t}.

We show:

(a) If D is even and B ∈ X t
D, t ∈ 2Z, then γ(ǫ(B)) = t.

(b) If D is odd and B ∈ X t,+
D , t ∈ 2Z, then γ(ǫ(B)) = t and N /∈ ǫ(B).

(c) If D is odd and B ∈ X t,−
D , t ∈ 2Z, then γ(ǫ(B)) = t and N ∈ ǫ(B).

We argue by induction on D. For D ∈ {0, 1}, the result is obvious. When

B ∈ PrD this follows from 1.13. Assume now that D ≥ 2 and B /∈ PrD. We

can find B′ ∈ XD−2, k ∈ [1,D] such that B = Ik(B
′). From the definitions

we have B′ ∈ X t
D−2 (in (a)), B′ ∈ X t,+

D−2 (in (b)), B′ ∈ X t,−
D−2 (in (c)).

By the induction hypothesis we have γ(ǫ(B′)) = t (in case (a), (b), (c)),

N /∈ ǫ(B′) (in case (b)), N ∈ ǫ(B′) (in case (c)). Using 1.14(a) we deduce

that γ(ǫ(B)) = t (in case (a), (b), (c)). Using 1.11(b) we see that N /∈ ǫ(B)

in case (b) and N ∈ ǫ(B) in case (c). This completes the proof of (a), (b),

(c).

1.16. Let t ∈ 2Z. From 1.15(a), (b), (c) we see that ǫ : XD → EN restricts

to a map

(a) X t
D → E t

D

if D is even, and to maps

(b) X t,+
D → E t,+

D , X t,−
D → E t,−

D

if D is odd. Hence it restricts to maps

(c) X+
D → E+

D , X−
D → E−

D .

1.17. For B ∈ XD let

(a) 〈B〉 be the subspace of EN spanned by the vectors ij ∈ B (viewed as

elements of EN ).
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We show:

(b) ǫ(B) ∈ 〈B〉.

We argue by induction on D. If D ∈ {0, 1} the result is obvious. We

now assume that D ≥ 2. If B ∈ PrD the result follows from 1.13. Thus we

can assume that B /∈ PrD so that we can find B′ ∈ XD−2, k ∈ [1,D] such

that B = Ik(B
′). By 1.11(b) we have ǫ(B) = ιk(ǫ(B

′))+ c{k, k+1} for some

c ∈ F . From the definition of Ik we see that {k, k + 1} ⊂ 〈B〉 and by the

induction hypothesis we have ǫ(B′) ∈ 〈B′〉. Thus it is enough to prove that

ιk(〈B
′〉) ⊂ 〈B〉 or that for any ij ∈ B′ we have ιk({i, j}) ∈ 〈B〉; this follows

from {ιk(i), ιk(j)} ∈ B.

Let ≤D be the transitive relation on EN generated by the relation for

which X,X ′ in EN are related if X ∈ 〈ǫı(X ′)〉.

Theorem 1.18.

(a) There is a unique bijection ǫ′ : XD → EN such that for any B ∈ XD we

have ǫ′(B) ∈ 〈B〉.

(b) We have ǫ′(B) = ǫ(B) for any B ∈ XD.

(c) The relation ≤D is a partial order on EN .

(d) The maps 1.16(a), 1.16(b), 1.16(c) are bijections.

When D is even, (a), (b), (c) can be deduced from the results of [2, 3],

see §3. The formula for ǫ′ given by (a) is simpler than the one in [2, 3]; the

equivalence of the two formulas is proved in §3. The proof of (a), (b), (c)

for odd D can be given along similar lines. Now (d) follows from (a), (b).

1.19. For X ∈ EN we set C(X) = [1, N ]−X and

X∗ = (X ∩ (2Z+ 1)) ∪ (C(X) ∩ (2Z)) ⊂ [1, N ],

X∗∗ = (X ∩ (2Z)) ∪ (C(X) ∩ (2Z+ 1)) = C(X∗) ⊂ [1, N ].

We have

|X∗| = |X ∩ (2Z+ 1)|+ |(2Z) ∩ [1, N ]| − |X ∩ (2Z)| = (N − 1)/2 − γ(X),

|X∗∗| = (N + 1)/2 + γ(X). Hence |X∗∗| − |X∗| = 2γ(X) + 1.
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Assume now that D is even. The assignment X 7→ (X∗,X∗∗) defines

a bijection EN → SyD (notation of 0.1); it restricts for any t ∈ 2Z to a

bijection E t
D → Sy

abs(2t+1)
D .

For X,X ′ in EN we set MX,X′ = 1 if X ∈ 〈ǫı(X ′)〉 and MX,X′ = 0,

otherwise. From 1.18 we see that (MX,X′) is an upper triangular matrix

with entries in {0, 1} and with 1 on diagonal. It follows that the elements

(a)
∑

X∈EN
MX,X′X ′ ∈ Z[EN ] (for various X ′ ∈ EN )

form a Z-basis of Z[EN ], said to be the second basis. (This basis appears in

[2] where it is called the new basis.)

Using the bijection EN → SyD we see that the second basis of Z[EN ]

can be viewed as a Z-basis of Z[SyD] which is also called the second basis.

We now assume that D is odd.

IfX ∈ E+
D then (X∗∗−{N},X∗) ∈ Sy+D and |X∗∗−{N}|−|X∗| = 2γ(X);

the assignment X 7→ (X∗∗ − {N},X∗) defines a bijection E+
D → Sy+D; it

restricts for any t ∈ 2Z to a bijection E t,+
D → Sy2tD .

For X,X ′ in E+
D we set M+

X,X′ = 1 if X ∈ 〈ǫı(X ′)〉 and M+
X,X′ = 0,

otherwise. From 1.18 we see that (M+
X,X′) is an upper triangular matrix

with entries in {0, 1} and with 1 on diagonal. It follows that the elements

(b)
∑

X∈E+

D

MX,X′X ′ ∈ Z[E+
D ] (for various X ′ ∈ E+

D)

form a Z-basis of Z[E+
D ], said to be the second basis. (This basis appears in

[3].) Using the bijection E+
D → Sy+D, we see that the second basis of Z[E+

D ]

can be viewed as a Z-basis of Z[Sy+D] which is also called the second basis.

If X ∈ E−
D then (X∗∗,X∗ − {N}) ∈ Sy−D and |X∗∗| − |X∗ − {N}| =

2γ(X) + 2; the assignment X 7→ (X∗∗,X∗ − {N}) defines a bijection E−
D →

Sy−D; it restricts for any t ∈ 2Z to a bijection E t,−
D → Sy2t+2

D .

For X,X ′ in E−
D we set M−

X,X′ = 1 if X ∈ 〈ǫı(X ′)〉 and M−
X,X′ = 0,

otherwise. From 1.18 we see that (M−
X,X′) is an upper triangular matrix

with entries in {0, 1} and with 1 on diagonal. It follows that the elements

(c)
∑

X∈E−

D

MX,X′X ′ ∈ Z[E−
D ] (for various X ′ ∈ E−

D)

form a Z-basis of Z[E−
D ], said to be the second basis.
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Using the bijection E−
D → Sy−D, we see that the second basis of Z[E−

D ]

can be viewed as a Z-basis of Z[Sy−D] which is also called the second basis.

1.20. We have

|SysD| =
( N
(s+N)/2

)

if D is even, s ∈ 2N+ 1,

|SysD| =
(

N−1
(s+N−1)/2

)

, if D is odd, s ∈ 2Z.

Here
(a
b

)

is defined to be 0 if b < 0 or if b > a. It follows that

|E t
D| =

( N
(abs(2t+1)+N)/2

)

for D even, t ∈ 2Z,

|E t,+
D | =

( N−1
(2t+N−1)/2

)

for D odd, t ∈ 2Z,

|E t,−
D | =

( N−1
(2t+N+1)/2

)

for D odd, t ∈ 2Z.

2. Tables for XD

2.1. In this section we give tables describing XD and the map ǫ : XD → EN

for D = 1, 2, 3, 4, 5, 6, 7. The table for XD is given by a list of elements

of the various pieces of XD; each such element B is written in the form

(?, ?, . . . , ?, [?, ?, . . . , ?]) where each ? stands for an element of B and the ?

inside the bracket [, ] are such that their sum in EN is equal to ǫ(B). The

elements of XD are written in an order in which B ∈ XD preceeds B′ ∈ XD

whenever ǫ(B) ≤D ǫ(B′).

2.2. Table for X 2.

X 0
2 :

([∅]), ([12]), ([23])

X−2
2 :

([31])

2.3. Table for X 4.

X 0
4 :

([∅]), ([12]), ([23]), ([34]), ([45]), ([12, 34]), ([12, 45]),
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([23, 45]), (23, [14]), (34, [25])

X−2
4 :

([51]), ([34, 51]), ([23, 51]), (45, [31]), (12, [53])

X 2
4 :

(51, [42])

2.4. Table for X 6.

X 0
6 :

([∅]), ([12]), ([23]), ([34]), ([45]), ([56]), ([67]), ([12, 45]),

([12, 67]), ([23, 45]), ([23, 56]), ([23, 67]), ([34, 67]), ([45, 67]), ([12, 34]),

([12, 56]), ([34, 56]), (23, [14]), (34, [25]), (45, [36]),

(56, [47]), ([12, 34, 56]), ([12, 34, 67]), (45, [12, 36]), ([12, 45, 67]), ([23, 45, 67]),

(56, [12, 47]), (56, [23, 47]), (23, [56, 14]), (23, [67, 14]), (23, 45, [16]), (25, [34, 16]),

(34, [67, 25]), (34, 56, [27]), (36, [45, 27])

X−2
6 :

([71]), ([56, 71]), ([45, 71]), ([34, 71]), ([23, 71]), (67, [51]),

(12, [73]), ([23, 56, 71]), ([34, 56, 71]), ([23, 45, 71]), (67, [34, 51]),

(12, [45, 73]), (67, [23, 51]), (12, [56, 73]), (34, [25, 71]), (45, [36, 71]),

(45, 67, [31]), (12, 34, [75]), (12, 67, [53]), (47, [56, 31]), (14, [23, 75])

X 2
6 :

(71, [62]), (71, [34, 62]), (71, [45, 62]), (71, 23, [64]), (71, 56, [42]),

(73, [12, 64]), (51, [67, 42])

X−4
6 :

(62, [71, 53])
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2.5. Table for X 1.

X 0,+
1 :

([∅]), ([12])

X 0,−
1 :

([23])

X−2,−
1 :

[31]

2.6. Table for X 3.

X 0,+
3 :

([∅]), ([12]), ([23]),

([34]), ([12, 34]), (23, [14])

X−2,+
3 :

([31])

X 2,+
3 :

([42])

X 0,−
3 :

([45]), ([12, 45]), ([23, 45]), (34, [25])

X−2,−
3 :

([51]), ([51, 34]), ([51, 23]), (12, [53])

2.7. Table for X 5.

X 0,+
5 :

([∅]), ([12]), ([23]), ([34]), ([45]), ([12, 34]),
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([12, 45]), ([23, 45]), (23, [14]), (34, [25]), ([56]), ([12, 56]), ([34, 56]),

([12, 34, 56]), ([23, 56]), (23, [14, 56]), (45, [36]), (45, [12, 36]),

(23, 45, [16]), (25, [34, 16])

X−2,+
5 :

([51]), ([34, 51]), ([23, 51]), (45, [31]), (12, [53]), ([31, 56])

X 2,+
5 :

([62]), ([34, 62]), ([45, 62]), (56, [42]), (23, [64]), ([12, 64])

X 0,−
5 :

([67]), ([12, 67]), ([23, 67]), ([34, 67]), ([45, 67]), (56, [47]),

([12, 34, 67]), ([12, 45, 67]), ([23, 45, 67]), (23, [14, 67]), (34, [25, 67]),

(56, [12, 47]), (56, [23, 47]), (34, 56, [27]), (36, [45, 27])

X−2,−
5 :

([71]), ([23, 71]), ([34, 71]), ([45, 71]), ([56, 71]),

([23, 45, 71]), ([23, 56, 71]), ([34, 56, 71]), (34, [25, 71]), (45, [36, 71]),

(12, [73]), (12, [45, 73]), (12, [56, 73]), (12, 34, [75]), (14, [23, 75])

X 2,−
5 :

(51, [42, 67])

X−4,−
5 :

(62, [53, 71])

2.8. Table for X 7.

X 0,+
7 :

([∅]), ([12]), ([23]), ([34]), ([45]), ([56]), ([67]),

([12, 45]), ([12, 67]), ([23, 45]), ([23, 56]), ([23, 67]), ([34, 67]), ([45, 67]),
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([12, 34]), ([12, 56]), ([34, 56]), (23, [14]), (34, [25]), (45, [36]),

(56, [47]), ([12, 34, 56]), ([12, 34, 67]), (45, [12, 36]), ([12, 45, 67]),

([23, 45, 67]), (56, [12, 47]), (56, [23, 47]), (23, [14, 56]), (23, [14, 67]),

(23, 45, [16]), (25, [16, 34]), (34, [25, 67]), (34, 56, [27]), (36, [27, 45]),

([78]), ([12, 78]), ([23, 78]), ([34, 78]), ([45, 78]), ([56, 78]), ([12, 34, 78]),

([12, 45, 78]), ([12, 56, 78]), ([23, 45, 78]), ([23, 56, 78]), ([34, 56, 78]),

(67, [58]), (23, [14, 78]), (34, [25, 78]), (45, [36, 78]), (67, [12, 58]),

(67, [23, 58]), (67, [34, 58]), ([12, 34, 56, 78]), (23, [14, 56, 78]), (45, [12, 36, 78]),

(67, [12, 34, 58]), (45, 67, [38]), (47, [38, 56]), (23, 45, [16, 78]), (25, [16, 34, 78]),

(45, 67, [12, 38]), (23, 67, [14, 58], (23, 45, 67, [18]), (47, [12, 38, 56]),

(25, 67, [18, 34]), (23, 47, [18, 56]), (27, [18, 34, 56]), (27, 45, [18, 36])

X−2,+
7 :

([71]), ([56, 71]), ([45, 71]), ([34, 71]), ([23, 71]),

(67, [51]), (12, [73]), ([23, 71, 56]), ([34, 71, 56]), ([23, 71, 45]), (67, [34, 51]),

(12, [73, 45]), (67, [23, 51]), (12, [73, 56]), (34, [71, 25]), (45, [71, 36]),

(45, 67, [31]), (12, 34, [75]), (12, 67, [53]), (47, [31, 56]), (14, [75, 23]),

([51, 78]), ([34, 51, 78]), (45, [31, 78]), ([23, 51, 78]), ([31, 56, 78]),

(12, [53, 78]), (67, [31, 58])

X 2,+
7 :

([82]), ([82, 34]), ([82, 45]), ([82, 56]), ([82, 67]),

([82, 34, 56]), ([82, 34, 67]), ([82, 45, 67]), (23, [84]), ([84, 12]), (23, [84, 56]),

([84, 12, 56]), (23, [84, 67]), ([84, 12, 67]), (45, [82, 36]), (23, 45, [86]),

(45, [86, 12]), (25, [86, 34]), ([86, 12, 34]), (23, [86, 14]), (56, [82, 47]),

(78, [62]), (78, [62, 34]), (78, [62, 45]), (78, 56, [42]), (78, 23, [64]),
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(78, [64, 12]), (58, [42, 67])

X−4,+
7 :

(62, [71, 53])

X 4,+
7 :

(73, [82, 64])

X 0,−
7 :

([89]), ([23, 89]), ([34, 89]), ([45, 89]), ([56, 89]),

([67, 89]), ([78, 69]), ([12, 34, 89]), ([12, 45, 89]), ([12, 56, 89]),

([12, 67, 89]), ([23, 45, 89]), ([23, 56, 89]), ([23, 67, 89]), ([34, 56, 89]),

([34, 67, 89]), ([45, 67, 89]), (23, [14, 89]), (78, [12, 69]), (78, [23, 69]),

(78, [34, 69]), (78, [45, 69]), (34, [25, 89]), (45, [36, 89]), (56, [47, 89]),

(56, 78, [49]), (58, [67, 49]), ([12, 34, 56, 89]), ([12, 34, 67, 89]),

([12, 45, 67, 89]), ([23, 45, 67, 89]), (45, [12, 36, 89]), (78, [12, 34, 69]),

(78, [12, 45, 69]), (78, [23, 45, 69]), (56, [12, 47, 89]), (56, [23, 47, 89]),

(23, [14, 56, 89]), (23, [14, 67, 89]), (23, 45, [16, 89]), (34, 56, [27, 89]),

(23, 78, [14, 69]), (34, 78, [25, 69]), (25, [34, 16, 89]), (56, 78, [12, 49]),

(56, 78, [23, 49]), (36, [45, 27, 89]), (58, [12, 67, 49]), (58, [23, 67, 49]),

(34, 56, 78, [29]), (34, 58, [67, 29]), (36, 78, [45, 29]), (38, [45, 67, 29]),

(56, 38, [47, 29]), ([12, 89]), (34, [67, 25, 89])

X−2,−
7 :

([91]), ([91, 23]), ([91, 34]), ([91, 45]), ([91, 56]),

([91, 67]), ([91, 78]), (12, [93]), ([91, 23, 45]), ([91, 23, 56]), ([91, 23, 67]),

([91, 23, 78]), ([91, 34, 56]), ([91, 34, 67]), ([91, 34, 78]), ([91, 45, 67]),



✐

“BN18N21” — 2023/7/19 — 9:40 — page 126 — #22
✐

✐

✐

✐

✐

126 GEORGE LUSZTIG [June

([91, 45, 78]), ([91, 56, 78]), ([91, 23, 45, 67]), ([91, 23, 45, 78]), ([91, 23, 56, 78]),

([91, 34, 56, 78]), (34, [91, 25]), (45, [91, 36]), (56, [91, 47]), (67, [91, 58]),

(56, [91, 23, 47]), (67, [91, 23, 58]), (34, [91, 25, 67]), (34, [91, 25, 78]),

(67, [91, 34, 58]), (45, [91, 36, 78]), (34, 56, [91, 27]), (45, 67, [91, 38]),

(36, [91, 27, 45]), (47, [91, 38, 56]), (12, [93, 45]), (12, [93, 56]), (12, [93, 67]),

(12, [93, 78]), (12, [93, 45, 67]), (12, [93, 45, 78]), (12, [93, 56, 78]),

(12, 56, [93, 47]), (12, 67, [93, 58]), (12, 34, [95]), (14, [23, 95]), (12, 34, [95, 67]),

(12, 34, [95, 78]), (14, [23, 95, 67]), (14, [23, 95, 78]), (12, 34, 56, [97]),

(14, 56, [23, 97]), (12, 36, [45, 97]), (16, [23, 45, 97]), (16, 34, [25, 97])

X 2,−
7 :

(71, [62, 89]), (71, [62, 89, 45]), (71, [62, 89, 34]),

(71, 23, [64, 89]), (73, [64, 89, 12]), (71, 56, [42, 89]), (51, [42, 67, 89]),

(51, 78, [42, 69])

X−4,−
7 :

(82, [73, 91]), (82, [73, 91, 45]), (34, 82, [75, 91]),

(84, [75, 91, 23]), (12, 84, [75, 93]), (82, [73, 91, 56]), (67, 82, [53, 91]),

(62, [53, 91, 78])

3. Comparison with [3]

3.1. In this section we assume that D is even so that N = D + 1. The

vectors e1 = {1, 2}, e2 = {2, 3}, . . . , eD = {D,D + 1} form a basis of EN .

When N ≥ 3 we denote by e′1, e
′
2, . . . , e

′
D−2 the analogous vectors in EN−2;

for k ∈ [1,D], j ∈ [1,D − 2] we have ιk(e
′
j) = ej if j + 1 ≤ k − 1, ιk(e

′
j) =

ej + ej+1+ ej+2 if j = k− 1, ιk(e
′
j) = ej+2 if k ≤ j, j+1 ≤ N − 2. Let S∗

D be

as in [2, 3] where we take a = N . We have a unique bijection τ : XD → S∗
D

which maps ij to ⌊i, j⌋ ∈ S∗
D for any ij ∈ B. The bijection S∗

D → EN in

[3] becomes via τ a bijection ǫ̃ : XD → EN which, by [2, 3], satisfies the
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requirement of 1.18(a) hence is equal to ǫ′ in 1.18(a). We show that for any

B ∈ XD we have

(a) ǫ̃(B) = ǫ(B),

so that 1.18(b) holds (for our D). From [3] we have

ǫ̃(B) =
∑

k∈[1,D]

[nk]{k, k + 1} + [nD+1]{1, N}

(sum in EN ) where nk = |{ij ∈ B; {k, k + 1} ⊂ ⌊i, j⌋}| for k ∈ [1,D] and

nD+1 = |B0| (for n ∈ N we set [n] = n(n + 1)/2); we view [nk] as integers

mod 2.

From 1.11(a) we have

ǫ(B) =
∑

k∈[1,N ]

mk{k}

(sum in EN ) where mk = |{ij ∈ B; k ∈ ⌊i, j⌋}|; we view mk as an integer

mod 2.

For any k ∈ [1,D + 1] we set k′ = D + 1, k′′ = 2 (if k = 1), k′ =

k − 1, k′′ = k + 1 (if k ∈ [2,D]), k′ = D, k′′ = 1 (if k = D + 1). To prove (a)

we must show that [nk] + [nk′ ] = mk for k ∈ [1,D + 1] (equalities in F ).

Let Zk = {ij ∈ B; {k′, k, k′′} ⊂ ⌊i, j⌋}, Z ′
k = {ij ∈ B; {k′, k} ⊂

⌊i, j⌋, k′′ /∈ ⌊i, j⌋}, Z ′′
k = {ij ∈ B; {k, k′′} ⊂ ⌊i, j⌋, k′ /∈ ⌊i, j⌋}. We have

nk = |Zk|+ |Z ′′
k |, nk′ = |Zk|+ |Z ′

k|,mk = |Zk|+ |Z ′
k|+ |Z ′′

k |. From 1.8 we see

that |Z ′
k| ∈ {0, 1}, |Z ′′

k | ∈ {0, 1} and that at least one of |Z ′
k|, |Z

′′
k | must be

zero. From 1.8 we see also that if |Zk| > 0 then there is a unique i0j0 ∈ Zk

such that ⌊i0, j0⌋ ⊂ ⌊i, j⌋ for any ij ∈ Zk. Using (P3) we see that

(b) if k ∈ [2,D] then there exists ĩj̃ ∈ B1 such that k ∈ [̃i, j̃] and [̃i, j̃] $
⌊i0, j0⌋;

(c) if k = D+1 then there exists ĩj̃ ∈ B1 such that j̃ = k and [̃i, j̃] $ ⌊i0, j0⌋

(we use that i2s < D + 1, with notation of (P1));

(d) if k = 1 then there exists ĩj̃ ∈ B1 such that ĩ = 1 and [̃i, j̃] $ ⌊i0, j0⌋ (we

use that i1 > 1, with notation of (P1)).

In case (b), by the minimality of ⌊i0, j0⌋ we have [̃i, j̃] /∈ Zk; since k ∈ [̃i, j̃]

we must have either [̃i, j̃] ∈ Z ′
k or [̃i, j̃] ∈ Z ′′

k . In case (c) we have [̃i, j̃] ∈ Z ′
k;
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in case (d) we have [̃i, j̃] ∈ Z ′′
k . Setting A = |Zk|, A

′ = |Z ′
k|, A

′′ = |Z ′′
k |, we

see that we have either

(i) A > 0, A′ = 1, A′′ = 0, or

(ii) A > 0, A′ = 0, A′′ = 1, or

(iii) A = 0, A′ ∈ {0, 1}, A′′ ∈ {0, 1}.

The equality to be proved is

(A+A′)(A+A′ + 1)/2 + (A+A′′)(A +A′′ + 1)/2 = A+A′ +A′′ (in F ).

In case (i) this is the same as

(A+ 1)(A + 2)/2 +A(A+ 1)/2 = A+ 1,

that is A2 + 2A + 1 = A + 1 (in F ). This is obvious. Now case (ii) is

completely similar. In case (iii) we must show that

A′(A′ + 1)/2 +A′′(A′′ + 1)/2 = A′ +A′′ (in F );

this is obvious when A′ ∈ {0, 1}, A′′ ∈ {0, 1}.

This completes the proof of (a).

4. Even Special Orthogonal Groups

4.1. In this section we assume that we are in case 0.1(b) or 0.1(c). In this

case, Sc (see 0.1) admits a fixed point free involution whose orbits are the

pairs of unipotent representations in Sc which have isomorphic restrictions

to the corresponding even special orthogonal group. As in 0.1 we identify

Sc with Sy+D (in case 0.1(b)) or with Sy−D (in case 0.1(c)); here D is an

odd integer ≥ 1. The involution of Sc becomes the fixed point free invo-

lution (S, T ) 7→ (T, S) of Sy+D or Sy−D. The set of orbits of this involution

can be identified with the set S ′
c of unipotent representations of the special

orthogonal group attached to 0.1(b) or 0.1(c).

4.2. Via the bijection E+
D → Sy+D (resp. E−

D → Sy−D) in 1.19, the involution

of Sy+D (resp. Sy−D) in 4.1 becomes the fixed point free involution X 7→ X ! =

X + [1,D + 1] of E+
D , interchanging E t,+

D , E−t,+
D for any t ∈ 2Z, (resp. of

E−
D , interchanging X t,−

D ,X−t−2,−
D for any t ∈ 2Z). Via the bijections 1.16(c)

this becomes a fixed point free involution B 7→ B! of X+
D , interchanging
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X t,+
D ,X−t,+

D for any t ∈ 2Z, (resp. of X−
D , interchanging X t,−

D ,X−t−2,−
D for

any t ∈ 2Z).

4.3. We define a partition E0,+
D = ′E0,+

D ⊔ ′′E0,+
D by

′E0,+
D = {X ∈ E0,+

D ;D + 1 /∈ X},

′′E0,+
D = {X ∈ E0,+

D ;D + 1 ∈ X}.

Note that the involution X 7→ X ! interchanges ′E0,+
D , ′′E0,+

D .

We define a partition X 0,+
D = ′X 0,+

D ⊔ ′′X 0,+
D by

′X 0,+
D = {B ∈ X 0,+

D ;D + 1 /∈ supp(B)},

′′X 0,+
D = {B ∈ X 0,+

D ;D + 1 ∈ supp(B)}.

We show:

(a) If B ∈ ′X 0,+
D then ǫ(B) ∈ ′E0,+

D .

Indeed, since ǫ(B) ∈ 〈B〉 (see 1.17(b)), we see that ǫ(B) is the sum in EN of

certain elements ij ∈ B; now each such ij satisfies i /∈ N − 1, j /∈ N − 1 so

that N − 1 /∈ ǫ(B), proving (a). We show:

(b) If B ∈ ′′X 0,+
D then ǫ(B) ∈ ′′E0,+

D .

By assumption there exists ij ∈ B such that i = N − 1 or j = N − 1; the

first possibility does not occur since B0 = ∅ and N /∈ supp(B). Thus we

have {h,N − 1} ∈ B for some h ∈ [1, N − 2]; since B ∈ PN , such h is in

fact unique. If ab ∈ B − {h,N − 1} then we have ab ∈ B! since B0 = ∅ and

a < b < N − 1. We have ǫ(B) = [h,N − 1] +
∑

ab∈B−{h,N−1}[a, b] where the

last sum does not involve N − 1; thus N − 1 appears with coefficient 1 in

ǫ(B) so that N − 1 ∈ ǫ(B), proving (b).

From (a), (b) we see that the bijection X 0,+
D → E0,+

D in 1.16(b) restricts

to bijections ′X 0,+
D → ′E0,+

D , ′′X 0,+
D → ′′E0,+

D . It follows that the involution

B 7→ B! interchanges ′X 0,+
D , ′′X 0,+

D .

4.4. One can verify that the following properties of ≤D hold.
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If X ∈ E t,+
D ,X ′ ∈ E t′,+

D are such that X ≤D X ′ (with t ∈ 2Z, t′ ∈ 2Z),

then we have t = t′ or max(t,−t) < max(t′,−t′); if in addition X ′ ∈ ′E0,+
D ,

then X ∈ ′E0,+
D .

If X ∈ E t,−
D ,X ′ ∈ E t′,−

D are such that X ≤D X ′ (with t ∈ 2Z, t′ ∈ 2Z),

then we have t = t′ or max(t,−t− 2) < max(t′,−t′ − 2).

4.5. Let

E++
D = ⊔t∈2Z,t>0E

t,+
D ⊔ ′E0,+

D ,

E+−
D = ⊔t∈2Z,t<0E

t,+
D ⊔ ′E0,+

D ,

E−+
D = ⊔t∈2Z,t≥0E

t,−
D ,

E−−
D = ⊔t∈2Z,t<0E

t,−
D .

Note that each of E++
D , E+−

D is a set of representatives for the orbits

of the involution X 7→ X ! of E+
D and that each of E−+

D , E−−
D is a set of

representatives for the orbits of the involution X 7→ X ! of E−
D .

For X,X ′ in E++
D let M++

X,X′ = |{Z ∈ {X,X !};M+
Z,X′ = 1}|.

For X,X ′ in E+−
D let M+−

X,X′ = |{Z ∈ {X,X !};M+
Z,X′ = 1}|.

For X,X ′ in E−+
D let M−+

X,X′ = |{Z ∈ {X,X !};M−
Z,X′ = 1}|.

For X,X ′ in E−−
D let M−−

X,X′ = |{Z ∈ {X,X !};M−
Z,X′ = 1}|.

From 4.4 we see that (M++
X,X′), (M

+−
X,X′), (M

−+
X,X′), (M

−−
X,X′) are upper

triangular matrices with entries in {0, 1, 2} and with 1 on diagonal. It follows

that

(a)
∑

X∈E++

D

M++
X,X′X ′ ∈ Z[E++

D ] (for various X ′ ∈ E++
D ) form a Z-basis of

Z[E++
D ] and

(b)
∑

X∈E+−

D

M+−
X,X′X ′ ∈ Z[E+−

D ] (for various X ′ ∈ E+−
D ) form a Z-basis of

Z[E+−
D ].

It also follows that

(c)
∑

X∈E−+

D

M−+
X,X′X ′ ∈ Z[E−+

D ] (for various X ′ ∈ E−+
D ) form a Z-basis of

Z[E−+
D ] and

(d)
∑

X∈E−−

D

M−−
X,X′X ′ ∈ Z[E−−

D ] (for various X ′ ∈ E−−
D ) form a Z-basis of

Z[E−−
D ].
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4.6. Let E
+
D (resp. E

−
D) be the set of orbits of the fixed point free involution

X 7→ X + [1,D + 1] of E+
D (resp. E−

D). The orbit maps E+
D → E

+
D, E

−
D → E

−
D

define bijections E++
D → E

+
D, E

+−
D → E

+
D, E

−+
D → E

−
D, E

−−
D → E

−
D from which

we get bijections E++
D → S ′

c, E
+−
D → S ′

c (in case 0.1(b)) and E−+
D → S ′

c,

E−−
D → S ′

c (in case 0.1(c)).

Hence 4.5(a), (b) can be viewed as bases of the Grothendieck group Z[S ′
c]

(in case 0.1(b)) and 4.5(c), (d) can be viewed as bases of the Grothendieck

group Z[S ′
c] (in case 0.1(c)).
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