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Abstract

In this paper, we study the existence of solutions for a boundary value problem of

Ψ-Hilfer fractional derivative with nonlocal integral boundary conditions by using the mea-

sure of noncompactness combined with the Mönch’s fixed point theorem. Two examples

are given to illustrate our results.

1. Introduction

The study of fractional differential equations has many applications in

various areas of science and engineering as in physics, chemistry, biophysics,

hydrology, blood flow problems, thermodynamics, statistical mechanics and

control theory, for example see [7, 11, 14, 18, 19, 24]. In 1999 Hilfer [14]
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has generalized Riemann-Liouville and Caputo fractional derivatives. The

basic work on the theory of Hilfer fractional differential equations can be

found in [6, 12, 25]. The boundary value problem for fractional differential

equations involving Hilfer derivative has been researched in [1, 2, 22]. In [21]

Sousa and Oliveira have presented the so-called Ψ-Hilfer fractional derivative

with respect to another function, to combine in one fractional operator a

largest number of fractional derivatives and thus, open a window for new

applications.

The notion of so-called measure of noncompactness was introduced by

the fundamental article of Kuratowski [16], and that has played an essen-

tial part in the theory of fixed points. In the last decades, many authors

have used the technique of noncompactness measure to study existence of

solutions to nonlinear integral equations of order fractional and fractional

differential equations, for example see [3, 9, 10, 13, 17, 20] and the references

therein.

The purpose of this paper is to study the existence of solutions for the

following fractional differential equation involving Ψ-Hilfer fractional deriva-

tive with nonlocal integral boundary conditions











HD
α,β;Ψ
a+ x (t) = f (t, x (t)) , t ∈ (a, b) ,

x (a) = 0, I
2−γ;Ψ
a+ x (b) =

m
∑

i=1
θiI

ηi;Ψ
a+ x (δi) ,

(1.1)

where HDα,β;Ψ is the left sided Ψ-Hilfer fractional derivative of order α ∈

(1, 2) and type β ∈ [0, 1], I2−γ;Ψ, Iηi;Ψ are the left sided Ψ-Riemann-Liouville

fractional integrals of order 2 − γ, ηi > 0 respectively, γ = α + β (2− α) ∈

(1, 2), −∞ < a < b < ∞, θi ∈ R, i = 1, 2, . . . ,m, 0 ≤ a ≤ δ1 < δ2 < δ3 <

· · · < δm ≤ b, f : [a, b] × E → E is a given continuous function satisfying

some assumptions that will be specified later, and E is a Banach space with

the norm ‖.‖.

The rest of this paper is organized as follows: In Section 2, we give the

basic definitions and notations. In Section 3, we investigate the existence of

solutions of problem (1.1). Finally, in Section 4, we present two examples to

illustrate the main results.
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2. Preliminaries

Some definitions, notations and results of the fractional calculus, which

will be utilized in this paper are introduced throughout this section.

Let J = [a, b]. By C (J,E) we denote the Banach space of all continuous

functions defined on J endowed with the norm

‖x‖
∞

= sup {‖x (t)‖ : t ∈ J} .

Let L1 (J,E) be the Banach space of measurable functions x : J → E that

are Lebesgue integrable with norm and

‖x‖L1 =

∫

J

‖x (t)‖ dt.

And Cn (J,E) denotes the class of all real valued functions defined on J

which have a continuous nth order derivative. Moreover, for a given set V

of functions v : J → E, let us denote by

V (t) = {v (t) : v ∈ V } , t ∈ J,

and

V (J) = {v (t) : v ∈ V, t ∈ J} .

Now we’re giving out some fractional calculus results and properties.

Definition 1 ([15]). The left-sided Ψ-Riemann-Liouville fractional integral

of order α > 0 of a function h ∈ C (J,E) with respect to another function

Ψ : J → R that is an increasing differentiable function such that Ψ′ (t) 6= 0,

for all t ∈ J is defined by

I
α;Ψ
a+ h (t) =

1

Γ (α)

∫ t

a

Ψ′ (s) (Ψ (t)−Ψ(s))α−1 h (s) ds,

where Γ is the gamma function.

Definition 2 ([21]). Let α > 0, n ∈ N, h ∈ Cn (J,E), and Ψ ∈ Cn (J,R) be

a function such that Ψ is increasing function and Ψ′ (t) 6= 0, for all t ∈ J .

The left-sided Ψ-Riemann-Liouville fractional of a function h of order α with
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respect to Ψ is defined by

Dα;Ψh (t) =

(

1

Ψ′ (t)

d

dt

)n

I
(n−α);Ψ
a+ h (t) ,

where n = [α] + 1 and [α] denotes the integer part of real number α.

Definition 3 ([21]). Let n − 1 < α < n, n ∈ N, h ∈ Cn (J,E), and Ψ ∈

Cn (J,R). Then, the left-sided Ψ-Hilfer fractional derivative HDα,β;Ψ of a

function h of order α and type β ∈ [0, 1] is defined by

HD
α,β;Ψ
a+ h (t) = I

β(n−α);Ψ
a+

(

1

Ψ′ (t)

d

dt

)n

I
(1−β)(n−α);Ψ
a+ h (t) .

Lemma 1 ([15, 21]). Let α, β, δ > 0. Then

1) I
α;Ψ
a+ I

β;Ψ
a+ h (t) = I

α+β;Ψ
a+ h (t).

2) I
α;Ψ
a+ (Ψ (t)−Ψ(a))δ−1 = Γ(δ)

Γ(α+δ) (Ψ (t)−Ψ(a))α+δ−1
.

Lemma 2 ([21]). Let γ > 0, consider the function f (t) = (Ψ (t)−Ψ(a))γ−1
,

where γ > n. Then for n− 1 < α < n and 0 ≤ β ≤ 1, we have

HDα,β;Ψ (Ψ (t)−Ψ(a))γ−1 =
Γ (γ)

Γ (γ − α)
(Ψ (t)−Ψ(a))γ−α−1 .

In particular, if α ∈ (1, 2) and 1 < γ < 2, we have

HDα,β;Ψ (Ψ (t)−Ψ(a))γ−1 = 0.

Lemma 3 ([21]). If h ∈ Cn (J,R), n− 1 < α < n and 0 ≤ β ≤ 1, then

1) I
α;Ψ
a+

HDα,β;Ψh (t) = h (t)−
n
∑

k=1

(Ψ(t)−Ψ(a))γ−k

Γ(γ−k+1) h
[n−k]
Ψ I

(1−β)(n−α);Ψ
a+ h (a) where

h
[n−k]
Ψ h (t) =

(

1
Ψ′(t)

d
dt

)n−k

h (t).

2) HDα,β;Ψ I
α;Ψ
a+ h (t) = h (t).

Now let us recall some fundamental facts of the notion of Kuratowski

measure of noncompactness.

Definition 4 ([5, 8]). Let E be a Banach space and ΩE the bounded subsets

of E. The Kuratowski measure of noncompactness is the map µ : ΩE →
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[0,∞) defined by

µ (B) = inf {ǫ > 0 : B ⊆ ∪n
i=1Bi and diam (Bi) ≤ ǫ} , here B ∈ ΩE.

This measure of noncompactness satisfies some important properties.

(a) µ (B) = 0 ⇔ B is compact (B is relatively compact),

(b) µ (B) = µ
(

B
)

,

(c) A ⊂ B ⇒ µ (A) ≤ µ (B),

(d) µ (A+B) ≤ µ (A) + µ (B),

(e) µ (cB) = |c|µ (B) , c ∈ R,

(f) µ (convB) = µ (B).

Here B and convB denote the closure and the convex hull of the bounded

set B, respectively. The details of µ and its properties can be found in [5, 8].

Definition 5. A map f : J × E → E is said to be Carathéodory if

(i) t → f (t, x) is measurable for each x ∈ E.

(ii) x → f (t, x) is continuous for almost all t ∈ J .

To prove the existence of solutions of (1.1), we need the following results.

Theorem 1 ([4]). Let D be a bounded, closed and convex subset of the

Banach space such that 0 ∈ D, and let N be a continuous mapping of D into

itself. If the implication

V = convN (V ) or V = N (V ) ∪ {0} ⇒ µ (V ) = 0,

holds for every V of D, then N has a fixed point.

Lemma 4 ([23]). Let D be a bounded, closed and convex subset of the Banach

space C (J,E). Let G be a continuous function on J × J and f a function

from J × E → E, which satisfies the Carathéodory conditions, and assume

there exists p ∈ L1 (J,R+) such that, for each t ∈ J and each bounded set

B ⊂ E, we have

lim
h→0+

µ (f (Jt,h ×B)) ≤ p (t)µ (B) , here Jt,h = [t− h, t] ∩ J.
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If V is an equicontinuous subset of D, then

µ

({
∫

J

G (s, t) f (s, y (s)) ds : y ∈ V

})

≤

∫

J

‖G (s, t)‖ p (s)µ (V (s)) ds.

To obtain our results, we need the following lemmas.

Lemma 5. Let

Λ =
(Ψ (b)−Ψ(a))

Γ (2)
−

m
∑

i=1

θi

Γ (γ + ηi)
(Ψ (δi)−Ψ(a))γ+ηi−1 6= 0, (2.1)

and for any q ∈ C (J,E), then the nonlocal boundary value problem











HDα,β;Ψx (t) = q (t) , t ∈ (a, b) ,

x (a) = 0, I
2−γ;Ψ
a+ x (b) =

m
∑

i=1
θiI

ηi;Ψ
a+ x (δi) ,

(2.2)

is equivalent to the integral equation

x (t) =
(Ψ (t)−Ψ(a))γ−1

ΛΓ (γ)

(

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi)− I

2+α−γ;Ψ
a+ q (b)

)

+ I
α;Ψ
a+ q (t) .

(2.3)

Proof. Taking Ψ-fractional integral Iα;Ψa+ to the first equation of (2.2), and

from Lemma 3, we get

x (t)−
2
∑

k=1

(Ψ (t)−Ψ(a))γ−k

Γ (γ − k + 1)
h
[2−k]
Ψ I

(1−β)(2−α);Ψ
a+ x (a) = I

α;Ψ
a+ q (t) , t ∈ J.

(2.4)

We have (1− β) (2− α) = 2− γ. Therefore

x (t) =
(Ψ (t)−Ψ(a))γ−1

Γ (γ)

(

1

Ψ′ (t)

d

dt

)

I
2−γ;Ψ
a+ x (t)

∣

∣

∣

t=a

+
(Ψ (t)−Ψ(a))γ−2

Γ (γ − 1)
I
2−γ;Ψ
a+ x (t)

∣

∣

∣

t=a
+ I

α;Ψ
a+ q (t)

=
(Ψ (t)−Ψ(a))γ−1

Γ (γ)
Dγ−1;Ψx (t)

∣

∣

t=a

+
(Ψ (t)−Ψ(a))γ−2

Γ (γ − 1)
I
2−γ;Ψ
a+ x (t)

∣

∣

∣

t=a
+ I

α;Ψ
a+ q (t) .
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Put

c1 = Dγ−1;Ψx (t)
∣

∣

t=a
and c2 = I

2−γ;Ψ
a+ x (t)

∣

∣

∣

t=a
, t ∈ J.

Then

x (t) =
(Ψ (t)−Ψ(a))γ−1

Γ (γ)
c1 +

(Ψ (t)−Ψ(a))γ−2

Γ (γ − 1)
c2 + I

α;Ψ
a+ q (t) .

Because lim
t→a

(Ψ (t)−Ψ(a))γ−2 = ∞, in the view of boundary conditions

x (a) = 0, we must have

c2 = 0.

Replacing c2 by their value in (2.4), we get

x (t) =
(Ψ (t)−Ψ(a))γ−1

Γ (γ)
c1 + I

α;Ψ
a+ q (t) . (2.5)

Next, we use the second boundary condition to determine the constant c1.

Applying I
ηi;Ψ
a+ on both sides of equation (2.5), we get

I
ηi;Ψ
a+ x (t) =

c1

Γ (γ + ηi)
(Ψ (t)−Ψ(a))γ+ηi−1 + I

α+ηi;Ψ
a+ q (t) . (2.6)

From the condition x (b) =
m
∑

i=1
θiI

ηi;Ψ
a+ x (δi) and (2.6), we have

x (b) =
m
∑

i=1

θiI
ηi;Ψ
a+ x (δi)

= c1

m
∑

i=1

θi

Γ (γ + ηi)
(Ψ (δi)−Ψ(a))γ+ηi−1 +

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi) . (2.7)

From equations (2.5) and (2.7), we have

I
2−γ;Ψ
a+ x (b) =

(Ψ (b)−Ψ(a))

Γ (2)
c1 + I

2+α−γ;Ψ
a+ q (b)

= c1

m
∑

i=1

θi

Γ (γ + ηi)
(Ψ (δi)−Ψ(a))γ+ηi−1 +

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi) .
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Thus, we find

c1 =
1

Λ

(

m
∑

i=1

θiI
α+ηi; Ψ
a+ q (δi)− I

2+α−γ; Ψ
a+ q (b)

)

.

Substituting the value of c1 into (2.5), we obtain the equivalent fractional

integral equation (2.3) to the problem (2.2).

Conversely, suppose that x is the solution of the fractional integral equa-

tion (2.3). Applying fractional derivative HDα,β;Ψ on both sides of equation

(2.3) and using the Lemma 2 and Lemma 3, we get

HDα,β;Ψx (t)

=
1

ΛΓ (γ)

(

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi)− I

2+α−γ;Ψ
a+ q (b)

)

HDα,β;Ψ (Ψ (t)−Ψ(a))γ−1

+ HDα,β;ΨI
α;Ψ
a+ q (t) = q (t) , t ∈ J. (2.8)

This proves x satisfies the first equation of (2.2). Next, we prove that x

given by equation (2.3) verifies the boundary conditions. From equation

(2.3), clearly

x (a) = 0. (2.9)

Now we prove that x satisfies the nonlocal integral boundary conditions.

From equation (2.3), we have

I
ηi;Ψ
a+ x (t) =

(Ψ (t)−Ψ(a))ηi+γ−1

ΛΓ (γ + ηi)

(

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi)− I

2+α−γ;Ψ
a+ q (b)

)

+ I
ηi+α;Ψ
a+ q (t) .

Therefore

m
∑

i=1

θiI
ηi;Ψ
a+ x (δi)

=
1

Λ

m
∑

i=1

θi (Ψ (δi)−Ψ(a))ηi+γ−1

Γ (γ + ηi)

(

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi)− I

2+α−γ;Ψ
a+ q (b)

)

+
m
∑

i=1

θiI
ηi+α;Ψ
a+ q (δi) . (2.10)
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From equation (2.1), we have

m
∑

i=1

θi (Ψ (δi)−Ψ(a))γ+ηi−1

Γ (γ + ηi)
=

(Ψ (b)−Ψ(a))

Γ (2)
− Λ. (2.11)

Thus, equation (2.10) reduces to

m
∑

i=1

θiI
ηi;Ψ
a+ x (δi)

=
1

Λ

(

(Ψ (b)−Ψ(a))

Γ (2)
− Λ

)

(

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi)− I

2+α−γ;Ψ
a+ q (b)

)

+
m
∑

i=1

θiI
ηi+α;Ψ
a+ q (δi)

=
1

Λ

(Ψ (b)−Ψ(a))

Γ (2)

(

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi)− I

2+α−γ;Ψ
a+ q (b)

)

+ I
2+α−γ;Ψ
a+ q (b) .

(2.12)

Now from equation (2.3), we have

I
2−γ;Ψ
a+ x (b) =

1

Λ

(Ψ (b)−Ψ(a))

Γ (2)

(

m
∑

i=1

θiI
α+ηi;Ψ
a+ q (δi)− I

2+α−γ;Ψ
a+ q (b)

)

+ I
2+α−γ;Ψ
a+ q (b) . (2.13)

From equation (2.12) and (2.13), we obtain

I
2−γ;Ψ
a+ x (b) =

m
∑

i=1

θiI
ηi;Ψ
a+ x (δi) . (2.14)

From (2.8), (2.9) and (2.14), it follows that the x defined by equation (2.3)

satisfies the problem (2.2). ���

3. Main Results

In the following, we prove existence results for the boundary value prob-

lem (1.1) by using the Mönch’s fixed point theorem. The following assump-

tions will be used in our main results.
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(H1) The function f : J × E → E satisfies the Carathéodory condition.

(H2) There exists a pf ∈ L1 (J,R+) ∩ C (J,R+) such that

‖f (t, x)‖ ≤ pf (t) ‖x‖ , for t ∈ J and each x ∈ E.

(H3) For each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

µ (f (Jt,h ×B)) ≤ pf (t)µ (B) , here Jt,h = [t− h, t] ∩ J.

Theorem 2. Assume that the assumptions (2.1) and (H1)− (H3) hold. If

k1 =

m
∑

i=1

|θi|
‖pf‖∞ (Ψ (b)−Ψ(a))α+ηi+γ−1

|Λ|Γ (γ) Γ (α+ ηi + 1)
+

‖pf‖∞ (Ψ (b)−Ψ(a))1+α

|Λ|Γ (γ) Γ (3 + α− γ)

+
‖pf‖∞ (Ψ (b)−Ψ(a))α

Γ (α+ 1)
< 1, (3.1)

then the boundary value problem (1.1) has at least one solution.

Proof. We transform the problem (1.1) into a fixed point problem by defin-

ing an operator

Φ : C (J,E) → C (J,E) ,

as

(Φx) (t) =
(Ψ (t)−Ψ(a))γ−1

ΛΓ (γ)

( m
∑

i=1

θi I
α+ηi;Ψ
a+ f (t, x (t))

∣

∣

∣

t=δi

+ I
2+α−γ;Ψ
a+ f (t, x (t))

∣

∣

∣

t=b

)

+ I
α;Ψ
a+ f (t, x (t)) .

Clearly, the fixed points of operator Φ are solutions of the problem (1.1).

Let M > 0 and consider the set

Ω = {x ∈ C (J,E) : ‖x‖
∞

≤ M} .

Clearly, the subset Ω is closed, bounded, and convex. We will show that

Φ satisfies the assumptions of Theorem 1. The proof will be given in three

steps.

Step 1. Φ maps Ω into itself.
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For each x ∈ Ω, by (H2) and (3.1) we have for each t ∈ J

‖(Φx) (t)‖

≤
(Ψ (t)−Ψ(a))γ−1

|Λ|Γ (γ)

( m
∑

i=1

|θi| I
α+ηi;Ψ
a+ ‖f (t, x (t))‖

∣

∣

∣

t=δi

+ I
2+α−γ;Ψ
a+ ‖f (t, x (t))‖

∣

∣

∣

t=b

)

+ I
α;Ψ
a+ ‖f (t, x (t))‖

≤

m
∑

i=1

|θi|
M ‖pf‖∞ (Ψ (b)−Ψ(a))α+ηi+γ−1

|Λ|Γ (γ) Γ (α+ ηi + 1)
+

M ‖pf‖∞ (Ψ (b)−Ψ(a))1+α

|Λ|Γ (γ) Γ (3 + α− γ)

+
M ‖pf‖∞ (Ψ (b)−Ψ(a))α

Γ (α+ 1)

≤M

( m
∑

i=1

|θi|
‖pf‖∞ (Ψ (b)−Ψ(a))α+ηi+γ−1

|Λ|Γ (γ) Γ (α+ ηi + 1)
+

‖pf‖∞ (Ψ (b)−Ψ(a))1+α

|Λ|Γ (γ) Γ (3 + α− γ)

+
‖pf‖∞ (Ψ (b)−Ψ(a))α

Γ (α+ 1)

)

≤Mk1 < M,

where k1 is given by (3.1).

Step 2. Φ (Ω) is bounded and equicontinuous.

By Step 1, we have Φ (Ω) = {Φx : x ∈ Ω} ⊂ Ω. Thus, for each x ∈

Ω, we have ‖Φx‖
∞

≤ M , which means that Φ (Ω) is bounded. For the

equicontinuity of Φ (Ω). Let t1, t2 ∈ J such that t1 < t2 and for x ∈ Ω, we

get

‖(Φx) (t2)− (Φx) (t1)‖

≤
(Ψ (t2)−Ψ(a))γ−1 − (Ψ (t1)−Ψ(a))γ−1

|Λ|Γ (γ)

×

(

m
∑

i=1

|θi|

Γ (α+ ηi)

∫ δi

a

Ψ′ (s) (Ψ (δi)−Ψ(s))α+ηi−1 ‖f (s, x (s))‖ ds

+
1

Γ (2 + α− γ)

∫ b

a

Ψ′ (s) (Ψ (b)−Ψ(s))2+α−γ ‖f (s, x (s))‖ ds

)

+
1

Γ (α)

∫ t1

a

Ψ′ (s)
(

(Ψ (t2)−Ψ(s))α−1 − (Ψ (t1)−Ψ(s))α−1
)
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× ‖f (s, x (s))‖ ds+
1

Γ (α)

∫ t2

t1

Ψ′ (s) (Ψ (t2)−Ψ(s))α−1 ‖f (s, x (s))‖ ds

≤

(

(Ψ (t2)−Ψ(a))γ−1 − (Ψ (t1)−Ψ(a))γ−1
)

M ‖pf‖∞

|Λ|Γ (γ)

×

(

m
∑

i=1

|θi|

Γ (α+ ηi)

∫ δi

a

Ψ′ (s) (Ψ (δi)−Ψ(s))α+ηi−1 ds

+
1

Γ (2 + α− γ)

∫ b

a

Ψ′ (s) (Ψ (b)−Ψ(s))2+α−γ ds

)

+
M ‖pf‖∞
Γ (α+ 1)

(((Ψ (t2)−Ψ(a))α − (Ψ (t1)−Ψ(a))α)) .

As t1 → t2, we see that the right-hand side of the above equation tends to

zero and the convergence is independent of x in Ω, which means Φ (Ω) is

equicontinuous.

Step 3. Φ is continuous.

Let {xn} be sequence such that xn → x in C (J,E) . Then, for each

t ∈ J , we have

‖(Φxn) (t)− (Φx) (t)‖

≤
(Ψ (t)−Ψ(a))γ−1

|Λ|Γ (γ)

( m
∑

i=1

|θi| I
α+ηi;Ψ
a+ ‖f (t, xn (t))− f (t, x (t))‖

∣

∣

∣

t=δi

+ I
2+α−γ;Ψ
a+ ‖f (t, xn (t))−f (t, x (t))‖

∣

∣

∣

t=b

)

+I
α;Ψ
a+ ‖f (t, xn (t))−f (t, x (t))‖ .

Since f is a Carathéodory function, the Lebesgue dominated convergence

theorem implies that

‖(Φxn) (t)− (Φx) (t)‖ → 0 as n → ∞.

This shows that (Φxn) converges pointwise to Φx on J . Moreover, the

sequence (Φxn) is equicontinuous by a similar proof of Step 2. Therefore

(Φxn) converges uniformly to Φx and hence Φ is continuous.

Now let V be a subset of Ω such that V ⊂ conv ((ΦV ) ∪ {0}). V is

bounded and equicontinuous, and therefore the function v → v (t) = µ (v (t))

is continuous on J . By assumption (H3), Lemma 4 and the properties of the
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measure µ we have for each t ∈ J

v (t) ≤ µ ((ΦV ) (t) ∪ {0}) ≤ µ ((ΦV ) (t))

≤
(Ψ (t)−Ψ(a))γ−1

|Λ|Γ (γ)

(

m
∑

i=1

‖θi‖ I
α+ηi;Ψ
a+ pf (t)µ (V (t))

∣

∣

∣

t=δi

+ I
2+α−γ;Ψ
a+ pf (t)µ (V (t))

∣

∣

∣

t=b

)

+ I
α;Ψ
a+ pf (t)µ (V (t))

≤

m
∑

i=1

|θi|
‖v‖

∞
‖pf‖∞ (Ψ (b)−Ψ(a))α+ηi+γ−1

|Λ|Γ (γ) Γ (α+ ηi + 1)

+
‖v‖

∞
‖pf‖∞ (Ψ (b)−Ψ(a))1+α

|Λ|Γ (γ) Γ (3 + α− γ)
+

‖v‖
∞
‖pf‖∞ (Ψ (b)−Ψ(a))α

Γ (α+ 1)

≤ ‖v‖
∞

(

m
∑

i=1

|θi|
‖pf‖∞ (Ψ (b)−Ψ(a))α+ηi+γ−1

|Λ|Γ (γ) Γ (α+ ηi + 1)

+
‖pf‖∞ (Ψ (b)−Ψ(a))1+α

|Λ|Γ (γ) Γ (3 + α− γ)
+

‖pf‖∞ (Ψ (b)−Ψ(a))α

Γ (α+ 1)

)

≤ ‖v‖
∞
k1,

where k1 is given by (3.1). This means that

‖v‖
∞
(1− k1) ≤ 0.

By (3.1), it follows that ‖v‖
∞

= 0, that is v (t) = 0 for each t ∈ J , and then

V (t) is relatively compact in E. In view of the Ascoli-Arzela theorem, V is

relatively compact in Ω. Applying now Theorem 1, we conclude that Φ has

a fixed point, which is a solution of the problem (1.1). ���

4. Examples

In this section, we consider some particular cases of the nonlinear frac-

tional differential equation to apply our results in the study of existence.

Consider the nonlinear fractional differential equation (FDEs) of the form











HD
α,β,Ψ
a+ x (t) = f (t, x (t)) , t ∈ (a, b) ,

x (a) = 0, I
2−γ,Ψ
a+ x (b) =

m
∑

i=1
θiI

ηi,Ψ
a+ x (δi) .

(4.1)
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The following examples are particular cases of the (FDEs) given by (4.1).

Example 1. Consider the (FDEs) given by (4.1). Taking Ψ (t) = t, β → 0,

a = 0, b = 1, α = 3
2 , θ1 =

1
2 , θ2 = 1

10 , η1 = 1
4 , η2 = 5

2 , δ1 = 1
4 , δ2 = 1

2 , and f

is a continuous function defined by

f (t, x) =
exp

(

−t2
)

2
x, for x ∈ R, t ∈ [0, 1] .

Then, the problem (4.1) reduces to the following problem







RLD
3

2
,0,t

0+ x (t) = 1
2 exp(t2)

x (t) , t ∈ (0, 1) ,

x (0) = 0, I
1

2
;t

0+ x (1) = 1
2I

1

4
;t

0+ x
(

1
4

)

+ 1
10I

5

2
;t

0+ x
(

1
2

)

,

(4.2)

which is a nonlinear fractional differential equation involving Riemann-Liouville

fractional derivative. In this case γ = 3
2 . Let

E = l1 =

{

x = (x1, x2, . . . , xn, . . .) :
∞
∑

n=1

|xn| < ∞

}

,

equipped with the norm

‖x‖E =
∞
∑

n=1

|xn| .

Set

x = (x1, x2, . . . , xn, . . .) and f = (f1, f2, . . . , fn, . . .) ,

and

fn (t, xn) =
1

2 exp (t2)
xn, t ∈ J.

For each xn and t ∈ J , we have

|fn (t, xn)| ≤
1

2 exp (t2)
|xn| . (4.3)

Hence conditions (H1) and (H2) are satisfied with pf (t) =
exp(−t2)

2 . By

(4.3), for any bounded set B ⊂ l1, we have

µ (f (t, B)) ≤
1

2 exp (t2)
µ (B) for each t ∈ [0, 1] .
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Hence (H3) is satisfied. The condition

k1 =
m
∑

i=1

‖θi‖
‖pf‖∞ (Ψ (b)−Ψ(a))α+ηi+γ−1

‖Λ‖Γ (γ) Γ (α+ ηi + 1)
+

‖pf‖∞ (Ψ (b)−Ψ(a))1+α

‖Λ‖Γ (γ) Γ (3 + α− γ)

+
‖pf‖∞ (Ψ (b)−Ψ(a))α

Γ (α+ 1)

≃ 0.95 < 1,

is satisfied with ‖pf‖∞ = 1
2 . Consequently, Theorem 2 implies that problem

(4.2) has a solution defined on [0, 1].

Example 2. Consider the (FDEs) given by (4.1). Taking Ψ (t) = log t,

β → 0, a = 1, b = e, α = 7
4 , θ1 = 1

2 , θ2 = 1
10 , η1 = 1

4 , η2 = 5
2 , δ1 = 3

2 , δ2 = 2

and f is continuous function defined by

f (t, x) =
cos (log (t))x

4t
, for x ∈ R, t ∈ [1, e] .

Then, the problem (4.1) reduces to the following problem







HaD
7

4
,0,t

1+ x (t) = cos(log(t))
4t x (t) , t ∈ (1, e) ,

x (1) = 0, I
1

4
;log t

0+ x (e) = 1
2I

1

4
;log t

0+ x
(

5
2

)

+ 1
10I

5

2
;log t

0+ x (2) ,

(4.4)

which is a nonlinear fractional differential equation involving Hadamard frac-

tional derivative. In this case γ = 3
2 . Let

E = l1 =

{

x = (x1, x2, . . . , xn, . . .) :

∞
∑

n=1

|xn| < ∞

}

,

equipped with the norm

‖x‖E =

∞
∑

n=1

|xn| .

Set

x = (x1, x2, . . . , xn, . . .) and f = (f1, f2, . . . , fn, . . .) ,

and

fn (t, xn) =
cos (log (t))

4t
xn, t ∈ [1, e] .
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For each xn and t ∈ J , we have

|fn (t, xn)| ≤
cos (log (t))

4t
|xn| . (4.5)

Hence conditions (H1) and (H2) are satisfied with pf (t) =
1
4t . By (4.5) , for

any bounded set B ⊂ l1, we have

µ (f (t, B)) ≤
1

4t
µ (B) for each t ∈ [0, 1] .

Hence (H3) is satisfied. The condition

k1 =
m
∑

i=1

‖θi‖
‖pf‖∞ (Ψ (b)−Ψ(a))α+ηi+γ−1

‖Λ‖Γ (γ) Γ (α+ ηi + 1)
+

‖pf‖∞ (Ψ (b)−Ψ(a))1+α

‖Λ‖Γ (γ) Γ (3 + α− γ)

+
‖pf‖∞ (Ψ (b)−Ψ(a))α

Γ (α+ 1)

≃ 0.41 < 1

is satisfied with ‖pf‖∞ = 1
4 . Consequently, Theorem 2 implies that problem

(4.4) has a solution defined on [1, e].
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