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Abstract

In this paper, we establish the existence and uniqueness of the weak solution in
functional weighted Sobolev space for a class of initial-boundary value degenerate and
singular fractional semi-linear parabolic problems. The results are established by using a
priori estimate and applying an iterative process based on results obtained for the linear

problem.

1. Introduction

In recent years, fractional differential equations (FDEs) and its applica-
tion have gotten extensive attention by researchers, The so-called fractional
differential equations are specified by generalizing the standard integer or-
der derivative to arbitrary order. which can be obtained in time and space
with a power law memory kernel of the nonlocal relationships. They pro-
vide a powerful tool to describing the memory of different substances and
the nature of the inheritance. All of these studies have a clear, which open
up a new field of scientific research in many areas, including a new theo-
retical analysis, applications in viscoelasticity, electro-chemistry, signal pro-
cessing, electromagnetic, porous media, electrical networks, electromagnetic
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theory and probability, signal and image processing, numerical methods for
fractional order dynamical systems and many other physical processes are
diverse applications of (FDEs).

Newly, there has been a significant development in field the fractional
differential equations. This is due to the several recent papers studies in
this field, see the monographs of Kilbas et al.ﬂ], Miller and Ross ﬂ§], Samko
et al.[9] and the papers of Agarwal et al. E], Anguraj A. and Karthikeyan
P. |11], Belmekki et al.ﬂﬂ], Daftardar-Gejji and Jafari ﬂﬁ], Furati and Tatar
%, ], Kaufmann and Mboumi @], Kilbas and Marzan ], Yu and Gao

|, Oussaeif @], and also the general references in Baleanu et al. B], and
the references therein. However, many phenomena can better be described
by Dirichlet boundary conditions . Dirichiet boundary condition the user
in solving many complex issues such as porous media, electromagnetic and

environmental science.

There are not many works in the fractional field of partial differential
equation, this is due to the difficulty of applying classical theories and meth-
ods to a field of fractional partial differential equations. Motivated by this,
the present paper is devoted to the study the unique solvability of solution
of singular and degenerate fractional semi-linear parabolic with Dirichlet
condition, which has not been studied so far.

2. Preliminaries and Functional Spaces

Let 2 = [0, 7] be a finite interval of the real numbers R and I'(-) denote
the gamma function. For any positive integer 0 < a < 1, the Caputo
derivative are the Riemann Liouville derivative are, respectively, defined as
follows: Let I' (-) denote the gamma function.

(1) The left Caputo derivatives:

x,7) 1

o o 1 " ou (
D (z,t) == T —a) /0 o (= T)QdT.

(2) The left Riemann-Liouville derivatives:

o o 1 o [t u(x,T)
Rpou (x,t) == ma/o mdr
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(3) The right Caputo derivatives:

C o o -1 /T ou(x, 1) 1
7 D%u(x,t) == Ti—a) ), dr.

(4) The right Riemann-Liouville derivatives:

1 0 r
R pa - v
t‘D u(‘r? ) l—Oz 8 /

t

Many authors think that the Caputo’s version is more natural because it
allows the handling of inhomogeneous initial conditions in an easier way.
Then the two definitions are linked by the following relationship, which can

be verified by a direct calculation:

u(z,0)

Bpow (z,t) = Dl (x,t) + T

Definition 1 (@, Iﬁ]) For any real o > 0 and finite interval [a,b] of the

real axis R, we define the semi-norm:

- 2
\U\IQHU(Q) = HRDtuHLQ(Q)

and norm:
1
el sy 1= (1l + lPrzoe)
we then define 'HJ (2) as the closure of C§° (£2) with respect to the norm

1l £ 2y -
Definition 2 (@, @]) For any real o > 0, we define the semi-norm:
2 — [|1Rpo,||?
|l gro (@) = [0 “HL2(Q)
and norm:
1
lullr o0y == (HUH%Q(Q) + \U|3HU(Q)> 5

we then define ®HZ (Q) as the closure of C§° (€2) with respect to the norm

-l e () -
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Definition 3. For any real o > 0, we define the semi-norm:

Rpo, Rpo 1/2
ul. _ ( Dfu, *D u)L2(Q)
He (<) cos (o)
and norm:
lulle oy = (el 20y + |l o)) >

Lemma 1 (@, @]) For any real 0 € Ry, if u € LHY(Q) and v € CF° (),
then

("DFu(t), v(t) 20y = (ut), ' Dv(t))12(q)-
Lemma 2 (@, @]) For0<o<2, 0#1,ue HO%(Q), on a :

Ep2u).

Tl

Epou(t)= D

Lemma 3 (@,@]) Foro € Ry, 0 # n+%, the semi- norms |t @), -Ir o) and

|-le o () are equivalent. Then we pose

|-t igo () = e o) = e () -

Lemma 4 (@, @]) For any real o > 0, the space 'HG () with respect to

the norm in Definition 2 is complete.

3. Formulation of the Problem and Functional Space
Let T'> 0,a € R%; © = (0,1) and
Q=0x(0,T)={(z,t) eR":2€Q,0<t<T}.
We consider the linear fractional parabolic problem:

CDgv(w,t) - agy (272550 ) +bv = g(a,t,v) in Qr,
v(z,0) = ¢(x), Vaze (1), - (P
v(0,t) = v(l,t) =0, Vite (0,7T).

where g, p are known functions. We shall assume that the function ¢ satisfies



2022] ON STRONGLY PRIME SPECTRUM OF I'“NEAR RINGS 109

a compatibility conditions:

the function ¢ is Lipchitzian, there is a positive constant k£ such that:

g (x,t,01,) — g (2,t,02) [|2(0) < k (o1 — v2ll 207, m1.0,1))) -

For applying our method, we must introduced a new function u(z,t) =
v(x,t) — ¢ (z). Then the problem can be formulated as:

T

Dz, t) — a% (mﬁ—augx’t)) + bu
= gla,tu) + & (9 2420) —bp = f(at,u) in Qr,

u(z,0) =0, vz e (0,1), )
u(0,t) = u(l,t) =0 Vte (0,7T).
Whose linear fractional parabolic equation is given as follows
Lu= “Dfu— % <x5%> +bu = f(x,t) (3.1)
with the initial condition
lu=u(x,0) =0 Vz e |0,] (3.2)
the Dirichlet boundary conditions
w(0,t) =u(l,t) =0 Vte[0,T] (3.3)

where are given functions. and « and 3 satisfy the following assumptions:

1.0<a<1,0<8<1, (z,t) €Q.

We establish a priori bound and prove the existence of a solution to the
problems (BI)—B3). With Lu = F, where L = (£,1), and F' = (f,up) be
the operator equation corresponding to problems ([B.I)— ([B.3]). The operator
L acts from FE to F defined as follows. The Banach space E consists of all
functions u(x,t) with the finite norm

a 2
Jully, = ||° D2 u

@ ngv”\\;<Q) +vlz2) - (3.4)
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The Hilbert space F' consists of the vector valued functions f with the

norm

1F1% = 11£122(0) (3.5)

4. A Priori Bound of Linear Case

Theorem 1. If the assumptions Al are satisfied then for any function u €

D(L), there exists a positive constant ¢ independent of u such that

2

|*Déu
12(Q)

i 2 2 2
+ HxQVUHLQ(Q) +[ollz2) < ¢ (Hf”L?(Q)) ; (4.1)
and D(L) is the domain of definition of the operator L defined by
2 Cp2 g 2
D(L) = {ue L*Q) / “DEu, 25Vu e LAQ)},
satisfying conditions (B3]).

Proof. Taking the scalar product in L?(Q) of Eequation (3.1 and the

operator

Mu = u,

where Q™ = Q x (0,7, we have

. o Ou(z, t)
(Eu, MU)LQ(QT) = (CDt U,U)LQ(QT) —a <% <x6T> ,’LL> Lz(QT)

+ b (U, u)LQ(QT)

= (7) 1oy (42)
The successive integration by parts of integrals on the right-hand side of
@2, yields
(CD?U7U)L2 = (CDt%unfCD%u)
(Q ) L2(QT)

- T 2
s (7) e % (o)

am\ |lc~% |12
g —_ D2 ‘
COS( 2 ) H £ gy

(4.3)
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(0 ), el

Substituting (£3]) and (£4) into [@2]), we obtain
8 2 ~
8 - .
o8 ( ) H H 2(Q7) ta Hx?Vu’ L2(Q7) — (f,u) ’ (45)

estimate the last term on the right-hand side of () by applying Cauchy

and
2

L*(Q7)

inequality with €, (Jabl < % + #), then we get
()| V
Cos Zu

8 2 2
—i—aHx?Vu‘ + b llullz2gn

L2(Q7) L2(QT)
€ 2
i = (4.6)
Then the estimate (0] becomes
a 2 8 2

C = 2

D] g 59 :
[0z u] g+ 239 gy * Ml

2

2(Q)’

1 -
= 2¢ min(cos (%F) ,a, (b — §)) Hf‘
So, finally we get

2

|“Déu]
12(Q)

8 2
+ H(E§VU‘
L2(Qm)

2
+ [[ullz2(gry <

Where
5=

1
2emin(cos (9) ,a, (b—5))
So, we have
lullg <& llLulp (4.7)
Let R(L) be the range of the operator L. However, since we do not have
any information about R(L), except that R(L) C F, we must extend L, so

that estimate (77) holds for the extension and its range is the whole space

F. We first state the following proposition. O

Proposition 1. The operator L : E — F' has a closure
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Proof. let (uy),cny C D (L) a sequence where :

Uy — 0 in B
and
Luy, —> (f; o) in F (4.8)
we must proof that
f=0.

The convergence of u, to 0 in E drives :
u, — 0 in D' (Q). (4.9)

According to the continuity of the derivation of D’ (Q) in D' (Q) . The
relation (€9 involved

Lu, — 0 in D' (Q), (4.10)
Moreover, the convergence of Lu, to f in L? (Q) gives
Lu, — f in D'(Q) (4.11)

As we have the the uniqueness of the limit in D’ (Q), we conclude from

(10) and ([EITI) that
f=0.

Then, we get L is closable of this operator, with domain of definition D(L).

Definition 4. A solution of the operator equation Lu = F is called a strong
solution to problems (B1])— B3).

Definition 5. The priori estimate (1)) can be extended to strong solutions,
i.e., we have the estimate

2

L2(Q)

2

[“pi]
LQ(QT

(4.12)

+ HxQVU‘

S+ lulZ2igry <0 Hf‘ ;(Q)’

We deduce from the estimate ({L12]).

Corollary 1. The range R(L) of the operator L is closed in F and is equal

to the closure R(L) of R(L), that is R(L) = R(L).
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Proof. Let z € R(L), so there is a Cauchy sequence (2,),,cyin F' constituted
of the elements of the set R(L) such as

lim 2z, = z.
n—>-+o0o

There is then a corresponding sequence wu,, € D(L) such as
zn = Lu,.
The estimate (1), we get
lup = ugll p < C'[|Lup — Lug|| z — 0,

Where p, ¢ tend towards infinity. We can deduce that (uy),cyis a Cauchy

sequence in F, so like E is a Banach space, it exists © € E such as

lim w, =wuin E.
n—->-+400

By virtue of the definition of L ( lim wu, = v in E ; If lim Lu, =

n——+o0o n——+o0o

lim z, =z, then lim Lu, = z as like L and is closed, so Lu = z), the
n— -+0o0 n—-+00

function w check :

UED(E), Lv=z.

Then z € R(L), so

R(L) C R(L)

Also we conclude here that R(L) is closed becauce it is Banach ( any complete
subspace of a metric space (not necessarily complete) is closed). It remains
to show the reverse inclusion. Either z € R(L) then it exists a Cauchy
sequence (zp),cnin F constituted of the elements of the set R(L) such that

lim 2z, ==z
n——+o0o

or 2 € R(L) , because R(L) is a closed subset a completed F, so R(L) is

complete. There is then a corresponding sequence w,, € D(L) such that

Lu, = z,.
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We get from [.1):
lup = ugll g < C[| L = Lug || = 0,

Where p, ¢ tend towards infinity. We can deduce that (uy),cyis a Cauchy

sequence in F, so like E is a Banach space, it exists u € E such as

lim w, =u in E.
n—>-4o0o

Once again, there is a corresponding sequel (Luy,), .y € R(L) such as
Lu,, = Lu, on R(L),¥n € N.

So

lim Lu, = z,
n—>-+400

Consequently z € R (L), then we conclude that

5. Existence of Solution of the Linear Case

Theorem 2. Let the assumptions Ay be satisfied. Then for all F' = (f,0) €

F | there exists a unique strong solution w = L™'F = L=1F of the problem

BI)-B3).
Proof. We have
(Lu,W)F:/Eu.wda:dt (5.1)
Q

Where
W = (w,0).

Si for w € L?(Q) and for all u € Dy(L) = {u, uw € D (L) : fu = 0}, we have

/ Lu.wdzdt =0
Q
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By putting w = u, and using the same estimate of section 1, we obtain

aTm C = 2 8 2
cos (7> H Dt2uHL2(Q) +a Hajz VUH +b ||u||L2(Q) =0,

we get

lu| <0=u=0.

So, it gives u = w = 0. O
Corollary 2. If for any function uw € D(L), we have the following estimate:
lullg < ClIFllg,

Then the solution of the problem (Py) if it exists, it is unique.

Proof. Let u; and uy be two solutions to the problem (P;)

Lu1:.7:
Luy — Lus =0
{L’LLQZJ:Z> “ 2 '

and as L is linear we then obtain
L (’LL1 — UQ) = 0,
according to(H.T)
lur — w23 < c|0]|7 = 0,

Which give

Ul = u2. O

6. Solvability of the Weak Solution of the Semi-Linear Problem

This section is devoted to the proof of the existence and the uniqueness
of the solution of the semi-linear problem (Pr) :
CDtau(x,t)—(a;aux)x+bu:f(x,t,u), V(x,t)EQ,
U({L‘,O) =0, V€ (Oa 1)a (Pl)
u(0,t) = u(l, t) =0, . vVt e (0,T).
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Putting
U=y
such that y is a solution to the following nonlocal linear problem:

And the solution satisfies the following nonlocal nonlinear problem

Ly =¢ D?y(x7t> - (xay:c>z + by(x,t) =f ($7t7 y) ) (61)
y(z,0) =0, Vze(0,1), (6.2)
y(0,t) =y (1,t) =0 Vte (0,). (6.3)

the function f is also Lipchitzian, there is a positive constant k£ such that :

H f (xﬂt7u17) —f (a:,t,uz) ||L2(Q)S k (Hul - u2HL2(07T,H1(071))) : (64)

Building a recurring sequence starting with y(© = 0.

n—1)
)

The sequence (y(”))n N 8 defined as follows : given the element y(

then for n = 1,2, 3, ..., we will solve the following problem :

Dy — (298, + by™ = f (2, ¢,y D)
Y™ (2,0) = 0 , (Ps5)
y™(0,1) =y (1,1) = 0.

According to the study of the previous linear problem each time we fix the

n, the problem (P5) admits a unique solution y™) (z,1t).

Now by supposing
Z(n) (xa t) = y(n+1) (xa t) - y(n) (:L‘a t) )
so we get a new problem :

CDg ) — (a;azg(gn))z + bz = p(=D (g, 1),
2 (2.0) =0, (Ps)
M (0,t) = 20" (1,t) = 0.

p("fl) (x,t)=f (aj,t,y(”)> —f (aj,t,y(nfl)) .
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Multiply

DM — (1), + b = pnD (2 )

by z(") and integrate it on Q,, we get :
C
D™ (z,t) - 2 (2, t)dadt — / (222, - 2 (2, t) dedt

Qr i

—i—b/ (2" (z, 1)) dxdt

= / PV (a,t) - 2" (2, t) dadt.

T

Use an integration by parts by taking account of the initial condition and

the boundary conditions, we find :

oS (ﬂ)
2

= / pV(z,t) - 2" (2, 1) dadt.

-

th(%)z(n) 2 2

_l’_

+b Hz(”)
@

L2
e

L2(Q)

We apply the Cauchy-Schwarz inequality on the second part of the equation,

we get:

/ P (2, 1) - 2 (2, 1) dadt

T

1 I3 2
< — (n—1) 2 £ / (n)
<5/, [P0 D (e t) P dadt 45 (z (x,t)) dudt,
1 e 2
< (n)) _ (n=1)) |2 < (n)
S 5 QT\f (x,t,y ) f (a:,t,y ) \ dxdt—kz/T(z (x,t)) dxdt,

Like G Lipschtizienne, we find :

/ PV (a,t) - 2™ (2, 1) dadt

T

]{32 IS 2
o () o (n=1) |y2 N
<5 /QT(|y g0 DRdrde+ 5 [ (o0 20) dnd,

2

5 (z(") (z, t)) ’ dzdt,
o

-
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2 2
< B[ g0 yawi+ £ (200 (0,0)) dea
£ QT 2 QT
2

2(Q)’

2 €
Q) 2

< M- L)

we get :

2
L2(Q)

CD£%>Z(n)

+ |2 +b|]z™

COS <ﬂ>
2

k?

e

L? (@)
2

2Q)’

< Lo L)

s
L2Q) 2

We integrate on ¢, we obtain :
(7)
cos [ —
2

Then, we obtain

2
2 Loy H
2Q € L3,

2 €
Lf/x—a("?) 2

th(%)z(n) |2

th(%)z(n) L]

L)
r 2
L \/ac_ﬁ(Q)

_l’_

_l’_

L2(Q)
]{32
<
emin(1, cos (%) ,(b—%))

)

2
Lig)

So, we obtain

2
L*(Q)

Ol

CD(%> (n) ( .
L\/I—B(Q)

t z

L(n)

+ ||z

k? n—1) 2

L*(Q)

2
L(n-1)

th(%)Z(nq) ( 2
L2, Q)

< 5

= emin(1, cos (), (b-3%))

_|_

_|_

Putting :

]{72
¢ max{ "emin(1, cos (%), (b— %))}

So, we get :

n) n—1) 2

2 2

<c ‘
14



2022] ON STRONGLY PRIME SPECTRUM OF I'“NEAR RINGS 119

where
V={y ye1*(Q . € L* (@)}

As we have :

n—1

320 =y

i=1
According to the convergence criterion of the series, gives that the series
[e.9]
S 2™ converges if |¢| < 1, which implies :

n=1

k2
€ mln(l,cos(a%),(bfg)) ‘

k2
k\/e min(1,cos(%E),(b-5)) <1

k2
k< \/amin(Lcos(cg),(b—;))‘

then y(™ converges on an element of V , we call y. We will show that in V :

lim y(n)(xat) = y(l‘at)

n—-:oo

is a solution to the problem (Py) showing that y chacket :
Al(y,v) = / flx,t,y) - v(x,t)dxedt Y v e O.
Qr
Where

0 ={veCYQ),v(0.t) =v(l.t) =0,vt € (0.T)},

A(y".0) = CDF @) DRz | @ w0 o, o

-

—|—/ Yy (z,t) - vgp(x, t)dzdt

-
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we have :
Ay —y,0) = (ODi (y" — y)(w, ). DFo(w, 1) ()
+/ (2% (Y — y) (2, t) - vy (, t)dadt
+/ (y" —y)(z,t) - vp(z, t)dzdt
We apply the Cauchy Schwartz inequality, we find :

A(y™ —y0) <ol [ =wi| + ol |6 - ).

|4

On the other hand, as

y(") — y inV,

SO
y" — y  in L*(Q),
w — oy i L2(Q),

y — oy L2 (Q),

Let’s go to the limit when n — 400, we get :lim,, 4o A(y™ —y,v) =0

References

1. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York,
1974.

2. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.

3. J. H. He, Some applications of nonlinear fractional differential equations and their
approximations, Bull. Sci. Technol., 15(1999), 86-90.

4. J. H. He, Nonlinear oscillation with fractional derivative and its applications. In: In-
ternational Conference on Vibrating Engineering’98, Dalian, China, (1998), 288-291.

5. J. H. He, Approximate analytical solution for seepage flow with fractional derivatives
in porous media. Comput. Methods Appl. Mech. Eng., 167 (1998), 57-68 .

6. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a frac-
tional dynamics approach, Phys. Rep. 339 (2000), 1-77 .

7. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential
FEquations, J. Wiley, New York, 1993.



2022] ON STRONGLY PRIME SPECTRUM OF I'“NEAR RINGS 121

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,
Theory and Applications, Gordon and Breach, Yverdon, 1993.

R. P. Agarwal, M. Benchohra and S. Hamani, Boundary value problems for fractional
differential equations, Adv. Stud. Contemp. Math. 16(2008), 181-196.

A. Anguraj and P. Karthikeyan, Existence of solutions for fractional semilinear evo-
lution boundary value problem, Commun. Appl. Anal., 14 (2010), 505-514.

M. Belmekki, M. Benchohra and L. Gorniewicz, Semilinear functional differential equa-
tions with fractional order and infinite delay, Fized Point Theory, 9 (2008), 423-439.

M. Belmekki and M. Benchohra, Existence results for fractional order semilinear func-
tional differential equations, Proc. A. Razmadze Math. Inst., 146 (2008), 9-20.

M. Benchohra, J. R. Graef and S. Hamani, Existence results for boundary value prob-
lems with nonlinear fractional differential equations, Appl. Anal. 87 (2008), 851-863.

M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for di erential
equations with fractional order, Surv. Math. Appl., 3 (2008), 1-12.

M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for
fractional order functional differential equations with infinite delay, J. Math. Anal.
Appl., 338 (2008), 1340-1350.

V. Daftardar-Gejji and H. Jafari, Boundary value problems for fractional diffusion-
wave equation, Aust. J. Math. Anal. Appl., 3 (2006), 1-8.

D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional dif-
ferential equation, J. Math. Anal. Appl., 204(1996), 609-625.

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math.
Anal. Appl., 265 (2002), 229-248.

K. Diethelm and G. Walz, Numerical solution of fractional order differential equations
by extrapolation, Numer. Algorithms, 16 (1997), 231-253.

A. M. A. El-Sayed, Fractional order evolution equations, J. Fract. Calc., 7 (1995),
89-100.

A. M. A. El-Sayed, Fractional order diffusion-wave equations, Internat. J. Theoret.
Phys. 35 (1996), No.2, 311-322.

A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders,
Nonlinear Anal. Theory Methods Appl., 33 (1998), 181-186.

K. M. Furati and N. Tatar, Behavior of solutions for a weighted Cauchy-type fractional
differential problem, J. Fract. Calc., 28 (2005), 23-42.

K. M. Furati, N. Tatar, An existence result for a nonlocal fractional differential prob-
lem, J. Fract. Calc., 26(2004), 43-51.

E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for
a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ., 3
(2007), 1-11.



122 A. BOURABTA, T.-E. OUSSAEIF, I. REZZOUG AND Z. CHEBANA  [March

26. A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo
fractional derivative in the space of continuously differentiable functions, Differ. Fqu.,
41 (2005), 84-89.

27. S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differ-
ential inequalities, J. Fract. Calc., 24 (2003), 37-44.

28. S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions
of differential equations of noninteger order, Int. J. Math. Math. Sci., 13 (2004), 697-
701.

29. 1. Podlubny, I. Petras, B. M. Vinagre, P. O’Leary, L. Dorcak, Analogue realizations
offractional-order controllers. Fractional order calculus and its applications, Nonlinear
Dynam., 29 (2002), 281-296.

30. C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl.,
310 (2005), No.1, 26-29.

31. T. Oussaeif and A. Bouziani, Solvability of nonlinear goursat type problem for hy-
perbolic equation with integral condition, Khayyam Journal of Mathematics, 4(2018),
No.2, 198-213. doi: 10.22034/kjm.2018.65161

32. D. Baleanu, J. A. Tenreiro Machado and Z. B. Guvenc, New Trends in Nanotechnology
and Fractional Calculus Applications, Springer-Verlag, London, 2010.

33. J. Sabatier, Om P. Agrawal, J. A. Tenreiro Machado and Z. B. Guvenc, Advances
in Fractional Calculus: Theoretical Developments and Applications in Physics and
Engineering, Springer Verlag, London, 2007.

34. J. Tenreiro Machado, V. Kiryakova and F. Mainardi, Recent history of fractional
calculus, Commun. Nonlinear Sci. Numer. Sitmul., 16(2011), 1140-1153.

35. X. J. Liand C. J. Xu, Existence and uniqueness of the weak solution of the space-time
fractional diffusion equation and a spectral method approximation, Communications
in Computational Physics, 8 (2010), No.5, 1016-1051.

36. X. J. Li and C. J. Xu, A space-time spectral method for the time fractional diffusion
equation, SIAM Journal on Numerical Analysis, 47 (2009), no.3, 2108-2131.

37. T.-E. Oussaeif and A. Bouziani, Inverse problem of a hyperbolic equation with an inte-
gral overdetermination condition, FElectronic Journal of Differential Equations, 2016
(2016), No.138, 1-7.

38. O. Taki-Eddine and B. Abdelfatah, A priori estimates for weak solution for a time-
fractional nonlinear reaction-diffusion equations with an integral condition, Chaos,
Solitons & Fractals, 103 (2017), 79-89.

39. T.-E. Oussaeif and A. Bouziani, Inverse problem of a hyperbolic equation with an inte-
gral overdetermination condition, FElectronic Journal of Differential Equations, 2016
(2016), No.138, 1-7.

40. A. Benaoua, O taki-eddine and I. Rezzoug, Unique solvability of a Dirichlet problem
for a fractional parabolic equation using energy-inequality method, Methods Funct.
Anal. Topology, 26(2020), No.3, 216-226.



2022] ON STRONGLY PRIME SPECTRUM OF I'“NEAR RINGS 123

41.

42.

43.

44.

45.

46.

47.

48.

49.

A. Bouziani, T.-E. Oussaeif and L. Benaoua, A mixed problem with an integral two-
space-variables condition for parabolic equation with The Bessel operator, Journal of
Mathematics, 2013(2013), 8 pages, Article ID 457631.

T.-E. Oussaeif and A. Bouziani, Solvability of nonlinear goursat type problem for hy-
perbolic equation with integral condition, Khayyam Journal of Mathematics, 4(2018),
No.2, 198-213. doi: 10.22034/kjm.2018.65161.

T.-E. Oussaeif and A. Bouziani, Existence and uniqueness of solutions to parabolic
fractional differential equations with integral conditions. Electron J. Differ. FEqu.,
179(2014), 1-10.

R. Imad, O. Taki-Eddine and B. Abdelouahab, Solvability of a solution and con-
trollability for nonlinear fractional differential equations, Bulletin of the Institute of
Mathematics 15(2020), no.3, 237-249.

T.-E. Oussaeif and A. Bouziani, Mixed problem with an integral two-space-variables
condition for a class of hyperbolic equations, International Journal of Analysis, 2013
(2013), 8 pages.

T.-E. Oussaeif and A. Bouziani, Mixed problem with an integral two-space-variables
condition for a parabolic equation, International Journal of Evolution Equations, 9(),
No.2, 181-198.

T.-E. Oussaeif, A. Bouziani, Mixed problem with an integral two-space-variables con-
dition for a third order parabolic equation, International Journal of Analysis and
Applications, 12(2016), No.2, 98-117.

T.-E. Oussaeif, A. Bouziani, Solvability of nonlinear viscosity equation with a bound-
ary integral condition, J. Nonl. Evol. Equ. Appl., 2015 (2015), No.3, 31-45.

T.-E. Oussaeif, A Bouziani; Existence and uniqueness of solutions to parabolic frac-
tional differential equations with integral conditions, Electronic Journal of Differential
Equations, 2014 (2014), No.179, 1-10.



	1. Introduction
	2. Preliminaries and Functional Spaces
	3. Formulation of the Problem and Functional Space
	4. A Priori Bound of Linear Case
	5. Existence of Solution of the Linear Case
	6. Solvability of the Weak Solution of the Semi-Linear Problem

