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Abstract

In this paper, we discuss a question that is often asked repeatedly in the context

of statistical studies, namely the presence of incomplete data in the dataset. Therefore,

our goal is to study the recursive nonparametric estimation of the conditional distribu-

tion function of a vectorial response valued variable Y explained by a Hilbertian random

variable X = x, based on the double-kernel approach. And because we are always looking

for more credible methods that are in line with the research methodology, then, it is well

known that the recursive methods are more efficient than its nonrecursive rival. Whereas,

the variable of interest Y is left truncated by another variable T, that is, the random

variables Y and T are observed if and only if Y ≥ T ; otherwise nothing is observed if

Y < T. Under general mixing conditions, we first establish its strong uniform consistency

from which we deduce the ones of the conditional quantile function estimator.

1. Introduction

In Survival Analysis, we deal generally with two popular types of data

of incomplete nature which are modeled via the possible presence of right-

censoring and/ or left-truncation of variables in the observed sample. In

form, these two latter are very similar, however, they are quite different in
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nature (each type of incompleteness based on its own special properties. In

other words, it is important to distinguish between these two types). In fact,

many scientific domains are known to have this type of information jointly.

For example, some biomedical studies suffer simultaneously of truncation

and censoring, this is the situation in astronomy also. So that, the survival

theory is a branch of statistics that tries to bring a solution to these different

situations.

In this contribution, the case that we are focusing on is the second one.

Although, in recent decades, we have observed in scientific research many

published papers which make use such data because of the importance of

their economic and social impacts. Thus, the development of new techniques

to better model and exploit these latter whose occurrence is not known, to

insert it in nonparametric statistical methods, because from an applied point

of view, the truncated data are considered to be more accurate and the most

expressive one. Moreover, compared with the censoring, truncation uses less

information, then; the available statistical methods for use are limited. Its

theoretical foundation was formally established by Woodroofe (1985)[23],

whose idea dates back to Lynden-Bell (1971)[17]. As a complement to these

works, the first to propose a non-parametric estimator of the truncation

probability for randomly truncated data are He and Yang (1998)[12].

Literally, in the existence of these variables, various authors have pro-

vided several regression models that realize the characteristics of such data

for i.i.d. and mixing cases, including O. Said and Lemdani (2006)[19], O. Said

and Tatachak (2009)[20], Wang et al. (2012a)[22], Altendji et al. (2018)[1],

Derrar et al. (2015)[6]. Thus, the authors Lemdani et al. (2009)[18], and later

Helal and O. Said (2016)[13] have established the asymptotic properties of

the conditional quantile estimates of which are robust means of forecasting.

Under weak dependence in the sense of [7], our idea in this work is to es-

timate recursively for the functional context, the nonparametric conditional

distribution function from the case of complete data to the one of randomly

truncated data on the left. So that we will establish its uniform almost sure

convergence. Subsequently, using this family of estimators to derive the uni-

form consistency of the conditional quantile estimators. Two based models

of estimators are mainly adopted; in one, a recursive kernel estimation is

introduced recently by Benziadi et al. (2016)[2], the latter is studied when
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there are no truncation observations. The other is then presented by Hel-

lal and O. Said (2016)[13] that extends the classical estimator of Firraty et

al. (2006)[9] to the truncation setting for i.i.d. observations.

The rest of the article is divided into five sections. Section 2 speci-

fies a unified framework for analyzing random left-truncated (RLT) type

of data and the estimation procedures for our nonparametric conditional

model, respectively. Note also that the latter results are used to derive some

asymptotic properties of the recursive estimator of the conditional quantile

function. The next section sets the assumptions used with the main results.

In addition, Section 4 presents a particular case in addition to a general

discussion in Section 5, while Section 6 contains all the technical proofs of

Lemmas.

2. Nonparametric Estimation

2.1. Description of the functional randomly-truncated framework

As a prior knowledge that truncation does not allow the application of

ordinary statistical techniques, we then begin with a reminder of some basic

structures and bibliographies corresponding to this context. In the pop-

ulation of interest, let T denote the positive random left-truncation time.

Assume that T has a support on [0, aF ] and has an unknown distribution

function G. This framework can be based mainly on the truncation proba-

bility defined for the two observable pairs of variables Y and T, by

τ := P[Y ≥ T ] =

∫
G(v)F (dv) > 0

and since the construction of the distribution F (resp G) of Y (resp T ) has

been reformulated in terms of the size n which we will talk about later,

we must be aware that their joint distribution is also changeful (see Stute

(1993)[21]), such that

H∗(y, t) = τ−1

∫ y

−∞
G(t ∧ v)F (dv)
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with the marginal ones which depend on this latter, that generate the dis-

tribution of the positive data Y and T respectively

F ∗(y) := τ−1

∫ y

−∞
G(v)F (dv) and G∗(t) := τ−1

∫ ∞

−∞
G(t ∧ v)F (dv)

and thus

K(y) = G∗(y)− F ∗(y) := τ−1G(y)F (y)

with their empirical estimators defined by

F ∗
n(y) = n−1

n∑

k=1

I(Yk≤y) and G∗
n(t) = n−1

n∑

k=1

I(Tk≤t)

and the consistent estimator of K(y) for aF ≤ y < +∞ given by

Kn(y) = n−1
n∑

k=1

I(Tk≤y≤Yk)

where IA denotes the indicator function of the event A. For the random

left-truncation model, similar to the nonparametric Kaplan-Meier estimator

(NPKME) for censored data, the astrophysicist Lynden-Bell (1971)[17] has

proposed the unique nonparametric estimator (NPLBE) based on maximum

likelihood (ML) of the continuous functions F and G expressed as

Fn(y) = 1−
∏

s≤y

[
1− F ∗

n(s)

Kn(s)

]
and Gn(t) = 1−

∏

s>t

[
1− G∗

n(s)

Kn(s)

]
.

Note that the KME and LBE always give a valid redistribution of the upper

limits, though the result may not be applicable in wider context. In addition,

we will set the identifiability conditions on the support of F and G,

aG ≤ aF ; bG ≤ bF and

∫ ∞

aF

1

G
dF <∞.

In which, the main asymptotic properties of the later estimates, including the

weak and strong uniform convergence with rates of convergence, have been

provided for example in the paper by the statistician Woodroofe (1985)[23],
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such that

sup
y≥aF

|Fn(y)− F (y)| P.a.s.−→ 0 and sup
t≥aG

|Gn(t)−G(t)| P.a.s.−→ 0

with a simpler form for the estimator of τ

τ̂n :=
Gn(y)Fn(y)

Kn(y)

For this, in some references, Fn(y) and Gn(t) called the

Lynden-Bell-Woodroofe estimators (NPLBWE).

Remark 1. To be more precise, we note that the strong uniform consis-

tency for the improved product limit estimator of the distribution function

F over [aF ,∞) was proved under the only condition aF > aG. However, in

complementary case (aF ≤ aG), the desired asymptotic property does not

achieved (here, the interested reader can referred directly to the paper by

Chen et al. (1995) [5], who gave a comprehensive review of all the other

possible cases with rich discussions that show us when we can obtain this

property under some additional necessary tools).

2.2. The model and the estimate under strong mixing hypothesis

and left truncation

In order to simplify and give a great flexibility for our framework and

to focus on the main interest of our paper, Let us consider in the same

probability space (Ω,F ,P), an infinite stationary dependent random vectors

{(Xk, Yk), k = 1, . . . , N} drawn from the pair (X,Y ), where X is the random

covariate taking its values in a distanced Hilbertian space (H, d), Y is the

interest random vectorial variable with continuous distribution function (df)

F.

We consider in this model the scenario where the response variable Y as-

sumed to be subject to truncation time T. The sample size N is fixed, but un-

known. For that, in the paper’s continuation, among the total number in the

pooled sampleN, we base only on the observed data {(Xk, Yk, Tk), k = 1, . . . , n}
with the conventions n ≤ N (n is known) and P [n/N → τ ] = 1.
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Thus, the conditional distribution function (df) of Y given the covariate

X = x under the left-truncation condition exists and is often defined by

FY/X(y/x) = E
[
I(Y≤y)/X = x

]
, ∀y ∈ R

p.

Turning to the desired goal in this paper, first, a recent modification of

Ferraty and al’s estimator (2006)[9] in the case of non-truncated data has

been introduced by Benziadi et al. (2016)[2] to estimate recursively the non-

parametric conditional distribution function (cdf), they posed the following

estimator

F̈ x
n (y) =

n∑

k=1

L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (y − Yk)

)

n∑

k=1

L1

(
a−1
k dH(x,Xk)

) . (1)

A quick glance at the work of these latter authors shows that the estimator

given above has good theoretical and practical properties when the data are

assumed to be ergodic.

Now, in the same footsteps, in the case of truncated data, our purpose is

to introduce the version of a recursive double kernel estimator of the model

given above denoted F̂ x
n (.) and defined as follow

F̂ x
n (y) =

n∑

k=1

G−1
n (Yk)L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

n∑

k=1

G−1
n (Yk)L1

(
a−1
k dH(x,Xk)

)
=

Ψ̂n(x, y)

Υ̂n(x)

(2)

where

Ψ̂n(x, y) =
τ̂n

nψn(x, an)

n∑

k=1

1

Gn(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

and

Υ̂n(x) =
τ̂n

nψn(x, an)

n∑

k=1

1

Gn(Yk)
L1

(
a−1
k dH(x,Xk)

)
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with Ψ(·, ·) is the joint probability function assumed to be bounded, Υ(·) is
the marginal one, the functions L1 and L2 are kernels and ak, bk are two

positive real numbers tending to 0 as n goes to infinity.

3. Assumptions and Asymptotic Results

In order to prove that our estimate achieves the asymptotic proper-

ties, We first use the notations often introduced in many studies, ℘k the

σ−field generated by {(Xs, Ys); 1 ≤ s < k} and Bk the one generated by

{(Xs, Ys), (Xr), 1 ≤ s < k; k ≤ r ≤ k+1}. Thus, let S and Ω be respectively

two compact sets of H and R
p. On the other hand, following Woodroofe

(1985)[23] and He and Yang (1998)[12], let us note for the distribution func-

tion L of Z, the lower and upper boundaries of the support by

aL = inf {z : L(z) > 0} and bL = sup {z : L(z) < 1} .

Next, to simplify the presentation of our main results and their proofs,

some important assumptions are assumed to be hold.

(U.1) On the hilbertian variable: there is a ball B of radius ak > 0 centered

at x such that

(i) ∀ x ∈ S, 0 < φ(x, ak) ≤ P[X ∈ B(x, ak)] and φ(x, ak) → 0 as

h→ 0;

(ii) The joint density exists, is bounded and satisfies

0 < sup
k 6=l

P [Xk ∈ B(x, ak),Xl ∈ B(x, al)] = O

{
(φ(x, ak))

1+γ1

nγ1

}
.

(U.2) (Xk, Yk)k∈N is a stationary sequence of α− dependent real-valued ran-

dom variables whose coefficients of mixture α(n) satisfy the condition

∃a, c ∈ R
∗
+ : ∀n ∈ N, α(n) = O(n−1/γ1).

(U.3) On the nonparametric model: ∀(y1, y2) ∈ Ω2, ∀ (x1, x2) ∈ N 2
x , ξ

x(z)

satisfies the Lipschitz condition

|F x1(y1)− F x2(y2)| ≤ C1

(
dν1H (x1, x2) + ‖y1 − y2‖ν2Rp

)
,

with C1 > 0, ν1 > 0, ν2 > 0.
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(U.4) L1 is a measurable non-negative continuous bounded kernel on its

compact support (0, 1). Also, it is supposed to be Hölderian of order

β1 = 1 such that

|L1(x1)− L1(x2)| ≤ C2dH(x1, x2)

(U.5) L2 is an increasing, continuous and bounded distribution function

satisfying:

(i) ∀(y1, y2) ∈ I2, |L2(y1)− L2(y2)| ≤ C3 ‖y1 − y2‖Rp ,

∫

t∈Rp

L
(1)
2 (‖t‖Rp)dt = 1, and

∫

t∈Rp

‖t‖ν2
RpL

(1)
2 (‖t‖Rp)dt <∞;

(ii) There exists a continuous bounded function l∞(·) in the neigh-

borhood of x such that the conditional distribution of the couple

(Yk, Yl) knowing (Xk,Xl) exists and verifies

max [F (yk/xk), Fk,l(yk, yl/xk, xl)] ≤ l∞(x) <∞.

(U.6) On the bandwidths: ak and bk satisfy the following conditions:

(i) lim
n→∞

an = lim
n→∞

bn = 0 and lim
n→∞

nrbn = ∞ for any r > 0;

(ii)

n∑

k=1

φk(x, ak) = nψn(x, an) → ∞ and lim
n→∞

log n

nψn(x, an)
= 0;

(iii) ∃ γ > 0;
1

nγ log n

n∑

k=1

b−1
k → 0 as n→ ∞.

(U.7) The variables (Tk)k=1,...,n are independent of (Yk)k=1,...,n.

3.1. Discussion of the assumptions

Generally, in nonparametric classical and/ or recursive estimation for

conditional distribution functions in α−mixing context (dependent processes),

which have been adopted by Doukhan (1994)[7], all the assumptions used in

this paper are necessary.

The assumption (U.1)(i) is a standard condition for functional estimate.

While, (U.1)(ii) is the same as used in Ferraty et al. (2005)[8] among which
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the small-ball probability satisfies

sup
k 6=l

P [Xk ∈ B(x, ak),Xl ∈ B(x, al)]

P[X ∈ B(x, ak)]
= O

{(
φ(x, ak)

n

)γ1}
. (3)

Compared with Theorem (4.1) in Hellal and O. Said (2016)[13] for the inde-

pendent framework in which they used the classical Bernstein exponential

inequality for the classical kernel estimate. In the case of dependent ob-

servations, when the process (Xk, Yk) has algebraically decreasing mixing

coefficients α(n), we should to set the condition (U.2) in order to use the

adapted Fuk-Nagaev inequality, then, to study the consistency of the estima-

tor. While, statisticians see that the dependency structure is more complex

than the previous one and has many practical applications.

On one hand, we introduce the regularity condition (U.3), defining the

Hölderian property of the continuous conditional distribution which makes

the proof’s steps easier and enables us to obtain the rates of convergence.

Moreover, the hypotheses (U.4), (U.5) are considered as classical assump-

tions of kernel estimation which are necessary, sufficient and always keep

track of the above condition (U.3) in terms of function’s class, as well as on

the conditional distribution. Furthermore, (U.6) is an important technical

condition on the sequences an and bn, however, rather classic in recursive

kernel estimation.

On the other hand, depending on the difficulty of the problem to treat

properties of the proposed estimator when the sample contains truncated

data. Ideally, we point out that the truncation mechanism would be ex-

amined by the assumption (U.7) which is considered as a powerful tool in

nonparametric truncation estimation in the sense it gives valid solution.

Now, we are in position to state our main theoretical results.

3.2. Uniform almost sure convergence rates of the conditional

distribution function

We first establish the rate of the uniform consistency, which is the object

of the following theorem. Throughout the rest of the paper, Ki, i = 1, . . . , 7

will be used to denote the positive constants whose value may vary, in addi-

tion to the previous constants mentioned above.
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Theorem 1. Suppose that the assumptions (U.1)−(U.7) hold true. For n

large enough, we have

lim sup
n→∞

sup
x∈S

sup
y∈Ω

∣∣∣F̂ x
n (y)− F x(y)

∣∣∣
(
(aν1n + bν2n ) +

(
log n

nψn(x, an)

)1/2
) ≤ K1 a.s.

The application of Theorem 1 is needed for deriving the following result.

3.3. Uniform almost sure convergence rates of the conditional

quantile function

Considering that the conditional quantile estimator depends on the con-

struction of the conditional distribution function estimator. Thus, its uni-

form consistency depends basically on that of the previous ones. It consists

beforehand to assume that F x(·) is strictly increasing and continuous in or-

der to ensure the existence and the uniqueness of the conditional quantile

function.

Our focus now is directed to the conditional quantile qα(x) that naturally

estimated by

q̂α,n(x) = F̂−1
n (α/x) = inf

{
y : F̂n(y/x) ≥ α

}

We then have to introduce additional condition

(U.8) For each fixed α ∈ (0, 1), the function qα(x) satisfies that, for any

ǫ > 0 and ηα(x), there exists a β > 0 such that sup
x∈S

|qα(x)− ηα(x)| ≥ ǫ

implies that sup
x∈S

|F x(qα(x))− F x(ηα(x))| ≥ β.

Corollary 1. Let the assumptions of Theorem 1 hold. In addition to (U.8),

then, we have

lim sup
n→∞

sup
x∈S

|q̂α,n(x)− qα(x)|(
(aν1n + bν2n ) +

(
log n

nψn(x, an)

)1/2
) ≤ K2 a.s.
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Proof of Theorem 1. The proof techniques based mainly on the following

standard decomposition

F̂ x
n (y)− F x(y)− B̂n(x, y) =

1

ĥn(x)

{
Q̂n(x, y)− B̂n(x, y)

[ (
Υ̂n(x)− Υ̃n(x)

)

+
(
Υ̃n(x)− E

[
Υ̃n(x)

]) ]}

with

Q̂n(x, y) :=
[(

Ψ̂n(x, y)− Ψ̃n(x, y)
)
+
(
Ψ̃n(x, y)− E

[
Ψ̃n(x, y)

])]

−F x(y)
[(

Υ̂n(x)− Υ̃n(x)
)
+
(
Υ̃n(x)− E

[
Υ̃n(x)

])]

and

B̂n(x, y) :=
E

[
Ψ̃n(x, y)

]
− F x(y)E

[
Υ̃n(x)

]

E

[
Υ̃n(x)

]

where

Ψ̃n(x, y) =
τ

nψn(x, an)

n∑

k=1

1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

and

Υ̃n(x) =
τ

nψn(x, an)

n∑

k=1

1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)

in addition to

E

[
Ψ̃n(x, y)

]
=

τ

nψn(x, an)

n∑

k=1

E

[
1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)]

and

E

[
Υ̃n(x)

]
=

τ

nψn(x, an)

n∑

k=1

E

[
1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)]

Then, the proof of Theorem 1 is a direct consequence of Lemmas 1−5 below

extending several results to the left-truncation setting.
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Lemma 1. Under the assumptions (U.1), (U.2) and (U.3)−(U.6), we have

lim sup
n→∞

sup
x∈S

sup
y∈Ω

∣∣∣Ψ̃n(x, y)− E

[
Ψ̃n(x, y)

]∣∣∣
(

log n

nψn(x, an)

)1/2
≤ K3 a.s.

Lemma 2. Under the assumptions (U.2), (U.4), (U.5) and (U.7) one get

lim sup
n→∞

sup
x∈S

sup
y∈Ω

∣∣∣Ψ̂n(x, y)− Ψ̃n(x, y)
∣∣∣

(
n−1/2

) ≤ K4 a.s.

Lemma 3. Assume that (U.1) and (U.4) hold true, for any x ∈ S, we have

lim sup
n→∞

sup
x∈S

∣∣∣Υ̃n(x)− E

[
Υ̃n(x)

]∣∣∣
(

log n

nψn(x, an)

)1/2
≤ K5 a.s.

Lemma 4. Assume that (U.2), (U.4) and (U.7) hold true, for any x ∈ S,

one get

lim sup
n→∞

sup
x∈S

∣∣∣Υ̂n(x)− Υ̃n(x)
∣∣∣

(
n−1/2

) ≤ K6 a.s.

Lemma 5. Under the assumptions (U.1), (U.3), (U.4) and (U.6), we have

sup
x∈S

sup
y∈Ω

∣∣∣B̂n(x, y)
∣∣∣ ≤ K7 (a

ν1
n + bν2n ) a.s.

Proof of Corollary 1. It is easy to see that Corollary 1 can be deduced

from the relation

sup
x∈S

|F x(q̂α,n(x))− F x(qα(x))| ≤ 2 sup
x∈S

sup
y∈Ω

∣∣∣F̂ x
n (y)− F x(y)

∣∣∣

which is based primarily on the decomposition (4).

4. The Real Valued Response Data Case

We have previously studied the strong consistency of our estimator when

the random variable of interest Y is of vector nature. It remains to treat
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the particular case where this variable is real (i.e. d = 1). In this case, some

current assumptions lose their usefulness and they are modified to fit the

situation considered

(R.1) The conditional distribution function F x(·) is such that: ∀y = (y1, y2) ∈
R, ∃ β1 > 0, β2 > 0 and C1 > 0

|F x1(y1)− F x2(y2)| ≤ C1

(
dβ1

H (x1, x2) + |y1 − y2|β2

)
.

(R.2) The kernel function L2 will be supposed to satisfy the following con-

ditions: ∀(y1, y2) ∈ I2, |L2(y1)− L2(y2)| ≤ C3 |y1 − y2| ,
∫

t∈R
L
(1)
2 (|t|)dt = 1 and

∫

t∈R
|t|β2L

(1)
2 (|t|)dt <∞.

We will not repeat here the proofs which are the same as for the previously

studied case and the result remains the same too, such that

Corollary 2. Maintaining the same assumptions used in Theorem 1 and

replacing (U.3) by (R.1) and (U.5) by (R.2), one have

lim sup
n→∞

sup
x∈S

sup
y∈Ω

∣∣∣F̃ x
n (y)− F x(y)

∣∣∣
((

aβ1

n + bβ2

n

)
+

(
log n

nψn(x, an)

)1/2
) ≤ K ′

1 a.s.

4.1. The L1 recursive estimate

For x ∈ H, the L1 estimator of the conditional probability distri-

bution of Y given X = x is given as follows

F
x
n(y) =

n∑

k=1

G−1
n (Yk)L1

(
a−1
k dH(x,Xk)

)
I(−∞,y)(Yk)

n∑

k=1

G−1
n (Yk)L1

(
a−1
k dH(x,Xk)

)
:=

Ψn(x, y)

Υn(x)
(4)

where IA denotes the indicator function of the set A.
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Theorem 2. Under the assumptions (U.1), (U.4), (U.6) and (R.1), one have

lim sup
n→∞

sup
x∈S

sup
y∈Ω

∣∣F x
n(y)− F x(y)

∣∣
(
(aν1n ) +

(
log n

nψn(x, an)

)1/2
) ≤M1 a.s.

The proof of this theorem is based on the main following results.

Lemma 6. Let Assumptions of Theorem 2 hold true. Then

(i) lim sup
n→∞

sup
x∈S

sup
y∈Ω

∣∣∣Ψ̈n(x, y)− E

[
Ψ̈n(x, y)

]∣∣∣
(

log n

nψn(x, an)

)1/2
≤M2 a.s.

(ii) lim sup
n→∞

sup
x∈S

sup
y∈Ω

∣∣∣Ψn(x, y)− Ψ̈n(x, y)
∣∣∣

(
n−1/2

) ≤M3 a.s.

Lemma 7. Let the assumptions (U.1), (U.4) and (U.6) hold. Then, one

have

(i) lim sup
n→∞

sup
x∈S

∣∣∣Ϋn(x)− E

[
Ϋn(x)

]∣∣∣
(

log n

nψn(x, an)

)1/2
≤M4 a.s.

(ii) lim sup
n→∞

sup
x∈S

∣∣∣Υn(x)− Ϋn(x)
∣∣∣

(
n−1/2

) ≤M5 a.s.

Lemma 8. Under the same assumptions as those of Lemma 5, then, we

have

sup
x∈S

sup
y∈Ω

∣∣∣B̃n(x, y)
∣∣∣ ≤M6a

ν1
n a.s.

5. General Discussion

The principal purpose of this section is to discuss some previous results

related to ours. Indeed, the sensitivity of a kernel estimator to the presence

of incomplete data is a subject discussed several times in recent literature

and is confirmed by several statisticians for many conditional models such as,

regression, conditional density, mode, distribution and quantile functions.
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We quote for this case, for a finite sample size N , the work of Gues-

soum and Hamrani(2014)[11] whose main interest is to compare the behav-

ior of the relative truncated regression kernel function estimator, when the

observations are supposed to be independent, α−mixing and associated re-

spectively and they have clearly shown on the one hand that the quality of

the estimator is affected much more by the sample size n ≤ N than by the

fixed truncation rate α = 70% and that their estimator performs well in the

mixing case since it is the most expressive case of the information state. On

the other hand, they noted that their results are slightly better than that

obtained in the independent case by Ould Säıd and Lemdani (2006)[19].

Helal and Ould Säıd(2016)[13] also obtained some important simulation

results about kernel conditional quantile estimator so that they lent further

support to their theoretical results and assess the performance of the estima-

tor for discrete time processes with values in functional spaces with different

truncation sizes. Therefore, they proved clearly that:

• The mean squared error is gradually decreasing (MSE= 0.20, 0.15, 0.12)

with a rise of n = 100, 300, 500 respectively.

• The quality of the estimate deteriorates with the increase of the percent-

age of truncation (TR= 0%, 12%, 32%, 66%).

While, the effectiveness of the recursive estimator in such case of the pres-

ence of incomplete data (for instance the censored data) is the object of a

work of Bouazza et al. (2021)[4] by considering a certain type of dependent

observations. Thus, they used this robust approach to study the conditional

mode function with the values of the explanatory variables X taken in a

semimetric space and they dealt with the following remarks:

• The mean squared error decreases (MSE= 1.322, 1.149, 0.850) when the

sample size increases (n = 200, 400, 600), so the quality of the estimator

is better for high observed n.

• The estimator that includes incomplete data performs slightly less than

the ones in complete case, when the censoring rates increases (CR= 20%,

40%, 60%).

Thus, approximately, similar computations also allow to obtain the same

results. Although the recursive estimator has very excellent properties (since
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it is the one for which the asymptotic variance is small) compared to the

classical estimator, but, it is more affected by the presence of these data.

6. Technical Proofs

In the following, let’s pose ψn(x, an) = E
[
L1

(
a−1
k dH(x,X1)

)]
. Then,

the proof of Theorem 1, is based essentially on the following lemmas adapted

to the α−mixing context.

Lemma 9 (Fuk-Nagaev). Let {Zk, k = 1, . . . , n} be a sequence of centered

real random variables, of alpha-mixing coefficient α(n) = O(n−a) for a > 1,

checking for all n ∈ N, |Zk| <∞, k = 1, . . . , n. Then, for all q > 1

P

(∣∣∣∣∣

n∑

k=1

Zk

∣∣∣∣∣ > 4θ

)
≤ 4

(
1 +

θ2

qS2
n

)−q/2

+
2nc

q

(
2q

θ

)a+1

,

where S2
n =

∑

1≤k,l≤n

|Cov (Zk, Zl)| .

Lemma 10 (O. Säıd and Tatachak (2009)[20]). Under assumption (U.2) of

mixing random variables, we have

|τ̂n − τ | = O
{
n−1/2(log2 n)

1/2
}

The interested reader can refer to the original article for more details

and proof of this lemma, for the case of strong dependency.

Proof of Lemma 1. We start by noting for all couple (x, y) ∈ S × Ω that

Ψ̃n(x, y)− E

[
Ψ̃n(x, y)

]

=
1

n

n∑

k=1

τ

ψn(x, an)

{
1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

− E

[
1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)
]}

=
1

n

n∑

k=1

Zk,n(x, y).

with
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Zk,n(x, y) =
τ

ψn(x, an)

{
1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

− E

[
1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)
]}

.

The use of the boundedness of L1 from the assumption (U.4) ensures

that for two existent constants (m1,m2) ∈ R
2
+, we would have

0 < m1φ(x, ak) ≤ E
[
L1

(
a−1
k dH(x,Xk)

)]
≤ m2φ(x, ak). (5)

In view of the following quantity, since the condition I(Tk≤Yk) = 1 is always

validated in the left truncated model by definition of the probability τ. Then,

by condition (5) and applying the assumption (U.5)(ii), we can write it in

its simplest form, thus

∣∣∣∣∣E
[

1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)]
∣∣∣∣∣

=

∣∣∣∣∣E
[
E

[ 1

G(Yk)
L2

(
b−1
k ‖y − Yk‖Rp

)
I(Tk≤Yk)/Xk

]
L1

(
a−1
k dH(x,Xk)

)
]∣∣∣∣∣

≤ E

[
1

G(Yk)
E
[
L2

(
b−1
k ‖y − Yk‖Rp

)
/Xk

]
P[Tk ≤ Yk]L1

(
a−1
k dH(x,Xk)

)
]

≤ l∞(x)E
[
L1

(
a−1
k dH(x,Xk)

)]

≤ l∞(x)m2φ(x, ak).

and so, we employ the decomposition

sup
x∈S

sup
y∈Ω

∣∣∣∣∣

n∑

k=1

Zk,n(x, y)

∣∣∣∣∣≤ sup
x∈S

sup
y∈Ω

∣∣∣∣∣

n∑

k=1

Z∗
k,n(xi, y)

∣∣∣∣∣
︸ ︷︷ ︸

A1

+ max
j∈{1,...,rn}

sup
x∈S

∣∣∣∣∣

n∑

k=1

Z̃k,n(x, y)

∣∣∣∣∣
︸ ︷︷ ︸

A2

+ max
i∈{1,...,hn}

max
j∈{1,...,rn}

∣∣∣∣∣

n∑

k=1

Zk,n(xi, yj)

∣∣∣∣∣
︸ ︷︷ ︸

A3

. (6)

Therefore, the compactness property of the two subsets Ω and S help us to
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write for any y1, y2, . . . , yrn and x1, x2, . . . , xhn
,

Ω ⊂
rn⋃

j=1

B(yj, sn) and S ⊂
hn⋃

i=1

B(xi, sn).

Thus, we can take for a constant M, sn ≤ Mn−β with (β > 0) and j(y) =

arg min
j∈{1,...,rn}

‖y − yj‖Rp and h(x) = arg min
i∈{1,...,hn}

dH(x, xi).

For the first term of the decomposition (6), we have for any (x, y) ∈ S × Ω

∣∣∣∣∣

n∑

k=1

Z∗
k,n(xi, y)

∣∣∣∣∣ ≤
∣∣∣Ψ̃n(x, y)− Ψ̃n(xi, y)

∣∣∣+
∣∣∣E
[
Ψ̃n(xi, y)

]
− E

[
Ψ̃n(x, y)

]∣∣∣

≤ τ

ψn(x, an)

n∑

k=1

L2

(
b−1
k ‖y−Yk‖Rp

)

G(Yk)

∣∣∣L1

(
a−1
k dH(x,Xk)

)

− L1

(
a−1
k dH(xi,Xk)

) ∣∣∣

+
τ

ψn(x, an)

n∑

k=1

E

[L2

(
b−1
k ‖y−Yk‖Rp

)

G(Yk)

∣∣∣L1

(
a−1
k dH(xi,Xk)

)

− L1

(
a−1
k dH(x,Xk)

) ∣∣∣
]
.

Using the fact that the kernel L1 is of Lipschitz class. Then, one get

A1 ≤ C2
τ

G(aF )ψn(x, an)
sup
x∈S

sup
y∈Ω

n∑

k=1

dH(x, xi)

ak

∣∣L2

(
b−1
k ‖y−Yk‖Rp

)∣∣

+C2
τ

G(aF )ψn(x, an)
sup
x∈S

sup
y∈Ω

n∑

k=1

dH(xi, x)

ak
E
[
L2

(
b−1
k ‖y−Yk‖Rp

)]

and since for all sn = n−β, it follows that A1 −→ 0 as n → ∞. Then, for

the study of A2, we first write the following decomposition which leads to

A2 = max
j∈{1,...,rn}

sup
x∈S

∣∣∣Ψ̃n(xi, y)− Ψ̃n(xi, yj)
∣∣∣

+ max
j∈{1,...,rn}

sup
x∈S

∣∣∣E
[
Ψ̃n(xi, yj)

]
− E

[
Ψ̃n(xi, y)

]∣∣∣

≤ max
j∈{1,...,rn}

sup
x∈S

n∑

k=1

τ

ψn(x, an)

{
1

G(Yk)

∣∣∣∣∣L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖y−Yk‖Rp

)
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− L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖yj − Yk‖Rp

)
∣∣∣∣∣

}

+ max
j∈{1,...,rn}

sup
x∈S

n∑

k=1

τ

ψn(x, an)

{
E

[
1

G(Yk)

∣∣∣∣∣L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖yj−Yk‖Rp

)

− L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)
∣∣∣∣∣

]}

=A
(1)
2 +A

(2)
2

so that under the assumptions (U.5) and (U.6)(iii), we have

A
(1)
2 ≤ C3

‖y − yj‖Rp

ψn(x, an)

n∑

k=1

τ

bkG(Yk)
L1

(
a−1
k dH(xi,Xk)

)

≤ C3
τsn

G(aF )ψn(x, an)

n∑

k=1

L1

(
a−1
k dH(xi,Xk)

)

bk

≤ M1n
−γ

ψn(x, an)

n∑

k=1

b−1
k

≤ M1 log n

ψn(x, an)

1

nγ log n

n∑

k=1

b−1
k −→ 0 as n→ ∞ (7)

for the second term of the decomposition, the same arguments as for A
(1)
2

with condition (5) lead as n goes to infinity to

A
(2)
2 ≤ C3

[
ψn(x, an)

]−1
n∑

k=1

‖yj − y‖Rp

bk
E
[
L1

(
a−1
k dH(xi,Xk)

)]
−→ 0.

We move now to the next term

A3 = max
i∈{1,...,hn}

max
j∈{1,...,rn}

∣∣∣
n∑

k=1

Zk,n(xi, yj)
∣∣∣

Let’s calculate first

S2
n=
∑

k 6=l

∣∣∣Cov
(
Zk,n(xi, yj), Zl,n(xi, yj)

)∣∣∣
︸ ︷︷ ︸

SCov
n

+
∑

k=l

∣∣∣Cov
(
Zk,n(xi, yj), Zk,n(xi, yj)

)∣∣∣
︸ ︷︷ ︸

SV ar
n

.

(8)
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The definition of the probability τ and because of the boundedness of the

kernels L1 and L2, one can show that Zk,n really satisfies the condition

|Zk,n(xi, yj)| <∞. In particular, it is bounded ∀k ∈ N, such that

|Zk,n(xi, yj)| ≤
τ

G(aF )ψn(x, an)

∣∣∣L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖yj − Yk‖Rp

)

− E

[
L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖yj − Yk‖Rp

) ]∣∣∣

≤C τ

G(aF )ψn(x, an)

=O
( 1

φ(x, ak)

)
.

Then, the linearity of the expectation with the standard Jensen inequality

lead directly to

|E[Zk,n(xi, yj)]|
≤ 2E

[ τ

G(Yk)ψn(x, an)

∣∣∣L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖yj − Yk‖Rp

) ∣∣∣
]

≤ 2
τ

G(aF )

1

ψn(x, an)
E

[∣∣∣L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖yj − Yk‖Rp

) ∣∣∣
]

= O(1). (9)

and

E[Z2
k,n(xi, yj)]

≤ C
1

G(aF )ψ2
n(x, an)

E

[ τ

G(Yk)
L2
1

(
a−1
k dH(xi,Xk)

)
L2
2

(
b−1
k ‖yj − Yk‖Rp

) ]

≤ C
1

G(aF )ψ2
n(x, an)

E

[
L2
1

(
a−1
k dH(xi,Xk)

)
E

(
L2
2

(
b−1
k ‖yj − Yk‖Rp

)
/Xk

)]

≤ l∞(x)
C

G(aF )

1

φ(x, ak)
≤ O

( 1

φ(x, ak)

)
. (10)

Furthermore,

|E[Zk,n(xi, yj) · Zl,n(xi, yj)]|
=
∣∣∣E
[ τ

G(Yk)G(Yl)ψ2
n(x, an)

L1

(
a−1
k dH(xi,Xk)

)
L2

(
b−1
k ‖yj − Yk‖Rp

)

× L1

(
a−1
l dH(xi,Xl)

)
L2

(
b−1
l ‖yj − Yl‖Rp

) ]∣∣∣

≤C
τ

G2(aF )ψ2
n(x, an)

E

[
(L1

(
a−1
k dH(xi,Xk)

)
L1

(
a−1
l dH(xi,Xl)

)
)
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×
∣∣∣E[L2

(
b−1
k ‖yj − Yk‖Rp

)
L2

(
b−1
l ‖yj − Yl‖Rp

)
/Xk,Xl]

∣∣∣
]

≤C
τ

G2(aF )ψ2
n(x, an)

l∞(x)E[L1

(
a−1
k dH(xi,Xk)

)
L1

(
a−1
l dH(xi,Xl)

)
]

then, by assumptions (U.1)(ii), (U.4) and condition (3), one get

∣∣∣E
[
Zk,n(xi, yj) · Zl,n(xi, yj)

]∣∣∣ ≤ C
τ

G2(aF )ψ2
n(x, an)

l∞(x)

(
(φ(x, ak))

1+γ1

nγ1

)

≤ C
τ

G2(aF )
l∞(x)

[
φ(x, ak)

n

]γ1
· 1

φ(x, ak)
(11)

in which we deduce on the one hand from (9) and (11)

∣∣∣Cov (Zk,n(xi, yj), Zl,n(xi, yj))
∣∣∣

≤
∣∣∣E
[
Zk,n(xi, yj) · Zl,n(xi, yj)

]∣∣∣+
(
E
(
Zk,n(xi, yj)

))2

= C
{(φ(x, ak)

n

)γ1 · 1

φ(x, ak)

}
+ 1. (12)

In the other hand, applying the usual modified Davydov-Rio’s covariance

inequality for the mixing processes. ∀k 6= l, we have

|Cov (Zk,n(xi, yj), Zl,n(xi, yj))| ≤ 4‖Zk,n(xi, yj)‖‖Zl,n(xi, yj)‖
≤ C |k − l|−1/γ1 . (13)

It is therefore useful to set from now on the two subsets

J1 = {(k, l) ; 0 < |k − l| ≤ µn} and J2 = {(k, l) ;µn < |k − l| ≤ n− 1}

a combination between (12) and (13) simply allows us to have the following

SCov
n =

∑∑

J1

|Cov (Zk,n(xi, yj), Zl,n(xi, yj))|+
∑∑

J2

|Cov (Zk,n(xi, yj), Zl,n(xi, yj))|

≤ Cnµn

{(
φ(x, ak)

n

)γ1

· 1

φ(x, ak)
+ 1

}
+ Cn2µ−1/γ1

n . (14)

For the variance term, we apply the general definition and we get

|V ar [Zk,n(xi, yj)]| ≤ E
[
Z2
k,n(xi, yj)

]
+ E [Zk,n(xi, yj)]

2
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= O
{ 1

φ(x, ak)

}

thus,

SV ar
n = O

{ n

φ(x, ak)

}
. (15)

It follows from (14) and (15) that,

S2
n = O

{
nµn

((φ(x, ak)
n

)γ1 · 1

φ(x, ak)
+1

)
+n2µ−1/γ1

n

}
+O

{ n

φ(x, ak)

}
. (16)

The complementarity of this proof depends primarily on the choice of the se-

quence µn.We put µn=
(φ(x, ak)

n

)−γ1
, thus, we will have S2

n=O
{ n

φ(x, ak)

}
.

At this stage of the proof, we use the Fuk-Nagaev inequality adapted to the

α−mixing context for θ = θ0

( log n

nψn(x, an)

)1/2
yields

P

{∣∣∣
n∑

k=1

Zk,n(xi, yj)
∣∣∣ > 4

(nθ
4

)}

≤ 4

(
1 +

θ2

qS2
n

)−q/2

+
2nc

q

(
2q

θ

)a+1

≤ 4


1 +

n2θ20 log n

16nφ(x, ak)

q
n

φ(x, ak)




−q/2

+
2nc

q




8q

(
log n

nφ(x, ak)

)−1/2

nθ0




a+1

≤ 4

(
1 +

θ20 log n

16q

)−q/2

+
2nc

q

(
8q (φ(x, ak))

1/2

θ0
√
n log n

)a+1

= I + II.

We see here that the preferred choice of q is log2 n, such that the first term

in the right hand side is thus increased by

I ≤ cn
−
θ20
32 −→ 0

moreover, for the second term and by the same choice of q we also find as
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n→ ∞ the following

II ≤ cn

−1

2(1− a)
(−4a2 + a+ 1)

−→ 0.

Hence, both (I) and (II) fall on the following result

P

[
A3 > 4

(nθ
4

)]
≤ rnhn max

i∈{1,...,hn}
max

j∈{1,...,rn}
P

[∣∣∣
n∑

k=1

Zk,n(xi, yj)
∣∣∣ > 4

(nθ
4

)]

which give us for an appropriate choice of θ0

∑

n≥1

P

{
max

i∈{1,...,hn}
max

j∈{1,...,rn}

∣∣∣
n∑

k=1

Zk,n(xi, yj)
∣∣∣ > nθ

}
<∞. (17)

Proof of Lemma 2. We have form the definition of the estimators Ψ̂ and

Ψ̃

Ψ̂n(x, y)− Ψ̃n(x, y)

=
τ̂n

nψn(x, an)

n∑

k=1

1

Gn(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

− τ

nψn(x, an)

n∑

k=1

1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)
.

such that

∣∣∣Ψ̂n(x, y)− Ψ̃n(x, y)
∣∣∣

≤ 1

nψn(x, an)

{
|τ̂n − τ |

n∑

k=1

1

Gn(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

+ τ

n∑

k=1

∣∣∣∣
Gn(Yk)−G(Yk)

G(Yk)Gn(Yk)

∣∣∣∣L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)
}

≤ 1

nψn(x, an)

{
|τ̂n − τ |
Gn(aF )

n∑

k=1

L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

+
τ

Gn(aF )

∣∣∣∣
Gn(y)−G(y)

G(aF )

∣∣∣∣
n∑

k=1

L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y−Yk‖Rp

)
}
.
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Thus,

sup
x∈S

sup
y∈Ω

∣∣∣Ψ̂n(x, y)−Ψ̃n(x, y)
∣∣∣ ≤ 1

Gn(aF )



|τ̂n−τ |+τ

sup
y≥aF

|Gn(y)−G(y)|

G(aF )





sup
x∈S

sup
y∈Ω

|Ψ∗
n(x, y)|

with

Ψ∗
n(x, y) =

1

nψn(x, an)

n∑

k=1

L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y − Yk‖Rp

)

Recall the Lemma 10 in O. Säıd and Tatachak (2009)[20], when the process

(Xk, Yk) has a decreasing mixing coefficients α(n), such that

|τ̂n − τ | = Oa.s.

{
n−1/2(log2 n)

1/2
}

and the direct application of Remark 6 in Woodroofe (1985)[23] which gives

|Gn(aF )−G(aF )| = Oa.s.

{
n−1/2

}
.

Thus, the result is an immediate consequence of what has already been

mentioned.

Proof of Lemma 3. Keeping the same conditions concerning the compact-

ness of S, almost certainly identical as in Lemma 1 and we decompose the

studied quantity as follows

P

{
sup
x∈S

∣∣∣Υ̃n(x)− E

[
Υ̃n(x)

]∣∣∣ > 3η

}

≤P

{
sup
x∈S

∣∣∣Υ̃n(x)− Υ̃n(xi)
∣∣∣ > η

}

︸ ︷︷ ︸
I1

+P

{
sup
x∈S

∣∣∣Υ̃n(xi)− E

[
Υ̃n(xi)

]∣∣∣ > η

}

︸ ︷︷ ︸
I2

+ P

{
sup
x∈S

∣∣∣E
[
Υ̃n(x)

]
− E

[
Υ̃n(xi)

]∣∣∣ > η

}

︸ ︷︷ ︸
I3

(18)

For the first term of the decomposition (18), L1 being a Lipschitzian kernel.
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In addition, sn = O{n−β}; implies that

sup
x∈S

∣∣∣Υ̃n(x)− Υ̃n(xi)
∣∣∣

≤ sup
x∈S

n∑

k=1

τ

ψn(x, an)

1

G(Yk)

∣∣∣L1

(
a−1
k dH(x,Xk)

)
− L1

(
a−1
k dH(xi,Xk)

) ∣∣∣

≤ τ

G(aF )ψn(x, an)

n∑

k=1

dH(x, xi)

ak

≤ M
sn

ψn(x, an)

n∑

k=1

1

ak
−→ 0 as n −→ ∞

and the same for I3 : I3 → 0 as n→ ∞ and therefore we deal with

I1
a.s.
=O

{( log n

nψn(x, an)

)1/2}
and I3

a.s.
=O

{( log n

nψn(x, an)

)1/2}

Drawing attention now to the second term I2, we appeal again to the Bern-

stein’s type inequality adapted to this context of dependence by taking

η = η0

(
log n

nψn(x, an)

)1/2

> 0

I2 = P

{
sup
x∈S

∣∣∣Υ̃n(xi)− E

[
Υ̃n(xi)

]∣∣∣ > η

}

≤
hn∑

i=1

P

{ ∣∣∣Υ̃n(xi)− E

[
Υ̃n(xi)

]∣∣∣ > η

}

≤ hn max
1≤i≤hn

P

{
|Υ̃n(xi)− E

[
Υ̃n(xi)

]
| > η

}

where, we have for all k ∈ N,

Υ̃n(xi)− E[Υ̃n(xi)] =
1

n

n∑

k=1

τ

ψn(x, an)

{
1

G(Yk)
L1

(
a−1
k dH(xi,Xk)

)

−E

[ 1

G(Yk)
L1

(
a−1
k dH(xi,Xk)

) ]}

=
1

n

n∑

k=1

Λk,n(xi)
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with

Λk,n(xi) =
τ

ψn(x, an)

{ 1

G(Yk)
L1

(
a−1
k dH(xi,Xk)

)

− E

[
1

G(Yk)
L1

(
a−1
k dH(xi,Xk)

)] }
.

For the reminder of this proof, the same steps as term (A3) in the proof of

Lemma 1 are followed, in which under assumption (U.4), one can check that

Λk,n fulfills the condition of Lemma 9, such that

|Λk,n(xi)| ≤M
τ

G(aF )φ(x, ak)
= O

{
1

φ(x, ak)

}
.

Furthermore, we deduce that

|Cov(Λk,n(xi),Λl,n(xi))|≤|E [Λk,n(xi)Λl,n(xi)]|=O
{
(φ(x, ak))

γ1−1

nγ1

}
(19)

and that

|V ar [Λk,n(xi)]| ≤
∣∣E
[
Λ2
k,n(xi)

]∣∣ = O

{
1

φ(x, ak)

}
. (20)

Finally, combining (19) with (20) and following some additional classical

calculations, we get S2
n = O

{ n

φ(x, ak)

}
. Therefore, a direct application of

Fuk-Nagaev exponential inequality makes it possible to deduce the proof.

Proof of Lemma 4. Similarly to the proof of Lemma 2, one may follows

the same lines and arguments, such that

sup
x∈S

∣∣∣Υ̂n(x)− Υ̃n(x)
∣∣∣ ≤ 1

nψn(x, an)
sup
x∈S

{
τ̂n

n∑

k=1

1

Gn(Yk)
L1

(
a−1
k dH(x,Xk)

)

−τ
n∑

k=1

1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
}

≤ 1

Gn(aF )



|τ̂n − τ |+ τ

sup
y≥aF

|Gn(y)−G(y)|

G(aF )



 sup

x∈S
|Υ∗

n(x)|.
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with

Υ∗
n(x) =

1

nψn(x, an)

n∑

k=1

L1

(
a−1
k dH(x,Xk)

)
.

Again, a direct application of Lemma 10 with Remark 6 in Woodroofe

(1985)[23] complete the proof.

Proof of Lemma 5. According to the definition of the bias term B̂n(x, y)

above, which is not affected by the dependence condition. We use the fact

that E
[
Υ̃n(x)

]
is bounded. Then, we can rewrite it in the following form

B̂n(x, y) =
E

[
E

(
Ψ̃n(x, y)− F x(y)/Xk

)
Υ̃n(x)

]

E

[
Υ̃n(x)

] .

As we have already proved in previous steps the fact that this writing is

satisfied by definition of the probability of trancature

E[Ψ̃n(x, y)] =
τ

nψn(x, an)

n∑

k=1

E

[
1

G(Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y−Yk‖Rp

)]

=
τ

nψn(x, an)

n∑

k=1

E
[
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k ‖y−Yk‖Rp

)]

Therefore, by a conditioning to Xk we have

∣∣∣E
(
Ψ̃n(x, y)−F x(y)/Xk = u

)∣∣∣≤ τ

nψn(x, an)

n∑

k=1

E

[
L1

(
a−1
k dH(x,Xk)

)

×
∣∣∣∣E
[
L2

(
b−1
k ‖y−Yk‖Rp

)
−F x(y)/Xk=u

] ∣∣∣∣
]
.

Next, an integration by parts, a change of variable and because of condition

(U.3), for any u ∈ B(x, ak), we get

∣∣∣E
[
L2

(
b−1
k ‖y − Yk‖Rp

)
− F x(y)/Xk = u

] ∣∣∣

≤
∫

Rp

L
(1)
2 (‖t‖Rp)

∣∣∣F (u)(y − bkt)− F (x)(y)
∣∣∣ dt

≤
∫

Rp

L
(1)
2 (‖t‖Rp)

∣∣∣F (u)(y − bkt)− F (u)(y)
∣∣∣ dt+

∣∣∣F (u)(y)− F (x)(y)
∣∣∣
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≤C1

∫

Rp

L
(1)
2 (‖t‖Rp)

(
aν1k + |bk|ν2‖t‖ν2Rp

)
dt

which finishes the proof of this Lemma.
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