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Abstract

The purpose of this paper is to establish the invariance principle for the conditional
set-indexed empirical process formed by functional ergodic random variables. The limit
theorems, discussed in this paper, are key tools for many further developments in functional
data analysis involving empirical process techniques. These results are proved under some
standard structural conditions on the Vapnik-Chervonenkis classes of functions and some

mild conditions on the model.

1. Introduction

The theory of empirical process is branch of statistics and play fun-
damental role in its various applications especially important in estimation
theory there has been a great deal research works. The asymptotic proper-
ties of empirical processes indexed by functions have been intensively studied
during the past decades (see, e.g., Lré] or ﬂﬁ] for self-contained, comprehen-
sive books on the topic with various statistical applications). Many authors
have studied it in the last century in finite framework, so that its developed

rapidly due to its role in solving problems of statistics, modulo measurability,
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the classes € of sets for which the Glivenko-Cantelli theorem holds charac-
terized by @] in the setting of independents variables and in this framework
many results had been obtained we cite ], @], ], ] and ﬂﬂ] Empirical
processes based on dependent data have been studied under various mixing
conditions, for example, [? | established the asymptotic normality when the
sequences are ¢-mixing, in these lines of research in different type of mixing,
we may cite Eﬁ], ﬂﬁ] and @ . However, a bracketing condition under strong
mixing was stated by |1]. ] studied the function-indexed empirical pro-
cess for S-mixing sequences, where [3] was given results the case of Gaussian
long-range dependent random vectors, [45] have established uniform conver-
gence and asymptotic normality of set-indexed conditional empirical process
in a strictly stationary and strong mixing framework and derived the Ba-
hadur Kiefer approximations of conditional quantile in this framework @]
extended the work of ] On the other hand, the modelization of functional
variables that taking values in infinite dimensional spaces had received a lot
of attention in the last few years, there are an increasing number of situation
coming from different fields of applied sciences (environment, chemometrics,
biometrics, medicine, econometrics,....) in which the collected data are
curves, the study of statistical models adapted to such type of infinite di-
mensional data has been the subject of several works in the recent statistical
literature éOd overviews about this literature can be found in ], ﬂ], @],

@], ﬂg], l, @], @], ﬂa], @] and B] and hundreds of papers and books

have been published in this framework last decade.

However, there are a few results for the empirical process considered
functional framework, we may refer for recent references to ﬂl_AI, IE, IE], ﬂg]
ﬂﬁ] obtained several very useful results for set-indexed conditional empir-
ical processes in functional setting the strong mixing dependence. Notice
that mixing is some kind of asymptotic independence assumption which
is commonly used for seeking simplicity but which can be unrealistic in
situations where there is strong dependence between the data. Extending
non-parametric functional ideas to general dependence structure is a rather
underdeveloped field, the ergodic framework avoids the widely used strong
mixing condition and its variants to measure the dependency which go far
beyond the invariance principle that is the basic motivation of the paper.
The general framework of ergodic functional data has been initiated by @]
who stated consistencies with rates together with the asymptotic normality
of the regression function estimate, for recent paper on the subject we refer
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to ﬂa], where the authors extended the last reference to a more general frame-
work. For reader convenience, we introduce some details defining the ergodic
property of processes and its link with the mixing one. Let {X,,,n € Z} be a
stationary sequence. Consider the backward field 7, = o (Xj : k < n) and
the forward field %,, = o0 (Xx : k > m). The sequence is strongly mixing if,

as n — 0o,

sup |[P(ANB)—-P(A)P(B)|=a(n) — 0.
A€oy, BERAB,,

The sequence is ergodic if

1 n—1
lim = kz_o (1@ (A nr kB) ~P(APB)| =0,
where 7 is the time-evolution or shift transformation. The naming of strong
mixing in the above definition is more stringent than what is ordinarily re-
ferred (when using the vocabulary of measure preserving dynamical systems)
as strong mixing, namely to that lim, o P(AN77"B) = P(A)P(B) for any
two measurable sets A, B, see, for instance |50]. Hence, strong mixing im-
plies ergodicity, whereas the inverse is not always true (see e.g. Remark 2.6
in page 50 in connection with Proposition 2.8 in page 51 in ﬂﬁ]) Some mo-
tivations to consider ergodic dendence structure in the data rather than a
1

[, , , ] where details on the definition

of ergodic property of processes together with illustrating examples of such

mixing one are discussed in @,

processes are also given.

The aim of the present paper is to extend asymptotic results for set-
indexed conditional empirical processes to the context of functional ergodic
data. We establish uniform convergence and asymptotic normality when the
observations are assumed to be ergodic in nature taking their values in semi-
metric space. This paper responds to a problem that has not been studied
systematically up to the present

The remainder of this paper is organized as follows. Section 2, we present
the notation and definitions together with the conditional empirical process.
Section 3, we give our main results. We discuss the bandwidth selection
procedure in Section 3.1. An application of our main result to the test of
the conditional independence is given in Section 4. Some concluding remarks
and possible future developments are relegated to Section 5. To prevent from
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interrupting the flow of the presentation, all proofs are gathered in Section
6. Some examples are collected in Section 7.

2. The Set Indexed Conditional Empirical Process

For the sake of clarity, introduce some details defining the ergodic prop-
erty of processes. Taking a measurable space (S, #) denote by SN the
space of all functions s : IN — S. If s; is the value the function s takes at
j € N, define H; as the j-th coordinate map, i.e Hj(s) = s; and consider
H;l(/),j € N a random process Z = {Z; : j € IN} can be considered
as random variable defined on probability space (€2, A, P) and taking values
in (SN, #N). Now a set B € F is called invariant if there exists some set
A€ 7N such that B = {(Zy, Zn+1,....) € A} is true for any n > 1. The
process 7 is then said ergodic whenever, for any invariant set B, we have
P(B)=0o0r P(Q| B) =0. It is well known from the ergodic theorem that,

for a stationary ergodic process Z, we have

1
nlLIgO - ; Z; = E(Zy) almost surely. (1)

Therefore, the ergodic property in our setting is formulated on the basis of
the statement (Il). We consider a sample of random elements (Xi,Y7),...,
(X, Yy,) copies of (X,Y) that takes its value in a space & x R%. The func-
tional space £ is equipped with a semi-metric dg(-,-). We aim to study the
links between X and Y, by estimating functional operators associated to the
conditional distribution of Y given X such as the regression operator, for
some measurable set C' in a class of sets €,

G(C|z)=E (Liyecy | X =x).

This regression relationship suggests to consider the following Nadaraya
Watson-type (] and ﬂﬁ]) conditional empirical distribution:

- d ani
R
Gn(C,z) = =L , (2)
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where K(+) is a real-valued kernel function from [0, co) into [0, 00) and h,, is
a smoothing parameter satisfying h,, — 0 as n — oo, C' is a measurable set,
and = € £. By choosing C = (—o0, 2], z € R%, it reduces to the conditional
empirical distribution function F, (z|z) = G, ((—o0, 2], x), refer to @], @],
ﬂﬁ] However, the corresponding class ¢ = {(—oo, z],z € Rd}. Concerning

the semi-metric topology defined on £, we will use the notation
B(x,t) ={zx1 € € : dg(x1, ) < t},

for the ball in £ with center « and radius ¢, usually called in the literature the
small ball probability function when ¢ is decreasing to zero. This notion plays
a major role both from theoretical and practical points of view, because the
notion of ball is strongly linked with the semi-metric d(-, -), the choice of this
semi-metric will become an important stage when the data is taking its values
in some infinite dimensional space. Indeed, in many examples, the small
ball probability function can be written approximately as the product of
two independent functions in terms of x and h, as in the following examples,

which can be found in Proposition 1 of @]

(1) ¢(hy) = Chy, for some v >0 with 79(s) = s";

(2) ¢(hy) = ChY exp(—Chy,") for some v >0 and p > 0 with 7y(s) is
the Dirac’s function;

(3) ¢(hn) = C|ln(hy)|™" with 7o(s) = (s) the indicator function in
10,1].

Let F; be the o-filed generated by ((X1,Y7),...,(X;,Y;)) and &; that gener-

ated by ((X1,Y7),...,(X;,Y;), Xiy1). Let B(z,u) be a ball centered at x € £

with radius u. Let D; = d(x, X;) so that D; is a nonnegative real-valued

random variables. Working on the probability space (2,4, P), let
F,(u) =P(D; <u)=P(X; € B(x,u)),

and F]'™' = P(X; € B(z,u) | Fi_1) be the distribution function and the
conditional distribution function, given the o-filed F;_; of (D;);>1 respec-
tively. Denote by 0, s(u) a real random function 1 such that [(u)/u converges
to zero almost surely as u — 0. Similarly define O, s(u) as a real random

function 1 such that [(u)/u is almost surely bounded.
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Throughout the sequel, we assume tacitly that the sequence of random

elements {(X;,Y;),i =1,...,n} is ergodic.

2.1. Assumptions and notation

Throughout this paper x is a fixed element of the functional space £.
We define the metric entropy with inclusion which provides a measure of
richness (or complexity) of the class of sets €. For each £ > 0, the covering

number is defined as :

N(Eviva(' ‘ x))
= inf{n e N: 3C1,...,C,, € € such that VC € € 31 <i,5<n
with CZ'CCCC]' and G(C]\CZ|.Z‘) <€},

the quantity log (N (e,%,G (- | z))) is called metric entropy with inclusion of
% with respect to G (- | x). Estimates for such covering numbers are known
for many classes; see, e.g., [25]. We will often assume below that either
log N (6,¢,G (- | z)) or N (¢,%,G (- | ¥)) behave like powers of e~1. We say
that the condition (R,) holds if

logN (¢,¢,G (- | )) < Hy(¢), for all € > 0, (3)

where

log(Ae) if v=0,
Ho () =
1) { Ae™7  if v >0,

for some constants A,r > 0. Asin ], it is worth noticing that the condition
@), v = 0, holds for intervals, rectangles, balls, ellipsoids, and for classes
which are constructed from the above by performing set operations union,
intersection and complement finitely many times. The classes of convex sets
in R? (d > 2) fulfill the condition (@), v = (d — 1)/2. This and other classes
of sets satisfying (B) with v > 0, can be found in ﬂﬂ]

Example 1 (@]) The set C all indicator functions 1 of cells in R
satisfies

N(s,C,dﬁYQU g%
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for any probability measure v and € < 1.Notice that

/Ulog de</ 2 exp(—u)du < 1

For more details and discussion on this example refer to example 2.5.4 in

[53).

We give now further notation. For j > 1 set
M, = Ki(1) - / (K7 (u)ro(w)du.
0

In this section, we establish the weak convergence of the process {1, (C, ) :
C € €} defined by

Un(C,x) := /no(hy) (G, (Cyx) — EG,(C, z)) . (4)

In our analysis, we will make use of the following assumptions.

(H1) For z € &, there exists a sequence of nonnegative bounded random
functionals (f;1)i>1, a sequence of random functions (g;.)i>1 a de-
terministic nonnegative bounded functional f; and a nonnegative real
function ¢ where ¢(hy,) — 0 as h — 0 such that

(1) Fe(u) = o(u)fi(z) +o(p(u)) as u— 0.
(ii) For any i € IN, Fy' ' (u) = ¢(u)fi1(z) + gix(u) = O%S(qb(u)) as

u— 0. giz(u)/¢(u) almost surly bounded and n~! Z gix(u) =
t=1
oas(qﬁj( ) as n—o00,j=1,2.

(iii) n=! fol — f1 x) almost surely as n — oo, for j = 1, 2.

(iv) There exists nondecreasing bounded function 74(u) such that uni-
formly for all u € (0,1),

1
asrl0and1<j<2+6 with 6 >0, / (K7 (1)) 7o (u)du < oc.
0
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(H2) (i) There exist 5 > 0 and n; > 0, such that for all z;,z9 € N, a
neighborhood of x, we have

G(C | 21) = G(C | 22)| < mdg (w1, 22).
(H3) There exist m > 2 and 7y > 0, such that, we have, almost surely
E(JY|™X) < n2 < oo

(i) The conditional mean of 1y,ccy given the o-field ®; ;1 depends
only on X;, i.e., for any i > 1,|E (]l{ylec} | &i_1) = G(X;) almost
surely.

(ii) The conditional mean of 1(y.ccy given the o-field &;_1 depends
only on Xj;, i.e, forany i > 1, E ((]l{ylec} - ([}(XZ-))2 | Q5i,1) =
W5 (X;) almost surely. Moreover, the function Wj is continuous
in a neighborhood of x, that is,

sup  |[Wa(u) — Wa(x)| =0o(1) as h — 0;
{uw:d(xz,u)<h}

(H4) For all (y1,y2) € R?? and constants b3 > 0,14 > 0, we have for the
conditional density f(-) of Y given X = x the following

1F (1) = fy2) |< mallyn — 2]l

(i) F(u;z) = ¢(u) fi(x) as u — 0, where ¢(0) = 0 and ¢(u) is abso-
lutely continuous in a neighborhood of the origin,
(H5) The kernel function K(-) is supported within (0,1) and has a con-
tinuous first derivative on (0,1) and satisfied the condition K'(t) <
0 Vte (0,1). Moreover,
< oo, for j7=1,2.

/0 1(Kﬂ')/(u)du

(H6) Assume the class of sets ¢ satisfies the condition (3));
(H7) The smoothing parameter (h,,) satisfies:
logn

W min(an, o0h,)
(ii) Let h, — 0 and n¢(hy,) — 0o as n — oo.

— 0,
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2.2. Comments on the assumptions

The condition (H1) plays an important role in the ergodic and func-
tional context of this paper condition used here share some similarities with
that used in @] Conditions (H2)(i) are classical in the nonparametric
regression estimation. (H3) is necessary to establish consistency. The con-
dition (H4) on the density f(-) is a classical Lipschitz-type nonparametric
functional model. (H5) The conditions on the kernel are not very restrictive.
(H7) rules out too large or too small bandwidths without the consistency
that could not be obtained. using also the condition (A4) part(ii) of @]
stand as regularity conditions that are of usual nature it is important con-

dition to show the consistency that is omitted here.

3. Main results

. D .
Below, we write Z = N (i1, %) whenever the random variable Z follows a
normal law with expectation p and variance o2, 2 denotes the convergence

in distribution and 5 the convergence in probability.

Theorem 1. [Uniform Consistency] Suppose that the hypotheses (H1)-
(HT7) hold. Let € be a class of measurable sets for which

N(,€,G (| z)) < oo,
for any € > 0. Suppose further that YC € €
IG(C,y)f(y) = G(C,2)f(2)] — 0, as y — =
If né(hy) — 00 and h, — 0 as n — oo, then

sup |G, (C,z) — E (Gp(C, 2))| - 0.
ces

Remark that, the proof of Theorem [ is a direct consequence of the

decomposition

G(C,2) —E(Gu(Cy2) = —=— |F(Ci2) ~E (F(C.o)) |
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~Gu(Coz) 1~ EB(F (2
B0 [Fal2) = B(fa(@))]

where

n

—~ 1 d X;
Fn(cvx) = n(b(h Z {YGC}K <%>)

) = oy ZK<%)

de(x, X;)

Puting A;(z) = K < A

) . We have

— 1

—~ 1
In(@) = o ;Am.

From now for z € £, set

E(F, (C,z)) :m ;E (LyviecyAil(z) | Fica),
and

B2 (0) =g gy 2 B | Fict)

where E(X | F) is the conditional expectation of the random variables X
given the o-field . Lemmas [0l and @l are important steps towards Theorem

[ for which the proofs are given in the Appendix.

Lemma 1. Suppose that the hypotheses (H1)-(HT) hold and for every fized

Ce¥ asn— oo we have :

sup [P (C,2) — B (F(C.x) ) | = on(1),
cev

Lemma 2. Suppose that the hypotheses (H1)-(HT) hold and for every fized
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Ng neighborhood of x in the functional space £ as n — oo, we have

sup
rENg

Fal@) = B (F@))| = op(1).

To establish the asymptotic normality define the “bias” term by

E (ﬁ(x)) — Gn(C,2)E (F;(c, x))

Bul) = E (F(C.))
= Mp(z) — G,(C, z), (5)
where
. E (fa())

E(Fu(C.2))
By stationarity of order one of the (X;)’s, we have

E(fa(z)) = 1. (6)

The following result gives the weak convergence. Keep in mind that f;(z)
is given in (H1).

Theorem 2 (Asymptotic normality). Let (H1)-(H7) hold. Then as n —
oo, form>1 and Cy,...,Cp €F,

{n(Ciy @) i=1,..m} 2, N(0,%),

where ¥ = 045(x),1,7 =1,...,m and

oij(z) = Eh@ Wa(x),

whenever fi(z) > 0 and
1 1
¢ = k(1) — /0 K (w)ro(w)d(u), € = K2(1) — /O (K2 ()70 (w)dus.

To establish the density of the process, we need to introduce the follow-

ing function which provides the information on the asymptotic behaviour of
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the modulus of continuity

1
\/o?log — if v =0;
A’Y(O'Z,TL) — o~ 108 o2’ 7y )

max ((02)(1_7)/2,n¢(hn)(3“’_1)/(2(3“’+1))) Cif 4> 0.

Theorem 3. Suppose that (H1)-(HT) hold. For each 0% > 0, let 6, C €
be a class of measurable sets with

sup G(C,z) <o” <1,
Ce%s

and suppose that € fulfils Bl) with v > 0. Further, we assume that ¢(hy) — 0
and ng(hy) — +00 as n — +o0, such that

nd(hn) < (A (0% n))°,

and as n — 400, we have

1\ 1+
ne <02 log (F))

log(n)

— OQ.

Further we assume that o* > h?. For v > 0 and d = 1,2, the later has to

1
be replaced by o® > ¢(h,)log (W) , then under conditions of Theorem[2

we have the process:

{(7,(C,2): C € €Y,

converges in law to a Gaussian process {v(C,x):C € €}, that admits a
version with uniformly bounded and uniformly continuous paths with respect
to || - ||2—norm with covariance o;j(x) given in Theorem [2l

Remark 1. Central limit theorems are usually used to establish confidence
intervals for the target to be estimated. In the context of non-parametric es-
timation the asymptotic variance ¥(x) := 0; j(x) in the central limit depends
on certain functions only approximate confidence intervals can be obtained
in practice, even when ¥ (x) functionally specified. Observing now in (2))
that the limiting variance contains the unknown function f; and that the
normalization depends on the function ¢(-) which is not identifiable explic-
itly. Moreover, we have to estimate the quantities W5 and 7y the corollary
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below is a slight modification of (2]) allows to have usable form of our results

in practice as usually the conditional variance Wa(x) is estimated by

- dg(.T,XZ)
Z(]I{Yiec*} — Gn(2))’K (T)

WQ,nZi:l n d(X)
E\T, Ay

K=

Z( 7 >

= gnlz) - (Gn(ﬂﬁ))2-

Let us introduce the following estimate

1 n
= > Matexo<ny
i=1

Making use the decomposition of 7y(+) in (H1)(i) one may estimate 7¢(-) by

Fan(th)

Tn(t) = 7}_%”(}0 .

Subsequently, for a given kernel K(-) and the quantities €; and €5 can be

estimated as follows
1 ’ 1 !
Cin=K(1) —/ K (s)tp(s)ds, €y = K2(1) —/ (K2) (s)Tn(s)ds.
0 0

Introduce now some further conditions needed to state

(H8) (i) The conditional mean of 1;y2-¢y given the o-field &;_; depends
only on Xj, i.e., there exist a function g such that for any ¢ > 1,

E(lgy2ecy | 8i-1) = g(X;) almost surely,

(ii) The conditional variance of 1 (v2ecy given &;_; depends only on X;
ie, forany i > 1 E ((ll{ygec})Q | (’52-_1) = U(X;) almost surely,

for some function U. Moreover, the function U is continuous in a
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neighborhood of x, that is

sup  |U(u) = U(z)| = o(1).
w:d(z,u)<h
Corollary 3.1. Assume that conditions (H1)-(H8) hold true K' and (K?)'
are integrable functions and nFy(h) — oo and hP(nF,(h))"/? — 0 as

n — 0o. Then, for any x € € such that fi(x) > 0, we have

Q:l n n]—"w n(h

\/ WQn

Using Corollary (31 the asymptotic 100(1 — a))confidence band given
by

") (Gn(C,z) — G(C,2)) 2> N(0,1).

Q:In WQn( )

\/Q:Qn n}—a:n

Gn(C,z) — ,Gn(C, z) +

Q:I,n ng(l') ]

c
“ V€20 n}—w,n(h)

3.1. The bandwidth selection criterion

Many methods have been established and developed to construct, in
asymptotically optimal ways, bandwidth selection rules for nonparametric
kernel estimators especially for Nadaraya-Watson regression estimator we
quote among them @], @], ], ], ] and ] This parameter has
to be selected suitably, either in the standard finite dimensional case, or in
the infinite dimensional framework for insuring good practical performances.

Let us define the leave-out-( X;,Y;) estimator for regression function

- dg JJ,XZ'
5 ey (£

In order to minimize the quadratic loss function, we introduce the following
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criterion, we have for some (known) non-negative weight function W(-) :

CV (Coh) = % > (tiec) — GnslC: Xj))2 W(X;). (8)

J=1

Following the ideas developed by ﬂﬂ], a natural way for choosing the band-
width is to minimize the precedent criterion, so let’s choose h,, € [a,,by]

minimizing among h € [ay,, by):

sup CV (¥, h).

Ce%
The main interest of our results is the possibility to derive the asymptotic
properties of our estimate even if the bandwidth parameter is a random
variable, like in the last equation. One can replace (&) by

CV (Cohy) = % > (tpec) — GnslC: Xj))2 W(X,2).  (9)

=1

In practice, one takes, for j = 1,...,n, the uniform global weights W (X;) =
1, and the local weights

W(Xj,.l‘) =

—~ 1if d(Xj,z) < hy,
0 otherwise.

For sake of brevity, we have just considered the most popular method, that
is, the cross-validated selected bandwidth. This may be extended to any
other bandwidth selector such the bandwidth based on Bayesian ideas B]

4. Testing the Independence

We consider a sample of random elements (X1,Y71,Y12),...,(Xn, Yo 1,
Y,.2) copies of (X,Y1,Y2) that takes its value in a space & x R% x R% and
define, for (C1,Cy) € € X 63,

- d ani
Z]l{m,lecl}ﬂ{m,zecg}f( <¥>

Gn(Cy x Cy,z) == , (10)
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n
de(r, X;)
> yeen K (T)
Gnl(cla ) =1 ) (11)

Er(52)

=1

We will investigate the following processes, for (Cy,Cy) € €1 X 6a,

Un(C1, Cp, ) =v/19(hn) (Gn(Crx Co, ) = (G (C1, 7)) E(Gn (Co, 7))
(13)

ﬁn(Cl, CQ, ZC) = n(b(hn) (Gn(Cl X 02, :c) —Gn,l(Cl, 1‘)@”,2(02, .1‘)) . (14)

Notice that we have
ljﬂ(clac%x) = n¢(h )(G (Cl X 027:C) - E(Gn(clvx))E(Gn(C%x)))

+vn¢(hn) E(Gr(C2,2)) (Gn(Cr, ) — E(G,(Ch,x)))
19 (hn)(Gn(C1, 2)) (Gn(C2, 7) — E(G(Cy, 2))) -

Hence we have

7n(Ch, Co, ) L /1d(hy) (Cp(Ch x Co,z) — E(Gp(Cy, 2))E(Gp(Ca, 7))
1¢(h)E(Gy(Ca, 1)) (Gn(Ch, ) — E(

1¢(h)E(Gy(C1, 1)) (Gn(Co, ) — E(

= Dn(Ch, O, 2) + B(Gp(Ca, 7)) (C1, ) — B(Gp(Cy, )

X U (Ca, ). (15)

Let {v(C1,Cq,2) : (C1,02) € €1 x 62} be a Gaussian process. Let us
introduce the following limiting process, for (Cy,C3) € €1 X 63,

D(Cl, Cs, x) = I//\(Cl, Cy, x) + G(CQ, a:)ﬁ(Cl, x) - G(Cl, JJ)IA//(CQ, l‘)
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We would test the following null hypothesis
Ho : Y1 and Y5 are conditionally independent given X = x.
Against the alternative
Hi:Y: and Y5 are conditionally dependent.

Statistics of independence those can be used are

Sl,n = sup |I//\n(017027$)‘7 (16)
(01,02)6%1 X Go
SQ,n = sup |ﬁn(01702ax)" (17)

(Cl ,02)6%1 X Ga

A combination of Theorem [ with continuous mapping theorem we obtain
the following result.

Theorem 4. We have under condition of TheoremBl, as n — oo,

Sl,n — sup ‘7//\(01;02723)‘7 (18)
(C1,CQ)€<51 X Co
Son = s [H(C,Co,1). (19)

(C1 ,02)6%1 X Co

5. Concluding Remarks

In the present work, we have established the invariance principle for the
conditional set-indexed empirical process formed by ergodic functional data.
Our results are obtained under assumptions on the richness of the index
class € of sets in terms of metric entropy with bracketing in the framework of
ergodic variables. This paper extends the dependence setting to the cases not
covered by the usual mixing structures because ideas to general dependence
structure is a rather underdeveloped field. Note that the ergodic framework
avoids the widely used variants to measure the dependency and our work
would go well beyond the scope of the empirical process literature, recall
that the theory of empirical process is useful in many applications and an
application Bahadur presentation we will derive.
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6. Appendix

This section is devoted to the proof of our results. The aforementioned

notation is also used in what follows.

Proof of Lemma [l Use finite metric entropy with inclusion, fix € > 0 for
C e %. Let C,,C* be a bracket for C, i.e., C, C C C C*, such that

G (CLACT | z) < e

Since for A C B we have G, (4,z) < G, (B,z) and G(A | ) < G(B | x), it
follows:

Ccev
< glég G (C* z) — E(Gy(Cy, x))]
< sup [Ga(C*,2) — E(Gn(C*,2)] + sup [B (Ga(C*,2)) — B (@n(C, )]
Cce¢ Cce¢
< sup [G,(C*,z) — E (G, (C*, 2))] 4+ sup G (CLAC™ | x)
Cce¥ Cce¢
< sup [E4(C.) ~ B(Gy(C".2)] + ¢ (20)

An analogous lower bound holds with C* replaced by C,. Since the first
term in the last line is a supremum over finitely sets (for fixed ¢ > 0) it
follows pointwise consistency of G, (-, -) that the term is op(1) and hence we
obtain the desired result. O

Lemma 3. Assume that condition (H1(i))- (H1(ii))-(H1(iv))-(H6) hold
true for any real numbers 1 < j <2+ and 1 <k < 246§ with d > 0 as
n — oo we have :

() Al (@) | §i-1) = M; fia(@) + Oas <g¢(f(§))
(i) Sty B(A](2) = M; fi(2) + (1)

(i) ey (B(AL(2)F = M ff(2) + o(1).

The reader is referred to @] for the proof of Lemma [3l O
Proof of Lemma [2. We shall proof that

P

fal) — E(f2)

>e)—>0.
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Observe the condition in (@) and we use the same proof in @] look that
fn(z) =1 = Ry n(z) + Rap(x) where

n

Runle) = g,y o) ~ B [ 5)
Rane) = gy S [ §im] — B(4(x)

1 n
= TR 2 A [ Bl -1

Combining Bl with hypothesis (H1)-(ii) and (H1)-(iii) it easy seen that Ry ,,(x)
n

= 04.5(1) as n — oo. For the first term observe that Ry ,(x) = ZLm‘(l‘),
t=1

where L,;(x) is a triangular array of martingale differences with respect to
the o-field §i_; combining Burkholder @] and Jensen inequalities, we obtain
for any € > 0 that exists a constant Cj such that

E(Al(z)) 1
P n < = 1 )
(Rl =9 = Szt ane =~ \@nom o
where the last equality results form (B]). Since n¢(h) — oo as n — oo we
conclude then that Ry ,(x) = op(1). Thus the proof is complete. O

Proof of Theorem 2l We will use similar arguments to those used in the
paper by @] to prove the asymptotic normality of the process we shall use

the following notation, recall the decomposition:

6n(C.2) ~E(Ga(Co0) = pe s [a(Co) - B (Ra(C0)
G, (Cix)

E(f,(x))
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Lemma 4. Assume that the hypotheses (H1)-(HT7) are satisfied, then we
have for any x € € such that fi(x) > 0, we have :

V1o (hp)Qn(x —>N(OU()) as n— oo.

Proof of Lemma Ml Let us introduce some notation. Set

B\ 12 A
mi= (2) " Wpveor - Bl s, (21)
and define &,; = 1pi — E (i | Fi—1). It is easily seen that
(ng(h))'*Qn(x Z Eni (22)

where for any fixed z € £ the summands ([22)) form a triangular array of sta-
tionary martingale differences with respect to the o-field §;_1. This allows us
to apply the central limit theorem for discrete-time arrays of real-valued mar-
tingales (see, [31] page 23) to establish the asymptotic normality of @, (z).
This can be done if we establish the following statements:

Y E(Gi | §io1) — 0P (),

and
(b) nE (&3:0}y,,15c) = o(1),

holds for any € > 0 (Lindeberg condition).

Proof of Part (a). Observe first that

SE( 1 §i1) = Y B (8 5i)
t=1 t=1

Making use of the condition (H2) and Lemma [3] one has

n

<Y (B (i | §i1)?

t=1

1/2
B |50 = sy () BUG() - Ga)Ai(o) | 5|
Lo\ e
< g (A7) s 1600 - CEIE (A |5)
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o ()" (e () o

Thus, by (H1)(ii)(iii), we have

S (B i | 50))? = 002 (@) "1 (?’fé )) Lo, (m}(ﬁ)))

t=1
= O(h*¢(h) (f T fol + 04.5(1 )
= 2). 24)

The statement (a) follows then if we show that
n
. 2 2
Jim > (g | §i1) = 0 (25)
t=1

To prove (20]), observe that

o h n
nlgrolo;E("%i [§i1) = ﬁlgx)))z - E[(1yy,ecy —G(2))?AF (2) | Fi]
- Jln + JQn,
where
o(h) -
Sin = AL ) ;E[A?(“’)E (Livieoy = G@))" | Bimt | S }
__ ¢(h) - 20,
" n(E(A(2)))2 ;E [Wa(Xi) A (2) | §iz1], (26)
and
Jon = o) 5> E[(G(X)) - G(X))*Af () | Fii]

We give now an upper bound for

Towards this end, we split it up into

Inl + In27
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with
In1 = Wa(2)E(A] () | §i-1)
and
Inz = E [(W2(X;) — Wa(2)) A (2) | §i-1]

Using the condition (A4) part(ii) of @] , one can write

[ Ina| < .d(81.1p)<h|W2(U)—W2(fC))|E (A7 (@) | Si1] | = B [A}(2) | Fiza] xo(1).

Thus, in view of B part (i), we have

E [Wa(Xi)AF(2)[Fi-1] = (o(1) + Wa(2))E (Af(z) | Fi1)
= (o(1)+Wa(z))(M2(h) fi,1 () +Oq.5(i.x(h))).(27)

Combining again [3land conditions (H1)(ii)(iii), it is easily seen that lim Jy,,
n—o0
_ M, Wa(z)
M} fi(x)
Making use of conditions (H1)(ii)(iii) and (H2)-(i) and Lemma [3] one can

write

almost surely, whenever fi(x) > 0. Consider now the term Jo,.

o(h
el = OG0 22E (83(2) | 8:-1)
My, 1
= O(h?) <M2 @) + oa,s(1)> — 0 almost surely as n — oco. (28)
Therefore,
. 2 ) T o _2 2 o 2
T}LIEOZ_;E (Ai (x) | 3’1,1) = nh_}IEo(Jnl + Jn2) = Mf hi@) o’(x)

almost surely whenever fi(x) > 0, this completes the proof of Part (a). O

Proof of Part (b). The Lindeberg condition results from Corollary 9.5.2
in (]) which implies that

(&L ([6nil > €)) < 4nE (071 (1mnil > £/2)) -

Let a > 1 and b > 1 such that é + % = 1. Making use of Hlder and Markov
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inequalities one can write, for all € > 0.

E‘nm‘|2a

E (niﬂl(\nml > 5/2)) < W’

taking Cjy a positive constant and 2a = 2 + ¢ (with § using the condition
(A4) part(ii) of 4d]), we obtain

é(h 2+8)/2 R (Aq ()]

(Maysfi(x) +0(1)) (
(M £ () + (1))
=0((ng(h))™/?),

<Cy(ng(h)) /> Ways(@)| +o(1))

where the last equality follows from Lemma[Bl This completes the proof of
part (b), since n¢(h) — oo as n — oco. Thus the proof is complete. O

Proof of Theorem Bl Let us recall some facts. Let f(-) = 1{- € C;} and
g(-) = 1{- € C3}. Given random measures i, on (X, X), we define

dfﬁ?(f,g) — [Mn(f_g)Q]l/Q.

Say that a class of functions F has uniformly integrable entropy with respect

to Lo-norm if

/ sup {lnN(e [’y (FQ)]UQ,.7-",algy2)>]l/2 de < o0,
0 ~eM(X,F)
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1/2

where dg)( f.9) = [Jx(f —9)*dy] When the class F has uniformly

integrable entropy, (.7-" , d£,2)) is totally bounded for any measure . Let k be

an envelope of .#. That is, k a measurable function ma