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Abstract

The purpose of this paper is to establish the invariance principle for the conditional

set-indexed empirical process formed by functional ergodic random variables. The limit

theorems, discussed in this paper, are key tools for many further developments in functional

data analysis involving empirical process techniques. These results are proved under some

standard structural conditions on the Vapnik-Chervonenkis classes of functions and some

mild conditions on the model.

1. Introduction

The theory of empirical process is branch of statistics and play fun-

damental role in its various applications especially important in estimation

theory there has been a great deal research works. The asymptotic proper-

ties of empirical processes indexed by functions have been intensively studied

during the past decades (see, e.g., [55] or [26] for self-contained, comprehen-

sive books on the topic with various statistical applications). Many authors

have studied it in the last century in finite framework, so that its developed

rapidly due to its role in solving problems of statistics, modulo measurability,
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the classes C of sets for which the Glivenko-Cantelli theorem holds charac-

terized by [56] in the setting of independents variables and in this framework

many results had been obtained we cite [24], [30], [41], [44] and [5]. Empirical

processes based on dependent data have been studied under various mixing

conditions, for example, [? ] established the asymptotic normality when the

sequences are φ-mixing, in these lines of research in different type of mixing,

we may cite [27], [43] and [59]. However, a bracketing condition under strong

mixing was stated by [1]. [23] studied the function-indexed empirical pro-

cess for β-mixing sequences, where [3] was given results the case of Gaussian

long-range dependent random vectors, [45] have established uniform conver-

gence and asymptotic normality of set-indexed conditional empirical process

in a strictly stationary and strong mixing framework and derived the Ba-

hadur Kiefer approximations of conditional quantile in this framework [46]

extended the work of [45]. On the other hand, the modelization of functional

variables that taking values in infinite dimensional spaces had received a lot

of attention in the last few years, there are an increasing number of situation

coming from different fields of applied sciences (environment, chemometrics,

biometrics, medicine, econometrics,. . . .) in which the collected data are

curves, the study of statistical models adapted to such type of infinite di-

mensional data has been the subject of several works in the recent statistical

literature good overviews about this literature can be found in [48], [7], [49],

[28], [8], [52], [36], [60], [6], [38] and [2] and hundreds of papers and books

have been published in this framework last decade.

However, there are a few results for the empirical process considered

functional framework, we may refer for recent references to [14, 15, 16], [9].

[19] obtained several very useful results for set-indexed conditional empir-

ical processes in functional setting the strong mixing dependence. Notice

that mixing is some kind of asymptotic independence assumption which

is commonly used for seeking simplicity but which can be unrealistic in

situations where there is strong dependence between the data. Extending

non-parametric functional ideas to general dependence structure is a rather

underdeveloped field, the ergodic framework avoids the widely used strong

mixing condition and its variants to measure the dependency which go far

beyond the invariance principle that is the basic motivation of the paper.

The general framework of ergodic functional data has been initiated by [40]

who stated consistencies with rates together with the asymptotic normality

of the regression function estimate, for recent paper on the subject we refer
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to [9], where the authors extended the last reference to a more general frame-

work. For reader convenience, we introduce some details defining the ergodic

property of processes and its link with the mixing one. Let {Xn, n ∈ Z} be a

stationary sequence. Consider the backward field An = σ (Xk : k ≤ n) and

the forward field Bm = σ (Xk : k ≥ m). The sequence is strongly mixing if,

as n → ∞,

sup
A∈A0,B∈Bn

|P(A ∩B)− P(A)P(B)| = α(n) → 0.

The sequence is ergodic if

lim
n→∞

1

n

n−1∑

k=0

∣∣∣P
(
A ∩ τ−kB

)
− P(A)P(B)

∣∣∣ = 0,

where τ is the time-evolution or shift transformation. The naming of strong

mixing in the above definition is more stringent than what is ordinarily re-

ferred (when using the vocabulary of measure preserving dynamical systems)

as strong mixing, namely to that limn→∞ P (A ∩ τ−nB) = P(A)P(B) for any

two measurable sets A,B, see, for instance [50]. Hence, strong mixing im-

plies ergodicity, whereas the inverse is not always true (see e.g. Remark 2.6

in page 50 in connection with Proposition 2.8 in page 51 in [20]). Some mo-

tivations to consider ergodic dependence structure in the data rather than a

mixing one are discussed in [40, 17, 11, 10, 12] where details on the definition

of ergodic property of processes together with illustrating examples of such

processes are also given.

The aim of the present paper is to extend asymptotic results for set-

indexed conditional empirical processes to the context of functional ergodic

data. We establish uniform convergence and asymptotic normality when the

observations are assumed to be ergodic in nature taking their values in semi-

metric space. This paper responds to a problem that has not been studied

systematically up to the present

The remainder of this paper is organized as follows. Section 2, we present

the notation and definitions together with the conditional empirical process.

Section 3, we give our main results. We discuss the bandwidth selection

procedure in Section 3.1. An application of our main result to the test of

the conditional independence is given in Section 4. Some concluding remarks

and possible future developments are relegated to Section 5. To prevent from
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interrupting the flow of the presentation, all proofs are gathered in Section

6. Some examples are collected in Section 7.

2. The Set Indexed Conditional Empirical Process

For the sake of clarity, introduce some details defining the ergodic prop-

erty of processes. Taking a measurable space (S,J ) denote by SN the

space of all functions s : N → S. If sj is the value the function s takes at

j ∈ N, define Hj as the j-th coordinate map, i.e Hj(s) = sj and consider

H−1
j (J ), j ∈ N a random process Z = {Zj : j ∈ N} can be considered

as random variable defined on probability space (Ω,A,P) and taking values

in (SN,J N ). Now a set B ∈ F is called invariant if there exists some set

A ∈ J N such that B = {(Zn, Zn+1, . . . .) ∈ A} is true for any n ≥ 1. The

process Z is then said ergodic whenever, for any invariant set B, we have

P(B) = 0 or P(Ω | B) = 0 . It is well known from the ergodic theorem that,

for a stationary ergodic process Z, we have

lim
n→∞

1

n

n∑

t=1

Zi = E(Z1) almost surely. (1)

Therefore, the ergodic property in our setting is formulated on the basis of

the statement (1). We consider a sample of random elements (X1, Y1), . . .,

(Xn, Yn) copies of (X,Y ) that takes its value in a space E × R
d. The func-

tional space E is equipped with a semi-metric dE (·, ·). We aim to study the

links between X and Y , by estimating functional operators associated to the

conditional distribution of Y given X such as the regression operator, for

some measurable set C in a class of sets C ,

G(C | x) = E
(
1{Y ∈C} | X = x

)
.

This regression relationship suggests to consider the following Nadaraya

Watson-type ([42] and [57]) conditional empirical distribution:

Gn(C, x) =

n∑

i=1

1{Yi∈C}K

(
dE (x,Xi)

hn

)

n∑

i=1

K

(
dE(x,Xi)

hn

) , (2)



✐

“BN16N45” — 2022/1/19 — 10:24 — page 371 — #5
✐

✐

✐

✐

✐

2021] THE CONDITIONAL SET-INDEXED EMPIRICAL PROCESS 371

where K(·) is a real-valued kernel function from [0,∞) into [0,∞) and hn is

a smoothing parameter satisfying hn → 0 as n → ∞, C is a measurable set,

and x ∈ E . By choosing C = (−∞, z], z ∈ R
d, it reduces to the conditional

empirical distribution function Fn(z|x) = Gn((−∞, z], x), refer to [53], [54],

[37]. However, the corresponding class C =
{
(−∞, z], z ∈ R

d
}
. Concerning

the semi-metric topology defined on E , we will use the notation

B(x, t) = {x1 ∈ E : dE(x1, x) ≤ t},

for the ball in E with center x and radius t, usually called in the literature the

small ball probability function when t is decreasing to zero. This notion plays

a major role both from theoretical and practical points of view, because the

notion of ball is strongly linked with the semi-metric d(·, ·), the choice of this
semi-metric will become an important stage when the data is taking its values

in some infinite dimensional space. Indeed, in many examples, the small

ball probability function can be written approximately as the product of

two independent functions in terms of x and h, as in the following examples,

which can be found in Proposition 1 of [29]:

(1) φ(hn) = Chυn for some υ > 0 with τ0(s) = sυ;

(2) φ(hn) = Chυn exp(−Ch−p
n ) for some υ > 0 and p > 0 with τ0(s) is

the Dirac’s function;

(3) φ(hn) = C |ln(hn)|−1 with τ0(s) =]0,1] (s) the indicator function in

]0, 1].

Let Fi be the σ-filed generated by ((X1, Y1), . . . , (Xi, Yi)) and Gi that gener-

ated by ((X1, Y1), . . . , (Xi, Yi),Xi+1). Let B(x, u) be a ball centered at x ∈ E
with radius u. Let Di = d(x,Xi) so that Di is a nonnegative real-valued

random variables. Working on the probability space (Ω,A,P), let

Fx(u) = P(Di ≤ u) = P(Xi ∈ B(x, u)),

and F
Fi−1
x = P(Xi ∈ B(x, u) | Fi−1) be the distribution function and the

conditional distribution function, given the σ-filed Fi−1 of (Di)i≥1 respec-

tively. Denote by oa.s(u) a real random function l such that l(u)/u converges

to zero almost surely as u → 0. Similarly define Oa.s(u) as a real random

function l such that l(u)/u is almost surely bounded.
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Throughout the sequel, we assume tacitly that the sequence of random

elements {(Xi, Yi), i = 1, . . . , n} is ergodic.

2.1. Assumptions and notation

Throughout this paper x is a fixed element of the functional space E .
We define the metric entropy with inclusion which provides a measure of

richness (or complexity) of the class of sets C . For each ε > 0, the covering

number is defined as :

N (ε,C ,G (· | x))
= inf{n ∈ N : ∃C1, . . . , Cn ∈ C such that ∀C ∈ C ∃ 1 ≤ i, j ≤ n

with Ci ⊂ C ⊂ Cj and G (Cj \ Ci | x) < ε},

the quantity log (N (ε,C ,G (· | x))) is called metric entropy with inclusion of

C with respect to G (· | x). Estimates for such covering numbers are known

for many classes; see, e.g., [25]. We will often assume below that either

logN (ε,C ,G (· | x)) or N (ε,C ,G (· | x)) behave like powers of ε−1. We say

that the condition (Rγ) holds if

logN (ε,C ,G (· | x)) ≤ Hγ(ε), for all ε > 0, (3)

where

Hγ(ε) =

{
log(Aε) if γ = 0,

Aε−γ if γ > 0,

for some constants A, r > 0. As in [45], it is worth noticing that the condition

(3), γ = 0, holds for intervals, rectangles, balls, ellipsoids, and for classes

which are constructed from the above by performing set operations union,

intersection and complement finitely many times. The classes of convex sets

in R
d (d ≥ 2) fulfill the condition (3), γ = (d− 1)/2. This and other classes

of sets satisfying (3) with γ > 0, can be found in [25].

Example 1 ([18]). The set C all indicator functions 1(∞,t] of cells in R

satisfies

N
(
ε, C, d(2)γ

)
≤ 2

ǫ2
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for any probability measure γ and ǫ ≤ 1.Notice that

∫ 1

0

√
log(

1

ǫ
)dǫ ≤

∫ ∞

0
u1/2 exp(−u)du ≤ 1

For more details and discussion on this example refer to example 2.5.4 in

[55].

We give now further notation. For j ≥ 1 set

Mj = Kj(1)−
∫ 1

0
(Kj)′(u)τ0(u)du.

In this section, we establish the weak convergence of the process {ν̃n(C, x) :
C ∈ C } defined by

ν̃n(C, x) :=
√

nφ(hn) (Gn(C, x) − EGn(C, x)) . (4)

In our analysis, we will make use of the following assumptions.

(H1) For x ∈ E , there exists a sequence of nonnegative bounded random

functionals (fi,1)i≥1, a sequence of random functions (gi,x)i≥1 a de-

terministic nonnegative bounded functional f1 and a nonnegative real

function φ where φ(hn) → 0 as h → 0 such that

(i) Fx(u) = φ(u)f1(x) + o(φ(u)) as u → 0.

(ii) For any i ∈ N, F
Fi−1
x (u) = φ(u)fi,1(x) + gi,x(u) = oa.s(φ(u)) as

u → 0. gi,x(u)/φ(u) almost surly bounded and n−1
n∑

t=1

gji,x(u) =

oa.s(φ
j(u)) as n → ∞, j = 1, 2.

(iii) n−1
n∑

t=1

f j
i,1(x) → f j

1 (x) almost surely as n → ∞, for j = 1, 2.

(iv) There exists nondecreasing bounded function τ0(u) such that uni-

formly for all u ∈ (0, 1),

τ0(u) + o(1) =
φ(ru)

φ(r)

as r ↓ 0 and 1 ≤ j ≤ 2+ δ with δ > 0,

∫ 1

0
(Kj(u))′τ0(u)du < ∞.
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(H2) (i) There exist β > 0 and η1 > 0, such that for all x1, x2 ∈ Nx, a

neighborhood of x, we have

|G(C | x1)−G(C | x2)| ≤ η1d
β
E (x1, x2).

(H3) There exist m ≥ 2 and η2 > 0, such that, we have, almost surely

E(|Y |m|X) ≤ η2 < ∞;

(i) The conditional mean of 1{Yi∈C} given the σ-field Gi−1 depends

only on Xi, i.e., for any i ≥ 1,E
(
1{Y1∈C} | Gi−1

)
= G(Xi) almost

surely.

(ii) The conditional mean of 1{Yi∈C} given the σ-field Gi−1 depends

only on Xi, i.e., for any i ≥ 1, E
((

1{Y1∈C} −G(Xi)
)2 | Gi−1

)
=

W2(Xi) almost surely. Moreover, the function W2 is continuous

in a neighborhood of x, that is,

sup
{u:d(x,u)≤h}

|W2(u)−W2(x)| = o(1) as h → 0;

(H4) For all (y1, y2) ∈ R
2d and constants b3 > 0, η4 > 0, we have for the

conditional density f(·) of Y given X = x the following

|f(y1)− f(y2) |≤ η4‖ y1 − y2‖b3 ;

(i) F (u;x) = φ(u)f1(x) as u → 0, where φ(0) = 0 and φ(u) is abso-

lutely continuous in a neighborhood of the origin,

(H5) The kernel function K(·) is supported within (0, 1) and has a con-

tinuous first derivative on (0, 1) and satisfied the condition K ′(t) <

0 ∀t ∈ (0, 1). Moreover,

∣∣∣∣
∫ 1

0
(Kj)′(u)du

∣∣∣∣ < ∞, for j = 1, 2.

(H6) Assume the class of sets C satisfies the condition (3);

(H7) The smoothing parameter (hn) satisfies:

(i)
log n

nmin(an, φ(hn))
−→ 0,

(ii) Let hn → 0 and nφ(hn) → ∞ as n → ∞.
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2.2. Comments on the assumptions

The condition (H1) plays an important role in the ergodic and func-

tional context of this paper condition used here share some similarities with

that used in [40]. Conditions (H2)(i) are classical in the nonparametric

regression estimation. (H3) is necessary to establish consistency. The con-

dition (H4) on the density f(·) is a classical Lipschitz-type nonparametric

functional model. (H5) The conditions on the kernel are not very restrictive.

(H7) rules out too large or too small bandwidths without the consistency

that could not be obtained. using also the condition (A4) part(ii) of [40]

stand as regularity conditions that are of usual nature it is important con-

dition to show the consistency that is omitted here.

3. Main results

Below, we write Z
D
= N (µ, σ2) whenever the random variable Z follows a

normal law with expectation µ and variance σ2,
D→ denotes the convergence

in distribution and
P→ the convergence in probability.

Theorem 1. [Uniform Consistency] Suppose that the hypotheses (H1)-

(H7) hold. Let C be a class of measurable sets for which

N (ε,C ,G (· | x)) < ∞,

for any ε > 0. Suppose further that ∀C ∈ C

|G(C, y)f(y) −G(C, x)f(x)| −→ 0, as y → x.

If nφ(hn) → ∞ and hn → 0 as n → ∞, then

sup
C∈C

|Gn(C, x)− E (Gn(C, x))| P−→ 0.

Remark that, the proof of Theorem 1 is a direct consequence of the

decomposition

Gn(C, x) − E (Gn(C, x)) =
1

E(f̂n(x))

[
F̂n(C, x) − E

(
F̂n(C, x)

)]
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−Gn(C, x)

E(f̂n(x))

[
f̂n(x)− E(f̂n(x))

]
,

where

F̂n(C, x) =
1

nφ(hn)

n∑

i=1

1{Yi∈C}K

(
dE (x,Xi)

hn

)
,

f̂n(x) =
1

nφ(hn)

n∑

i=1

K

(
dE(x,Xi)

hn

)
.

Puting ∆i(x) = K

(
dE (x,Xi)

hn

)
. We have

F̂n(C, x) =
1

nφ(hn)

n∑

i=1

1{Yi∈C}∆i(x),

f̂n(x) =
1

nφ(hn)

n∑

i=1

∆i(x).

From now for x ∈ E , set

E(F̂n(C, x)) =
1

nE(∆1(x))

n∑

i=1

E
(
1{Yi∈C}∆i(x) | Fi−1

)
,

and

E(f̂n(x)) =
1

nE(∆1(x))

n∑

i=1

E(∆i(x) | Fi−1),

where E(X | F) is the conditional expectation of the random variables X

given the σ-field F . Lemmas 1 and 2 are important steps towards Theorem

1, for which the proofs are given in the Appendix.

Lemma 1. Suppose that the hypotheses (H1)-(H7) hold and for every fixed

C ∈ C as n → ∞ we have :

sup
C∈C

∣∣∣F̂n(C, x) −E

(
F̂n(C, x)

)∣∣∣ = oP(1).

Lemma 2. Suppose that the hypotheses (H1)-(H7) hold and for every fixed
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NE neighborhood of x in the functional space E as n → ∞, we have

sup
x∈NE

∣∣∣f̂n(x)− E

(
f̂n(x)

)∣∣∣ = oP(1).

To establish the asymptotic normality define the “bias” term by

Bn(x) =
E

(
f̂n(x)

)
−Gn(C, x)E

(
F̂n(C, x)

)

E

(
F̂n(C, x)

)

= Mn(x)−Gn(C, x), (5)

where

Mn(x) =
E

(
f̂n(x)

)

E

(
F̂n(C, x)

) .

By stationarity of order one of the (Xi)’s, we have

E(f̂n(x)) = 1. (6)

The following result gives the weak convergence. Keep in mind that f1(x)

is given in (H1).

Theorem 2 (Asymptotic normality). Let (H1)-(H7) hold. Then as n →
∞, for m ≥ 1 and C1, . . . , Cm ∈ C ,

{ν̃n(Ci, x)i=1,...,m} D−→ N (0,Σ),

where Σ = σij(x), i, j = 1, . . . ,m and

σij(x) =
C2

C2
1f1(x)

W2(x),

whenever f1(x) > 0 and

C1 = k(1) −
∫ 1

0
K ′(u)τ0(u)d(u), C2 = K2(1) −

∫ 1

0
(K2)′(u)τ0(u)du.

To establish the density of the process, we need to introduce the follow-

ing function which provides the information on the asymptotic behaviour of
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the modulus of continuity

Λγ(σ
2, n) =





√
σ2 log

1

σ2
, if γ = 0;

max
(
(σ2)(1−γ)/2, nφ(hn)

(3γ−1)/(2(3γ+1))
)
, if γ > 0.

Theorem 3. Suppose that (H1)-(H7) hold. For each σ2 > 0, let Cσ ⊂ C

be a class of measurable sets with

sup
C∈Cσ

G(C, x) ≤ σ2 ≤ 1,

and suppose that C fulfils (3) with γ ≥ 0. Further, we assume that φ(hn) → 0

and nφ(hn) → +∞ as n → +∞, such that

nφ(hn) ≤
(
Λγ(σ

2, n)
)2

,

and as n → +∞, we have

nφ

(
σ2 log

(
1

σ2

))1+γ

log(n)
→ ∞.

Further we assume that σ2 ≥ h2. For γ > 0 and d = 1, 2, the later has to

be replaced by σ2 ≥ φ(hn) log

(
1

φ(hn)

)
, then under conditions of Theorem 2

we have the process:

{ν̃n(C, x) : C ∈ C } ,

converges in law to a Gaussian process {ν̃(C, x) : C ∈ C } , that admits a

version with uniformly bounded and uniformly continuous paths with respect

to ‖ · ‖2−norm with covariance σij(x) given in Theorem 2.

Remark 1. Central limit theorems are usually used to establish confidence

intervals for the target to be estimated. In the context of non-parametric es-

timation the asymptotic variance Σ(x) := σi,j(x) in the central limit depends

on certain functions only approximate confidence intervals can be obtained

in practice, even when Σ(x) functionally specified. Observing now in (2)

that the limiting variance contains the unknown function f1 and that the

normalization depends on the function φ(·) which is not identifiable explic-

itly. Moreover, we have to estimate the quantities W2 and τ0 the corollary
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below is a slight modification of (2) allows to have usable form of our results

in practice as usually the conditional variance W2(x) is estimated by

W2,n =

n∑

i=1

(1{Yi∈C} −Gn(x))
2K

(
dE(x,Xi)

h

)

n∑

i=1

K

(
dE(x,Xi)

h

)

=

n∑

i=1

(1{Yi∈C} −Gn(x))
2K

(
dE(x,Xi)

h

)

n∑

i=1

K

(
dE(x,Xi)

h

) − (Gn(x))
2

= ĝn(x)− (Gn(x))
2.

Let us introduce the following estimate

Fx,n(t) =
1

n

n∑

i=1

1{d(x,Xi)≤t}.

Making use the decomposition of τ0(·) in (H1)(i) one may estimate τ0(·) by

τn(t) =
Fx,n(th)

Fx,n(h)
.

Subsequently, for a given kernel K(·) and the quantities C1 and C2 can be

estimated as follows

C1,n = K(1)−
∫ 1

0
K

′

(s)τn(s)ds, C2,n = K2(1)−
∫ 1

0
(K2)

′

(s)τn(s)ds.

Introduce now some further conditions needed to state

(H8) (i) The conditional mean of 1{Y 2
i ∈C} given the σ-field Gi−1 depends

only on Xi, i.e., there exist a function g such that for any i ≥ 1,

E(1{Y 2
i
∈C} | Gi−1) = g(Xi) almost surely,

(ii) The conditional variance of 1{Y 2
i ∈C} given Gi−1 depends only onXi

i.e., for any i ≥ 1 E

(
(1{Y 2

i ∈C})
2 | Gi−1

)
= U(Xi) almost surely,

for some function U . Moreover, the function U is continuous in a
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neighborhood of x, that is

sup
u:d(x,u)≤h

|U(u)− U(x)| = o(1).

Corollary 3.1. Assume that conditions (H1)-(H8) hold true K ′ and (K2)′

are integrable functions and nFx(h) −→ ∞ and hβ(nFx(h))
1/2 −→ 0 as

n → ∞. Then, for any x ∈ E such that f1(x) > 0, we have

C1,n√
C2,n

√
nFx,n(hn)

W2,n(x)
(Gn(C, x) −G(C, x))

D−→ N (0, 1).

Using Corollary (3.1) the asymptotic 100(1 − α)confidence band given

by

[
Gn(C, x) − cα

C1,n√
C2,n

√
W2,n(x)

nFx,n(h)
,Gn(C, x) + cα

C1,n√
C2,n

√
W2,n(x)

nFx,n(h)

]
.

3.1. The bandwidth selection criterion

Many methods have been established and developed to construct, in

asymptotically optimal ways, bandwidth selection rules for nonparametric

kernel estimators especially for Nadaraya-Watson regression estimator we

quote among them [32], [34], [47], [22], [13] and [14]. This parameter has

to be selected suitably, either in the standard finite dimensional case, or in

the infinite dimensional framework for insuring good practical performances.

Let us define the leave-out-(Xi, Yi) estimator for regression function

Gn,j(C, x) =

n∑

i=1,i 6=j

1{Yi∈C}K

(
dE (x,Xi)

hn

)

n∑

i=1

K

(
dE(x,Xi)

hn

) . (7)

In order to minimize the quadratic loss function, we introduce the following
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criterion, we have for some (known) non-negative weight function W(·) :

CV (C, h) :=
1

n

n∑

j=1

(
1{Yj∈C} −Gn,j(C,Xj)

)2
W (Xj) . (8)

Following the ideas developed by [47], a natural way for choosing the band-

width is to minimize the precedent criterion, so let’s choose ĥn ∈ [an, bn]

minimizing among h ∈ [an, bn]:

sup
C∈C

CV (Ψ, h) .

The main interest of our results is the possibility to derive the asymptotic

properties of our estimate even if the bandwidth parameter is a random

variable, like in the last equation. One can replace (8) by

CV (C, hn) :=
1

n

n∑

j=1

(
1{Yj∈C} −Gn,j(C,Xj)

)2
Ŵ (Xj, x) . (9)

In practice, one takes, for j = 1, . . . , n, the uniform global weights W (Xj) =

1, and the local weights

Ŵ (Xj , x) =

{
1 if d(Xj , x) ≤ hn,

0 otherwise.

For sake of brevity, we have just considered the most popular method, that

is, the cross-validated selected bandwidth. This may be extended to any

other bandwidth selector such the bandwidth based on Bayesian ideas [51].

4. Testing the Independence

We consider a sample of random elements (X1, Y1,1, Y1,2), . . . , (Xn, Yn,1,

Yn,2) copies of (X,Y1, Y2) that takes its value in a space E × R
d1 × R

d2 and

define, for (C1, C2) ∈ C1 × C2,

Gn(C1 × C2, x) =

n∑

i=1

1{Yi,1∈C1}1{Yi,2∈C2}K

(
dE (x,Xi)

hn

)

n∑

i=1

K

(
dE (x,Xi)

hn

) , (10)
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Gn,1(C1, x) =

n∑

i=1

1{Yi,1∈C1}K

(
dE(x,Xi)

hn

)

n∑

i=1

K

(
dE (x,Xi)

hn

) , (11)

Gn,2(C2, x) =

n∑

i=1

1{Yi,2∈C2}K

(
dE(x,Xi)

hn

)

n∑

i=1

K

(
dE (x,Xi)

hn

) . (12)

We will investigate the following processes, for (C1, C2) ∈ C1 × C2,

ν̂n(C1, C2, x) =
√

nφ(hn) (Gn(C1×C2, x)−E(Gn(C1, x))E(Gn(C2, x))) ,

(13)

ν̆n(C1, C2, x) =
√

nφ(hn) (Gn(C1×C2, x)−Gn,1(C1, x)Gn,2(C2, x)) . (14)

Notice that we have

ν̆n(C1, C2, x) =
√

nφ(hn) (Gn(C1 × C2, x)− E(Gn(C1, x))E(Gn(C2, x)))

+
√

nφ(hn)E(Gn(C2, x)) (Gn(C1, x)− E(Gn(C1, x)))

−
√

nφ(hn)(Gn(C1, x)) (Gn(C2, x)− E(Gn(C2, x))) .

Hence we have

ν̆n(C1, C2, x)
d
=
√

nφ(hn) (Gn(C1 × C2, x)− E(Gn(C1, x))E(Gn(C2, x)))

+
√

nφ(hn)E(Gn(C2, x)) (Gn(C1, x)− E(Gn(C1, x)))

−
√

nφ(hn)E(Gn(C1, x)) (Gn(C2, x)− E(Gn(C2, x)))

= ν̂n(C1, C2, x) + E(Gn(C2, x))ν̃n(C1, x)−E(Gn(C1, x))

×ν̃n(C2, x). (15)

Let {ν̂(C1, C2, x) : (C1, C2) ∈ C1 × C2} be a Gaussian process. Let us

introduce the following limiting process, for (C1, C2) ∈ C1 × C2,

ν̆(C1, C2, x) = ν̂(C1, C2, x) +G(C2, x)ν̃(C1, x)−G(C1, x)ν̃(C2, x).
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We would test the following null hypothesis

H0 : Y1 and Y2 are conditionally independent given X = x.

Against the alternative

H1 : Y1 and Y2 are conditionally dependent.

Statistics of independence those can be used are

S1,n = sup
(C1,C2)∈C1×C2

|ν̂n(C1, C2, x)|, (16)

S2,n = sup
(C1,C2)∈C1×C2

|ν̆n(C1, C2, x)|. (17)

A combination of Theorem 3 with continuous mapping theorem we obtain

the following result.

Theorem 4. We have under condition of Theorem 3, as n → ∞,

S1,n → sup
(C1,C2)∈C1×C2

|ν̂(C1, C2, x)|, (18)

S2,n → sup
(C1,C2)∈C1×C2

|ν̆(C1, C2, x)|. (19)

5. Concluding Remarks

In the present work, we have established the invariance principle for the

conditional set-indexed empirical process formed by ergodic functional data.

Our results are obtained under assumptions on the richness of the index

class C of sets in terms of metric entropy with bracketing in the framework of

ergodic variables. This paper extends the dependence setting to the cases not

covered by the usual mixing structures because ideas to general dependence

structure is a rather underdeveloped field. Note that the ergodic framework

avoids the widely used variants to measure the dependency and our work

would go well beyond the scope of the empirical process literature, recall

that the theory of empirical process is useful in many applications and an

application Bahadur presentation we will derive.
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6. Appendix

This section is devoted to the proof of our results. The aforementioned

notation is also used in what follows.

Proof of Lemma 1. Use finite metric entropy with inclusion, fix ǫ > 0 for

C ∈ C . Let C∗, C
∗ be a bracket for C, i.e., C∗ ⊂ C ⊂ C∗, such that

G (C∗△C∗ | x) < ǫ.

Since for A ⊂ B we have Gn(A, x) ≤ Gn(B,x) and G(A | x) ≤ G(B | x), it
follows:

sup
C∈C

[Gn(C, x) − E (Gn(C, x))]

≤ sup
C∈C

[Gn(C
∗, x)− E (Gn(C∗, x))]

≤ sup
C∈C

[Gn(C
∗, x)− E (Gn(C

∗, x))] + sup
C∈C

[E (Gn(C
∗, x))− E (Gn(C∗, x))]

≤ sup
C∈C

[Gn(C
∗, x)− E (Gn(C

∗, x))] + sup
C∈C

G (C∗△C∗ | x)

≤ sup
C∈C

[Gn(C
∗, x)− E (Gn(C

∗, x))] + ǫ. (20)

An analogous lower bound holds with C∗ replaced by C∗. Since the first

term in the last line is a supremum over finitely sets (for fixed ǫ > 0) it

follows pointwise consistency of Gn(·, ·) that the term is oP(1) and hence we

obtain the desired result. ���

Lemma 3. Assume that condition (H1(i))- (H1(ii))-(H1(iv))-(H6) hold

true for any real numbers 1 ≤ j ≤ 2 + δ and 1 ≤ k ≤ 2 + δ with δ > 0 as

n → ∞ we have :

(i) 1
φ(h)E(∆

j
i (x) | Fi−1) = Mjfi,1(x) +Oa.s

(
gi,x(h)
φ(h)

)
.

(ii) 1
φ(h)E(∆

j
1(x)) = Mjf1(x) + o(1).

(iii) 1
φk(h)

(E(∆1(x)))
k = Mk

1 f
k
1 (x) + o(1).

The reader is referred to [40] for the proof of Lemma 3. ���

Proof of Lemma 2. We shall proof that

P

(∣∣∣f̂n(x)− E(f̂n)
∣∣∣ > ǫ

)
→ 0.
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Observe the condition in (6) and we use the same proof in [40] look that

f̂n(x)− 1 = R1,n(x) +R2,n(x) where

R1,n(x) =
1

nE(∆1(x))

n∑

t=1

(∆i(x)− E(∆i(x) | Fi−1))

R2,n(x) =
1

nE(∆1(x))

n∑

t=1

(E[∆i(x) | Fi−1]− E(∆1(x)))

=
1

nE(∆1(x))

n∑

t=1

E[∆i(x) | Fi−1]− 1.

Combining 3 with hypothesis (H1)-(ii) and (H1)-(iii) it easy seen that R2,n(x)

= oa.s(1) as n → ∞. For the first term observe that R1,n(x) =

n∑

t=1

Lni(x),

where Lni(x) is a triangular array of martingale differences with respect to

the σ-field Fi−1 combining Burkholder [33] and Jensen inequalities, we obtain

for any ǫ > 0 that exists a constant C0 such that

P(|R1,n(x)| > ǫ) ≤ C0
E(∆2

1(x))

ǫ2n(E(∆1(x)))2
= O

(
1

ǫ2nφ(h)
+ o(1)

)
,

where the last equality results form (3). Since nφ(h) → ∞ as n → ∞ we

conclude then that R1,n(x) = oP(1). Thus the proof is complete. ���

Proof of Theorem 2. We will use similar arguments to those used in the

paper by [40] to prove the asymptotic normality of the process we shall use

the following notation, recall the decomposition:

Gn(C, x) − E (Gn(C, x)) =
1

E(f̂n(x))

[
F̂n(C, x) − E

(
F̂n(C, x)

)]

−Gn(C, x)

E(f̂n(x))

[
f̂n(x)− E(f̂n(x))

]

=
Qn(x)

E(f̂n(x))
,

where

Qn(x) =
[
F̂n(C, x) − E

(
F̂n(C, x)

)]
−Gn(C, x)

[
f̂n(x)− E(f̂n(x))

]
.
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Lemma 4. Assume that the hypotheses (H1)-(H7) are satisfied, then we

have for any x ∈ E such that f1(x) > 0, we have :

√
nφ(hn)Qn(x)

D−→ N (0, σ2(x)), as n → ∞.

Proof of Lemma 4. Let us introduce some notation. Set

ηni =

(
φ(h)

n

)1/2

(1{Yi∈C} −G(x))
∆i(x)

E(∆1(x))
, (21)

and define ξni = ηni − E (ηni | Fi−1). It is easily seen that

(nφ(h))1/2Qn(x) =

n∑

t=1

ξni, (22)

where for any fixed x ∈ E the summands (22) form a triangular array of sta-

tionary martingale differences with respect to the σ-field Fi−1. This allows us

to apply the central limit theorem for discrete-time arrays of real-valued mar-

tingales (see, [31] page 23) to establish the asymptotic normality of Qn(x).

This can be done if we establish the following statements:

(a)
n∑

t=1

E
(
ξ2ni | Fi−1

)
−→ σ2(x),

and

(b) nE
(
ξ2ni1|ηni|>ǫ

)
= o(1),

holds for any ǫ > 0 (Lindeberg condition).

Proof of Part (a). Observe first that

∣∣∣∣∣
n∑

t=1

E
(
η2ni | Fi−1

)
−

n∑

t=1

E
(
ξ2ni | Fi−1

)
∣∣∣∣∣ ≤

n∑

t=1

(E (ηni | Fi−1))
2 .

Making use of the condition (H2) and Lemma 3, one has

E (ηni | Fi−1) =
1

E(∆i)

(
φ(h)

n

)1/2

|E ((G(Xi)−G(x))∆i(x) | Fi−1) |

≤ 1

E(∆i)

(
φ(h)

n

)1/2

sup
u∈B(x,h)

|G(Xi)−G(x)|E (∆i(x) | Fi−1)
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= O(hβ)

(
φ(h)

n

)1/2(fi,1(x)

f1(x)
+Oa.s

(
gi,x(h)

φ(h)

))
. (23)

Thus, by (H1)(ii)(iii), we have

n∑

t=1

(E (ηni | Fi−1))
2 = O(h2β)

(
φ(h)

n

) n∑

t=1

(
fi,1(x)

f1(x)
+Oa.s

(
gi,x(h)

φ(h)

))2

= O(h2βφ(h))

(
1

f2
1 (x)

1

n

n∑

t=1

f2
i,1(x) + oa.s(1)

)

= Oa.s(φ(h)h
2β). (24)

The statement (a) follows then if we show that

lim
n→∞

n∑

t=1

E
(
η2ni | Fi−1

)
= σ2. (25)

To prove (25), observe that

lim
n→∞

n∑

t=1

E
(
η2ni |Fi−1

)
=

φ(h)

n(E(∆1(x)))2

n∑

t=1

E
[
(1{Yi∈C}−G(x))2∆2

i (x) |Fi−1

]

= J1n + J2n,

where

J1n =
φ(h)

n(E(∆1(x)))2

n∑

t=1

E

[
∆2

i (x)E
(
1{Yi∈C} −G(x)

)2 | Gi−1 | Fi−1

]

=
φ(h)

n(E(∆1(x)))2

n∑

t=1

E
[
W2(Xi)∆

2
i (x) | Fi−1

]
, (26)

and

J2n =
φ(h)

n(E(∆1(x)))2

n∑

t=1

E
[
(G(Xi)−G(X))2∆2

i (x) | Fi−1

]
.

We give now an upper bound for

E
[
W2(Xi)∆

2
i (x) | Fi−1

]
.

Towards this end, we split it up into

In1 + In2,
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with

In1 = W2(x)E(∆
2
i (x) | Fi−1)

and

In2 = E
[
(W2(Xi)−W2(x))∆

2
i (x) | Fi−1

]

Using the condition (A4) part(ii) of [40] , one can write

|In2| ≤ sup
u:d(x;u)≤h

|W2(u)−W2(x))|E
[
∆2

i (x) | Fi−1

]
| = E

[
∆2

i (x) | Fi−1

]
×o(1).

Thus, in view of 3 part (i), we have

E
[
W2(Xi)∆

2
i (x) |Fi−1

]
= (o(1) +W2(x))E

(
∆2

i (x) | Fi−1

)

= (o(1)+W2(x))(M2φ(h)fi,1(x)+Oa.s(gi.x(h))).(27)

Combining again 3 and conditions (H1)(ii)(iii), it is easily seen that lim
n→∞

J1n

=
M2

M2
1

W2(x)

f1(x)
almost surely, whenever f1(x) > 0. Consider now the term J2n.

Making use of conditions (H1)(ii)(iii) and (H2)-(i) and Lemma 3, one can

write

|Jn2| = O(h2β)
φ(h)

n(E(∆1(x)))2

n∑

t=1

E
(
∆2

i (x) | Fi−1

)

= O(h2β)

(
M2

M2
1

1

f1(x)
+ oa.s(1)

)
→ 0 almost surely as n → ∞. (28)

Therefore,

lim
n→∞

n∑

t=1

E
(
∆2

i (x) | Fi−1

)
= lim

n→∞
(Jn1 + Jn2) =

M2

M2
1

W2(x)

f1(x)
=: σ2(x)

almost surely whenever f1(x) > 0, this completes the proof of Part (a). ���

Proof of Part (b). The Lindeberg condition results from Corollary 9.5.2

in ([21]) which implies that

nE(ξ2ni1(|ξni| > ε)) ≤ 4nE
(
η2ni1(|ηni| > ε/2)

)
.

Let a > 1 and b > 1 such that 1
a + 1

b = 1. Making use of Hlder and Markov
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inequalities one can write, for all ε > 0.

E
(
η2ni1(|ηni| > ε/2)

)
≤ E|ηni|2a

(ε/2)2a/b
,

taking C0 a positive constant and 2a = 2 + δ (with δ using the condition

(A4) part(ii) of [40]), we obtain

4nE
(
η2ni1(|ηni| > ε/2)

)

≤C0

(
φ(h)

n

)(2+δ)/2 n

(E(∆1(x)))2+δ
E([|1{Yi∈C}−G(x)|∆i(x)]

2+δ)

≤C0

(
φ(h)

n

)(2+δ)/2 n

(E(∆1(x)))2+δ
E

(
E

(
|1{Yi∈C} −G(x)|2+δ(∆i(x))

2+δ | Xi

))

≤C0

(
φ(h)

n

)(2+δ)/2 n

(E(∆1(x)))2+δ
E

(
(∆i(x))

2+δW 2+δ(Xi)
)

≤C0

(
φ(h)

n

)(2+δ)/2 n

(E(∆1(x)))2+δ

(
E

(
(∆i(x))

2+δ |W 2+δ(Xi)−W 2+δ(x)
)

+|W 2+δ(x)|E
[
(∆i(x))

2+δ
])

≤C0

(
φ(h)

n

)(2+δ)/2 nE
[
(∆1(x))

2+δ
]

E (∆1(x))
2+δ

(
|W 2+δ(x)|+ o(1)

)

≤C0(nφ(h))
−δ/2 (M2+δf1(x) + o(1))

(M2+δ
1 f2+δ

1 (x) + o(1))

(
|W 2+δ(x)|+ o(1)

)

=O((nφ(h))−δ/2),

where the last equality follows from Lemma 3. This completes the proof of

part (b), since nφ(h) → ∞ as n → ∞. Thus the proof is complete. ���

Proof of Theorem 3. Let us recall some facts. Let f(·) = 1{· ∈ C1} and

g(·) = 1{· ∈ C2}. Given random measures µn on (X,X ), we define

d(2)µn
(f, g) :=

[
µn(f − g)2

]1/2
.

Say that a class of functions F has uniformly integrable entropy with respect

to L2-norm if

∫ ∞

0
sup

γ∈M(X,F )

[
lnN

(
ǫ
[
γ
(
F 2
)]1/2

,F , d(2)γ

)]1/2
dǫ < ∞,
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where d
(2)
γ (f, g) :=

[∫
X
(f − g)2dγ

]1/2
. When the class F has uniformly

integrable entropy,
(
F , d

(2)
γ

)
is totally bounded for any measure γ. Let κ be

an envelope of F . That is, κ a measurable function mapping F to [0,∞)

such that

sup
f∈F

|f(t)| ≤ κ(t), for all t ∈ R.

Let M(R, κ) be the set of all measures γ on (R,F ) with

γ(κ) :=

∫

R

κ2dγ < ∞, (29)

and

d(r)γ (f, g) :=

[∫

R

(f − g)rdγ

]1/r
.

Given random measures µn on (R,F ), we define

d(2)µn
(f, g) := [µn(f − g)2]1/2.

Let us introduce the uniform entropy integral

J(δ,F , d(2)γ ) =

∫ δ

0
sup

γ∈(R,F )

[
log
(
N
(
ǫ[γ(κ2)]1/2,F , d(2)γ

))]1/2
dǫ.

We say that F has uniformly integrable entropy with respect to L2-norm if

J
(
∞,F , d(2)γ

)
< ∞. (30)

When the class F has uniformly integrable entropy,
(
F , d

(2)
γ

)
is totally

bounded for any measure γ. Let {B(ϕ) : ϕ ∈ F} be a Gaussian process

whose sample paths are contained in

Ub(F , d(2)γ ) :=
{
f ∈ℓ∞(F ) : f is uniformly continuous with respect to d(2)γ

}
.

Let L(•) denote the law of •. Notice that obtaining a uniform CLT essentially

means that we show the following convergence

{
L(An,ϕ) : ϕ ∈ F

}
→
{
L(B(ϕ)) : f ∈ F

}
,
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where the processes are indexed by F and considered as random elements

of the bounded real-valued functions on F defined by

ℓ∞(F ) :=
{
f : F → R : ‖f‖F := sup

ϕ∈F
|f(ϕ)| < ∞

}
, (31)

which is a Banach space equipped with the sup norm. In the sequel, we

use the weak convergence in the sense of [35] that we recall in the following

definition. Throughout the paper, E∗ denotes the upper expectation with

respect to the outer probability P∗, we refer to [55, p.6] and [39, §6.2, p.88]
for further details and discussion.

Definition 1. A sequence of ℓ∞(F )-valued random functions {Tn : n ≥ 1}
converges in law to a ℓ∞(F )-valued Borel measurable random function T

whose law concentrates on a separable subset of ℓ∞(F ), denoted Tn  T ,

if,

Eg(T ) = lim
n→∞

E
∗g(Tn), ∀g ∈ C(ℓ∞(F ), ‖ · ‖F ),

where C(ℓ∞(F ), ‖ · ‖F ) is the set of all bounded ‖ · ‖F -continuous functions

from (ℓ∞(F ), ‖ · ‖F ) into R.

We set

ηn;i(f, x) := ηn;i(C1, x) :=

(
φ(h)

n

)1/2 (
1{(Yi∈C1} −G(C, x)

) ∆i(x)

E(∆i(x))
.

with ∆i(x) = K(h−1d(x,Xi)), and define ηn;i(g, x) in a similar way. Let

ξn;i(f, x) := ηn;i(f, x)− E(ηn;i(f, x) | Fi−1).

Let us define

σ2
n(f, g) =

n∑

i=1

(ξn;i(f, x)− ξn;i(g, x))
2 .

To prove Theorem 3, using Theorem 2 of [4], it suffices to show that, for all

constant L > 0, as n tends to infinity, that

P
∗

{
sup

f,g∈F

σ2
n(f, g)

(d
(2)
µn (f, g))

2
> L

}
→ 0, (32)
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which is implied by the following,

E
∗ sup
d(2)(f,g)≤δn

n∑

i=1

E((ξn;i(f, x)− ξn;i(g, x))
2 | Fi−1)

(d(2)(f, g))2
→ 0, as δn → 0,

where we recall

d(2)(f, g) :=

[∫

R

(f − g)2dP

]1/2
.

In the rest of the proof, denote by βn(x) =

√
φ(h)

E[∆1(x)]
, and

ζ(f, x) = ζ(C1, x) :=
(
1{(Yi∈C1} −G(C, x)

)
∆i(x).

Therefore, we have the following

n∑

i=1

E((ξn;i(f, x)− ξn;i(g, x))
2 | Fi−1)

d(2)(f, g)

=
β2
n(x)

nd(2)(f, g)

n∑

i=1

E

[(
(ζ(f, x)− ζ(g, x))

− E [ζ(f, x)− ζ(g, x) | Fi−1]
)2

| Fi−1

]2

≤ β2
n(x)

nd(2)(f, g)

n∑

i=1

2E

[(
ζ(f, x)− ζ(g, x)

)2
| Fi−1

]

− 2E

{[
E

[(
ζ(f, x)− ζ(g, x)

)
| Fi−1

]]2}

:=T1,n + T2,n.

We first evaluate T1,n. We have

T1,n ≤ 2β2
n(x)

nd(2)(f, g)

n∑

i=1

2E
[
∆2

i (x) (f(Yi)− g(Yi))
2 | Fi−1

]

+2E
[
∆2

i (x) (G(C1, x)−G(C2, x))
2 | Fi−1

]

:= T1,n,1 + T1,n,2.

Using the fact that E(∆2
1(x)) = O(φ(h)) (in view of Lemma 1), the class of

functions F admits a constant envelope and K(·) is bounded and bounded
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away from zero, one may get the following upper bound of the last equation,

for some positive constant,

T1,n,1 ≤ C
√

φ(h)

d(2)(f, g)
E [∆1(x) (f(Y1)− g(Y1))]

≤ C
√

φ(h)

d(2)(f, g)
E
[
∆1(x)

2
]1/2

E

[
(f(Y1)− g(Y1))

2
]1/2

=
C
√
φ(h)

G
2
(ζ)

E
[
∆1(x)

2
]1/2

= O(φ(h)) = o(1).

Making use of similar arguments, we infer that

T1,n,2 =
Cφ(h)3/2

d(2)(f, g)
(E [(f(Y )− g(Y ))|X = x])2 = O(φ(h)3/2) = o(1).

We readily obtain that, T1,n = o(1). We have, by similar arguments to

those used in the proof of the preceding statement, T2,n = o(1). Making

use of Lindeberg conditions of the preceding proof and (32) combined with

Theorem 1 of [4], we obtain, for given ε > 0 and γ > 0, there exists η > 0,

such that

lim sup
n→∞

P
∗
{

sup
d(C1,C2)≤η

|ν̃n(C1, x)− ν̃n(C2, x)| ≥ 5γ
}
≤ 3ε. (33)

Now the proof theorem is completed by combining this last equation with

Theorem 3. ���

7. Examples

Example 2 ([40]). On the Hilbert space E equipped with the norm ‖ · ‖
associated to the inner product 〈·, ·〉, consider the Hilbert autoregressive

model of order one defined, for n ≥ 1, by

Xn = ρ(Xn−1) + ǫn,

where (ǫn)n≥1 is an i.i.d. sequence of Hilbert random variables such that ǫn

is independent of Xn−1 and E(‖ǫn‖2) < ∞ and ρ is a functional operator on
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E . For k ∈ N∗ , consider the semi-metric dk defined for any (x, y) ∈ E2, by

dk(x, y) =

( k∑

j=1

〈x− y, ej〉2
) 1

2

. (34)

Taking the semi-metric defined in the statement (34), observe that

F
Fi−1
x (u) = P(dk(x,Xi) ≤ u | Fi−1) = P(dk(x, ρ(Xi) + ǫi) ≤ u | Fi−1).

Since we can write ǫi =

∞∑

j=1

ǫji ej and for any s ∈ E ρ(s) =

∞∑

j=1

(ρ(s))jej , it

follows that

FXi|Xi−1=s(u) = P(dk(x, ρ(Xi) + ǫi) ≤ u | Xi−1 = s)

= P

( k∑

j=1

〈xj − (ρ(s))j + ǫji , ej〉2 ≤ u2
)

= P(‖ǭi − (ρ̄(s))− x‖Ecld ≤ u) = P(ǭi ∈ Bk((ρ̄(s))− x, u)),

where ǭi = (ǫ1i , . . . ., ǫ
k
i ), ρ̄(s) = ((ρ(s))1, . . . ., (ρ(s))k) and Bk(ρ̄(s) − x, u)

is the ball in Rk of center ρ̄(s) − x and radius u. Denote by g the density

function of ǭi. Clearly, we have

FXi|Xi−1=s(u)

=

∫
. . .

∫

Bk(ρ̄(s)−x,u)
g(t1, . . . , tk)dt1 . . . dtk

=

∫
. . .

∫

Bk(ρ̄(s)−x,u)
|g(t1, . . . , tk)−g(ρ̄(s)−x)|dt1 . . . dtk+Cukg(ρ̄(s)−x).

When g is assumed to be a Lipschitz function of order 1 with a constant

C > 0, we obtain

FXi|Xi−1=s(u) = Cukg(ρ̄(s)− x) + o(uk).

Therefore,

F
Fi−1
x (u) = FXi|Xi−1=s(u) = Cukg(ρ̄(Xi−1)− x) + o(uk).

Example 3 ([40]). Let C be a separate abstract space equipped with a semi-
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distance. Consider the autoregressive model of order one defined, for any

i ≥ 1, by Xi = ρ(Xi−1) + ǫi where ǫi = ηih with a real random variable ηi

independent of Xi−1 and h ∈ C and ρ is a functional operator on C. For

(x, y) ∈ C consider the semi-distance between x and y given by

d(x, y) =

∣∣∣∣
∫

(x(t)− y(t)dt

∣∣∣∣ .

Observe, for any u > 0, that we have

F
Fi−1
x (u) = P(dk(x,Xi) ≤ u | Fi−1) = P(d(x,Xi) ≤ u | Xi−1).

Consequently, whenever 0 6=
∫
h(t)dt < ∞, we have

FXi|Xi−1=s(u)

=P(d(x,Xi) ≤ u | Xi−1 = s)

=P

(∣∣∣∣
∫

x(t)−Xi(t)dt

∣∣∣∣ ≤ u | Xi−1 = s

)

=P

(∣∣∣∣
∫

x(t)− ρ(Xi−1)(t)− ηih(t)dt

∣∣∣∣ ≤ u | Xi−1 = s

)

=P

(∣∣∣∣
∫

x(t)− ρ(s)(t)− ηih(t)dt

∣∣∣∣ ≤ u

)

=P

(−u+
∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt
≤ ηi ≤

u+
∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)

=Φ

(
u+

∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)
− Φ

(−u+
∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)
,

where Φ is the cumulative distribution function of ηi. Assuming now that

0 <
∫
h(t)dt < ∞, |

∫
x(t)dt| < ∞ and |

∫
ρ(s)(t)dt| < ∞ for any s ∈ C and

tacking Φ as the N (0, 1) cumulative distribution function, we obtain

FXi|Xi−1=s(u) =
u∫

h(t)dt

√
2

π
exp

(
−1
2

(∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)2
)
(1+ o(1)).

Thus

F
Fi−1
x (u) =

u∫
h(t)dt

√
2

π
exp

(
−1

2

(∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)2
)
(1 + o(1)),
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and the condition (H1)(ii) is satisfied with

φ(u) =
u∫

h(t)dt

√
2

π
.
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