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Abstract

In this paper, we propose a new approach to stochastic integration of the class of

instantly independent stochastic processes with respect to fractional Brownian motion on

a finite interval. The appraisal point is to discover the counterpart of the Itô theory.

More precisely, we show some result on stochastic integration with respect to no adapted

processes by generalizing the results obtained by Ayed and Kuo [5] in the Brownian frame-

work.

1. Introduction

Fractional Brownian motion was introduced by Kolmogorov [14] while

studying spiral curves in Hilbert space. Later, its properties were given

by Mandelbrot and Van Ness [17]. In fact, in [17], authors considered the

fractional Brownian motion as a centered and continuous Gaussian process,

denoted by BH = {BH
t , t ≥ 0}, H ∈ (0, 1) with covariance

E(BH
t , B

H
s ) =

VH

2
(t2H + s2H − (t− s)2H),
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and VH is normalizing constant given by

VH =
Γ(2− 2H) cos(πH)

πH(1− 2H)
.

This process is starting from 0 with stationary increments, E(BH
t − BH

s ) =

VH |t − s|2H , which is self-similar, and, BH
at has the same distribution as

aHBH
t . The parameter H determines the sign of the covariance of past

increments and the future. This latter is positive when H > 1
2 and negative

when H < 1
2 . Moreover, it exhibits a long-range dependence in the sense

that the covariance between increments at a distance u decreases to zero as

u2H−2.

The self-similarity and long-range dependence properties make the frac-

tional Brownian motion a suitable driving noise in different applications like

economics, finance, and telecommunications especially in internet traffic to

hydrology problems via linguistic.

Lin [19] also Dai and Heyde [21] gave a stochastic integral
∫ t
0 φsdB

H
s as

limit of Riemann sums.The propriety E(
∫ t
0 ΦsdB

H
s ) = 0 is not satisfying by

this integral, Duncan et al. [20] introduced a new stochastic integral with

zero means which is the limit of Riemann sums defined by means of the

Wick product [1]. Alo et al.(2000)[1] constructed a stochastic integral with

respect to the fBm with Hurst parameter lesser than 0 , and in 2010 Ayed

and Kuo [5] explained this idea for an extension of the Itô integral.

Our aim in this paper is to introduce a new approach of stochastic

integration for processes not necessarily adapted with respect to fractional

Brownian motion. Particulary, we are interested in the case when the index

H is greater then 1
2 .

This paper is organized as follow : In section 1, we recall some prelim-

inaries on Malliavin calculus and on the fractional calculus. In section 2,

we construct suitable spaces of integrands in order to have a well-defined

integral using integral representation. In section 3, We will introduce a new

outcome on stochastic integration w.r.t fractional Brownian motion (fbm)

for non adapted process by using an idea of Lebovits [16], and we give a new

result on stochastic integration w.r.t. fbm for no adapted processes that are
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written as the product of two processes, one is adapted, and the second is

instantly independent.

2. Preliminaries

Let Ft, 0 ≤ a ≤ t ≤ b ≤ T a filtration satisfying the following conditions

:

• (a) Bt is {F}-adapted i.e. Bt is Ft measurable for each t ∈ [a, b].

• (b) (Bt −Bs) and Fs are independent for any s ≤ t ∈ [a, b].

Let H̃ be a some class of integrands and complete, and let E ∈ H̃ be the

class of step functions, and JH(f) be an integral of f ∈ E w.t.r. fractional

Brownian motion BH
t , under these assumptions:

• H̃ is an inner product space with an inner product < f, g >H̃, f, g ∈ H̃.

• for f, g ∈ E , < f, g >H̃= E[JH(f).J (g)].

• The set E is dense in H̃.

In this section, we give a short summary of fractional calculus for pro-

cesses driven by fractional Brownian motion.

Fractional calculus is a branch of mathematical analysis that unifies the

integration operator and differentiation operator of classical calculus as one

operator, the differintegral, which is a single operator depending on a real

valued parameter α, where the positive values of α correspond to differenti-

ation and negative values of α correspond to integration. Fractional calculus

is an extension, or generalization, of the well known classical calculus[2].

It was presented by B.W.Leibniz in (1695), as be mentioned by J.Wallis

the possible approach to fractional-order differentiation in that sense, for

non-integer values of n the definition is given as

dnexm

dxn
= mnemx.

Authors suggested to use this relationship also for negative or non-integer

(rational) values of n, and they generalized the notion of differentiation for

arbitrary functions.
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According to Riemann-Liouville, the notion of fractional integral of or-

der α, (α > 0) for a function f(t), is a natural consequence of the well known

formula (Cauchy-Dirichlet ) that reduces the calculation of the n-fold prim-

itive of a function f(t) to a single integral of convolution type

J n
a+f(t) =

1

(n− 1)!

∫ t

a
(t− τ)n−1f(τ)dτ, n ∈ N, (1)

disappear at t = a with its derivative 1, 2, 3, . . . , n− 1. Impose J n
a+f(t) and

f(t) to be causal function, here, vanishing for t < 0. Expand to any positive

real value by using the Gamma function (n− 1)! = Γ(n).

2.1. Fractional Integral of order α > 0 (Right-Sided)

We have

J α
a+f(t) =

1

Γ(n)

∫ t

a
(t− τ)α−1f(τ)dτ, α ∈ R. (2)

We define J 0
a+ = I, J 0

a+f(t) = f(t).

Alternatively(left-sided integral)

J α
b−f(t) =

1

Γ(n)

∫ b

t
(t− τ)α−1f(τ)dτ, α ∈ R.

For(a = 0, b = +∞), we have the Riemann derivative, and for (a = −∞, b =

+∞), we have the Liouville derivative. According to [2], we have the follow-

ing definition

Definition 1. Let f ∈ L2[a, b] ⊂ L2, 0 < α < 1 and t ∈ [a, b]. The fractional

derivatives of order α on the interval [a, b] are

(Dα
a+f)(t) =

1

Γ(1− α)

d

du

∫ b

a
f(u)(u− t)−α

+ du

and

(Dα
b−f)(t) =

1

Γ(1− α)

d

du

∫ b

a
f(u)(u− t)−α

+ du.

Furthermore, this case admits what is known as the Weyl representation of
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the fractional derivatives:

(Dα
a+f)(t) =

1

Γ(1− α)
[
f(t)

(t− a)α
+ α

∫ t

a

f(t)− f(u)

(t− u)α−1
du]

and

(Dα
b−f)(t) =

1

Γ(1− α)
[
f(t)

(b− t)α
+ α

∫ b

t

f(t)− f(u)

(t− u)α−1
du].

Notice that Dα
a+ = I−α

a+ and Dα
b− = I−α

b− . Furthermore, the fractional deriva-

tives Dα
a+ and Dα

b− are called left sided and right sided, respectively.

2.2. Fractional Brownian motion

There are another representations of the fractional Brownian motion

(fbm) as a Wienner’s integral ; Taken [0, T ], fbm (B
(H)
t )0≤t≤T is defined by

a general formula:

BH
t =

∫ t

0
KH(t, s)dBs, t ∈ [0, T ],

where (Bt)0≤t≤T is one-sided standard Brownian motion satisfying the con-

ditions (a) and (b).

2.3. Lévy-Hida representation

Following Decrensfond and Üstunel in [13], this Kernel is done as

KH(t, s) =
(t− s)

H− 1
2

+

Γ(H + 1
2)
F (

1

2
−H,H − 1

2
,H +

1

2
, 1− t

s
) , 0 < s < t <∞.

and F is Gauss hypergeometric function.

Generally, we have:

RH(t, s) =

∫ s∧t

0
KH(t, u)KH(s, u)du,

where, RH(t, s) is the covariance function.
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Proposition 1 ([18]). For H ∈ (12 , 1), the Kernel function is given by

KH(t, s) = CHs
1
2
−H

∫ t

s
|u− s|H− 3

2uH− 1
2du,

where

CH = (
H(2H − 1)

β(2− 2H,H − 1
2)

)
1
2 ,

with β is the beta function:

β(a, b) =

∫ 1

0
ta−1(1− t)1−bdt.

Corollary 1 ([18]). Beside the previous result, we have

RH(t, s) = (̟1(H))2
∫ t

0

{
r

1
2
−H(I

H− 1
2

T− uH− 1
21[0,t)(u))(r)

× (r
1
2
−H(I

H− 1
2

T− uH− 1
2 I[0,s)(u))(r))

}
dr

̟1 is defined by:

̟1 = (
Γ(H − 1

2)
2H(2H − 1)

β(2 − 2H,H − 1
2 )

)
1
2 .

Hence, this Kernel can be rewritten as

KH(t, s) = ̟1(H)s
1
2
−H(I

H− 1
2

T− uH− 1
2 I[0,t)(u))(s).

2.4. Lévy-Hida approach: [18]

By the above condition in last proposition, we have

∂KH(t, s)

∂t
= CH(

t

s
)H− 1

2 (t− s)H− 3
2 .

Thus, a linear operator K∗
H : E −→ L2[a, b] is given by:

(K∗
Hφ)(s) :=

∫ T

s
φ(t)

∂KH (t, s)

∂t
dt,

where, φ ∈ E .
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2.5. The spaces of stochastic test functions and stochastic distri-

butions

In all this work we denote S(R) the Schwartz space of rapidly decreasing

functions on R and S ′(R) denote its dual space. Let µ be the standard

Gaussian measure on S ′(R).

Let (L2) = L2(S ′(R), µ) and let (S) and (S)⋆ denote the spaces of test

functions and generalized functions on S ′(R), respectively. Then we have a

Geland triple

(S) ⊂ (L2) ⊂ (S)⋆.

2.6. (S)⋆-process, (S)⋆-derivative and (S)⋆-integral

Denote B(R) the Borelian σ-field on R and m a measure on B(R) such
that (R,B(R),m) is a σ-finite measure space.

Through this section, [0, T ] denote an element of B(R).
A measurable function Φ : I −→ (S)⋆ is called a stochastic distribution

process ((S)⋆-process). Φ is said differentiable at t0 if lim
r−→0

r−1(Φt0+r −Φt0)

exists in (S)⋆.
One notes

dΦt0
dt the (S)⋆-derivative at t0 of the stochastic distribution

process Φ. If Φ is differentiable at every t0 ∈ I, we said that Φ is differentiable

on I. Generally, for every k ∈ N, Φ is Ck in (S)⋆ if the process Φ : I −→ (S)⋆
is Ck.

Definition 2 ([16]). Assume that Φ : I −→ (S)⋆ is weakly in L1(I,m), i.e.

assume that for all ϕ in (S), the mapping u 7−→≪ Φu, ϕ ≫, from I to R

belongs to L1(I,m). Then there exists an unique element in (S)⋆, denoted∫
I Φum(du), such that, for all ϕ in (S).

≪
∫

I
Φum(du), ϕ ≫=

∫

I
≪ Φu, ϕ≫ m(du).

In this case, we say that Φ is (S)⋆- integrable on I (with respect to

the measure m), in the Pettis sense. In the sequel, when we do not specify

a name for the integral (resp. for the measure m) of an (S)⋆- integrable

process Φ on I, we always refer to the integral in Pettis’s sense (resp. to the

Lebesgue measure).
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2.7. S-transform and Wick product

Lemma 1 ([16]). For any (p, q) ∈ N2 and (X,Y ) ∈ (S)−p × (S)−q,

|S(X ⋄ Y )(η)| ≤ ‖X‖−p‖Y ‖−qe
|η|2max (p,q) .

Some properties of S-transforms :

(1) If Φ is deterministic function, then Φ ⋄ Ψ = ΦΨ, for all Ψ ∈ (S)⋆.
Furthermore, let (Xt)t∈R be a Gaussian process. If U and V two elements

of H, then

U ⋄ V = UV − E[UV ].

(2) Let Φ =
∑

k ak < ·, ek > and Ψ =
∑

n In(fn) be in (S)⋆. So, their

S-transforms are given respectively as follows

S(Φ)(η) =
∑

k

ak < η, ek >L2(R),

and

S(Ψ)(η) =
∑

k

< fn, η
⊗n >,

for every η ∈ L(R).

(3) For every (f, η, ξ) in L2(R)× L(R)× R, we have

(S)(eiξ<·,f>)(η) = e
1
2
(|η|20+2iξ<f,η>−ξ2|f |20).

Also, the S-transform verifies the following properties: see [Lebovits][16].

Lemma 2.

(1) The map S : Φ 7−→ S(Φ), from (S)⋆ into F(L(R)× R) is injective.

(2) Let Φ : I −→ (S)⋆ be a (S)⋆ process. If Φ is (S)⋆-integrable on I w.r.t

m, then one has

∀η ∈ L(R),S(
∫

I
Φ(u)m(du))(η) =

∫

I
S(Φ(u))(η)m(du).

(3) Let Φ : I −→ (S)⋆ be a (S)⋆ process. If Φ is (S)⋆ -differentiable at t ∈ I,

then, for every η in L(R) the map u 7−→ [SΦ(u)](η) is differentiable at t
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and verifies

S[dΦ
dt

(t)](η) =
d

dt
[SΦ(t)](η).

Theorem 1 ([15]). Let Φ : I −→ (S)⋆ be a stochastic distribution such that

for all η in L(R), the real-valued map t 7−→ S[Φ(t)](η) is measurable and

such that there exist p ∈ N, a ∈ R and a function L in L1(I,m) such that

|S(Φ(t))(η)| ≤ L(t)ea|η|2p , for all η of L(R) and for almost every t of I. Then

Φ is (S)⋆-integrable on I, w.r.t to m.

Theorem 2 ([3]). For any differentiable map F : I −→ L′(R), the element

< ·, F (t) > is a differentiable stochastic distribution process which satisfies

the equality:

d

dt
< ·, F (t) >=< ·, dF

dt
(t) >

2.8. Operators (MH)H∈(0,1)

We now define our fundamental L2(R)-operator MH for 0 < H < 1 , in

the Fourier domain by:

M̂H(u)(y) =

√
2π

cH
|y|1/2−H û(y),∀y ∈ R

⋆,

where cH is defined by

cH = (
2π

Γ(2H + 1) sin(πH)
)
1
2 . (3)

We define the homogeneous Sobolev space of order 1
2 −H, noted L2

H(R) as:

L2
H(R) := {u ∈ S ′(R) : û = Tϕ;ϕ ∈ L1

Loc(R) and ‖u‖H < +∞},

where the norm derives from the inner product which is defined on L2
H(R),

(for more details see [16]).

3. A New Stochastic Integration

In this part, we define our idea for stochastic integration ; we will in-

tegrate with respect to fractional Brownian motion a no adapted process,
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this later is a product of two processes, one is adapted, and the second is

instantly independent.

Our work is based on a result of Ayed and Kuo [5], but in our case,

we integrate with respect to fractional Brownian motion where the Hurst

parameter H is upper then 1
2 , and we append this work by a new integration

of J.Lebovits [7].

Definition 3. A stochastic process φ(t) is called instantly independent pro-

cess of {Ft} if φ(t) and Ft are independent for each t ∈ [a, b].

Suppose f(t) is an {Ft}-adapted continuous stochastic process which is

also L2- integrable. We present the following definition

Definition 4. For an adapted stochastic process f(t) and an instantly inde-

pendent stochastic process φ(t), we define the stochastic integral of f(t)φ(t)

with respect to fractional Brownian motion BH
t as follows :

∫ b

a
f(t)φ(t)dBH

t = lim
||∆n||−→0

n∑

i=1

f(ti−1)φ(ti)(B
H
ti −BH

ti−1
). (4)

According to the stochastic integration w.r.t fractional Brownian motion

introduced in [18], for t ∈ [a, b] we have the following Wienner’s Integration

:
∫ b

a
φ(t)dBH

t =

∫ b

a
φ(t)K⋆

HdBt. (5)

Hence, if f(t)φ(t)K⋆
H ∈ L2[a, b], then this integral is well defined and we

have
∫ b

a
f(t)φ(t)dBH

t =

∫ b

a
f(t)φ(t)K⋆

HdBt. (6)

Here, we integrate the product of two measurable processes with respect to

standard Brownian motion Bt. Therefore, we find ourselves in the definition

presented by Kuo et.al [9].

If we Take ψ = f(t)K⋆
H , we verify that this new process is also adapted.

By the above definition of K⋆
H , we can show that ψ is adapted. Indeed,

we have f(t) is an {Ft}-adapted stochastic process with almost all sample

paths being in L2[a, b], moreover, K⋆
H is an linear operator in L2[a, b].
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Therefore, the product of f(t) and K⋆
H are in L2[a, b], from it, we con-

clude that ψ is an {Ft}-adapted process with almost all sample paths being

in L2[a, b].

We have given some properties of fractional Brownian motion, our aim

is to define stochastic integral of the form

∫ b

a
F (t, ω)dBH

t , (7)

whereBH is fbm(fractional Brownian motion) and F is non-adapted stochas-

tic process, which is written as a product of two processes, one is adapted

process and the second is instantly independent.

It’s necessary to give some notions before explaining our approach.

Since BH is a Gaussian process, it easier for us to integrate with respect

to this process (For more details see [16]). There remains the problem that

the integrator is a non-adapted process.

The next definition from [16] is needed for our approach

Definition 5. Define for every t in R

W
(G)
t =< ·, G′

t >, (8)

where the equality holds in (S⋆). Then (W
(G)
t )t∈R is a (S⋆)-process and is

the (S⋆)-derivative of the process (Gt)t∈R. We will sometimes dGt

dt instead

of W
(G)
t .

By proposition 2.2 in [16], W
(G)
t is defined by

W
(G)
t =

+∞∑

k=0

(
d

dt
< Gt, ek >) < ·, ek > . (9)

‖W (G)
t ‖−p is continuous if and only if |G′

t|−p is continuous.

Remark 1 ([7]). The process ‖W (BH )
t ‖−p is continuous on the compact set

[0, T ] for every p ≥ 2 and H ∈ (0, 1).

As the fbm BH is continuous non-derivable, we define its increments for

a time interval s. They can be assimilated to a derivative of the process at a
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resolution s. They are called fractional Gaussian noises. Such an increment

is defined by

Gs(i) = BH(i)−BH(i− s) (10)

Now, we introduce the integral of a non-adapted process F w.r.t to fbm .

Since the map s −→ Gs is (weakly) differentiable on I , we give a Wienner’s

integral w.r.t Gs as

∫

I
F (s)dGs =

∫

I
f(s)φ(s)dGs;

=

∫

I
f(s)φ(s)d[BH(i) −BH(i− s)];

=

∫

I
f(s)φ(s)d

[BH(i)−BH(i− s)

ds

]
ds;

=

∫

I
f(s)φ(s)WBH

i
−BH

i−sds.

(11)

Before passing to give assumption about a process f(t) and φ(t), we need

the next definition from [15];

Definition 6 (Bochner’s Integral). Let I be a subset of [0, 1] endowed

with the Lebesgue’s measure. One says that Φ : I −→ (S)⋆ is Bochner’s

integrable of index p on I if it satisfies the two following conditions:

1. Φ is weakly measurable on I, i.e. t −→≪ Φt, ϕ ≫ is measurable on I

for every ϕ in (S).

2. There exists p in N such that Φt ∈ (S−p) for almost every t in I and

such that t −→ ‖Φt‖−p belongs to L1(I, dt).

The Bochner’s integral of Φ on I is denoted

∫

I
Φ(t)dt.

According to [16], we have this definition

Definition 7 (Wick-Itô’s integral w.r.t Gaussian process). Let X be

a process with state space (S)⋆ such that the process t 7−→ Xt ⋄ WG
t is

(S)⋆-integrable on R. The process X is then said to be dG-integrable on R
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w.r.t the Gaussian process G. The Wick-Itô’s integral of X w.r.t G, on R,

is defined by setting:

∫

R

Xsd
⋄Gs :=

∫

R

Xs ⋄W (G)
s ds. (12)

For any Borel set I of R, we also define

∫

I
Xsd

⋄Gs :=

∫

R

II(s)Xsd
⋄Gs.

Now, back to our approach ; Let H ∈ (0, 1), [a, b] is Borel’s subset of

(0, 1). BH = (BH
t )t∈[a,b] is a fbm with Hurst parameter H ∈ [0, 1]. Assuming

that f(t)φ(t) is an (S)⋆-valued process, we have the following results

(i) There exists p ∈ N such that f(t)φ(t) ∈ (S)⋆ for a.e t ∈ [a, b].

(ii) the process f(t)φ(t) ⋄WH
t is Bochner’s integrable on [a, b].

Example 1. Let ∆ = {0 = t0, t1, t2, · · ·, tn = 1} be a partition of the

interval [0, 1]. On the subinterval [ti−1, ti], we take the right endpoint ti as

the evaluation point for the integrand B(1)−B(t). We define this integral

∫ 1

0
(B(1) −B(t))d⋄BH(t)

= lim
‖∆‖−→0

n∑

i=1

(B(1) −B(ti))(W
BH

ti −WBH

ti−1
);

=B(1)2 − lim
‖∆‖−→0

n∑

i=1

B(ti)(W
BH

ti −WBH

ti−1
);

=B(1)2 − lim
‖∆‖−→0

n∑

i=1

{[B(ti)−B(ti−1)] +B(ti−1)}(WBH

ti −WBH

ti−1
);

=B(1)2 − 1−
∫ 1

0
B(t)d⋄BH(t), (13)

where the last integral is the Wick-Itô’s integral.

We conclude that

∫ 1

0
B(1)d⋄BH(t) = B(1)2 − 1.

In this way, we define an adapted process f and an instantly independent

process φ on [0, T ], with respect to BH . Since the map s −→ BH
s is weakly
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differentiable on [0, T ], we present the formal definition of the Wienner’s

integral w.r.t BH denoted
∫
[0,T ] f(s)φ(s)d

⋄BH
s , by setting

∫

[0,T ]
f(s)φ(s)d⋄BH

s =

∫

[0,T ]
f(s)φ(s)

dBH
s

ds
ds =

∫

[0,T ]
f(s)φ(s)WBH

s ds, (14)

In general, the problem of non-adaptation remains , in this case, we passe

to give this definition

Definition 8. For an adapted stochastic process f(t) and an instantly in-

dependent stochastic process φ(t), we define stochastic integral of f(t)φ(t)

as follow

∫

[0,T ]
f(s)φ(s)d⋄BH

s = lim
‖∆n‖−→0

n∑

i=1

f(ti−1)φ(ti)(w
BH

ti − wBH

ti−1
), (15)

provided that the limit in probability exists.

3.1. Some examples of our approach

Example 2. For t ∈ [0, 1], we calculate the following stochastic integral

using our approach ;
∫ t

0
B(1)B(s)d⋄BH

s .

The random variable B1 is independent of BH
s because s is less than t,

but the randon variable Bs is adapted to the filtration generated by BH
s and

so the randon variable B(1)B(s) is not adapted to the filtration generated by

BH
s and which is written as a product of two variables, one is instantly inde-

pendent of {BH
s , s ≥ 0} and the other is adapted to the filtration generated

by {BH
s , s ≥ 0}.

By (13), this formula is given as

∫ t

0
B(1)B(s)d⋄BH

s =





1
2B(1)(B(t)2 − t)−

∫ t

0
WBH

s ds, 0 < t ≤ 1

1
2B(1)(B(t)2 − t)−

∫ 1

0
WBH

s ds, t > 1.
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Example 3. Let f(t) and g(t) be two deterministic functions in L2([0, 1]).

Then

∫ 1

0
g(t)(

∫ 1

0
f(s)dB(s))d⋄BH(t) =

∫

[0,1]2
g(t)f(s)dB(s)⊗ d⋄BH(t)

Note that the Wiener integral of f(s) in the left-hand side has the de-

composition

∫ 1

0
f(s)dB(s) =

∫ t

0
f(s)dB(s) +

∫ 1

t
f(s)dB(s),

while noticing that the first integral is in the itô part and the second integral

is in the counterpart.

Let Wi =WBH

ti −WBH

ti−1
. By Definition 8, we have

∫ 1

0
g(t)(

∫ 1

0
f(s)dB(s))d⋄BH(t)

= lim
‖∆‖−→0

n∑

i=1

g(ti−1)[

∫ ti−1

0
f(s)dB(s) +

∫ 1

ti

f(s)dB(s)]∆Wi;

= lim
‖∆‖−→0

n∑

i=1

g(ti−1)[

∫ 1

0
f(s)dB(s)−

∫ ti

ti−1

f(s)dB(s)]∆Wi;

=

∫ 1

0
f(s)dB(s)− lim

‖∆‖−→0

n∑

i=1

g(ti−1)f(ti−1)[B(ti)−B(ti−1)]∆Wi;

=

∫ 1

0
f(s)dB(s)

∫ 1

0
g(t)dBH(t)

− lim
‖∆‖−→0

n∑

i=1

g(ti−1)f(ti−1)[B(ti)−B(ti−1)]∆Wi;

=

∫ 1

0
f(s)dB(s)

∫ 1

0
g(t)dBH(t)−

∫ 1

0
g(t)f(t)WBH

(t)dt

Conclusion

The itô’s integral is perfect for making sense and studying the differ-

ential systems driven by a semimartingale, so unfortunately we cannot use

it in the case of the fractional Brownian motion. If H > 1
2 , the fractional



✐

“BN16N43” — 2022/1/20 — 11:37 — page 336 — #16
✐

✐

✐

✐

✐

336 K. BACHIR CHERIF AND A. KANDOUCI [December

has sufficiently regular trajectories to be able to use Young’s integral, which

is defined a bit like the Riemann integral, namely a passage to the limit

after discretization. But the problem is going to complicate when the inte-

grands are not adapted processes, in this case we take the wick-Itô’s integral.

In this paper, we introduced a new approach of stochastic integration for

non-adapted processes with respect to fractional Brownian motion (BH
s )s≥0

(which is not a semimartingale for H 6= 1
2 ). These processes are written as a

product of two processes, one is instantly independent of BH
s and the other

is adapted to the filtration generated by {BH
s , s ≥ 0}.
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