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Abstract

In this work, we study the existence results for higher order fractional differen-

tial equations involving the Caputo-Hadamard fractional derivative subject to integral

boundary conditions (IBCs for short). Our results are obtained by using the technique of

measures of noncompactness combined with fixed point theorem of Mönch. An example

demonstrating the effectiveness of the theoretical findings is presented.

1. Introduction

In latest years, fractional differential equations (FDEs for short) theory

has received very broad regard in the fields of pure and applied mathematics,

see [20, 23]. FDE’s emerge naturally in diverse scopes of science, with many

applications, e.g. [4, 13, 18, 24, 30].
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Measure of noncompactness (MNC for short) combined with one of

fixed point theorems, as Darbo [12] Sadovski [27], Mönch [25] is an im-

portant and efficacy tool in study of differential or integral equations. Ku-

ratowski [21] introduced the concept of MNC, which played an important

role in fixed point theory, Gohberg [16] gave an other measure called Haus-

dorff measure later Darbo [12] used Kuratowski’s MNC to generalize the

Schauder’s theorem of fixed point. After, that many authors studied and

solved some problems by using MNC in study of different kind problems, as

differential equations, integral equations and integro-differential equations,

see [1, 6, 7, 8, 9, 10, 11, 17, 28].

Recently in [3], Arioua et al, studied the existence of solutions of the

following problem of FDEs

{

C
HDr1

1 κ (τ) = q (τ,κ (τ)) , τ ∈ (1, e) , 2 < r1 ≤ 3,

κ (1) = κ
′ (1) = 0, C

HDr1−1
1 κ (e) = C

HDr1−2
1 κ (e) = 0,

where C
HDr1

1 is the fractional derivative (FD for short) in Caputo-Hadamard

sense of order r1 and q : [1, e]× R → R is a given continuous function.

In [15], Duraisamy et al, used some fixed point theorems to debate the

existence of solutions of higher order FDEs given by



















CDr1κ (τ) = q (τ,κ (τ)) , τ ∈ [0, 1] , r1 ∈ (n− 1, n] , n ≥ 2, n ∈ N,

κ (0) = κ
′ (0) = κ

′′ (0) = · · · = κ
(n−2) (0) = 0,

κ (1) =
n
∑

i=1
γi
[

Iβiκ (ηi)− Iβiκ (ζi)
]

, βi > 0,

where CDr1 and Iβi are the Caputo FD and Riemann-Liouville fractional

integral (FI for short)of order r1, βi, respectively, 0 < ζ1 < η1 < ... < ζn <

ηn < 1 and q : [0, 1]× R → R is a given continuous function.

In [11] Boutiara et al, used the technique of MNC to study existence of

solution of the following FDEs with three-point boundary conditions

{

C
HDr1κ (τ) = q (τ,κ (τ)) , τ ∈ [1, T ] ,

ax(1) + bx (T ) = λIqκ (η) + δ, q ∈ (0, 1] ,

where Iq is the Hadamard FD of order q, 0 < r1, q ≤ 1, q : [1, T ]×X → X is

a given continuous function, X is a Banach space, a, b, λ ∈ R and η ∈ (1, T ).
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Inspired and motivated by the aforementioned works, we prove the ex-

istence of mild solutions for higher order FDEs with integral boundary con-

ditions















C
HDr1

1 κ (τ) = q (τ,κ (τ)) , τ ∈ (1, τ1) , r1 ∈ (n− 1, n] , n ≥ 2,

κ (1) = κ
′ (1) = κ

′′ (1) = · · · = κ
(n−2) (1) = 0,

κ (τ1) = λ
∫ τ1
1 κ (ζ) dζ

ζ
, λ ∈ R,

(1.1)

where q : [a, b] × X → X is given continuous function satisfying some as-

sumptions that will be specified later, and X be a Banach space with the

norm ‖.‖.

This paper is structured as follows. In Sect. 2, we give some funda-

mentals ideas of fractional calculus (FC for short) and Kuratowski MNC

techniques. In Sect. 3, we demonstrate the existence outcomes for (1.1) by

using the fixed point theorem of Mönch. At the end, an example is given in

Sect. 4.

2. Preliminaries

In this part, we give some fundamentals ideas of FC, Kuratowski MNC

techniques and fixed point theorem that prerequisite in our analysis.

Let J1 = [1, τ1]. By C = C (J1,X ) we denote the Banach space of all

continuous functions κ : J1 → X with norm

‖κ‖
∞

= sup {‖κ (τ)‖ : τ ∈ J1} .

Let L1 (J1,X ) be the Banach space of measurable functions κ : J1 → X

that are Lebesgue integrable with norm

‖κ‖L1 =

∫

J1

‖κ (τ)‖ dτ.

And AC(J1,X ) be the space of absolutely continuous valued functions on

J1, and set

ACn (J1) =
{

κ : J1 → X : κ, κ
′, κ

′′, . . . ,κn−1 ∈ C(J1,X ),

and κ
n−1 ∈ AC(J1,X )

}

.
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Furthermore, for a given set V of function v : J1 → X let us denote by

V (τ) = {v (τ) : v ∈ V} , τ ∈ J1,

and

V (J1) = {v (τ) : v ∈ V, τ ∈ J1} .

Definition 1 ([20]). The Hadamard FI of order r1 > 0 for a function κ ∈

L1 (J1) is described by

HIr11 κ (τ) =
1

Γ (r1)

∫ τ

1

(

log
τ

ζ

)r1−1

κ (ζ)
dζ

ζ
, r1 > 0.

Set δ =
(

τ d
dτ

)

, n = [r1] + 1, where r1 denotes the integer part of r1. Define

the space

ACn
δ (J1) =

{

κ : J1 → R : δn−1
κ (τ) ∈ AC(J1)

}

.

Definition 2 ([20]). The Hadamard FD of order r1 > 0 for a function

κ ∈ ACn
δ (J1) is described by

HDr1
1 κ (τ) = δn

(

HIn−r1κ
)

(τ)

=
1

Γ (n− r1)

(

τ
d

dτ

)n ∫ τ

1

(

log
τ

ζ

)n−r1−1

κ (ζ)
dζ

ζ
.

Definition 3 ([19]). The Caputo-Hadamard FD of order r1 > 0 for a func-

tion κ ∈ ACn
δ (J1) is described by

C
HDr1

1 κ (τ) =
(

HIn−r1
1 δnκ

)

(τ)

=
1

Γ (n− r1)

∫ τ

1

(

log
τ

ζ

)n−r1−1

δnκ (ζ)
dζ

ζ
.

Lemma 1 ([19]). Let r1 > 0 and n = [r1] + 1. If κ ∈ ACn
δ (J1), then the

Caputo-Hadamard FDE

C
HDr1

1 κ (τ) = 0,

has a solution

κ (τ) =

n−1
∑

k=0

ck (log τ)
k ,



2021] FRACTIONAL DIFFERENTIAL EQUATIONS 293

and the following formula holds

HIr11
(

C
HDr1

1 κ (τ)
)

= κ (τ) +

n−1
∑

k=0

ck (log τ)
k ,

where ck ∈ R, k = 1, 2, . . . , n− 1.

To study the nonlinear problem (1.1), we need the following lemma.

Lemma 2. Let ∆ = n (log τ1)
n−1−λ (log τ1)

n 6= 0. For any ω ∈ C, then the

solution of boundary value problem



















C
HDr1

1 κ (τ) = ω (τ) , τ ∈ (1, τ1) ,

κ (1) = κ
′ (1) = κ

′′ (1) = · · · = κ
(n−2) (1) = 0,

κ (τ1) = λ
∫ τ1
1 κ (ζ) dζ

ζ
,

(2.1)

is obtained as

κ (τ) =
1

Γ (r1)

∫ τ

1

(

log
τ

ζ

)r1−1

ω (ζ)
dζ

ζ

+
n (log τ)n−1

∆

(

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1

ω (ζ)
dζ

ζ

−λ

∫ τ1

1

(

1

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1

ω (σ)
dσ

σ

)

dζ

ζ

)

. (2.2)

Proof. Using HIr11 to (2.1), and by Lemma 1, we have

κ (τ) = Ir1ω (τ)− c0 − c1 log τ − c2 (log τ)
2 − · · · − cn−1 (log τ)

n−1 , (2.3)

then

κ
′ (τ) =

1

Γ (r1 − 1) τ

∫ τ

1

(

log
τ

ζ

)r1−2

ω (ζ)
dζ

ζ
−

c1

τ
− c2

2 log τ

τ

− · · · − cn−1
(n− 1) (log τ)n−2

τ
,

κ
′′ (τ) =

−1

Γ (r1 − 1) τ2

∫ τ

1

(

log
τ

ζ

)r1−2

ω (ζ)
dζ

ζ
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+
1

Γ (r1 − 2) τ

∫ τ

1

(

log
τ

ζ

)r1−3

ω (ζ)
dζ

ζ

− c1

(

−1

τ2

)

− 2c2

(

1

τ2
−

log τ

τ2

)

− · · · − (n− 1) cn−1

(

(log τ)n−2

τ2
−

(n− 2) (log τ)n−3

τ2

)

, . . . .

Applying the boundary conditions, we have

c0 = c1 = c2 = · · · = cn−2 = 0. (2.4)

By substituting (2.4) in (2.3), we get

κ (τ) = HIr11 ω (τ)− cn−1 (log τ)
n−1 . (2.5)

From the integral condition of (2.1), we have

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1

ω (ζ)
dζ

ζ
− cn−1 (log τ1)

n−1

=λ

∫ τ1

1

(

1

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1

ω (σ)
dσ

σ

)

dζ

ζ
−

λcn−1 (log τ1)
n

n
,

so

cn−1 =
n

∆

(

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1

ω (ζ)
dζ

ζ

−λ

∫ τ1

1

(

1

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1

ω (σ)
dσ

σ

)

dζ

ζ

)

. (2.6)

By substituting (2.6) in (2.5), we obtain (2.2). ���

Definition 4 ([2, 5]). Let X be a Banach space and ΩX the bounded subsets

of X . The Kuratowski MNC is the map m : ΩX → [0,∞) defined by

m (B) = inf {ǫ > 0 : B ⊆ ∪n
i=1Bi and diam (Bi) ≤ ǫ} , here B ∈ ΩX .

This MNC satisfies some properties:

(a) m (B) = 0 ⇔ B is compact (B is relatively compact),

(b) m (B) = m
(

B
)

,

(c) A ⊂ B ⇒ m (A) ≤ m (B),
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(d) m (A+B) ≤ m (A) +m (B),

(e) m (cB) = |c|m (B) , c ∈ R,

(f) m (convB) = m (B).

HereB and convB denote the closure and the convex hull of the bounded

setB, respectively. For more details of m and its properties, we refer to [2, 5].

Definition 5 ([5]). A map q : J1×X → X is called Carathéodory whenever

the map τ → q (τ,κ) is measurable ∀ κ ∈ X , and the map κ → q (τ,κ) is

continuous for almost all τ ∈ J1.

We need the following results, which play an important role in the

achievement of the desired results in this research.

Theorem 1 ([25]). Let D be a bounded, closed and convex subset of the

Banach space such that 0 ∈ D, and let Φ : D → D be a continuous mapping.

If the implication

V = convΦ (V) or V = Φ(V) ∪ {0} ⇒ m (V) = 0,

holds for every V of D, then Φ has a fixed point.

Lemma 3 ([29]). Let C be a Banach space, and D ⊂ C be a bounded, closed

and convex subset. Let G be a continuous function on J1 × J1 and q a

function from J1×X → X , which satisfies the Carathéodory conditions, and

suppose there is an integrable function p : J1 → R
+ such that, ∀ τ ∈ J1 and

each bounded set B ⊂ X , we have

lim
h→0+

m (q (Jτ,h ×B)) ≤ p (τ)m (B) , here Jτ,h = [τ − h, τ ] ∩ J1.

If V is an equicontinuous subset of D, then

m

({
∫

J1

G (s, τ) q (s, y (s)) ds : y ∈ V

})

≤

∫

J1

‖G (s, τ)‖ p (s)m (V (s)) ds.

3. Existence Results

In what follows, we prove existence results for (1.1) by means the Mönch

fixed point theorem.
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The following hypotheses are needed to obtain our main results:

(As1) q : J1 × X → X is a Carathéodory function.

(As2) There exist pq ∈ L1 (J1,R
+) ∩ C (J1,R

+) such that

‖q (τ,κ)‖ ≤ pq (τ) ‖κ‖ ,∀ (τ,κ) ∈ J1 × X .

(As3) For each bounded set B ⊂ X and ∀τ ∈ J1, we have

lim
h→0+

m (q (Jτ,h ×B)) ≤ pq (τ)m (B) , here Jτ,h = [τ − h, τ ] ∩ J1.

Theorem 2. Suppose that the hypotheses (As1)−(As3) are true. If

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

n (log τ1)
n−1

|∆|

(

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

|λ| (log τ1)
r1+1

p∗q

Γ (r1 + 2)

)

< 1. (3.1)

Then, (1.1) has a mild solution on J1.

Proof. Initially, to switch (1.1) into a fixed point problem, we consider the

operator Φ : C → C as

(Φκ) (τ) =
1

Γ (r1)

∫ τ

1

(

log
τ

ζ

)r1−1

q(ζ,κ (ζ))
dζ

ζ

+
n (log τ)n−1

∆

(

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1

q(ζ,κ (ζ))
dζ

ζ

−λ

∫ τ1

1

(

1

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1

q(σ,κ (σ))
dσ

σ

)

dζ

ζ

)

. (3.2)

Clearly, the mild solution of (1.1) is a fixed point of the operator Φ. Consider

the nonempty bounded closed convex subset

Ω = {κ ∈ C : ‖κ‖ ≤ M0},

where M0 is chosen such that

M0 ≥
(log τ1)

r1 p∗q

Γ (r1 + 1)
+

n (log τ1)
n−1

|∆|

(

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

|λ| (log τ1)
r1+1 p∗q

Γ (r1 + 2)

)

,
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with p∗q = sup {pq(τ) : τ ∈ J1}. We will demonstrate that Φ satisfies the

hypotheses of Theorem 1. The proof will be presented as follows.

Step 1.We demonstrate that Φ (Ω) ⊂ Ω.

For κ ∈ Ω, we have

‖(Φκ) (τ)‖

≤
1

Γ (r1)

∫ τ

1

(

log
τ

ζ

)r1−1

‖q(ζ,κ (ζ))‖
dζ

ζ

+
n (log τ)n−1

|∆|

(

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1

‖q(ζ,κ (ζ))‖
dζ

ζ

+ |λ|

∫ τ1

1

(

1

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1

‖q(ζ,κ (ζ))‖
dσ

σ

)

dζ

ζ

)

≤
(log τ1)

r1 p∗q

Γ (r1 + 1)
+

n (log τ1)
n−1

|∆|

(

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

|λ| (log τ1)
r1+1 p∗q

Γ (r1 + 2)

)

,

and consequently

‖Φκ‖
∞

≤ M0.

Hence, Φ (Ω) ⊂ Ω and the set Φ (Ω) is uniformly bounded.

Step 2. Φ sends bounded sets of C into equicontinuous sets.

For τ1, τ2 ∈ J1, τ1 < τ2 and for κ ∈ Ω, we have

‖(Φκ) (τ2)− (Φκ) (τ1)‖

≤
p∗q

Γ (r1)

∫ τ1

1

[

(

log
τ2

ζ

)r1−1

−

(

log
τ1

ζ

)r1−1
]

dζ

ζ

+
p∗q

Γ (r1)

∫ τ2

τ1

(

log
τ2

ζ

)r1−1
dζ

ζ

+
np∗q

(

(log τ2)
n−1 − (log τ1)

n−1
)

|∆|

(

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1
dζ

ζ

+ |λ|

∫ τ1

1

(

p∗q

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1
dσ

σ

)

dζ

ζ

)
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≤
p∗q

Γ(r1 + 1)
((log τ2)

r1 − (log τ1)
r1)

+
n
(

(log τ2)
n−1 − (log τ1)

n−1
)

|∆|

(

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

|λ| (log τ1)
r1+1

p∗q

Γ (r1 + 2)

)

.

As τ1 → τ2, we obtain

‖(Φκ) (τ2)− (Φκ) (τ1)‖ → 0.

Hence Φ (Ω) is equicontinuous.

Step 3: Φ is continuous.

Let {κn} be sequence such that κn → κ in C. Then, ∀τ ∈ J1 , we have

‖(Φκn) (τ)− (Φκ) (τ)‖

≤
1

Γ (r1)

∫ τ

1

(

log
τ

ζ

)r1−1

‖q(ζ,κn (ζ))− q(ζ,κ (ζ))‖
dζ

ζ

+
n (log τ)n−1

|∆|

(

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1

‖q(ζ,κn (ζ))− q(ζ,κ (ζ))‖
dζ

ζ

+ |λ|

∫ τ1

1

(

1

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1

‖q(ζ,κn (ζ))− q(ζ,κ (ζ))‖
dσ

σ

)

dζ

ζ

)

.

Since q is Carathéodory type, then by the Lebesgue dominated convergence

theorem, we have

‖(Φκn)− (Φκ)‖
∞

→ 0 as n → ∞.

Now let V be a subset of Ω such that V ⊂ conv ((ΦV) ∪ {0}). V is bounded

and equicontinuous, and therefore the function v → v (τ) = m (V (τ)) is

continuous on J1. By assumption (As3), Lemma (3) and the properties of

the measure m we have for each τ ∈ J1

v (τ) ≤m ((ΦV) (τ) ∪ {0}) ≤ m ((ΦV) (τ))

≤
1

Γ (r1)

∫ τ

1

(

log
τ

ζ

)r1−1

pq (ζ)m (V (s))
dζ

ζ

+
n (log τ)n−1

|∆|

(

1

Γ (r1)

∫ τ1

1

(

log
τ1

ζ

)r1−1

pq (ζ)m (V (s))
dζ

ζ
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+ |λ|

∫ τ1

1

(

1

Γ (r1)

∫ ζ

1

(

log
ζ

σ

)r1−1

pq (ζ)m (V (s))
dσ

σ

)

dζ

ζ

)

≤
(log τ1)

r1 p∗q ‖v‖∞
Γ (r1 + 1)

+
n (log τ1)

n−1

|∆|

(

(log τ1)
r1 p∗q ‖v‖∞

Γ (r1 + 1)

+
|λ| (log τ1)

r1+1
p∗q ‖v‖∞

Γ (r1 + 2)

)

≤ ‖v‖
∞

(

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

n (log τ1)
n−1

|∆|

(

(log τ1)
r1 p∗q

Γ (r1 + 1)

+
|λ| (log τ1)

r1+1
p∗q

Γ (r1 + 2)

))

.

This means that

‖v‖
∞

[

1−

(

(log τ1)
r1p∗q

Γ (r1 + 1)
+

n (log τ1)
n−1

|∆|

(

(log τ1)
r1 p∗q

Γ (r1 + 1)
+
|λ| (log τ1)

r1+1
p∗q

Γ (r1 + 2)

))]

≤ 0.

As (3.1), it yields to ‖v‖
∞

= 0, which implies that v (τ) = 0 ∀ τ ∈ J1, and

then V (τ) is relatively compact in X . In the light of Ascoli-Arzela theorem,

V is relatively compact in Ω. So, by the Mönch theorem, we infer that Φ

has fixed point which is a mild solution of (1.1) ���

4. Example

In this portion. To validate the existence results, we consider the fol-

lowing FDE.

{

C
HD

5

2

1 κ (τ) = 1
3τ2+exp(τ2−1)

κn (τ) ,

κ (1) = κ
′ (1) = 0, κ (e) = 1

2

∫ e

1 κ (ζ) dζ
ζ
.

(4.1)

Here, r1 =
5
2 , λ = 1

2 , τ1 = e, n = 3. With these data we find ∆ = 2.5 6= 0.

Let

X = l1 =

{

κ = (κ1,κ2, . . . ,κn, . . .) :

∞
∑

n=1

|κn| < ∞

}

,
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equipped with the norm

‖κ‖
X
=

∞
∑

n=1

|κn| .

Set

κ = (κ1,κ2, . . . ,κn, . . .) and q = (q1, q2, . . . , qn, . . . , ) ,

qn (τ,κn) =
1

3τ2 + exp (τ2 − 1)
κn, τ ∈ J1,

For each κn and τ ∈ J1, we have

|qn (τ,κn)| ≤
1

3τ2 + exp (τ2 − 1)
|κn| . (4.2)

Thus, assumptions (As1) and (As2) are valid with pq (τ) = 1
3τ2+exp(τ2−1)

.

By (4.2) and for any bounded set B ⊂ l1, we have

m (q (τ,B)) ≤
1

3τ2 + exp (τ2 − 1)
m (B) for each τ ∈ J1,

Hence (As3) is satisfied. The condition

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

n (log τ1)
n−1

|∆|

(

(log τ1)
r1 p∗q

Γ (r1 + 1)
+

|λ| (log τ1)
r1+1

p∗q

Γ (r1 + 2)

)

≃ 0.18 < 1,

where p∗q = sup
τ∈J1

pq (τ) =
1
4 . Then, in the light of Theorem 2, we infer that

the problem (4.1) has at least one mild solution on [1, e] .
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