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Abstract

In this paper, we define the stochastic integral of an anticipating integrand, which

is a product of instantly independent process and adapted process, with respect to sub-

fractional Brownian motion based on Ayed and Kuo’s approach. This provides a new

concept of stochastic integration of non-adapted process. Further, we prove that our

anticipating integral is a near-martingale under some conditions.

1. Introduction

In recent years, the property of long-range dependence appears in many

fields including turbulence, telecommunication, finance and so on. The

fractional Brownian motion (fBm) is considered as the most-used process

that exhibits this property. The fBm (BH
t ; t ≥ 0) with a Hurst parameter
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H ∈ (0, 1) is a centered Gaussian process with covariance

RH(s, t) =
1

2
[t2H + s2H + |t− s|2H ] (1)

for all s, t ≥ 0, BH is a self-similar process with stationary increment and

presents a long-range dependence when H > 1
2 .

A more general self-similar Gaussian process considered as an interme-

diate between standard Brownian motion and fractional Brownian motion

has been introduced in Bojdecki et al. [3] and appeared in Dzhaparidze and

Van Zanten [5] as the even part of fractional Brownian motion. This pro-

cess arises from occupation time fluctuations of branching particle systems

with Poisson initial condition. The so called sub-fractional Brownian motion

(SH
t ; t ≥ 0) is a centered Gaussian process with covariance

CH(s, t) = s2H + t2H −
1

2
[(t+ s)2H − |t− s|2H ], (2)

for all s, t ≥ 0. For H = 1
2 , both SH and BH coincide with the standard

Brownian motion. The sub-fBm preserves many properties of fBm (self-

similarity, long-range dependence, and Hölder paths) but not the stationarity

of increments. Further, the increments on the intervals [u, u+r] are [u+r, u+

2r] are more weakly correlated than those of fBm. Note that the sub-fBm is

neither a Markov processes nor a semimartingale. This fact is considered as

a limitation for applying classical stochastic calculus developed by Itô; i.e, to

give a sense for

∫ t

0
usdXs, the integrator X must be a semimartingale which

is not the case for SH . Therefore, many of the techniques from stochastic

analysis are not available when dealing with SH , for this reason various

approaches have been proposed. Tudor [22, 24] characterized the Wiener

integral’s domain with respect to SH for all H ∈ (0, 1). Yan et al. [25]

employed the divergence operator to define the stochastic integrals with

respect to sub-fBm with H > 1
2 . After that, Shen and Chen [20] defined a

stochastic integral with respect to sub-fBm SH with H < 1
2 that extends

the divergence integral from Malliavin calculus. In addition, the pathwise

Riemann-Stieltjes integral

∫ t

0
us(ω)dS

H
s (ω) exists for a stochastic process

u with β-Hölder continuous trajectories where β > 1 − H and sub-fBm is

Hölder continuous of order γ for any γ < H on any finite interval (see Young
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[26]). Other limitation of classical Itô integral is the adaptedness of the

integrand to the natural filtration of integrator ie,

∫ t

0
usdXs is well defined

if and only if ut is adapted to the filtration Ft =σ{Xt, t ≥ 0}. Then, the

integral is defined like Riemann sums at which the evaluation points are

the left endpoints of subintervals. The problem of non-adaptedness of the

integrand has been discussed the first time by Itô [11], where he raised the

question how to define

∫ t

0
B(1)dB(s), 0 ≤ t ≤ 1, (3)

since B(1) is not Ft-adapted. Itô proposed to enlarge the filtration by letting

Gt be the field generated by Ft and B(1), ie Gt =σ{Ft, B(1)}, B(1) is adapted

to Gt and Bt is a Gt-quasimartingale. Therefore, the integral (3) may be

defined as a stochastic integral with respect to quasi-martingale.

There have been several extensions in the literature on anticipating

stochastic integration. Let’s cite for instance Hitsuda [8], Skorokhod [21].

For more details on the anticipating integrals and their applications, see

Buckdahn [4], León and Protter [18], Pardoux and Protter [19], and the ref-

erence therein. Ayed and Kuo [1] proposed a new viewpoint for defining this

kind of integrals by decomposing the anticipating stochastic integrand into

a linear combination of the products of instantly independent and adapted

stochastic processes. Then, authors defined a stochastic integral of the prod-

uct of an adapted process and instantly independent process as a Riemann

sum thanks to the classical definition of stochastic integral proved in Kuo

[13]. Notice that the evaluation points are the left endpoints of subintervals

for the first process and the right endpoints for the second. Motivated by

this new approach, many studies have been developed. Itô formula of an-

ticipating integral proved in Kuo and Ayed [1], was generalized to different

cases in Kuo et al. [14, 15, 9]. The study of a class of stochastic differential

equations with anticipating initial conditions was treated in Khalifa et al.

[12]. The Itô isometry based on the new integral for anticipating processes

was discussed by Kuo et al. [17]. The near-martingale property of antici-

pating stochastic integral introduced in Kuo et al. [16] have been recently

studied in Hwang et al. [10] and Hibino et al. [7].

Motivated by Ayed and Kuo’s [1] idea of integrand decomposition, we

define the stochastic integral of an anticipating process which is a product
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of an instantly independent process and an adapted process with respect to

SH , to be the limit of the corresponding Riemann sum and we show that

our stochastic integral admit the near-martingale property.

This paper is arranged as follows: in Section 2, we present some prelim-

inaries on pathwise integral with respect to sub-fBm and integrand’s decom-

position approach proposed by Kuo and Ayed of anticipating integral. In

section 3, we give our result using the above approach by replacing the stan-

dard Brownian motion by a sub-fractional Brownian motion and we discuss

the near-martingale property of our anticipating integral.

2. Preliminaries

We describe some basic facts on pathwise integral with respect to sub-

fBm.

Let Vp(S
H ,∆n) be the p-variation of sub-fBm SH defined by :

Vp(S
H ,∆n) =

n
∑

i=1

|SH
ti

− SH
ti−1

|p, (4)

where ∆n is a partition of the interval [0, T ].

We denote by FVp(S
H) = lim

∆n→0

Vp(S
H ,∆n) the p-finite variation of the sub-

fBm and by BVp(S
H) = sup∆n

Vp(S
H ,∆n) its p-bounded variation.

Proposition 1 (Tudor([23], Proposition 2.3)). For every p > 0, we have:

• FVp(S
H) = 0, BVp(S

H) < ∞ if p > 1
H
.

• FVp(S
H) = BVp(S

H) = E(|N(0, 1)|p) if p = 1
H
.

• FVp(S
H) = BVp(S

H) = ∞ if p < 1
H
,

where N(0, 1) is standard Gaussian random variable.

Thus, SH has a p-bounded variation and a p-finite variation if p ≥ 1
H
.

Young [26] proved that if f(t) and g(t) are continuous paths of finite

p, q variation, respectively, where 1
p
+ 1

q
> 1, then the integral

∫ t

0
f(s)dg(s)

may be defined as the corresponding Riemann-Stieltjes sum. Specifically,

Feyel and Pradelle [6] showed that if f is α-Hölder, and g is β-Hölder with
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α + β > 1, then the Steiltjes integral

∫ T

0
f(s)dg(s) exists and is β-Hölder.

Moreover, for every 0 < ε < α+ β − 1, we have

∣

∣

∣

∣

∫ T

0
f(s)dg(s)

∣

∣

∣

∣

≤ C(α, β) ‖ f ‖[0,T ],α‖ g ‖[0,T ],β T 1+ε. (5)

As claimed above, for every process (ut)t∈[0,T ] with q-bounded variations

with q < 1
1−H

, the Riemann-Stieltjes integral

∫ t

0
urdS

H
r is almost surely well

defined. Particularly, if u has α-Hölder paths for some α > 1−H, then the

Riemann-Stieltjes integral

∫ t

0
urdS

H
r is well defined and has β-Hölder paths,

for every β < H.

Then, we can define the stochastic integral for an adapted processes with

respect to sub-fBm in pathwise sense for H > 1
2 , and the pathwise integral

∫ T

0
f ′(SH

t )dSH
t exists for all f ∈ C2(R).

Next, present Ayed and Kuo’s idea in order to explain anticipating

stochastic integral.

From Ayed and Kuo [1], the anticipating integrand B(1) is presented as

B(1) = (B(1)−B(t)) +B(t). (6)

Let us consider the following anticipating integrand

B(1)2 = [(B(1) −B(t))]2 + 2B(t)[B(1)−B(t)] +B(t)2. (7)

Then, we have to decompose the integrands as B(1)n, eB(1) to get the com-

mon property given in the following definition.

Definition 1 (Ayed and Kuo ([1], Definition 2.1 )). A stochastic process

g(t) is said to be instantly independent with respect to a filtration Ft if g(t)

and Ft are independent for each t.

Via the above definition, B(1) − B(t), [B(1) − B(t)]2, [B(1) − B(t)]n,

and eB(1)−B(t) are all instantly independent for 0 ≤ t ≤ 1.

Example 1. Let Ft be the underlying filtration of Brownian motion B(t),

thus g(B(1) − B(t)) is instantly independent of Ft, t ∈ [0, 1], for any real
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measurable function g(x). Nevertheless, g(B(1)−B(t)) is adapted to Ft; t ≥

1.

Lemma 1 (Ayed and Kuo ([2], Lemma 4.1)). If a stochastic process X(t) is

both adapted and instantly independent with respect to a filtration Ft, then

X(t) is a deterministic function.

From this Lemma, we conclude that instantly independent processes

are independent of the past and present contrarily to the adapted processes.

Thus, we can consider the collection of instantly independent processes as

a counterpart of Itô’s theory. In addition, we can deduce that many antici-

pating stochastic processes can be decomposed into sums of the products of

an Itô part and a counterpart.

Further, Itô integral measures the integrand using left endpoint for each

subinterval. For instantly independent part, if we also use the left endpoint

to approximate, we lose its important properties as it has been seen in Ex-

ample 1. However, if we measure the instantly independent part using right

endpoint, its properties will be conserved. This lead to Ayed and Kuo’s

definition of the new integral.

Definition 2 (Ayed and Kuo ([1], Definition 2.2)). Let B(t) be a Brownian

motion, for an adapted stochastic process f(t) with respect to the filtration

Ft and an instantly independent stochastic process g(t) with respect to the

same filtration, we define the stochastic integral of f(t)g(t) to be the limit:

∫ T

0
f(t)g(t)dB(t) = lim

‖∆n‖→0

n
∑

i=1

f(ti−1)g(ti)(B(ti)−B(ti−1)) (8)

provided that the limit in probability exists, where ∆n = {0 = t0 < t1 <

· · · < tn = T} is the partition of interval [0, T ].

Many examples are given in Ayed and Kuo [1, 2].

3. New Anticipating Integral

Based on the concept presented above, we give a definition of stochastic

integral of the product f(t)g(t) as in Definition 2 by taking the sub-fBm SH

as integrator. Formally, we have:
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Definition 3. Let SH , H > 1
2 a sub-fractional Brownian motion and Ft the

σ-field generated by{SH(t), t ≥ 0}, for an adapted stochastic process f(t)

with respect to the filtration Ft and an instantly independent stochastic

process g(t) with respect to the same filtration. We define the stochastic

integral of f(t)g(t) to be the limit:

∫ T

0
f(t)g(t)dSH (t) = lim

‖∆n‖→0

n
∑

i=1

f(ti−1)g(ti)(S
H(ti)− SH(ti−1)) (9)

provided that the limit in probability exists.

It is clear that the anticipating integral (9) is not a Ft-martingale to Ft

moreover the integrator SH is not a Ft-semi-martingale what brings us to

verify if it satisfy the near-martingale property presented in Kuo et al.[16].

Definition 4 (Kuo et al. ([16], Definition 3.5)). A stochastic process Xt;

a ≤ t ≤ b; with E|Xt| < ∞ is called a near-martingale with respect to a

filtration {Ft; a ≤ t ≤ b} if for any a ≤ s ≤ t ≤ b we have

E[Xt/Fs] = E[Xs/Fs]; a.s., (10)

or equivalently

E[Xt −Xs/Fs] = 0; a.s. (11)

We prove now that, the processes Xt and Yt defined by (12) and (17)

respectively, are near-martingales for an adapted process f(t) and centered

instantly independent process g(t) with respect to the forward filtration

Ft = σ{B(s), SH(s); 0 ≤ s ≤ t},

and are near-martingales for a centered adapted process f(t) and instantly

independent process g(t) with respect to the backward filtration

F (t) = σ{B(T )−B(s), SH(T )− SH(s); 0 ≤ s ≤ t}.

Theorem 1. Let Ft be a forward filtration and let f(x) and g(x) be contin-

uous functions such that:

1. E

[
∫ T

0
f(B(t))g(B(T )−B(t))dSH(t)

]

< +∞,
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2. E
[

g(B(T )−B(t))
]

= 0.

Then

Xt =

∫ t

0
f(B(s))g(B(T )−B(s))dSH(s); 0 ≤ t ≤ T (12)

exists and is a near-martingale with respect to the forward filtration Ft.

Proof. We need to verify that E[Xt − Xs/Fs] = 0 for 0 ≤ s ≤ t. Notice

that

Xt −Xs =

∫ t

s

f(B(u))g(B(T )−B(u))dSH
u .

Let ∆n = {s = t0 < t1 < · · · < tn−1 < tn = t} be a partition of interval [s, t]

and ∆SH
i = SH(ti)− SH(ti−1), we have:

E[Xt −Xs/Fs] = E

[
∫ t

s

f(B(u))g(B(T )−B(u))dSH(u)/Fs

]

. (13)

From Definition 3, we have

E[Xt−Xs/Fs] =E

[

lim
‖∆n‖→0

n
∑

i=1

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /Fs

]

= lim
‖∆n‖→0

n
∑

i=1

E

[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /Fs

]

. (14)

It is sufficient to verify that every component of the last sum is zero. Re-

call that f(B(ti−1)) is Fti−1
-measurable and g(B(T )−B(ti)) is independent

of Fti−1
, using the properties of conditional expectation, we obtain:

E

[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /Fs

]

= E

[

E
[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /Fti

]

/Fs

]

= E

[

f(B(ti−1))∆SH
i E

[

g(B(T )−B(ti))/Fti

]

/Fs

]

= E

[

f(B(ti−1))∆SH
i E

[

g(B(T )−B(ti))
]

/Fs

]

. (15)

The independence of Brownian increments and the zero expectation of g(B(T )−
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B(ti)) show that:

E

[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /Fs

]

= E
[

g(B(T ) −B(ti))
]

E

[

f(B(ti−1))∆SH
i /Fs

]

= 0. (16)

Thus, Xt is a near-martingale with respect to Ft. ���

Theorem 2. Let Ft be a forward filtration and let f(x) and g(x) be contin-

uous functions such that:

1. E
[

∫ T

0
f(B(t))g(B(T ) −B(t))dSH(t)

]

< +∞

2. E
[

g(B(T )−B(t))
]

= 0,

then

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dSH(s), 0 ≤ t ≤ T, (17)

exists and is a near-martingale with respect to the forward filtration Ft.

Proof. Notice that for 0 ≤ s < t ≤ T , we have

Yt − Ys = −

∫ t

s

f(B(u))g(B(T )−B(u))dSH(u) = −(Xt −Xs), (18)

where Xt is given in (12). Thus Yt is a near-martingale with respect to Ft.

���

Theorem 3. Let F (t) be a backward filtration and let f(x) and g(x) be

continuous functions such that:

1. E

[
∫ T

0
f(B(t))g(B(T )−B(t))dSH(t)

]

< +∞,

2. E
[

f(B(t))
]

= 0,

then

Xt =

∫ t

0
f(B(s))g(B(T )−B(s))dSH(s), 0 ≤ t ≤ T, (19)

exists and is a near-martingale with respect to the backward filtration F (t).
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Proof. According to the proof of Theorem 1, we just have to prove that

E

[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /F (t)

]

= 0,

where 0 ≤ s < t ≤ T and s = t0 < t1 < · · · < tn−1 < tn = t. Notice that

∆SH
i = (SH

T − SH
ti−1

)− (SH
T − SH

ti
) ∈ F (ti−1).

Next, by the F (ti−1)- measurability of ∆SH
i and the conditional expectation

properties, we obtain

E

[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /F (t)

]

= E

[

E
[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /F (ti−1)

]

/F (t)

]

= E

[

g(B(T )−B(ti))∆SH
i E

[

f(B(ti−1))/F
(ti−1)

]

/F (t)

]

. (20)

Notice that for each s > ti−1, B(T ) − B(s) is independent of Fti−1
. This

implies the independence of the σ-fields F (ti−1) and Fti−1
. Since f(B(ti−1))

is Fti−1
measurable, it follows that f(B(ti−1)) is independent of F

(ti−1). Thus

E

[

f(B(ti−1))g(B(T )−B(ti))∆SH
i /F (t)

]

= E

[

g(B(T )−B(ti))∆SH
i E

[

f(B(ti−1))
]

/F (t)

]

. (21)

Since E
[

f(B(ti−1))
]

is F (t)- measurable, then

E

[

f(B(ti−1))g(B(T ) −B(ti))∆SH
i /F (t)

]

= E
[

f(B(ti−1))
]

E

[

g(B(T )−B(ti))∆SH
i /F (t)

]

= 0. (22)

���

Theorem 4. Let F (t) be a backward filtration and let f(x) and g(x) be

continuous functions such that:
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1. E

[
∫ T

0
f(B(t))g(B(T )−B(t))dSH(t)

]

< +∞,

2. E
[

f(B(t))
]

= 0,

then

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dSH(s), 0 ≤ t ≤ T, (23)

exists and is a near-martingale with respect to the backward filtration F (t).

Proof. From Theorem 3, we have Yt− Ys = −(Xt −Xs). Consequently, the

proof is completed. ���
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