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Abstract

We investigate the existence of mild solutions of impulsive fractional stochastic dif-
ferential inclusions driven by sub-fractional Brownian motion Sg with infinite delay and
non instantaneous impulses when the linear part is a fractional sectorial operators on sep-
arable Hilbert spaces. We consider the cases when the multivalued map is convex as well
as non convex, a sufficient conditions for the existence are derived with the help of the

multivalued fixed point theory and the measure of noncompactness.

1. Introduction

Differential equations and inclusions with fractional order arise in many
engineering and scientific disciplines as the mathematical modeling of sys-
tems and processes in the fields of physics, mechanic, biology, ecology, aero-
dynamic, polymer rheology and many others. Fractional differential equa-
tions or inclusions also serve as an excellent tool for describing the memory
and genetic properties of different materials and processes. As a consequence
there was an intensive development of the theory of differential equations and
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inclusions of fractional order. One can see the monographs of Abbas et al. H],
Kilbas et al. ﬂﬂ], Miller and Ross ﬂﬂ], Podlubny ﬂé], Zhou ﬂB], the survey
of Agarwal et al E] E] and the references therein. Many articles have been

devoted to the existence of solutions for fractional differential equations and
inclusions, for example, M] ﬂa] ﬂﬁ] @] ﬂA_AI] As for the study of the existence
of mild solutions for fractional differential inclusions, please see E] @] @]

The theory of impulsive differential equations or inclusions has also at-
tracted increasing attention because of its wide applicability in science and
engineering. Impulsive differential inclusions arising from the real world
problems to describe the dynamics of processes in which sudden, discontin-
uous jumps occurs. Such processes are naturally seen in biology, physics,
medical fields, etc. Due to their significance, many authors have been es-
tablished the solvability of impulsive differential inclusions. For the general
theory and applications of such equations we refer the interested reader to
Benchohra et al. H], Graef et al. ]

The deterministic systems often fluctuate due to noise, which is random
or at least appears to be so. Therefor, we must move from deterministic
problems to stochastic ones. As the generalization of classic impulsive dif-
ferential and partial differential inclusions, impulsive stochastic differential
and partial differential inclusions have attracted the researchers great inter-
est, and some works have done on the existence results of mild solutions for
these equation (see ﬂ2__4|] M] and references therein). Recently, attempts were
made to combine fractional derivatives and stochastic differential inclusions.

One can see ﬂﬁ] ﬂﬁ] @] ] and references therein.

On the other hand, fractional Brownian motion has become an object
of intense study, due to its interesting properties and applications in various
scientific areas including telecommunication, turbulence and finance. The
fractional Brownian motion with Hurst parameter H € (0,1) is a suitable
generalization of the classical Brownian motion, but exhibits lon-rang depen-
dence, self similarity and which has stationary increments. When H = % the
fBm coincide with the classical Brownian motion. When H # %, the fBm is
neither a semi-martingale nor a Markov process. For additional details on
the fractional Brownian motion, we refer the reader to ﬂﬂ] A general theory
for the infinite dimensional stochastic differential equations driven by a frac-
tional Brownian motion has begun to receive attention by various researchers

see e.g., ] B] The existence, uniqueness, stability and qualitative analysis



“BN16N21" — 2021/7/14 — 22:17 — page 89 — #3

2021] IMPULSIVE FRACTIONAL STOCHASTIC DIFFERENTIAL INCLUSIONS 89

of the mild solutions of stochastic differential equations driven by fractional
Brownian motion with infinite delay have been studied by many authors (see
] and references therein). Recently, Ren et al. [34]proved the existence
and uniqueness of mild solution for a class of impulsive neutral stochastic
functional integro-differential equations with infinite delay driven by stan-
dard cylindrical Wiener process and an independent cylindrical fractional
Brownian motion with Hurst parameter H € (%, 1) in the Hilbert space.
Boudaoui et al. m] proved the existence of mild solutions to stochastic im-
pulsive evolution equations with time delay, driven by fractional Brownian
motion and Krasnoselski Schaefer type fixed point theorem. Ren et al. B]
proved the existence and uniqueness of the integral solution for a class of
non-densely defined impulsive neutral stochastic functional differential equa-
tion driven by an independent cylindrical fractional Brownian motion with
Hurst parameter H € (%, 1) in the Hilbert space. However, there are very few
contributions regarding the existence of solutions to stochastic differential
inclusions driven by fractional Brownian motion ] ﬂﬁ] An existence result
of mild solutions for a first-order impulsive semi-linear stochastic functional
differential inclusions driven by a fractional Brownian motion with infinite

delay has been proved by Boudaoui et al. ﬂﬁh

To the best of our Knowledge, there is no work reported on the im-
pulsive fractional stochastic differential inclusions driven by sub-fractional
Brownian motion with infinite delay and sectorial operators. Inspired by
the previously mentioned works, in this article, we aim to study this inter-
esting problem. We prove the existence of PC- mild solutions for impulsive
fractional stochastic differential inclusions driven by sub-fractional Brown-

ian motion with infinite delay and non-instantaneous impulses of the form

H

ds
“Dfa(t) € Ax(t) + F(t,x) + g(t)—=.t € (si,tiy1],1=0,1,..., N
x(t) = Li(t,zy),t € (tiysi],i=1,...,N

Where ¢D® denotes the Caputo fractional derivative operator of order o €
(0,1) with the lower limit zero; x(-) takes its values in the separable Hilbert
spaces H with inner product (-, -) and norm || . ||5; A is a fractional sectorial
operator defined on H; F : J x H — 28 — {()} is a multifunction, J := [0, b],
0=tg =80 <ty <851 <83 < o< <iy1<sy<ity<in1=0b
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be prefixed numbers; g : J — LOQ(IC, H), K is another real separable Hilbert
space with inner product (-,-)x and norm || - ||x. Here L%(IC,?—[) denotes
the space of all Q-Hilbert-Schmidt operators from I into H and Sg is an
Q-sub-fBm with Hurst parameter H € (%, 1) which will be defined in the
next section. The history z; : (—00,0] = H, 2+(0) = z(t+6) belongs to some
abstract phase B defined axiomatically in Section 2, I; € C((t;, s;] x B, H),
forall : =1,..., N. The initial data {¢(t) : —oo < t < 0} is an Fp-adapted
B-valued random variable independent of the sub-fBm with infinite second

moment.

The outline of this paper is as follows. In the Section 2 we introduce
some notations, definitions, preliminary facts about sub-fractional Brownian
motion, the fractional calculus and an auxiliary lemma, which are used in
the next sections. In Section 3, we give the existence of PC-mild solution for
(I3) under both convexity and non-convexity conditions on the multi-valued

right-hand side, and when the linear term A is fractional sectorial operator.

2. Preliminaries

In this section, we discuss some basic definitions, notations, theorems,
lemmas and some basic facts about sub-fractional Brownian motion, the

fractional calculus and sectorial operators.

Throughout this paper, the notations (H,|| - |, (-, )x) and (K, -
llic, (-, )x) stand for the separable Hilbert spaces. The notation C(J,H)
stand for the Banach space of continuous functions from J to H with su-

permum norm i.e., || @ ||;= sup || x(¢) || and L'(J,H) denotes the Ba-
teJ

nach space of function x : J — H which are Bochner integrable normed
by || @ |pi= [ || «(t) || dt, for all z € L'(J,H). A measurable function
x : J — H is Bochner integrable if and only if || = || is Lebesgue integrable.
B(H) is a Banach space of all linear bounded operator from H into itself
with norm || ' || g = sup {|| F(z) [l1]| = |< 1}.

Let (2, F,P) be a complete probability space equipped with a normal
filtration {F;},-, satisfying the usual conditions (i.e., right continuous and

Fo containing all P-null sets).
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Definition 1. The sub-fractional Brownian motion (sub-fBm in short) with
Hurst parameter H € (0, 1) is a mean zero Gaussian process S ={S}! : t >0}
with SY = 0 and the covariance

Cr(t,s) =E[S;'S,] = " + 27 =S {s + )"+ [t =5 ] (2)

DO | —

for all, s,t > 0.

For H = %, SH coincides with the standard Brownian motion B. S¥
is neither semimartingale nor a Markov process when H # % The sub-
fBm S*7 has properties analogous to those of fBm (self-similarity, long-range

dependence, Holder paths), but it does not have stationary increments. More
works for sub-fBm can be found in Bojdecki et al. ﬂQ] ﬂﬁ], Tudor @], Shen

et al. ﬂﬁ]

The sub-fractional Brownian motion satisfies the following estimates:

(222" A1) | t=s PP E| ST ()-S"(s) P< [2—-22""N)Al] | t—s [P

(3)
Thus, Kolmogorov’s continuity criterion implies that sub-fBm is holder con-
tinuous of order v for any v < H on any finite interval. Therefore, if y is a
stochastic process with Holder continuous trajectories of order § > 1 — H
then the pathwise Riemann-Stieltjes integral fob yi(w)dSH (t)(w) exists for all
b > 0. In particular, if H > %, the pathwise integral fé’ f/(S{{ YdSH exists
for all f € C*(R), and

b /
F(S) — 1(0) = /0 £ (SHdst (4)

However, when H < 1 the pathwise Riemann-Stieltjes integral | b f(SHYdSH (w)
does not exist. For more details, we refer the reader to ﬂﬁ] ] ]

Now we aim at introducing the Wiener integral with respect to one
dimensional sub-fBm S¥. Fix a time interval [0,b]. We denote by A the
linear space of R-valued step functions on [0,b], that is, y € A if

n—1
y(t) - Z x’il[ti,ti+1](t)7
=1
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Where t € [0,b], x; e Rand 0 =t <ty < --- < t, =b. For y € A we define

its Wiener integral with respect to S as

b
/0 dSQ sz ti4+1 )

Let Hgu be the canonical Hilbert space associated to the sub-fBm S#. That

is Hgu is the cloture of the linear span A with respect to the scalar product

(110,45 1[0,5])HSH = Cult,s).

‘We know that the covariance of sub-fBm can be written as

E [StHSf] = /0 /08 N (u,v)dudv = Cg(t, s) (5)

where ;1) = H(H 1) (= P2 ~(u-+0)2-2).
Equation (B]) implies that

t s
= / / Yuzonm (u, v)dudv (6)
0 JO

for any pair step functions y and z on [0, b]. Consider the kernel

21—H T 3
Kn(t,s) = 2V /21 ( /0 (a2 — %)% 2d8> loge — (7)

I'(H - 3)

By Dzhaparidze and Van Zanten ﬂﬁ], we have

tAs
CH(tv S) = c%—[ KH(tv u)KH(37 u)du (8)
0

where
I'(1+2H)sin(rH)
- .

& =
Then, () implies that C'(s,t) is non-negative definite. Consider the linear
operator K} : A — L?([0,b]) defined by

. rOK
(i) 5) = cu [ o2 2 )i
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Using (@) (&) we have

L) e b 0K
2 H H
(KH?/’KHZ)LQ([O v) — H/ </ Y=o, (r, S)dT) (/S Zuw(% S)du) ds

rAu
= c / / (/ aKH (7”7 3) 8;(1'1 (u, 3)d3> Y2y drdu
u

2

Ky

= CH/ '0 (u $)Yp 2y drdu
0 JO

orou
b b
= H(2H—1)/ / (| u—r |2H=2 4(u+7“)2H72) Yrzydrdu
0 Jo
= (yaZ)HSH' (9)
As a consequence, the operator K7, provides an isometry between the
Hilbert space Hgn and L?([0,b]). Hence, the process W defined by W (t) :=

SH((K3) ' (1p,)) is a Wiener process, and S has the following Wiener

integral representation:

SH(t) = cy /Ot Ky (t,s)dW (s)

because (K7;)(1j0,)(s) = cuKn(t,s). By ], we have

W(t) = /Ot Zu(t,s)dS™ (s),

where
gH—1/2

A VEPE )

[tH—3/2(t2 _ 52)1/2_H

—(H -3/2) / t(gﬁ — s3G5 (110 4)(s).

In addition, for any y € Hgnu,
b b
/0 y(s)dS™ (s) = /0 (K ) (£)dW (2)

if and only if K3y € L([0,b]).
Also, denoting L3,  ([0.8]) = {y € Hgn, Kjyy € L*([0,0])}. Since H > 1,



“BN16N21" — 2021/7/14 — 22:17 — page 94 — #38

94 MERYEM CHAOUCHE AND TOUFIK GUENDOUZI [June

we have by (@) and Lemma 2.1 of @],
1
L2(0,8]) < L7 ([0,6)) € L%, ou)- (10)

Lemma 1 (@]) For y € L%([O,b]);

H2H - 1) // e Il ll = P72 drdu < Co Ly g o

1/2
where C'y = (ﬁ(ig%%) , with § denoting the beta function.

Next, we are interested in considering a sub-fBm with values in Hilbert

space and giving the definition of the corresponding stochastic integral.

Let L(KC,H) denote the space of all bounded linear operators from K
into H with the usual norm || - |5 ). Let @ € L(K,H) be a non-negative
self-adjoint operator. Denote by L%(IC, H) the space of all £ € L(KC, H) such

that EQ% is a Hilbert-Schmidt operator. The norm is given by
1
€125 .y = 16Q% s = tr(6QE").

Then ¢ is called a Q-Hilbert-Schmidt operator from K to H. Let {SH (t)},en
be a sequence of one-dimensionnal standard sub-fractional Brownian motions

mutually independent on (2, F,P). When one considers the following series:
o0
> Sften,  t=0,

where {e,}nen is a complete orthonormal basis in K this series does not
necessarily converge in the space . Thus we consider a K-valued stochastic

process Sg (t) given formally by the following series:

=3 SH1Qzen, >0
n=1

If Q is a non-negative self-adjoint trace class operator, then this series con-
verge in the space K, that is, we have Sg(t) € L?(2, K). Then above Sg(t)

is well-defined as a K-valued Q-cylindrical sub-fractional Brownian motion
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with covariance operator Q). Let y : [0,b] — LOQ(K , H) such that

0 . .
> K Q% en) |l 2o < 00 (11)

n=1

Theorem 1. Let y : [0,b] — LOQ(K, H) satisfy (IIl). Then its stochastic
integral with respect to the sub-fBm Sg is defined, for t > 0, as follows

/Ot (s)dS§ (s Z/ (5)Q2endSH (s) Z/ (K*(yQ2ep))dW (s).
Notice that if
nfjl 1)@ enll, 4 1o 50y < 2 (12)
then in particular () holds, which follows immediately form (IQJ).
Lemma 2 (@]) For any y : [0,b] — L%(K, H) such that (12) holds, and

for any u,v € [0,b] with u > v,

Bl [ vosgol = Cute= 3 [ tesebenlfas

If, in addition,

o
Z Hy(s)Q%enH%{ is uniformly convergent for t € [0,b],

n=1

then

EH/ s)dSH (s )qu SCH(u—v)zHl/ ”y(s)Hi%(K,H)dS

In this paper, we suppose that Fy = O'{Sg; 0 < s <t} is the o-algebra gener-
ated by the K-valued Q-cylindrical sub-fractional Brownian motion, F, = F
and L?(Q2, Fy,H) be the Hilbert spaces of all Fi-adapted measurable square
integrable random wvariables with values in H. The notation L3 ([0,b]; H)
stands for the Hilbert space of all square integrable and Fi-measurable pro-

cesses with the values in H.
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Definition 2. The fractional integral of order o with the lower limit zero
for a function f is defined as

1 t s
I%f(t) = o) /0 i _fi))lads, t>0,a>0,

provided the right-hand side is pointwise defined on [0, 00), where I'(+) is the
gamma function, which is defined by T'(ar) = [ t* e !dL.

Definition 3. The Riemann-Liouville fractional derivative of order o« > 0
n—1<a<n,neN, is defined as

(B=L) pe f(t) = ﬁ(%)n/o (t — 5)" 170 F(s)ds,

where the function f(¢) has absolutely continuous derivative up to order
(n—1).

Definition 4. The Caputo derivative of order o > 0 for a function f :
[0,00) — R can be written as

n—1 L
Def(t) = D (f(t)—Z%f’“(O)) , t>0n—1<a<n.
k=1""

Remark 1.
i. If f(t) € C™[0,00), then

CDCM 1 ¢ f(n)(S) d I’I’L o rn O 1

t)= =]" t), t>0,n—1<a<n.

FO) = |, s = I, > 0n=1<a<n

ii. The Caputo derivative of a constant is equal to zero.

iii. If f is an abstract function with values in 7, then integrals which appear
in Definitions [2] and [3] are taken in Bochners sense.

We assume that the phase space (B,| - ||g) is a seminoremed linear
space of Fyp-measurable function mapping (—oo,0] into H, and satisfying
the following fundamental axioms due to Hale and Kato H]

i. If x : (—o0,b) = H, b > 0, is continuous on (0,b] and z( in B, then for
every t € [0,a) the following conditions hold:
(a) x; is in B;



“BN16N21” — 2021/7/14 — 22:17 — page 97 — #11

2021] IMPULSIVE FRACTIONAL STOCHASTIC DIFFERENTIAL INCLUSIONS 97

(b) | 2(t) llp< H || = |55

(©) Il @ < K(®)sup{|l a(s) l5: 0 < s < t} + M(®) || 20 [Is, where
H > 0is a constant; K, M : [0,00) — [0,00), K is continuous, M is
locally bounded, and H, K, M are independent of x(+).

ii. For the function z(-) in i., z; is a B-valued function [0, a).

iii. The space B is complete.
The following result is a consequence of the phase space axioms.

Lemma 3 (@]) Let @ : (—o0,b] — H be an Fi-adapted measurable process
such that the Fy-adapted process vo = ¢(t) € LY(Q, B) and the restriction
x:J — LT (Q,B) is continuous, then

| zs [|5< ME || ¢ |l +Kp sup E || z(s) ||,
0<s<b

where Ky = sup{K(t) : t € J} and M, = sup{M(t) : t € J}.

We introduce the space PC formed by all F;-adapted measurable square
integrable H-valued stochastic processes {z(t) : t € [0,b]} such that x is
continuous at ¢t # t;, z(t;) = z(t; ) and x(t]") exist for all i = 1,...,N. In
this paper, we always assume that PC is endowed with the norm

2
| 2 ||pe= ( sup E || z(t) H2>
0<t<b

Then (PC, || . ||pc) is a Banach space.

Throughout this paper, we use the notation P(#) for the family of all
nonempty subsets of H. Let use introduce the following notations:
Pu(H)={Y € P(H) : Y is closed}, Ppg(H)={Y€P(H) : Y is bounded},
Pey(H)={Y € P(H) : Y is convex}, Pep(H)={Y € P(H) : Y is compact},
conv()) (respectively conv())) be the convex hull (respectively, convex
closed hull in H) of a subset ) in H.

A multi-valued map G — P(H) is convex (closed) valued if G(H) is
convex (closed) for all x € H. G is bounded on bounded sets if G(B) =

U G(x) is bounded in H for any bounded set B of H, that is, sup{sup ||y||» :
€D zeB

yega)} < oo.
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G is called upper semicountinuous (u.s.c) on H if, for each z € H, the
set G(x) is nonempty closed subset of H and if, for each open set V of
H containing G(x), there exists an open neighborhood N of z such that
G(N)CV.

G is said to be completely continuous if G(B) is relatively compact, for
every bounded subset B of H. If the multi-valued map G is completely
countinuous with nonempty compact values, then G is u.s.c, if and only if G
has closed graph i.e. z, = Tu, Yn = Ys, Yn € G(xy,) imply y. € G(x4).

A multi-valued map G : J — Ppg,c1,co(H) is measurable if for each = € H,
the function ¢ — D(z,G(t)) is measurable function on J.
If G is a normed space, then the set Gg = {f € L'([0,b,H) : f(t) €
G(t), for a.e.t € [0,b]} is called the set of selections of G.

Definition 5 (ﬂﬂ]) Let {Vn}nen>1 be a sequence of subsets of H. Suppose
there is a compact and convex subset ) C H such that for any neighbor-
hood N of Y there is an n so that for any m > n : ),, € N. Then

() conv( U Yn) C V.

N>0 n>N

Lemma 4 (B]) Every semicompact sequence in L1([0,b],H) is weakly com-
pact in L1([0,b], H).

Now, we introduce the Hausdorff measure of noncompactness xz(-) de-
fined by

Xz(B) = inf{e > 0: B admits a finite cover by balls of radius <e in Z}

for any Hilbert space Z.
Some basic properties of xz(-) are given in the following lemma.

Lemma 5. Let Z be a real Hilbert space and B be a bounded set in Z. Then,
the following properties are satisfied:
i. B is pre-compact if and only if xz(B) = 0;
ii. xz(B) = xz(B) = xz(convB), where B and convB are the closure and
the convex hull of B, respectively;

tit. xz(B) < xz(C) when B C C;
w. xz(B+C) <xz(B)+ xz(C) where B+C ={z+y:z€ B,yec C};
v. XZ(B U C) = mam{XZ(B)v)(Z(C)};
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vi. Xz(AB) <| A | xz(B) for any \ € R;

vii. If the map ¢ - D(¢) C Z — Z' is Lipschilz continuous with constant k
then xz(¢B) < kxz(B) for any bounded subset B C D(¢), where Z' is
another real Hilbert space;

vigi. If {V,,}°° is a decreasing sequence of bounded closed nonempty subset

[e.e]
of Z and lim xz(V,) =0, then (| V, is nonempty and compact in Z.
n—00 n—1

Lemma 6. Let W be a closed convex subset of a Banach space X and R :
W — P (X) be a closed multifunction which is X-condensing where X is
a non singular measure of noncompactness defined on subsets of W, then R
has a fized point.

Lemma 7. Let W be a closed subset of a Banach space X and R : W —
Pi(X) be a closed multifunction which is X -condensing on every bounded
subset of W, where X is a monotone measure of noncompactness defined on
X. if the set of fized points for R is a bounded subset of X then it is compact.

Lemma 8. Let (X,d) be a complete metric space. If R : X — P(X) is
contraction, then R has a fixed point.

Lemma 9. Let B be a bounded set in Z. Then for every e > 0 there is a
sequence (zp)p>1 1 B such that

X(B) <2x{x, :n>1} +e.

Lemma 10. Let xc(s3) be the Hausdorff measure of noncompactness on
C(J,H). If W C C(J,H) is bounded, then for everyt e J,

XW () < xeum (W)

where W (t) = {x(t) : x € W}. Furthermore, if W is equicontinuous on J,
Then the map t — x{z(t) : x € W} is continuous on J and

Xowa (W) = supx{z(t) -z € W}
€

Lemma 11. Let {f, : n € N} C LP(J,H), p > 1 be an integrable bounded
sequence such that x{f, : n > 1} < ~(t), a.et € J, where v € L'(J,R").
Then for each € > 0 there exists a compact K. C E, a measurable set J. C J,
with measure less than €, and a sequence of functions {¢5} C LP(J,H),t € J
and || fu(t) — ¢5(t) ||< 2v(t) + €, for everyn > 1 and every t € J — J..
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Next, we are ready to recall some facts of fractional Cauchy problem.
Bajlekova @] studied the following linear fractional Cauchy problem

{Dgx(t) = Aux(t) 13

z(0) =z9g€H

where A is linear closed and D(A) is dense.

Definition 6. A family {S,(t) : t > 0} C L(H) is called a solution operator
for (I3) if the following conditions are satisfied:

(a) Sa(t)is strongly continuous for ¢t > 0 and S, (t) = [;
(b) Sa(t)D(A) C D(A) and AS,(t)x = Su(t)Ax for z € D(a) and t > 0;
(¢) Su(t)x is a solution of (I3)) for all z € D(A) and ¢t > 0.

Definition 7. An operator A is said to be belong to e*(M,w) if the solution
operator S, (-) of (I3]) satisfies

I Sa(t) [l < Me',t >0

for some constants M > 1 and w > 0.

Definition 8. A solution operator S, (t) of ([I3]) is called analytic if it admits
an analytic extension to a sector Xg, = {\ € C — {0} : |largA| < 6o} for
some 6y € (0, 5]. An analytic solution operator is said to be of analyticity
type (0o, wp) if for each 0 < 6y and w > wy there is an M = M (0, w) such
that

| Sa(t) Iy < Me™, t € 3.

Set

e“(w) ::U{ea(M,w) :M > 1} and e* := U{ea(w) tw > 0},
A%(0p,wp) ={A € e*: A generates an analytic solution operator

Sq of type (0o, wo)}-

Lemma 12. If A € A%(0y,wp) then

| Sa(t) IS Me" and || Tu(t) [l < Ce (1 +1271)
for every t >0, w > wpy. So putting
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Mg := sup || Sa(t) HL(H)7 My := sup Ce**(1 +t179).
0<t<b 0<t<b
We get

I Sa(®) g < M, || Ta(t) o < t°7 My (14)

Definition 9. Let A € A%(6p,wo) with 6y € (0, §] and wp € R. A function
x is called a mild solution of () if

( Sa(t)xo—i—fot To(t — 3)f(3)ds—|—/0 To(t — s)g(s)dS§ (s),t€ Jo
Sa(t)zo+Sa(t —t1) 1 (tl_)+/0 To(t —s)f(s)ds
t —5)g(s)dSE (s
+[ Talt = as)as ().t € 1 )

sa<t>xo+§:l Salt =)L)+ | Talt = 3)1(s)ds

t
+/ To(t — s)g(s)dsg s),t € Jy
0

where f € SF(.J(.)).
SF(.z() 18 the set of the measurable selections of the multivalued map such
that Sp(. .y = {f € L*(J,H) : f(t) € F(t,x(t))}.

3. Existence of Mild Solution

Theorem 2. Let A € A%(6p,wo) with 0 € (0,5] and wo € R, F: J x H —
Pev.ep(H) a multifunction, g : J — L%(IC,H) and I; € C([t;, si] x B,H).

We assume the following conditions:

(H1) For any x € H, the multifunction t — F(t,x) is measurable and for
allt € J, x — F(t,x) is upper semicontinuous.

(H2) There exists a function ¢ € L%(J, RT), ¢ € (0,«) and a nondecreasing
continuous function © : R* — R such that for any x € H
| Et ) [[< )0 | = |
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(H3)
1
i) There exist a function 3 € La(J,RT), q € (0,a) satisfying
4nMrp 1
P51, (16)

a—q o _
where n = % and w = $=1.

i1) For every bounded subset Z C H
X(F(t,2)) < p(t)X(Z), for a.e. t € J, where X is the Hausdorff

measure of noncompactness in H.

(H4) For g:[0,b] — L%(K,H) we assume the following conditions: for the

complete orthonormal basis {ey }nen in K, we have:

> 1
> 119Q2en llz2on,30<
n=1

Z I g(t)Q%en ll% converges uniformly for t € [0, b].

n=1

(H5) The function g : J — L%(K,’H) satisfies

b
| 9o 1By ds=a <.
0 Q

(H6) For any i = 1,2,...,N, I; is continuous and there exists a positive

constant h; such that
| Lt ) [P< hi || @ |*2 € H

Then the problem ([{l) has a mild solution provided that there is r > 0
such that

- 32 [ h_ %
SE | ao P+ 2350 [ 0-9) T ] 1) | ds
0

©
+ 3eyb?H 1 Z/ | Tu(b — 5)Q2° |2, ds < r. (17)
n=1 0

Proof. We transform the problem ([II) into a fixed point problem, we define
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a multifunction R : PC(J,H) — 2PC(H) as follows:
For x € PC(J,H), R(x) is the set of all functions y € R(x) such that

Sa(t)x0+/tTa(ts)f(s)dSJr/tTa(ts)g(s)dsg(s), teJy
0 9
Sa(t)xo + Sa(t —t1)[; (tl_)—i—/o To(t—s)f(s)ds

t H
+[ Tatt = as)as (). € 1 (18)

N t
Sa(t)wo + 3 Salt - tl-)Ii(x(ti))Jr/O Tou(t — 8)f(s)ds

=1

+[ T gt (9,0 <
0

where f € S}p(. 2()- By the hypothesis (H1) the values of R are nonempty.
It is clear that any fixed point for R is a mild solution for (IJ). so our aim
is to show, by using Lemma [7 that R has a fixed point. The proof will be

given in the following steps.
Step 1. We proof that the values of R are closed.

Let x € PC(J,H) and {y, : n > 1} be a sequence in R(z) which is
convergent to y in PC(J,H). Then according to the definition of R, there is
a sequence {f, :m > 1} in S},(_ () such that for any ¢t € J;, i =0,1,..., N,

we have
( Sa(t);g0+/ Ta(ts)fn(s)der/ Ta(tfs)g(s)dsg(s),tEJo
0 tO
Sa(t)zo + Sa(t — tl)Il(t1)+/0 To(t — ) fn(s)ds
t —5)g(s)dSH (s
. + Talt = s)a()asgs).0 € o

N t
Salt)eo + 3 Salt — )L (t) + /0 To(t — ) fuls)ds

1=

[ Tt 9ul0)asg o). < gy
0

\

By the assumption (H2) for every n > 1, and for a.e. t € J
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I f2(@) 1< @O = [)) < OOl = lpcs)

This show that the set {f, : n > 1} is integrally bounded. Therefore for a.e.
teJ{fn:n>1} C F(t,xz(t)), the set {f,, : n > 1} is relatively compact
in H for a.e.t € J. Moreover, the set {f, : n > 1} is semicompact and then
by Lemma it is weakly compact in L'(J,H). So, without loss of generality
we can assume that f,, converges weakly to a function f € L'(J,H). From

Mazur’s lemma, for any j € N there exist a natural number ky(j) > j

and a sequence of nonnegative real numbers \; ., k = j,...,ko(j) such that

ko(j) ko(j)

kz Ajk = 1 and the sequence of convex combinations z; = kz Nt S
=j =j

j > 1 converges strongly to f in L'(J,H) as j — oo. so we can suppose
that z;(t) — f(t) for a.e. t € J. Since F takes convex and closed values, we
obtain for a.e. t € J

F#) € (Ha(t) : k> 4} € (eomv{fi : k> j} C F(t,2(t)).

j>1 j>1

Noting that, by ([I4) for every t,s € J, s € [0,¢] and n > 1

| Ta(t = 8)zn(s) 1< (¢ = ) Mre(s)© || 2 | pem) -
k()

Next taking 9, (t) = > \jryx, ([3) implies
k=)

Sa(t):coJr/O Ta(ts)zn(s)der/O Ta(tfs)g(s)dsg(s), teJy
Sa(t)xo + Sa(t —t1)11 (t1)+/0t To(t — s)zp(s)ds

o Tt - 9)g()dSH (5).t <
0

N t
Sa(t)xo + ; Salt — tz’)Ii(CC(tz‘_))+/0 To(t — s)zn(s)ds

7

[ Tt 9ule)asg )t € gy
0

But 9, (t) — y(t) and Z,(t) — f(t) for a.e. t € J, therefore, by tending n to
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oo in (20)), we get from the Lebesgue dominated convergence theorem that
for every i =0,1,..., N.
( t t
Sultyant [ Tult=)f(s)ds+ | Talt = 9)g(s)dSE (s), € Jo
0 f
Sa(t)zo + Sa(t —t1)11 (tl_)—i—/ To(t — s)f(s)ds
0

t H
n /0 To(t = )g(s)dSG (s)t € (21)

N t
Sa(t)zo + 3 Salt - tl-)Ii(x(ti))Jr/O Tu(t — 8)f(s)ds

=1

t
+/ To(t — 5)g(s)dSH (s),t € Jy.
0
This proves that R(z) is closed.

Step 2. Set By = {x € PC(J,H) :|| = ||[pc< r}. Obviously, By is a bounded,
closed and convex subset of PC(.J,H). We want to prove that R(By) C By.
to show that, let x € By and y € R(z). By using (I4)), (IT), 20); (H2) and
Holder’s inequality, we get for ¢ € Jy

2

Ely()? =B \ Salt)aa+ [ Tult =) )ds+ [ Tult - a1y ()

2

<3E ||Sa(t)xo]|* + 3E ‘ /t To(t —s)f(s)ds
0

2

+3E ‘ /Ot To(t — s)g(s)dS (s)

T2 2wRt 2 o2t [ ozt 2
<3M ™ || zo [I° +3Myp— | (¢ =s)" T E | f(s) [I” ds
0

oo t
+3cHt2le/O | Ta(t — $)Q%en |12 ds.
n=1

We get for every t € J;,0=1,2,...,N

ly(®) o< 7 < oo.

Therefore R(By) C By.
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Step 3. Let Z = R(By). In this step we will show that the set defined as

follows
Zg ={y" € C(Ji, H) 1y (t) = y(t),t € Ji,y" (L) = y(t; )y € Z}

is equicontinuous for every i =1,2,..., N.

Let y € Z. Then there is * € By with y € R(x). According to the
definition of R, there is f € S}p(. () such that

( Sa(t)xo+/tTa(t—S)f(8)d8+/t Ta(t—s)g(s)dsg(s),te Jo
0 9
Sa(t)xo + St —t1) 11 (tl_)—i—/o To(t — s)f(s)ds

¢ H
+ [ Tult = o(s)as8 (). € 1 (22)

Sa(t)eo + 35 Salt — t) L)+ [ Tult = 5)f(s)ds

i=1 0
t
+/ To(t — 5)g(s)dSH (s).t € Jy.
0

We consider the following cases:

Case 1. When i = 0, we consider two points t and ¢ + ¢ be two points in Jy,

then:

IIy (t+6) =y (@)l

t+ t+0
w(t+9) xo—i—/ To(t+0—s f(s)ds+/ Ta(t+5—5)g(s)dsg(s)
0 0

_ s, (t):co—/otT (t— 8)f(s )ds—/OtTa(t—s)g(s)ng(s)H
_H (t+0)— (t))xo—i—/tHTa(t—l—é—s)f( Vis— [ To(t—s)f(s)ds
t+9 ’ t ’
4 / To(t 46 — 5)g(s)dSE (5) — /0 T, (t — $)g(s)dSE (9|
_H Wt +6) — (t)):co—i—/ot(Ta(t—i—é—s)—Ta(t—s))f(s)ds
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t+0 t
+/ Ta(t+5—s)f(s)ds+/ (To(t+96 —s) —Ta(t—s))g(s)ng(s)
t 0

4 /MT (t+6—s)g(s)dSH (s)

<||csate +9) - xOH+H/ Wt 48— 5) = Talt — ) f(s)ds |
t+49

—i—/t Ta(t—i-é—s)f(s)dsH

|/ (Tult+6— 5) = Tult = )g(s)aSE o)
0

(23)

t+0
T /t To(t+ 6 — 5)g(s)dSG ()|,

E | y*(t+6) —y*(t) I

<SBE || (Salt +6) = Salt))zo |*+3E ||/ o(t+0—5)=Tu(t—s))f(s)ds ||
t+6
+3E / To(t+6— 5)f(s)ds||

v [+ o -9~ Tute - paterast o)

t+9 2
+3E / T(t+ 6~ $)g(s)dSH (s)|| = 3(G1 + G+ G5 + G + ).
t

Where

G1= E || (Sa(t +6) — Sa(t))zo ||,

Gy = E||/ w(t+0—35)—Tu(t—s))f(s)ds Hz,
Gg-Eu/ a(t 48— 8) = Tult — ))g()dSH (5) |
t+6
Gi=E| [ Tat+3-9)f(s)ds |
tt+5
Gs=F| [ Tult+3=)a(s)dss () |-

We only need to check G; — 0 as § — 0 for every i = 1,2,3,4,5.
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For G; we have

G1 = E || Su(t +0) — Sa(t))xo |

<[] Sa(t+6) = Salt) ||> E || zo |7

<|| Sa(t+6) = Salt) || r2
sup E || Sa(t+9) — Sa(t))zo H2§ sup || Sa(t+0) — Sa(t) || r2
0<t<b 0<t<b

I (Sa(t +8) = Sa(t)zo [2c< sup || Salt +8) — Sa(t) || 3
0<t<b

lim || (Sa(t +0) — Sa(t))xo H%’CS lim sup || Sa(t+3d) — Sa(t) || r2 = 0.
6—0 5—)00§t§b

uniformly for x € By.

For Go, we apply the Lebesgue dominated convergence theorem to get
Go=F | / W+ —8) = To(t — ) f(s)ds |?
2
< ([ 1@+5—9-Tate -5 11 76) 11 d5)

2
sup Gy < sup E(/ I (Tt 6= ) = Tolt = ) 1 £(5) 1 ds)

0<t<b 0<t<b

lim sup Gy < lim sup E (/0 [ (Ta(t+0—s)=Ta(t=s)) [l f(s) ] dS)

6—00<t<b 0—00<t<p

2

For G5 we use holder’s inequality we obtain

H/ wt+0—3s)— Ta(t—s))g(s)dsg(s)
—H/ t+6—8)()dSQ() /tTa(t s)g ()dSQ()‘

w(t—9)g dSQ()

<t—s>\/t <>dsQ<>\

ya- 1”/ 5)dSH (s

<H/ w(t+6 — 5)g(s)dSH (s

[ otsrast <s>\
0

<(t+6—s) 1MTH/ 5)dsH (s)| +

< sup To(t+9d — 8)‘
0<t<b

0<t<b
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H/ Wt 0= ) T(t—s))g(s)dsg(s)H2

<2(t-+5- 52T | /0 'g(s)as (5)| + 23T (1| /0 'g(s)as olll

EH/ Wt 45— ) T(t—s))g(s)dsg(s)H2

<t + 5 — 5)20 1MTEH/ s)dSH (s

+ 2 (t — 5)2(@ D) EH/ s)dSH (s
<t + 6 — 5)2 1)]\4 cpt?f= 1/ Hg (KH)ds
e [l

sup EH/ awt+0—s)—T, (t—s))g(s)dsg(s) ’

0<t<b
< su t4 5 — s)2e- 1)M cyt*i— 1/ H ds
_0<tI<)b [ ( 2 " g LY (K H)
Q(a 1) H
+2MT CH/ g(s 0 (20 ]
1
- 2\ 2
(sup EH/ Wt + 38— ) — T, (t—s))g(s)dSQ(s)‘ >
0<t<b
t 2
<[ su 2t—|—5—32(0‘_1)ﬁ2c t2H_1/ H s ds
(g 20t 0 - s VT 70

Sl

+ O (t — 8)2(0 D gy 2H - 1/ H

LO (K.H) ]) '

i g, 7] [ e 50t toasgo]

<2(t-s)™" étﬂg 1 (/ Hg ‘LO (Kﬂ)ds)%'

H/ (46— 8) — Tt — )]g(s)dSH (s)

N

Jre
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t Oé 1 H
5) CH (/ LY, (K H) )

For G4, by the Holder’s inequality we have

H /:H Tt +06 — s)f(s)ds

ds

T (t+6—s)

1)

t+4 ‘
< (t—i—é—s)o‘_lHTHf(s)Hds

_ pt4s
SMT/ (t+06—s5)>"t ds
t

f(s)

1
p
ds)
1
q
ds>

— o
<Wr(5) ollelllellie
Where w = (‘;‘T_D g+1

t+6 w 9—1
|| 7o sseas| <712 (%) GHHHHLLmﬂ
t+6
H/ W(t+d—s)f dsH <M <_> @2 L URh)
t+5 5w 2(g—1)
B [ s s <3 (T) (Gﬂﬂmdhaﬂw)

t+6
sup EH/ wt+0o—s)f dSH
0<t<b

w 2(a—1)
<o (Z) 2Ok e
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< sup EH /tt+6Ta(t+ o — s)f(s)dsH2> ’

0<t<b

() (5)7 2 (M

lim ( sup EH /:M To(t+6 — 3)f(3)d3H2> ’ <0.

6—0 0<t<b

2
1

Lq(J,R+)>

For G5 we have

t+8 )
| [ e saeiasiio) < s Tute 59| [ atsrast
t+8 o )
/t To(t+0 — s)g(s)dsg(s) < OS<111<)b To(t+0 —s) /t g(s)ng(s)
t+6 2
/t To(t+6 — s)g(s)dsg(s)

t+6 2
/t o(s)dSH (5)

2

2
< (sup Ta(t—|—5—8)>

0<t<b

E

t+6
/t To(t+6 — s)g(s)dSH (s)

2

t+0
/t o(s)dSH (5)

2
< (sup Ta(t+58)> E‘

0<t<b

t+6

<M (45— P [ g(0) 12 g
t

2

)
/t To(t+0 — S)g(s)ng(s)

sup F ‘
0<t<b

t+6
< ME2HE [ (6 gy
1

2\ 2
sup E‘
0<t<b

oH 1 t+9 9 %
< wvals = ([ o)y ds)

t+6
/t To(t+6 — s)g(s)dS§ (s)
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t+6 2\ 2
lim [ sup F / To(t+6 — S)Q(S)ng(s) <0.
0—=0 \ 0<t<b t

Case 2. For i € {1,2,..., N}, let t,t + 0 be two points in J;. According to
the definition of R, we have

1y (¢ +0) =y (@) 1=l y(t +6) —y(®) ||

I y(t+9) —y(t)

N
=(|Sa(t+8)zo + Y Salt + 0 — t:) Li(x(t;))
1=1

t+0 t+d "
+ /0 To(t+06—3)f(s)ds+ /0 To(t+0—s)g(s)dSg (s)
N

— Su(t)zg — Z Sa(t — i) Li(x(t;))

i=1

- / Tolt - 5)f(s)ds - / Ta(t = 9)9()d5G (5)]

Iy(t+8) = y(t) 1 < | (St +) = Sa(0) 0|
Z\S (t 46 — te) Ik (x(t),) — Salt — te) Ix(x(ty,))|
k=

t+6 t
+ /0 Ta(t—f—d—s)f(s)ds—/o To(t —s)f(s)ds

t+6 t
4 /O To(t 46 — )g(s)dSE (5) — /0 To(t — 5)g(s)dSE (s)

ly(t+8) —y(t) II° < 3|l (Sa(t +0) = Sa()) zo ||

+ 33 [[Salt + 0 = te) (@ (t;) = Salt — te) In(x(t;))]||”
k=1

t+6 t
43 /0 Ta(t—i—é—s)f(s)ds—/oTa(t—s)f(s)ds

2

t+6 t
/0 To(t+0 — s)g(s)ng(s) - /0 To(t — s)g(s)ng(s)
E | y(t+96) - ()H2<3E I (Sa(t +6) = Sa(t)) 2o |I*

+3

+3E Z 1St + 6 — t) T (2(t;,) = Salt — ti) Iu(2(t))|)?
k=1
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2

t+6 t
1 3E /0 Ta(t—i—é—s)f(s)ds—/oTa(t—s)f(s)ds

2

t+6 t
+3E /0 To(t+6 — s)g(s)dS§ (s) — /0 To(t — 5)g(s)dS§ (s)

sup E | y(t +6) —y(t) |I°
0<t<b

<3 sup E || (Salt+6) — Sa(t)) zo |I?
0<t<b

+3 sup B [|Salt + 0 — t) Julx(ty) — Salt — te) Iu(z(t))|

0<t<b

k=1
t+48 t 2
+3 sup E / Ta(t—l—é—s)f(s)ds—/ To(t — s)f(s)ds
0<t<b 0 0
t+6 t 2
+3 sup FE / To(t+0d— S)Q(S)ng(s) — / To(t — s)g(s)ng(s)
0<t<b 0 0

As in the first case we get
lim || y(t +6) —y(t) [lpc= 0.
6—0

Case 3. Whent=t;,1=1,2,...,N, let A >0 be such that t; + A € J; and

o > 0 such that t; < 0 <t; + < t;41, then we have
1y (ti +0) = y"(ti) |l pe= lim | y(ti +6) = y(o) |lpc -
o—t;

According to the definition of R we get

N
9t +8) — y(o) 1= || Salts + B0+ 3 Salti +6 — 1) Iu(a(t)
k=1

ti+4 ti+d
; —5)f(s)ds (s — 8)g(s)dSH (s
[ T s @s+ [ Talti+ 5 9a(s)as o
N o
—sa(a)xo—Zsa(a—tk)fk(x(tk))—/ To(o — 5)f(s)ds
k=1 0

_ /0 To(o — )g(s)dSE (s)
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[yt +0) = y(o) <]l (Sa(ti +0) = Sala)) o |
N
+ Z (Sa(ti +0 —tg) — Salo —tg)) Ik(.%'(tk))H
k=1
tv

+

o\
T
>

To(t; +0 —s)f(s)ds — /OU To(o —s)f(s)ds

t;+0 o
+ /0 To(ti +6 — s)g(s)ng(s) — /0 To(o — s)g(s)dsg(s)

Arguing as in the first case we can see that

im | y(t; +0) —y(o) [=0 (24)

6—0,0t}F
From the inequalities ([23)—(24) we conclude that Z 73 is equicontinuous for
every 1 =1,2,...,m.

Now for every n > 1, the set B, = convR(B,—_1). From step 1, B,
is a nonempty, closed and convex subset of PC(J,H). Moreover By =
convR(By) C By. Also By = convR(B;) C convR(By) € B; by induc-
tion the sequence (By), n > 1 is decreasing sequence of nonempty, closed
and bounded subsets of PC(J, H).

[e.9]
We need only to show that the subset B = () B, is nonempty and
n=1
compact in PC(J, H). by Lemma [ it is enough to show that

li_)m xpc(Bn) = 0. (25)

where x pc is the Hausdorff measure of noncompactness on PC(J, H) defined

in Section 2. In the next step we prove the equation (25)).

Step 4. Let n > 1 be a fixed natural number and € > 0. In view of
Lemma [ there exists a sequence (yx)r>1 in R(B;,—1) such that

xpc(Bn) = xpcR(Bn-1) < 2xx{yr : k> 1} + e
From the definition of x pc, the above inequality becomes

xpc(Bn) <2 max xi(S75)+e (26)
+=0,1,...,N v
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Where S = {yi : £ > 1} and x; is the Hausdorff measure of noncompactness
on C(J;, H). As we have done in the previous step, we can show that B, 7.,
i=0,1,..., N is equicontinuous. Then, by applying Lemma [[1] we get:

xi(S7,) = sup x(S(1)),
ted;
where x is the Hausdorff measure of noncompactness on Z. Therefore, by
using the nonsingularity of y, the inequality (26]) becomes

+e =2supx(S(t))

xprc(Bp) <2 max [sup x(S(t)) Sup

i=0,1,..N |7,

=2sup x {yx(t) : k > 1} + €. (27)
teJ

Now, since y € R(B,—_1), k > 1 there exists x € B,_1 such that y; €
R(zy), k > 1. By recalling the definition of R for every k& > 1 there is
fr € S}p(. 2x() such that for every t € J

(X {Sa(t)ao} +x {fy Talt =) fuls)ds - k> 1
x { i Talt — 9)ar()dSH(s) : k> 1}t €

XA{wk(t) : k>1} < N (28)
X {Sa(t)zo}+ 21X{Sa (t—tp)p(a(t,)) 1 k>1}
+X fo (t —s)fr(s)ds : k> }
X o Talt = $)gr(s)dSH (s) k= 1}t € Ty
Hence, for every t € J we have
x{Sa(t)zp: k>1} =0. (29)
Moreover for every p=1,2,..., N and every t € J
X{Sa(t —tp)(Ip(zk(t, ) : k> 1} = 0. (30)

In order to be able to estimate

x{ /Ot To(t — 8)fi(s)ds : k > 1}.
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We can see that from (H3) it holds that for a.e. t € J

X{fu(@) + k> 1} <x{F(t 2k () + k> 1}
< B)x{zk(t) : k> 1}
< B(t)x(Bn-1(t))
< B(t)xpc(Ba-1(t)) = (1)

Furthermore, for any k£ > 1, by (H2), for almost ¢t € J, we have || fk. t)||I<
©(t)O(r). Consequently, fr € L%(J, H), k > 1. Note that v € Lq(J,R+).
Then from Lemma [IT] there exists a compact set K, C H and a measurable
set J. C J. With a measure less than €, and a sequence of functions {g;} C
L%(J,H) such that for every s € J, {g;(s) : k > 1} C K., and || fi(s) —
£(s) I< 2v(s) + &, for every k > 1 and every s € J. = J — J., then using

< My [ /J (29(s) + e)éds]
<

<M 29(5)+< 3

< Mrn [H 2v(s) ”L*(JR+ +e ||L§(J,R+)]

Minkowski’s inequality, we get

| ]ttt —gitonas

(JRJr)}
_ [ 1 q
< 2007 |190) 1,4, s, + ( / d) }

< 20 || 4(5) | sbq]

< My [H 29(s) ||

omnt2lels

La (JR+)

< 2Wgn (I xreBas) 3 ) +40]

< 2Mpn (xpe(Boa) | B 1 IR+ —|—€bq} :

Finally we get:

|

+6bq}
(31)

/J, To(t — s)(fiu(s) — gi(s))ds

€

< 2N [xroBat) 51,3,
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By Holder’s inequality, we have:

H/J Ta(t_S)fk(S)dSH < /J | To(t — s) ||| fu(s) || ds

<([ima-sra) ([ 1aor ds)q
G R ([ (] )

<t ([ (©eto): )’

Consequently we get
. f q
H/ T, (t — s)fk.(s)dSH < nM7O(r) </ <pq(s)ds> (32)
JE €
So by BI) [B2), we derive

X{/OtTa(t — 8) fu(s)ds : k> 1}

<y {/J To(t — ) fu(s)ds : | > 1}+X{/E To(t — 5) fu(s)ds s > 1}

5

|7

5

o

€

wl(t =) (fr(s) — (s))ds:kZl}

Tt — 5)g2(s)ds : kz1}+x{/ETa(t—s)fk(s)ds:k21}

+dﬂ} + MrO(r) < / E go%(s)ds)q .

By taking into account that ¢ is arbitrary, we get for all t € J

<20y [xeo(Bat) 1813

x{ [ e =ntsyas = 1} < Mrmxro(Bay) || 8

1 .
La(JRT)
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In order to estimate

t
X {/ To(t — s)gk(s)ng tk > 1} .
0
We use Lemma 2] in order to calculate the following majoration:
! H 2 2H—1 — [ l 2
B| [ Zat-s)on(e)asg )| <ent™ 1S [ Tat-s)a(s)Qten |y ds
0 n=1"0
t 2
sup EH/ Ta(t—s)gk(s)dsg(s)H
0<t<b 0 H
> b
<t Y [ Tt~ Shgn(s)Qben [ ds
n=1"0
! H 2 2H -1 — [ 1 2
| [ Tatt-oaoas o), <nt™ S [ Talt-9g5)@ben I ds
0 n=1"0

In an other hand we have:

9] b . [eS) b B
3 /0 | Talt—5)g(5)Qben |3 ds < S /0 | Ta(t—s) 121l gx(s)Q3en I3 ds
n=1 n=1

o0 1 b
<3l ar@len /0 | Tult—s) |2 ds

0o
2b2ozl

T2a ZH gk QQen HH7

and we know that

> 1
Y llgr(s)Qzen [H< o0

n=1

So we have

H / (i = $)ak()SH () lIpe< en g
where

oo
1
K=Y |l g(s)Q%en IIfi< oo

n=1
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Then for every t € J

N {/ObTa(t — $)g(s)dSE(s) : k> 1} <,

X Ak(t) « k> 1} < 2Mrnxpc(Ba-1) || B I3 ome)

The inequality (27]) and the fact that € is arbitrary, imply

o) <2 [ WraxeoBa ) 1813, |

By the previous steps (1,2,3,4) we find that:

n—1
LE(J,R+)) xpc(Bi)

0 < xpo(By) < (an 1811,

Since this inequality is true for every n € N, by (6] and by tending n — oo,

we obtain
A, xpo(Bn) =0

Step 5. In this step, we will apply Lemma Bl The goal is to prove that the
o0
set B = () B, is a nonempty and compact subset of PC(J, H). Moreover

for everynzBln being bounded, closed and convex, B is also bounded closed
and convex. Let us check that R(B) C B. Indeed, R(B) C R(B,) C
convR(By,) = Bp41.

For every n > 1, therefore R(B) C ﬁ B,,. On the other hand B,, C B for

n=2
every n > 1. So,

R(B) C ﬁBn: ﬁBn:B
n=2 n=1

Step 6. In this step we show that the graph of the multi-valued function
Rp : B — 2B is closed. We consider a sequence {x,},>1 inH with z,, —
in H and let y, € R(z,) with y, — y in PC(J,H). we will show that

y € R(x). By recalling the definition of R, there is f,, € S},(_ () for any
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n > 1, such that

(Sa(t)$0+/ Ta(t—s)fn(s)ds—f—/ To(t — s)g(s)ng(s), tedo
0 R 0
Sa(t)xo+Sa(t —t1)Ih (t1)+/0 To(t —s)f(s)ds
t —5)g(s)dSH (s
o) ) T s, e

Salt)ot 3 Salt— )Tk (a (7)) + [ ate=s)tsyis

k=0

t
+/ Ta(t—s)g(s)ng(s), te i, 1<i<N
" Jo

Observe that for every n > 1 and for a.e. t € J

I @) I< e@O(|| 2n(t) [[) < o()O(r)

This show that the set {{f, : n > 1} is integrably bounded. In addition, the
set {{fn(t) : n > 1} is relatively compact for a.e. ¢t € J by the assumption
(H3) and the convergence of {xy,},>1, imply that

Wt in > 1) < {F(taa) in > 1) < B0 wa(t) 0> 1},

then x{fn(t) :n>1} =0.

So the sequence {f,}n>1} is semi-compact, hence by Lemma M it is
weakly compact in L'(J,H). So without loss of generality we can assume
that f,, converges weakly to a function L'(J,H). From Mazur’s lemma,

for every j € N there exist a natural number ky(j) > j and a sequence
ko(4)

of nonnegative real numbers \; i,k = j,...,ko(j) such that Y  Ajp =1
k=j

ko(5)
and the sequence of convex combinations z; = > Ajifr, 7 > 1 converges
k=j
strongly to f in L'(J,H) as j — co. So we may suppose that z;(t) — f(t)
for a.e.t € J.
Let ¢ be such that F'(¢,-) is upper semicontinuous. Then, for any neigh-

borhood U of F(t, ), there is a natural number ng € N so that for any n > ng
we have F'(t,x,(t)) CU.
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Because the values of F are convex and compact, Definition [ tells us
that

N m( U F(t,xn(t))) C F(t,z(t)).

J=21 n2j

As in step 1, from Mazur’s theorem, there is a sequence {z, : n > 1} of
convex combinations of f,, such that for a.e.t € J

Fty e ({znlt) :n = j} C () onv{{falt) : n > j}

j=1 Jj=1

and z, converges strongly to f € L'(J,H). then, for a.e. t € J

F(t) € () {z) 10 =5} € (" @ao{{falt) : n > j}

N —n( L>J‘F<t,xn<t>>) C F(t,2(t)).

Then, by the continuity of g, Sy, Ty, Ix(k = 1,2,...,N) and by the same
arguments used in step 1, we get from relation (B3] that

( Sa(t):co—i—/t(t —8) T (t — s)f(s)ds
. 0
—|—/ (t — ) T, (t — s)g(s)ng(s),t € Jo
0

y(t)= : (34)

Sult)eort 3 Salt—t (et + [ (1=9)" Tult—s)(5)ds
k=0 0

t
—l—/ (t — ) M, (t — s)g(s)ng(s),t €J,1<i<N
0

Therefore, y € R(x). This show that the graph of R is closed.

As a result of the step 1-5 the multivalued R,g : B — 28 is closed and
x pc-condensing, with nonempty convex compact values. By applying the
fixed point theorem and Lemma [f] there exist z € B such that x € R(x).
Then x is a PC-mild solution for the problem (). O
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4. Example

We consider the differential stochastic inclusion of the form

( SH

‘@%wdeAMt@+F&wHﬂ®%%tGWJLzeﬁﬂ
y(t,0) = y(t,m) =0,

y(r,2) = @(1,2)(1,2) € [0,1] x [0, 7]

y(t,z) = [y mi(t — s)y(s, z)ds.

Where 7; : R — R is continuous.

We take H = L?[0,1] Hilbert spaces endowed with the norm || - || and
g:J— L%(?—L, H), where L%(?—L, H) be the space of all operators Q Hilbert
Schmidt.

Now we define the operator A = A.
D(A) = {u € C*™0, 7] : u(0) =7 and u(r) =0}

it is easy to see that the operator A is sectorial.

Now we suppose that f; : [0,1] x H — H

i f1, fo are measurable and upper semi continuous.
ii f1, fo are increasing functions
i fi(t) <e®O |z |, i=1,2

Then we can transform the problem as follows

H

ds .
‘Dfta(t) € Ax(t) + F(t, ) + g(t)—=.t € (sistiy1], 1 =0,1,..., N
z(0) = ¢ € B,
.%'(t) = Ii(t,xt),t S (tz‘, SZ‘],Z‘ =1,...,N.
From our assumptions on (i)—(ii) it follows that the multivalued function
satisfy the conditions (Hy) — (H3).

All the assumptions in Theorem (3.1) are satisfied so our inclusion has
a mild solution.
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5. Conclusion

In this paper we prove the existence of mild solution of impulsive frac-
tional stochastic differential inclusion driven by Sub-fractional Brownian mo-
tion with infinite delay and sectorial operators. By using fixed point theory
and Hausdorff measure of noncompactness, we investigated the stochastic
differential inclusions, finally we have presented an example to illustrate the
applicability of the new results.
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