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Abstract

The limiting behaviour of
∑n

k=1
akRk/bn, where Rk is the range from our kth sample

of Pareto random variables is explored. Here we show that a weak laws of large numbers

holds, while the corresponding strong law of large numbers fails. We use the weak law

to show the lower and upper almost sure limits of our normalized weighted sum. The

underlying density is f(x) = x−2I(x ≥ 1) and the partial sum consists of the weights

times the range from our samples. We also show how these weights must be of a certain

form.

1. Introduction

Instead of studying the ratio of order statistics for random variables

with infinite mean, here we will investigate the range. There are many

papers that have examined the limiting behaviour of the ratio of these type

of order statistics. Some of these papers have used this very same Pareto

distribution, some of these papers have looked at exponentials, see [7], the

uniform distribution, see [8], and a collection of various distributions, see

[6]. The earliest papers on the ratios of Pareto’s can be found in [1] and [2].

Here we are examining the limiting behaviour of the difference, between the

largest and smallest order statistics. We look at sample sizes that grow at a

particular rate, mn.
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We need to mention that the constant, C, used in the proofs denotes

a generic real number that is not necessarily the same in each appear-

ance. It is used either as an upper bound or as a lower bound in order

to establish the convergence or divergence of our various series. We define

lg x = ln(max{e, x}), lg2 x = lg(lg x) and lg3 x = lg(lg(lg x)). Also, we

pull slowly varying functions outside of integrals and sums quite freely using

results from [5], pages 275-284.

2. Preliminary Results

The underlying distribution is the classic Pareto distribution, f(x) =

x−2I(x ≥ 1). Let {Xk,j , 1 ≤ k ≤ n, 1 ≤ j ≤ mk} be independent and

identically Pareto distributed random variables. The order statistics are

no longer independent and they are denoted by {Xk(1), . . . ,Xk(mk)}, where

Xk(1) ≤ Xk(2) ≤ · · · ≤ Xk(mk). Next we observe the smallest and largest

order statistics from this sample, Xk(1) and Xk(mk). From these two random

variables we obtain the range, Rk = Xk(mk) −Xk(1), k = 1, 2, . . . , n. From

[3], we have fRk
(r) ∼ mkr

−2, as r → ∞.

We will establish several things. First of all we will obtain a weak law of

large numbers. And from our weak law we will obtain the almost sure lower

bound on our normalized partial sums. We will also show that the almost

sure upper limit is infinity, which proves that there isn’t a corresponding

strong law here, that this weak law is optimal. This further shows that in

our Exact Strong Laws in [3], we had to set our coefficients, ak = L(k)/k,

for some slowly varying function, L(x). The most common slowly varying

function is our logarithm, which is used quite extensively in these Exact

Strong Laws and here as well. In this paper we look at what happens if we

ever so slightly increase our coefficients. In [3] we obtained strong laws for

normalized partial sums of the form

∑n
k=1

(lg k)α

k Rk

(lg n)α+β+2

for these same random variables. Where α can be any real number, as long

as α+ β + 2 is positive. We will generalize (lg k)α to be any slowly varying

function L(x) and increase 1/k to kα, as long as α > −1. Note that whenever

α 6= −1, we cannot obtain an Exact Strong Law. (When α < −1 these limits
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will be zero and in this paper we show what happens when α exceeds minus

one.)

3. Main Results

We start with our weak law and conclude with the almost sure limiting

behaviour for these same normalized partial sums.

Theorem 1. If α > −1 and {Xk,1, . . . ,Xk,mk
} is a sample from the Pareto

distribution, with sample size mk ∼ γ(lg k)β , where the range is defined as

Rk = Xk(mk) −Xk(1), then for all γ and β positive

∑n
k=1 L(k)k

αRk

L(n)(lg n)β+1nα+1

P
→

γ

α+ 1
.

Proof. Let ak = L(k)kα and bn = L(n)(lg n)β+1nα+1. We will use the Weak

Law from page 356 of [4]. Let ǫ > 0

n∑

k=1

P{akRk/bn| > ǫ} < C
n∑

k=1

∫ ∞

ǫbn/ak

mkdr

r2
< C

n∑

k=1

mkak
bn

< C

∑n
k=1(lg k)

βL(k)kα

L(n)(lg n)β+1nα+1
<

CL(n)(lg n)βnα+1

L(n)(lg n)β+1nα+1

=
C

lg n
→ 0.

As for the variance term, we have

n∑

k=1

V

[
akRk

bn
I

(∣∣∣∣
akRk

bn

∣∣∣∣<1

)]
<C

n∑

k=1

(
a2k
b2n

)∫ bn/ak

0
mkdr<C

n∑

k=1

mkak
bn

→ 0

once again.

Next, we must compute the expectation from that theorem

n∑

k=1

E

[
akRk

bn
I

(∣∣∣∣
akRk

bn

∣∣∣∣ < 1

)]
∼ b−1

n

n∑

k=1

ak

∫ bn/ak

1

mkdr

r

= b−1
n

n∑

k=1

mkak lg(bn/ak) = b−1
n

n∑

k=1

mkak lg(bn)− b−1
n

n∑

k=1

mkak lg(ak).
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It’s interesting that both of these terms are equally important

b−1
n

n∑

k=1

mkak lg(bn)

∼
γ
∑n

k=1(lg k)
βL(k)kα

[
lg(L(n)) + (β + 1) lg2 n+ (α+ 1) lg n

]

L(n)(lg n)β+1nα+1

∼
γ(α+ 1)

∑n
k=1(lg k)

βL(k)kα lg n

L(n)(lg n)β+1nα+1

∼
γ(α+ 1)

[
(lg n)βL(n)

(
nα+1

α+1

)]
lg n

L(n)(lg n)β+1nα+1
= γ

and the other term is

b−1
n

n∑

k=1

mkak lg(ak) ∼
γ
∑n

k=1(lg k)
βL(k)kα

[
lg(L(k)) + α lg k

]

L(n)(lg n)β+1nα+1

∼
αγ

∑n
k=1(lg k)

β+1L(k)kα

L(n)(lg n)β+1nα+1

∼
αγ

[
(lg n)β+1L(n)

(
nα+1

α+1

)]

L(n)(lg n)β+1nα+1
=

αγ

α+ 1
.

Combining these two terms, we see that our limit is

γ −
αγ

α+ 1
=

γ

α+ 1

which concludes this proof. ���

Now, one may hope or expect that there is a corresponding strong law.

That is not the case at all.

Theorem 2. If α > −1 and {Xk,1, . . . ,Xk,mk
} is a sample from the Pareto

distribution, with sample size mk ∼ γ(lg k)β , where the range is defined as

Rk = Xk(mk) −Xk(1), then for all γ and β positive

lim inf
n→∞

∑n
k=1 L(k)k

αRk

L(n)(lg n)β+1nα+1
=

γ

α+ 1
almost surely

and

lim sup
n→∞

∑n
k=1 L(k)k

αRk

L(n)(lg n)β+1nα+1
= ∞ almost surely.
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Proof. In this proof we set an = L(n)nα, bn = L(n)(lg n)β+1nα+1, cn =

bn/an = n(lg n)β+1 and also dn = cn/(lg2 n)
2 = n(lg n)β+1/(lg2 n)

2.

Since we have convergence in probability from Theorem 1, we can claim

that

lim inf
n→∞

∑n
k=1 L(k)k

αRk

L(n)(lg n)β+1nα+1
≤

γ

α+ 1
almost surely.

Hence we need to prove that

lim inf
n→∞

∑n
k=1 L(k)k

αRk

L(n)(lg n)β+1nα+1
≥

γ

α+ 1
almost surely.

This is where the sequence dn comes into play. Clearly

b−1
n

n∑

k=1

akRk ≥ b−1
n

n∑

k=1

akRkI(0 ≤ Rk ≤ dk)

= b−1
n

n∑

k=1

ak
[
RkI(0 ≤ Rk ≤ dk)− E

(
RkI(0 ≤ Rk ≤ dk)

)]

+ b−1
n

n∑

k=1

akE
(
RkI(0 ≤ Rk ≤ dk)

)
.

The first term vanishes almost surely by the Khintchine-Kolmogorov Con-

vergence Theorem, see page 113 of [4], and Kronecker’s lemma since

∞∑

n=1

1

c2n
ER2

nI(0 ≤ Rn ≤ dn) < C
∞∑

n=1

1

c2n

∫ dn

0
mndr

= C

∞∑

n=1

mndn
c2n

< C

∞∑

n=1

(lg n)βn(lg n)β+1/(lg2 n)
2

(
n(lg n)β+1

)2

= C
∞∑

n=1

1

n lg n(lg2 n)
2
< ∞.

And the limit of the second term is

b−1
n

n∑

k=1

akE
(
RkI(0 ≤ Rk ≤ dk)

)

∼ b−1
n

n∑

k=1

ak

∫ dk

1

mkdr

r
= b−1

n

n∑

k=1

akmk lg(dk)
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∼

∑n
k=1 L(k)k

αγ(lg k)β
[
lg k + (β + 1) lg2 k − 2 lg3 k

]

L(n)(lg n)β+1nα+1

∼
γ
∑n

k=1 L(k)k
α(lg k)β+1

L(n)(lg n)β+1nα+1

∼
γL(n)

(
nα+1

α+1

)
(lg n)β+1

L(n)(lg n)β+1nα+1

=
γ

α+ 1
.

Thus showing that the almost sure lower limit is indeed γ/(α + 1).

The upper limit is easier. Here, we use C in the opposite direction, since

we want this series to diverge. Let M be any positive real number, then

∞∑

n=1

P

{
anRn

bn
> M

}
> C

∞∑

n=1

∫ ∞

Mcn

mndr

r2

> C

∞∑

n=1

mn

cn

> C
∞∑

n=1

(lg n)β

n(lg n)β+1

= C

∞∑

n=1

1

n lg n
= ∞.

Thus

lim sup
n→∞

∑n
k=1 akRk

bn
≥ lim sup

n→∞

anRn

bn
= ∞ almost surely

which concludes this proof. ���

This theorem combined with [3] shows that in order to obtain a strong

law we must have coefficients of the form an = L(n)/n for some slowly

varying function, L(x). And for each L(x) one must be careful in how one

selects the norming sequence in order for the Exact Strong Law to hold.
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