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Abstract

In this paper we study the derivatives of Frobenius and the derivatives of Hodge-Tate

weights for families of Galois representations with triangulations. We give a generalization

of the Fontaine-Mazur L-invariant and use it to build a formula which is a generalization

of the Colmez-Greenberg-Stevens formula.

1. Introduction

In their remarkable paper [10], Mazur, Tate and Teitelbaum proposed a

conjectural formula for the derivative at s = 1 of the p-adic L-function of an

elliptic curve E over Q when p is a prime of split multiplicative reduction.

An important quantity in this formula is the so called L-invariant, namely

L(E) = logp(qE)/vp(qE) where qE ∈ Q×p is the Tate period for E. This

conjectural formula was proved by Greenberg and Stevens [8] using Hida’s

families. Indeed, for the weight 2 newform f attached to E, there exists a

family of p-adic ordinary Hecke eigenforms containing f . A key formula they

proved is

L(E) = −2
α′(f)

α(f)
(1.1)

where α is the function of Up-eigenvalues of the eigenforms in the Hida family.

On the other hand, they showed that −2α
′(f)
α(f) is equal to

L′
p(f,1)

L(f,1) . Combining
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these two facts they obtained the conjectural formula.

In this paper we will focus on (1.1) which was later generalized by

Colmez [6] to the non-ordinary setting. We state Colmez’s result below.

Theorem 1.1 ([6]). Suppose that, at each closed point z of Max(S) one

of the Hodge-Tate weight of Vz is 0, and there exists α ∈ S such that

(Bϕ=α
cris,S⊗̂SV)

GQp is locally free of rank 1 over S. Suppose z0 is a closed

point of Max(S) such that Vz0 is semistable with Hodge-Tate weights1 0 and

k ≥ 1. Then the differential

dα

α
−

1

2
Ldκ+

1

2
dδ

is zero at z0, where L is the Fontaine-Mazur L-invariant of Vz0 .

See [6] for the precise meanings of κ and δ. Roughly speaking, dδ is the

derivative of Frobenius, and dκ is the derivative of Hodge-Tate weights.

The condition that “(Bϕ=α
cris,S⊗̂SV)

GQp is locally free of rank 1 over S” in

Theorem 1.1 is equivalent to that V admits a triangulation [5]. So, Theorem

1.1 means that the derivatives of Frobenius and the derivatives of Hodge-Tate

weights of a family of 2-dimensional representations of GQp with a triangu-

lation satisfy a non-trivial relation at each semistable (but non-crystalline)

point.

Colmez’s theorem was generalized by Zhang [14] for families of 2- dimen-

sional Galois representations of GK (K a finite extension of Qp) and Pot-

tharst [12] who considered families of (not necessarily étale) (ϕ,Γ)-modules

of rank 2 instead of families of 2-dimensional Galois representations.

In this paper we give a generalization of Colmez’s theorem which in-

cludes the above generalizations as special cases.

Fix a finite extension K of Qp. What we work with is a family of K-

B-pair (called S-B-pair in our context) that is locally triangulable. We will

provide conditions for Fontaine-Mazur L-invariant to be defined. Note that,

the L-invariant is now a vector with component number equal to [K : Qp].

1In this paper, the Hodge-Tate weights are defined to be minus the generalized eigenvalues of
Sen’s operators. In particular the Hodge-Tate weight of the cyclotomic character χcyc is −1.
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Theorem 1.2. Let W be an S-B-pair that is semistable at a point z ∈

Max(S). Suppose that W is locally triangulable at z with the local triangu-

lation parameters (δ1, . . . , δn). Assume that for Dz, the filtered E-(ϕ,N)-

module attached to Wz, the Fontaine-Mazur L-invariant ~Ls,t (see Definition

6.5) can be defined for s, t ∈ {1, 2, . . . , n}. Then

1

[K : Qp]

(
dδt(p)

δt(p)
−

dδs(p)

δs(p)

)
+ ~Ls,t · (d~w(δt)− d~w(δs)) = 0.

Here, ~w(δi) is the Hodge-Tate weight of the character δi.

In [13] we proved Theorem 1.2 for a special case, where we consider

the case of K = Qp and demand that the Frobenius is simisimple at z.

The motivation and some potential applications of our theorem was also

discussed in [13].

Our paper is orginized as follows. In Section 2 we recall the theory of

B-pairs built by Berger. Then in Section 3 we extend a part of this the-

ory to families of B-pairs, and discuss the relation between triangulations

of semistable B-pairs and refinements of their associated filtered (ϕ,N)-

modules. In Section 4 we compare cohomology groups of (ϕ,Γ)-modules

and those of B-pairs, and then attach a 1-cocycle to each infinitesimal de-

formation of a B-pair. In Section 5 we use the reciprocity law to build an

auxiliary formula for L-invariants. The L-invariant is defined in Section 6.

In Section 7 we prove a formula called “projection vanishing property” for

the above 1-cocycle. Finally in Section 8 we use the auxiliary formula in

Section 5 and the projection vanishing property to deduce Theorem 1.2.

Notations

LetK be a finite extension ofQp, GK the absolute Galois group Gal(K/K).

Let K0 be the maximal absolutely unramified subfield of K. Let Gab
K denote

the maximal abelian quotient of GK .

Let χcyc be the cyclotomic character of GK , HK the kernel of χcyc and

ΓK the quotient GK/HK . Then χcyc induces an isomorphism from ΓK onto

an open subgroup of Z×p .

Let E be a finite extension of K such that all embeddings of K into an

algebraic closure of E are contained in E, Emb(K,E) the set of embeddings
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of K into E. We consider E as a coefficient field and let GK acts trivially

on E.

Let recK be the reciprocity map of local class field theory such that

recK(πK) is a lifting of the inverse of qth power Frobenius of k, where πK

is a uniformizing element of K and k is the residue field of K with cardinal

number q. Note that the image of recK coincides with the image of the Weil

group WK ⊂ GK by the quotient map GK → Gab
K . Let rec−1K : WK → K×

be the converse map of recK .

2. (ϕ,ΓK)-modules and B-pairs

2.1. Fontaine’s rings

We recall the construction of Fontaine’s period rings. Please consult

[7, 2] for more details.

Let Cp be a completed algebraic closure of Qp with valuation subring

oCp and p-adic valuation vp normalized such that vp(p) = 1.

Let Ẽ be {(x(i))i≥0 | x(i) ∈ Cp, (x
(i+1))p = x(i) ∀ i ∈ N}, and let Ẽ+ be

the subset of Ẽ such that x(0) ∈ oCp . If x, y ∈ Ẽ, we define x+ y and xy by

(x+ y)(i) = lim
j→∞

(x(i+j) + y(i+j))p
j

, (xy)(i) = x(i)y(i).

Then Ẽ is a field of characteristic p. Define a function vE : Ẽ → R∪ {+∞}

by putting vE((x
(n))) = vp(x

(0)). This is a valuation for which Ẽ is complete

and Ẽ+ is the ring of integers in Ẽ. If we let ε = (ε(n)) be an element of

Ẽ+ with ǫ(0) = 1 and ǫ(1) 6= 1, then Ẽ is a completed algebraic closure of

Fp((ε− 1)). Put ω = [ε]− 1. Let p̃ be an element of Ẽ such that p̃(0) = p.

Let Ã+ be the ring W(Ẽ+) of Witt vectors with coefficients in Ẽ+, Ã

the ring of Witt vectors W(Ẽ), and B̃+ = Ã[1/p]. The map

θ : B̃+ → Cp,
∑

n≫−∞

pk[xk] 7→
∑

n≫−∞

pkx
(0)
k

is surjective. Let B+
dR be the ker(θ)-adic completion of B̃+. Then tcyc =

log[ε] is an element of B+
dR, and put BdR = B+

dR[1/tcyc]. There is a filtration

Fil• on BdR such that FiliBdR =
⊕

j≥iB
+
dRt

j
cyc.
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Let B+
max be the subring of B̃+ consisting of elements of the form∑

n≥0 bn([p̃]/p)
n, where bn ∈ B̃+ and bn → 0 when n → +∞. Put Bmax =

B+
max[1/tcyc]; Bmax is equipped with a ϕ-action. Put Blog = Bmax[log[p̃]];

Blog is equipped with a ϕ-action and a monodromy N ; BN=0
log = Bmax; Blog

is a subring of BdR. Put Be = B
ϕ=1
max . We have the following fundamental

exact sequence

0 // Qp
// Be

// BdR/B
+
dR

// 0.

If r and s are two elements in N[1/p]∪{+∞}, we put Ã[r,s] = Ã+{ p
[ω̄r ] ,

[ω̄s]
p } and B̃[r,s] = Ã[r,s][1/p] with the convention that p/[ω̄+∞] = 1/[ω̄]

and [ω̄+∞]/p = 0. We equip these rings with the p-adic topology. There

are natural continuous GK -actions on Ã[r,s] and B̃[r,s]. Frobenius induces

isomorphisms ϕ : Ã[r,s]
∼
−→ Ã[pr,ps] and ϕ : B̃[r,s]

∼
−→ B̃[pr,ps]. If r ≤ r0 ≤ s0 ≤

s, then we have the GK-equivariant injective natural map Ã[r,s] →֒ Ã[r0,s0].

For r > 0 we put B̃
†,r
rig =

⋂
s∈[r,+∞) B̃[r,s] (equipped with certain Frechet

topology) and B̃
†
rig = ∪r>0B̃

†,r
rig (equipped with the inductive limit topology).

Frobenius induces isomorphisms ϕ : B̃†,rrig
∼
−→ B̃

†,pr
rig and ϕ : B̃†rig

∼
−→ B̃

†
rig.

Put

AK ′
0
= {

+∞∑

k≥−∞

akω
k | ak ∈ oK ′

0
, ak → 0 when k → −∞)}

and BK ′
0
= AK ′

0
[1/p]. Here K ′0 is the maximal absolutely unramified subfield

of K∞ = K(µp∞). Then AK ′
0
is a complete discrete valuation ring with p as

a prime element, and BK ′
0
is the fractional field of AK ′

0
. The GK -action and

ϕ preserve AK ′
0
: ϕ(ω) = (1 + ω)p − 1 and g(ω) = (1 + ω)χcyc(g) − 1. Let A

be the p-adic completion of the maximal unramified extension of AK ′
0
in Ã,

B its fractional field. Then ϕ and the GK-action preserve A and B.

We put BK = BHK and B
†,r
K = BK ∩ B̃†,r. Let B

†,r
rig,K be the Frechet

completion of B
†,r
K for the topology induced from that on B̃

†,r
rig, and put

B
†
rig,K = ∪r>0B

†,r
rig,K equipped with the inductive limit topology. Frobunius

induces injections B†,rrig,K →֒ B
†,pr
rig,K and B

†
rig,K →֒ B

†
rig,K ; there are continu-

ous ΓK-actions on B
†,r
rig,K and B

†
rig,K .

We end this subsection by the definition of E-(ϕ,ΓK)-modules [11].
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Definition 2.1. An E-(ϕ,ΓK)-module is a finite B
†
rig,K ⊗Qp E-module M

equipped with a Frobenius semilinear action ϕM and a comtinuous semilinear

ΓK-action such that M is free as a B
†
rig,K-module, that id

B
†
rig,K

⊗ ϕM :

B
†
rig,K

⊗
ϕ,B†

rig,K
M →M is an isomorphism, and that ϕM and the ΓK-action

commute with each other.

By [11, Lemma 1.30] if M is an E-(ϕ,ΓK)-module, then M is free over

B
†
rig,K ⊗Qp E.

2.2. B-pairs

We recall the theory of E-B-pairs [3, 11].

Put Be,E = Be ⊗Qp E, B+
dR,E = B+

dR ⊗Qp E and BdR,E = BdR ⊗Qp E.

We extend the GK -actions E-linearly to these rings.

Definition 2.2. An E-B-pair of GK is a couple W = (We,W
+
dR) such that

• We is a finiteBe,E-module with a continuous semilinear action GK -action

which is free as a Be-module.

• W+
dR ⊂WdR = BdR ⊗Be We is a GK -stable B+

dR,E-lattice.

By [11, Remark 1.3] We is free over Be,E and W+
dR is free over B+

dR,E.

If V is an E-representation of GK , then W (V ) = (Be,E ⊗E V,B
+
dR,E ⊗E

V ) is an E-B-pair, called the E-B-pair attached to V .

If S is a Banach E-algebra, we can define S-B-pairs similarly; to each

S-representation V of GK is associated an S-B-pair W (V ) = (Be,E ⊗E

V,B+
dR,E ⊗E V ).

If W1 = (W1,e,W
+
1,dR) and W2 = (W2,e,W

+
2,dR) are two E-B-pairs, we

define W1
⊗
W2 to be

(W1,e

⊗

Be,E

W2,e,W
+
1,dR

⊗

B
+
dR,E

W+
2,dR).

Here,W1,e
⊗
Be,E

W2,e is equipped with the diagonalGK -action, andW+
1,dR⊗B

+
dR,E
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W+
2,dR is naturally considered as a GK-stable B+

dR,E-lattice of

BdR ⊗Be (W1,e

⊗

Be,E

W2,e) =W1,dR

⊗

BdR,E

W2,dR,

where W1,dR = BdR ⊗Be W1,e and W2,dR = BdR ⊗Be W2,e.

If W = (We,W
+
dR) is an E-B-pair with WdR = BdR ⊗Be We, we define

the dual ofW to beW ∗ = (W ∗e ,W
∗,+
dR ), whereW ∗e is HomBe(W,Be) equipped

with the natural GK-action, and W
∗,+
dR is the GK -stable lattice of BdR ⊗Be

W ∗e
∼= HomBdR

(WdR,BdR) defined by

{ℓ ∈ HomBdR
(WdR,BdR) : ℓ(x) ∈ B+

dR for all x ∈W+
dR}.

The relation between (ϕ,ΓK)-modules and B-pairs is built by Berger

[3]. We recall Berger’s construction below.

LetM be a (ϕ,ΓK)-module of rank d over the Robba ringB†rig,K . Berger

[3] showed that

We(M) := (B̃†rig[1/t] ⊗B
†
rig,K

M)ϕ=1

is a free Be-module of rank d and equipped with a continuous semilinear

GK-action.

For sufficiently large r0 > 0 we can take a unique ΓK-stable finite free

B
†,r
rig,K-submodule M r ⊂M such that

B
†
rig,K ⊗

B
†,r
rig,K

M r =M

and

id
B

†,pr
rig,K

⊗ ϕM : B†,prrig,K ⊗
B

†,r
rig,K

M r ∼−→Mpr

for any r ≥ r0. Berger [3] showed that the B+
dR-module

W+
dR(M) := B+

dR ⊗
in,B

†,(p−1)pn−1

rig,K

M (p−1)pn−1

is independent of any n such that (p − 1)pn−1 ≥ r0, and showed that there

is a canonical GK-equivariant isomorphism BdR ⊗Be We(M)
∼
−→ BdR ⊗

B
+
dR

W+
dR(M).
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Put W (M) = (We(M),W+
dR(M)). This is an E-B-pair of rank d =

rank
B

†
rig,K

M .

The following is a variant version of Berger’s result [3, Theorem 2.2.7].

Proposition 2.3 ([11], Theorem 1.36). The functorM 7→W (M) is an exact

functor and this gives an equivalence of categories between the category of

E-(ϕ,ΓK)-modules and the category of E-B-pairs of GK .

Proposition 2.4. The functor M 7→ W (M) respects the tensor products

and duals.

Proof. Let M1 and M2 be two E-(ϕ,ΓK)-modules. By taking ϕ-invariants,

the isomorphism

(B̃†rig[1/t] ⊗B̃
†,r
rig,K

M1)⊗B̃
†
rig⊗QpE[1/t]

(B̃†rig[1/t]⊗B̃
†,r
rig,K

M2)

∼
−→ B̃

†
rig[1/t] ⊗B̃

†
rig,K

(M1 ⊗M2)

induces a GK -equivariant injective map

We(M1)⊗Be,E
We(M2) →We(M1 ⊗M2).

Here, M1 ⊗M2 denotes the E-(ϕ,ΓK)-module M1 ⊗B
†
rig,K⊗QpE

M2. Com-

paring dimensions and using [11, Lemma 1.10] we see that this map is in

fact an isomorphism. From the above Berger’s construction we see that the

natural map

W+
dR(M1)⊗B+

dR⊗QpE
W+

dR(M2) →W+
dR(M1 ⊗M2)

is an isomorphism. This proves that the functorM 7→W (M) respects tensor

products. The proof of that it respects duals is similar. ���

2.3. Semistable E-B-pairs

Definition 2.5. An E-(ϕ,N)-module over K is a K0⊗Qp E-module D with

a ϕ ⊗ 1-semilinear isomorphism ϕD : D → D, and a K0 ⊗Qp E-linear map

ND : D → D such that NDϕD = pϕDND. A filtered E-(ϕ,N)-module over

K is an E-(ϕ,N)-module with an exhaustive Z-indexed descending filtration

Fil• on K ⊗K0 D.
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We have an isomorphism of rings

K ⊗Qp E
∼
−→

⊕

τ∈Emb(K,E)

Eτ , a⊗ b 7→ (τ(a)b)τ , (2.1)

where Eτ is a copy of E for each τ ∈ Emb(K,E). Let eτ be the unity of Eτ .

Then 1 =
∑

τ eτ . Put Dτ = eτ (K ⊗K0 D). Then K ⊗K0 D =
⊕

τ∈Emb(K,E)

Dτ .

Let Filτ denote the induced filtration on Dτ .

Definition 2.6. LetW = (We,W
+
dR) be an E-B-pair. We defineDcris(W ) =

(Bmax ⊗Be We)
GK , Dst(W ) = (Blog ⊗Be We)

GK and DdR(W ) = (BdR ⊗Be

We)
GK . Then we have dimK0(D?(W )) ≤ rankBeWe for ? = cris, st, and

dimK(DdR(W )) ≤ rankBeWe. We say thatW is crystalline (resp. semistable)

if dimK0(D?(W )) := rankBeWe for ? = cris (resp. st).

If W is a semistable E-B-pair, we attach to W a filtered E-(ϕ,N)-

module as follows. The underlyingE-(ϕ,N)-module isDst(W ); the filtration

on DdR(W ) = K ⊗K0 Dst(W ) is given by FiliDdR(W ) = tiW+
dR ∩DdR(W ).

Proposition 2.7.

(a) The functor W 7→ Dst(W ) realizes an equivalence of categories between

the category of semistable E-B-pairs of GK and the category of filtered

E-(ϕ,N)-modules over K.

(b) If W1 and W2 are semistable, then so is W1 ⊗W2.

(c) The functor W 7→ Dst(W ) respects the tensor products and duals.

(d) If

0 //W1
//W //W2

// 0

is a short exact sequence of E-B-pairs, and W is semistable, then W1

and W2 are semistable.

(e) The functor W 7→ Dst(W ) is exact.

Proof. Assertion (a) follows from [3, Proposition 2.3.4]. See also [11, The-

orem 1.18 (2)].

Let W1 and W2 be two E-B-pairs. The isomorphism

(Blog ⊗Be W1)⊗Blog⊗QpE (Blog ⊗Be W2)
∼
−→ Blog ⊗Be (W1 ⊗W2)
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induces an injective map

Dst(W1)⊗K0⊗QpE Dst(W2) → Dst(W1 ⊗W2). (2.2)

When W1 and W2 are semistable, the dimension of the source over K0 is
rankBeW1rankBeW2

[E:Qp]
. The dimension of the target over K0 is always equal to

or less than rankBe(W1 ⊗W2) =
rankBeW1rankBeW2

[E:Qp]
. Hence, (2.2) is an iso-

morphism, and so W1 ⊗W2 is semistable. This proves (b). Similarly, the

isomorphism

(BdR ⊗Be W1)⊗BdR⊗QpE (BdR ⊗Be W2)
∼
−→ BdR ⊗Be (W1 ⊗W2) (2.3)

induces an isomorphism

DdR(W1)⊗K⊗QpE DdR(W2) → DdR(W1 ⊗W2).

Via the isomorphism (2.3) the filtration on (BdR⊗BeW1)⊗BdR⊗QpE(BdR⊗Be

W2) coincides with that on BdR ⊗Be (W1 ⊗W2). Therefore, the filtration

on DdR(W1) ⊗K⊗QpE DdR(W2) and that on DdR(W1 ⊗W2) coincide. In-

deed, they are the restrictions of the filtrations on (BdR ⊗Be W1)⊗BdR⊗QpE

(BdR ⊗Be W2) and BdR ⊗Be (W1 ⊗W2) respectively. Similarly we can show

that W 7→ Dst(W ) respects duals. This proves (c).

For (d) we have the following exact sequence

0 // Dst(W1) // Dst(W ) // Dst(W2). (2.4)

So (d) follows from a dimension argument. Furthermore, whenW is semistable,

Dst(W ) → Dst(W2) is surjective. For any i ∈ Z we write di(W ) for

dimK FiliDst(W ). As the maps in the exact sequence (2.4) respect filtra-

tions, we have di(W ) ≤ di(W1) + di(W2). Similarly, we have d1−i(W
∗) ≤

d1−i(W
∗
1 ) + d1−i(W

∗
2 ). As W 7→ Dst(W ) respects duals, we have di(W ) =

dimK(DdR(W ))− d1−i(W
∗). Then

di(W ) = dimK(DdR(W ))− d1−i(W
∗)

≥ (dimK(DdR(W1))− d1−i(W
∗
1 )) + dimK(DdR(W2))− d1−i(W

∗
2 )

= di(W1) + di(W2).
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Thus we must have di(W ) = di(W1) + di(W2) for all i ∈ Z. In other words,

the maps in (2.4) are strict for the filtrations, which shows (e). ���

By [3, Proposition 2.3.4] the quasi-inverse of the functor Dst is given by

DB(D) = ((Blog ⊗K0 D)ϕ=1,N=0,Fil0(BdR ⊗K0 D)). (2.5)

For a filtered E-(ϕ,N)-module D we put

Xlog(D) = (Blog⊗K0D)ϕ=1,N=0 and XdR(D) = BdR⊗K0D/Fil
0(BdR⊗K0D).

If DB(D) = (We,W
+
dR), then Xlog(D) = We and XdR(D) = (BdR ⊗Be

We)/W
+
dR.

3. S-B-pairs of Rank 1 and Triangulations

3.1. S-B-pairs of rank 1

Let S be a Banach E-algebra.

For any a ∈ S× we define a filtered S-ϕ-module Da as follows. As a

K0 ⊗Qp S-module,

Da = K0 ⊗Qp S = ⊕τ :K0→֒ESeτ ;

the ϕ⊗ 1-semilinear action ϕ on Da satisfies

ϕ(eid) = eϕ−1 , ϕ(eϕ−1) = eϕ−2 , . . . , ϕ(eϕ1−f ) = aeid;

the descending filtration on Da,K = K ⊗Qp S is given by Fil0Da,K = Da,K

and Fil1Da,K = 0.

Lemma 3.1. If a ∈ S satisfies that a−1 is topologically nilpotent, then there

exists a unit u0 ∈ Bmax⊗̂K0S such that ϕ[K0:Qp](u0) = au0. Consequently

{x ∈ Bmax⊗̂K0S : ϕ[K0:Qp](x) = ax} = (Be,K0⊗̂K0S)u0.

Proof. Let Qur
p be the completed unramified extension of Qp. Then there

exists an inclusion Qur
p →֒ Bmax that is compatible with ϕ.
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As ϕ[K0:Qp]−1 is surjective on Qur
p , there exists a sequence c0 = 1, c1, · · ·

of elements in Qur
p such that

(ϕ[K0:Qp] − 1)ci = ci−1

for i ≥ 1. The image of ci by the map

Qur
p →֒ Bmax → Bmax⊗̂K0S

is again denoted by ci. Put

u0 =

∞∑

i=0

ci(a− 1)i.

Then u0 is a unit and we have ϕ[K0:Qp]u0 = au0. ���

Proposition 3.2. If a ∈ S satisfies that a−1 is topologically nilpotent, then

DB(Da) is an S-B-pair of rank 1. Here DB is the functor defined by (2.5).

Proof. For each z ∈ Bmax⊗̂QpDa we write z =
∑
cτ eτ with cτ ∈ Bmax⊗̂K0,τS.

Then ϕ(z) = z if and only if ϕ(cϕi) = cϕi−1 (i = 1, . . . , [K0 : Qp]) and

ϕ[K0:Qp](cid) = acid. Our assertion follows from Lemma 3.1. ���

For any a ∈ S×, let δa : K× → S× denote the character such that

δa(πK) = a and δa|
o
×
K
= 1.

Remark 3.3. In the case of S = E, for any u ∈ E×, DB(Du) coincides with

the E-B-pair W (δu) defined in [11] (see [11, §1.4]). From now on the base

change of W (δu) from E to S is again denoted by W (δu).

Let δ : K× → S× be a continuous character such that δ(πK) is of

the form δ(πK) = au, where u ∈ E× and a ∈ S satisfies that a − 1 is

topologically nilpotent. We call such a character a good character. Let Wa

be the resulting S-B-pair in Proposition 3.2. Let δ′ be the unitary continuous

character K× → E× such that δ′|
o
×
K

= δ|
o
×
K

and δ′(πK) = 1. By local class

field theory, this induces a continuous character δ̃′ : GK → S× such that

δ̃′ ◦ recK = δ′. Then we put

W (δ) =W (S(δ̃′))⊗W (δu)⊗Wa,

where W (S(δ̃′)) is the S-B-pair attached to the Galois representation S(δ̃′).
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If δ is a continuous character δ : K× → S×, we write log(δ) for the

logarithmic of δ|
o
×
K
, which is a Zp-linear homomorphism log(δ) : K → S.

For any τ ∈ Emb(K,E) we use the same notation τ to denote the

composition of τ : K →֒ E and E →֒ S. Then {τ : K →֒ S} is a basis of

HomZp(E,S) over S. Write log(δ) =
∑

τ kτ τ , kτ ∈ S. We call (kτ )τ the

weight vector of δ and denote it by ~w(δ). We use wτ (δ) to denote kτ .

Remark 3.4. Let S be an affinoid algebra over E. For any continuous

character δ : K× → S× and any point z0 of Max(S), there exists an affinoid

neighborhood U = Max(S′) of z0 in Max(S) such that the restriction of δ to

U is good.

Lemma 3.5. Let δ be a character of K× with values in S = E[Z]/(Z2), δ̄

the character of K× with values in E obtained from δ modulo (Z). Write

δ = δ̄S(1 + Zǫ), where δ̄S is the character K×
δ̄
−→ E× →֒ S×. Let ǫ′ be the

additive character of GK such that ǫ′ ◦ recK(p) = 0 and ǫ′ ◦ recK |o×
K
= ǫ|

o
×
K
.

Assume that W (δ̄) is crystalline and ϕ[K0:Qp] acts on Dcris(W (δ̄)) by α.

Then there is a nonzero element

x ∈ (Bmax,E ⊗Be,E
W (δ)e)

ϕ[K0:Qp]=α(1+Zvp(πK)ǫ(p)),GK=(1+Zǫ′)

whose reduction modulo Z is a basis of Dst(W (δ̄)) over K ⊗Qp E.

Proof. This follows from the fact that W (δ) = W (δ̄S) ⊗Wδ1+Zvp(πK )ǫ(p)
⊗

W (1 + Zǫ′). ���

3.2. Triangulations and refinements

Now let S be an affinoid algebra over E. For any open affinoid subset

U of S and any S-B-pair W let WU denote the restriction to U of W .

Definition 3.6. Let W be an S-B-pair of rank n, z0 a point of Max(S). If

there is

• an affinoid neighborhood U = Max(SU ) of z0,

• a strictly increasing filtration

{0} = Fil0WU ⊂ Fil1WU ⊂ · · · ⊂ FilnWU =WU
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of saturated free sub-SU -B-pairs, and

• n good continuous characters δi : Q
×
p → S×U

such that for any i = 1, . . . , n,

FiliWU/Fili−1WU ≃W (δi),

we say that W is locally triangulable at z0; we call Fil• a local triangulation

of W at z0, and call (δ1, . . . , δn) the local triangulation parameters attached

to Fil•.

Please consult [6, 4] for more knowledge on triangulations.

To discuss the relation between triangulations and refinements, we re-

strict ourselves to the case of S = E.

Let D be a filtered E-(ϕ,N)-module of rank n. The operator ϕ[K0:Qp] on

D is K0 ⊗Qp E-linear. We assume that the eigenvalues of ϕ[K0:Qp] : D → D

are all in K0 ⊗Qp E, i.e. there exists a basis of D over K0 ⊗Qp E such the

matrix of ϕ[K0:Qp] with respect to this basis is upper-triangular.

Following Mazur [9] we define a refinement of D to be a filtration on D

0 = F0D ⊂ F1D ⊂ · · · ⊂ FnD = D

by E-subspaces stable by ϕD and ND, such that each factor

grFi D = FiD/Fi−1D (i = 1, . . . , n) is of rank 1 over K0 ⊗Qp E. Any refine-

ment fixes an ordering α1, . . . , αn of eigenvalues of ϕ[K0:Qp] and an ordering
~k1, . . . , ~kn of Hodge-Tate weights of K ⊗K0 D taken with multiplicities such

that the eigenvalue of ϕ[K0:Qp] on grFi D is αi and the Hodge-Tate weight of

grFi D is ~ki.

We have the following analogue of [1, Proposition 1.3.2].

Proposition 3.7. Let W be a semistable E-B-pair, D = Dst(W ).

(a) The equivalence of categories between the category of semistable E-B-

pairs and the category of filtered E-(ϕ,N)-modules induces a bijection

between the set of triangulations on W and the set of refinements on

D.
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(b) If (FiliW ) is a triangulation of W with triangulation parameters

(δ1, . . . , δn) that correspond to a refinement F•D of D with the ordering

of Hodge-Tate weights being ~k1, . . . , ~kn, then δi = δ̃i
∏

τ∈Emb(K,E)

τ(x)ki,τ ,

where δ̃i is a smooth character.

Proof. Assertion (a) follows from the fact that Dst is an exact. Assertion

(b) follows from [11, Lemma 4.1]. ���

4. Cohomology Theory

4.1. Cohomology of (ϕ,ΓK)-modules and cohomology of B-pairs

Let M be a (ϕ,ΓK)-module. Assume that ΓK has a topological gen-

erator γ. Define the cohomology H•ΦΓ(M) by the complex C•(M) defined

by

C0(M) =M
(γ−1,ϕ−1)
−−−−−−−→ C1(M) =M ⊕M → C2(M) =M,

where the map C1(M) → C2(M) is given by (x, y) 7→ (ϕ − 1)x − (γ − 1)y.

Denote the kernel of C1(M) → C2(M) by Z1(M).

There is a one-to-one correspondence between H1(M) and the set of

extensions of M0 by M in the category of (ϕ,ΓK)-modules, where M0 =

B
†
rig,Ke0 is the trivial (ϕ,ΓK)-module with ϕ(e0) = γ(e0) = e0. Let M̃

be an extension of M0 by M , and let ẽ be any lifting of e0 in M̃ . Then

the element in H1(M) corresponding to the extension M̃ is the class of

((γ − 1)ẽ, (ϕ− 1)ẽ) ∈ Z1(M).

In [11] Nakamura introduced a cohomology for B-pairs and use it to

compute the cohomology of (ϕ,ΓK)-modules.

If W = (We,W
+
dR) is an E-B-pair, let C•(W ) be the complex of GK -

modules defined by

C0(W ) :=We → C1(W ) := WdR/W
+
dR.

Here, We →WdR/W
+
dR is the natural map.

Definition 4.1. Let W = (We,W
+
dR) be an E-B-pair. We define the Galois

cohomology of W by H i
B(W ) := H i(GK , C

•(W )).
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By definition there is a long exact sequence

· · · → H i
B(W ) → H i(GK ,We) → H i(GK ,WdR/W

+
dR) → · · · . (4.1)

For a GK -module M put C0(M) = M and let Ci(M) be the space of

continuous functions from (GK)×i to M . Let δ0 : C0(M) → C1(M) be

the map x 7→ (g 7→ g(x) − x) and let δ1 : C1(M) → C2(M) be the map

f 7→ ((g1, g2) 7→ f(g1g2)− f(g1)− g1f(g2)).

Nakamura [11] showed that H1
B(W ) is isomorphic to ker(δ̃1)/im(δ̃0),

where δ̃0 and δ̃1 are defined by

δ̃0 : C0(We)⊕ C0(W+
dR) → C1(We)⊕ C1(W+

dR)⊕ C0(WdR) :

(x, y) 7→ (δ0(x), δ0(y), x− y),

δ̃1 : C
1(We)⊕ C1(W+

dR)⊕ C0(WdR) → C2(We)⊕ C2(W+
dR)⊕ C1(WdR) :

(f1, f2, x) 7→ (δ1(f1), δ1(f2), f1 − f2 − δ0(x)).

The map H1
B(W ) → H1(GK ,We) is induced by the forgetful map

C1(We)⊕ C1(W+
dR)⊕C0(WdR) → C1(We).

There is a one-to-one correspondence between H1(GK ,W ) and the set

of extensions ofW0 byW in the category of E-B-pairs. Here, W0 = (Be⊗Qp

E,B+
dR ⊗Qp E) is the trivial E-B-pair. Let W̃ = (W̃e, W̃

+
dR) be an extension

of W0 by W . Let (w̃e, w̃
+
dR) be a lifting in W̃ of (1, 1) ∈ W0. Then the

element in H1
B(W ) corresponding to the extension W̃ is just the class of

((σ 7→ (σ − 1)w̃e), (σ 7→ (σ − 1)w̃+
dR), w̃e − w̃+

dR) ∈ ker(δ̃1).

By Proposition 2.3 there is a one-to-one correspondence between Ext(M0,M)

and

Ext(W0,W (M)). It induces a natrual isomorphism

iM : H1
ΦΓ(M) → H1

B(W (M)).

4.2. 1-cocycles from infinitesimal deformations

Let S be the E-algebra E[Z]/(Z2), M̃ an S-(ϕ,ΓK)-module. Let {e1, . . .,

en} be an S-basis of M̃ , {e∗1, . . . , e
∗
n} the dual basis of M̃∗. PutM = M̃⊗SE
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and M∗ = M̃∗ ⊗S E. Let ei,z denote ei mod Z, and e∗j,z denote e∗j mod Z.

Then {e1,z , . . . , en,z} is an E-basis of M , and {e∗1,z, . . . , e
∗
n,z} is an E-basis of

M∗.

The matrices of ϕ and γ with respect to {e1, . . . , en} are denote by Ãϕ
and Ãγ respectively, so that ϕ(ej) =

∑
i(Ãϕ)ijei and γ(ej) =

∑
i(Ãγ)ijei.

Write Ãϕ = (In + ZUϕ)Aϕ and Ãγ = (In + ZUγ)Aγ . Put

cΦΓ(M̃ ) = (
∑

i,j

(Uϕ)i,je
∗
j,z ⊗ ei,z,

∑

i,j

(Uγ)i,je
∗
j,z ⊗ ei,z).

Write DB(M̃ ) = (W̃e, W̃
+
dR), DB(M) =W and DB(M

∗) =W ∗.

Let f1, . . . , fn be a basis of W̃e over Be,E , and let g1, . . . , gn be a basis of

W̃+
dR over B+

dR,E. We write the matrix of σ ∈ GK with respect to the basis

{f1, . . . , fn} by (In + ZUe,σ)Ae,σ, and the matrix of σ with respect to the

basis {g1, . . . , gn} by (In + ZU+
dR,σ)A

+
dR,σ. Here,

Ue,σ ∈ Mn(Be,E), U
+
dR,σ ∈ Mn(B

+
dR,E), Ae,σ ∈ GLn(Be,E),

and

A+
dR,σ ∈ GLn(B

+
dR,E).

Write (f1, . . . , fn) = (g1, . . . , gn)(In + ZUdR)AdR and put

cB(M̃) =
(

(σ 7→
∑

i,j

(Ue,σ)ijf
∗
j,z⊗fi,z), (σ 7→

∑

i,j

(U+
dR,σ)ijg

∗
j,z⊗gi,z),

∑

i,j

(UdR)ijg
∗
j,z⊗gi,z

)

.

Proposition 4.2.

(a) cΦΓ(M̃) is in Z1(M∗ ⊗M).

(b) cB(M̃ ) is in ker(δ̃1,W ∗⊗W ).

(c) We have iM ([cΦΓ(M̃)]) = [cB(M̃)].

Proof. It is easy to verify (a) and (b).

PutM∗S =M∗⊗ES. We considerM∗S⊗S M̃ as an extension ofM∗⊗EM

by itself, and form the following commutative diagram

M0

��

0 //M∗ ⊗E M //M∗S ⊗S M̃ //M∗ ⊗E M // 0,
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where the vertical map M0 → M∗ ⊗E M is given by 1 7→
∑n

i=1 e
∗
i,z ⊗ ei,z,

which does not depend on the choice of the basis {e1, . . . , en}. Pulling back

M∗S⊗SM̃ viaM0 →M∗⊗EM we obtain an extension ofM0 byM
∗⊗EM . Let

M denote the resulting extension. Then M is a sub-E-B-pair of M∗S ⊗S M̃ .

Put DB(M) = (We,W
+
dR).

A lifting of 1 inWe is
∑

j f
∗
j,z⊗fj, and a lifting of 1 inW+

dR is
∑

j g
∗
j,z⊗gj .

We have

(σ−1)
∑

j

f∗j,z⊗fj = σ(f∗1,z, . . . , f
∗
n,z)⊗σ





f1
f2
...

fn




−(f∗1,z, . . . , f

∗
n,z)⊗





f1
f2
...

fn





= (f∗1,z, . . . , f
∗
n,z)(A

t
e,σ)
−1 ⊗Ate,σ(1 + zU te,σ)

= (f∗1,z, . . . , f
∗
n,z)⊗ U te,σz





f1
f2
...

fn




.

Similarly,

(σ − 1)
∑

j

g∗j,z ⊗ gj = (g∗1,z , . . . , g
∗
n,z)⊗ (U+

dR,σ)
tz





g1
g2
...

gn




,

and

∑

j

f∗j,z ⊗ fj −
∑

j

g∗j,z ⊗ gj = (g∗1,z, . . . , g
∗
n,z)⊗ U tdRz





g1
g2
...

gn




.

Hence the element in H1
B(DB(M

∗⊗EM)) attached to the extension DB(M)

is [cB(M̃ )].

A similar computation shows that the element in H1
ΦΓ(M

∗ ⊗E M) at-

tached to the extension M is [cΦΓ(M̃ )]. Now (c) follows. ���
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5. The Reciprocity Law and an Application

5.1. Reciprocity law

In [14, Section 2] using local class field theory Zhang precisely described

the perfect pairing

H1(GK , E)×H1(GK , E(1)) → H2(GK , E(1)).

We recall it below.

The Kummer theory gives us a canonical isomorphism so called the

Kummer map

lim
←−−n

(K×/(K×)p
n

)⊗Zp E → H1(GK , E(1))

∑

i

αi ⊗ ai 7→
∑

i

ai[(αi)].

Here (α) is the 1-cocycle such that

g( pn
√
α)

α
= ε

(αg)
n

for α ∈ K× and g ∈ GK , where ( pn+1√
α)p = pn

√
α. Combining the Kummer

map and the exponent map

exp : poK → K×

and extending it by linearity we obtain an embedding from K ⊗Qp E to

H1(GK , E(1)), again denoted by exp. Then we have

H1(GK , E(1)) = exp(K ⊗Qp E)⊕ E · [(p)].

Let Hom(GK , E) be the group of additive characters of GK with values

in E. As the action of GK on E is trivial, H1(GK , E) is naturally isomorphic

to Hom(GK , E). Let ψ0 : GK → E be the additive character that vanishes on

the inertial subgroup ofGK and maps the geometrical Frobenius to [K0 : Qp].

For any τ ∈ Emb(K,E) let ψτ be the composition τ ◦ log ◦ rec−1K
2 , where log

2Since the character ψτ of the Weil group WK sends any lifting of the qth power Frobenius to 0,
it can be extended to a character of GK which is again denoted by ψτ
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is normalized such that log(p) = 0. Then {ψ0, ψτ : τ ∈ Emb(K,E)} is an

E-basis of H1(GK , E).

Lemma 5.1 (Zhang, Proposition 2.1). The cup product of

a0ψ0 +
∑

τ∈Emb(K,E) aτψτ (a0, aτ ∈ E) and b0[(p)] + exp(b) (b0 ∈ E, b ∈

K ⊗Qp E) is
(
a0b0 − trK/Qp

((aτ )τ · b)
)
(ψ0 ∪ [(p)]).

Here, (aτ )τ is considered as an element in K ⊗Qp E via the isomorphism

(2.1).

Lemma 5.2. For λ0, λτ ∈ E (τ ∈ Emb(K,E)), the extension of E (as a triv-

ial GK-module) by E corresponding to the cocycle λ0ψ0+
∑

τ∈Emb(K,E) λτψτ
is de Rham if and only if λτ = 0 for each τ .

Proof. By [11, Lemma 4.3], the subspace of extensions of E by E that

are de Rham is 1-dimensional, and so consists of those corresponding to the

cocycles λ0ψ0 (λ0 ∈ E). ���

5.2. An auxiliary formula

Let ~L = (Lσ)σ:K →֒E be a vector. We consider ~L as an element ofK⊗QpE

via the isomorphism (2.1).

Let D be a filtered E-(ϕ,N)-module: the underlying E-(ϕ,N)-module

D is a (K0 ⊗Qp E)-module with a basis {f1, f2, f3} such that

ϕ[K0:Qp]f1 = p−[K0:Qp]f1, ϕ
[K0:Qp]f2 = f2, ϕ

[K0:Qp]f3 = f3,

and

N(f1) = 0, N(f2) = −f1, N(f3) = f1;

the filtration on

K ⊗K0 D = (K ⊗Qp E)f1 ⊕ (K ⊗Qp E)f2 ⊕ (K ⊗Qp E)f3

satisfies

FiliD =

{
(K ⊗Qp E)(f2 − ~Lf1)⊕ (K ⊗Qp E)(f3 + ~Lf1) if i = 0,

0 if i > 0.
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Let πi be the projection map

Xlog(D) → Blog,E,

3∑

j=1

ajfj 7→ ai.

Lemma 5.3. Let c : GK → Xlog(D) be a 1-cocycle whose class in H1(GK ,

Xlog(D)) belongs to ker(H1(GK ,Xlog(D)) → H1(GK ,XdR(D))). Then there

exist

γ2,0, γ2,τ , γ3,0, γ3,τ ∈ E

(τ ∈ Emb(K,E)) such that

π2(c) = γ2,0ψ0 +
∑

τ∈Emb(K,E)

γ2,τψτ

and

π3(c) = γ3,0ψ0 +
∑

τ∈Emb(K,E)

γ3,τψτ .

Furthermore,

γ2,0 − γ3,0 =
∑

τ∈Emb(K,E)

Lτ (γ2,τ − γ3,τ ).

In our proof of Lemma 5.3 we need the following

Lemma 5.4. Let D be an E-(ϕ,N)-module. If Fil1 and Fil2 are two filtra-

tions on K⊗K0D such that Fil01(K⊗K0D) = Fil02(K⊗K0D), then the kernel

of

H1(GK ,Xlog(D)) → H1(GK ,XdR(D,Fil1))

coincides with the kernel of

H1(GK ,Xlog(D)) → H1(GK ,XdR(D,Fil2)).

Proof. The proof is similar to that of [13, Proposition 2.5] ���

Proof of Lemma 5.3. The argument is similar to the proof of [13, Lemma

5.1]. We only give a sketch.

Write cσ = λ1,σf1 + λ2,σf2 + λ3,σf3. As c takes values in Xlog(D), we

have λ2,σ, λ3,σ ∈ E. This ensures the existence of γ2,0, γ2,τ , γ3,0, γ3,τ .
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Let Fil be the filtration on D such that Fil−1D = D and FiliD =

FiliD if i ≥ 0. Then (D,Fil) is admissible. Let V be the semistable E-

representation of GK attached to DV = (D,Fil). By Lemma 5.4, [c] is in

the kernel of H1(GK ,Xlog(DV )) → H1(GK ,XdR(DV )) and so there exists

a 1-cocycle c(1) : GK → V such that the image of [c(1)] by H1(GK , V ) →

H1(GK ,Xlog(DV )) is [c].

We form the following commutative diagram

V ′

��

0 // V0 // V //

πV,V1

��

T //

��

0

0 // V0 // V1 // T1 // 0

(5.1)

with the horizontal lines being exact, where V0 (resp. V ′) is the subrep-

resentation of V corresponding to the filtered E-(ϕ,N)-submodule of DV

generated by f1 (resp. by f2+f3) which is admissible. From (5.1) we obtain

the following commutative diagram

H1(GK , V ) //

πV,V1

��

H1(GK , T ) //

��

H2(GK , V0)

H1(GK , V1) // H1(GK , T1) // H2(GK , V0),

where the horizontal lines are exact.

Write c(2) for the 1-cocycle GK
c(1)
−−→ V → T → T1. By a simple compu-

tation we obtain

[c(2)] = [
(
(γ2,0 − γ3,0)ψ0 +

∑

τ∈Emb(K,E)

(γ2,τ − γ3,τ )ψτ

)
f̄2],

where f̄2 is the image of f2 ∈ V in T1. Note that T1 is isomorphic to E, and

V0 is isomorphic to E(1). Being the image of [πV,V1(c
(1))] in H1(T1), [c

(2)]

lies in the kernel of H1(GK , T1) → H2(GK , V0). By [14, Lemma 5.5], as an

extension of E by E(1), V1 corresponds to the element [(p)] + exp( ~L). Now

Lemma 5.1 yields our second assertion.
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6. L-invariants

Let D be a filtered E-(ϕ,N)-module of rank n. Fix a refinement F of

D. Then F fixes an ordering α1, . . . , αn of the eigenvalues of ϕ[K0:Qp] and

an ordering ~k1, . . . , ~kn of the Hodge-Tate weights.

6.1. The operator NF

The operator ϕ induces a K0⊗Qp E-semilinear operator ϕF on grF• D =
n⊕
i=1

FiD/Fi−1D.

We define a K0 ⊗Qp E-linear operator NF on grF• D. The definition is

similar to the one defined in [13], so we omit some details.

For any i ∈ {1, . . . , n}, if N(FiD) = N(Fi−1D), we demand that NF
maps grFi D to zero.

Now we assume thatN(FiD) ) N(Fi−1D). Let j be the minimal integer

such that

N(FiD) ⊆ N(Fi−1D) + FjD.

Proposition 6.1. N(Fi−1D) ∩ FjD = N(Fi−1D) ∩ Fj−1D.

Proof. Note that FjD, Fj−1D, N(Fi−1D) +FjD and N(Fi−1D) +Fj−1D

are stable by ϕ. Thus (N(Fi−1D) + FjD)/(N(Fi−1D) + Fj−1D) is a ϕ-

module, and so must be free over K0 ⊗Qp E. Hence the map

FjD/Fj−1D → (N(Fi−1D) +FjD)/(N(Fi−1D) + Fj−1D) (6.1)

is an isomorphism. It follows that N(Fi−1D)∩FjD=N(Fi−1D)∩Fj−1D.���

The operator N induces a K0 ⊗Qp E-linear map

FiD/Fi−1D → (N(Fi−1D) + FjD)/(N(Fi−1D) + Fj−1D).

We define the map NF : grFi D → grFj D to be the composition of this map

and the inverse of (6.1).

Finally we extend NF to the whole grF• D by K0 ⊗Qp E-linearity. Note

that NFϕF = pϕFNF . By definition, for any i we have either N(grFi D) = 0

or N(grFi D) = grFj D for some j.
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Definition 6.2. For j ∈ {1, . . . , n−1} we say that j is marked (or a marked

index) for F if there is some i ∈ {2, . . . , n} such that NF (gr
F
i D) = grFj D.

Note that i and j in the above definition are determined by each other.

We write i = tF (j) and j = sF(i).

Proposition 6.3. The following two assertions are equivalent:

(a) s is marked and t = tF (s).

(b) NFt−1D ∩ FsD = NFt−1D ∩ Fs−1D and NFtD ∩ FsD ) NFtD

∩Fs−1D.

Proof. We have already seen that, if (a) holds, then (b) holds. Conversely,

we assume that (b) holds. Then NFtD ∩ FsD ) NFt−1D ∩ FsD. Thus

NFtD ) NFt−1D.

We show that NFtD  NFt−1D + Fs−1D. If it is not true, then there

exists y ∈ FtD\Ft−1D which is a lifting of a basis of grFt D over K0 ⊗Qp E

such that N(y) ∈ Fs−1D. For any z ∈ FtD, write z = w + λy with w ∈

Ft−1D and λ ∈ K0 ⊗Qp E. If N(z) is in FsD, then N(w) is also in FsD.

But NFt−1D ∩ FsD = NFt−1D ∩ Fs−1D. Thus N(w) is in Fs−1D, which

implies that N(z) = N(w) + λN(y) is also in Fs−1D. So, NFtD ∩ FsD =

NFtD ∩ Fs−1D, a contradiction.

FromNFtD∩FsD ) NFt−1D∩FsD we see that there is x ∈ FtD\Ft−1D

such that N(x) ∈ FsD. We must have NFtD ⊆ NFt−1D + FsD. Other-

wise, let j be the smallest integer such that NFtD ⊆ NFt−1D + FjD and

assume that j > s. Then NF (x + Ft−1D) = 0, which contradicts the fact

that NF : grFt D → grFj D is an isomorphism. ���

6.2. Strongly marked indices and L-invariants

Assume that s is marked for F and t = tF (s). We consider the decom-

positions

FtD/Fs−1D = (K0 ⊗Qp E) · ēs ⊕ L⊕ (K0 ⊗Qp E)ēt

that satisfy the following conditions:

• F1(FtD/Fs−1D) = (K0 ⊗Qp E)ēs and F t−s(FtD/Fs−1D) = (K0 ⊗Qp

E)ēs ⊕ L, where F is the refinement on FtD/Fs−1D induced by F .
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• Both L and (K0 ⊗Qp E)ēs ⊕ (K0 ⊗Qp E)ēt are stable by ϕ and N ;

ϕ[K0:Qp](ēt) = αtēt and N(ēt) = ēs.

Such a decomposition is called an s-decomposition.

Remark 6.4. s-decompositions may be not exist. However, if ϕ is semisim-

ple, then s-decompositions always exist (see [13]).

Let dec denote an s-decomposition FtD/Fs−1D = Eēs ⊕ L⊕ Eēt.

There is a natural isomorphism Eēs⊕Eēt → (FtD/Fs−1D)/L of (ϕ,N)-

modules. Usually the filtration on the filtered E-(ϕ,N)-submodule Eēs⊕Eēt
and that on (FtD/Fs−1D)/L are different.

When these two filtrations satisfy certain compatible condition, we say

the decomposition dec is perfect. Precisely, we say that dec is perfect if for

any τ : K →֒ E we have ks,τ < kt,τ , and if there exist k′s,τ , k
′
t,τ and Ldec,τ ∈ E

satisfying ks,τ ≤ k′s,τ < k′t,τ ≤ kt,τ such that the following conditions hold.

• The filtration on the filtered E-(ϕ,N)-submodule Eēs ⊕ Eēt satisfies

Filiτ (Eēs ⊕ Eēt) =






Eēs,τ ⊕Eēt,τ if i ≤ ks,τ ,

E(ēt,τ + Ldec,τ ēs,τ ) if ks,τ < i ≤ k′t,τ ,

0 if i > k′t,τ ,

• The filtration on the quotient of FtD/Fs−1D by L satisfies

FiliτFtD/Fs−1D =






Eēs,τ ⊕Eēt,τ if i ≤ k′s,τ ,

E(ēt + Ldec,τ ēs) if k′s,τ < i ≤ kt,τ ,

0 if i > kt,τ ,

where the images of ēs and ēt in FtD/Fs−1D are again denoted by ēs

and ēt.

Definition 6.5. If there exists a perfect s-decomposition, we say that s

is strongly marked (or a strongly marked index). In this case we attached

to each pair (s, t) with t = tF (s) an invariant ~LF ,s,t = (Ldec,τ )τ , where

dec is a perfect s-decomposition. Proposition 6.6 below tells us that ~LF ,s,t
is independent of the choice of perfect s-decompositions. We call ~LF ,s,t
the Fontaine-Mazur L-invariant associated to (F , s, t), and denote Ldec,τ by

LF ,s,t,τ .
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In the case of t = s + 1, s is strongly marked if and only if ks,τ < kt,τ

for all τ .

Proposition 6.6. If dec1 and dec2 are two perfect s-decompositions, then

Ldec1,τ = Ldec2,τ for any τ .

Proof. The argument is similar to the proof of [13, Proposition 4.9]. ���

Let D∗ be the filtered E-(ϕ,N)-module that is the dual of D. Let F̌ be

the refinement on D∗ such that

F̌iD
∗ := (Fn−iD)⊥ = {y ∈ D∗ : 〈y, x〉 = 0 for all x ∈ Fn−iD} .

We call F̌ the dual refinement of F .

If L ⊂ M are submodules of D, then M⊥ ⊂ L⊥. The pairing 〈·, ·〉 :

L⊥ ×M induces a non-degenerate pairing on L⊥/M⊥ ×M/L, so that we

can identify L⊥/M⊥ with the dual of M/L naturally. In particular, grF̌i D
∗

is naturally isomorphic to the dual of grFn+1−iD. Thus grF̌• D
∗ is naturally

isomorphic to the dual of grF• D.

Proposition 6.7.

(a) NF̌ is dual to −NF .

(b) s is marked for F if and only if n+ 1− tF (s) is marked for F̌ .

(c) s is strongly marked for F if and only if n+1−tF(s) is strongly marked

for F̌ .

Proof. The proof of (a) is similar to that of [13, Proposition 4.14]. The

proof of (b) is similar to that of [13, Proposition 4.13]. The proof of (c) is

similar to that of [13, Proposition 4.15 (a)]. ���

7. Projection Vanishing Property

Put S = E[Z]/(Z2). Let z be the closed point defined by the maximal

ideal (Z) of S.

Let W = (We,W
+
dR) be an S-B-pair. Let {w1, . . . , wn} be a Be,S-basis

of We. Suppose that W admits a triangulation Fil•. Let (δ1, . . . , δn) be the

corresponding triangulation parameters. Then for each i = 1, . . . , n there
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exists a continuous additive character ǫi of K
× with values in E such that

δi = δi,z(1 + Zǫi).

Suppose that Wz, the evaluation of W at z, is semistable, and let Dz be

the filtered E-(ϕ,N)-module attached toWz. Let F be the refinement of Dz

corresponding to the induced triangulation ofWz, and let {e1,z, e2,z , . . . , en,z}

be a (K0 ⊗Qp E)-basis of Dz that is compatible with F i.e. FiD = (K0 ⊗Qp

E)e1,z ⊕ · · · ⊕ (K0 ⊗Qp E)ei,z. Let αi,z ∈ E be such that ϕ[K0:Qp](ei,z) =

αi,zei,zmodFi−1.

Let xij ∈ Blog,E (i, j = 1, . . . , n) be such that

ei,z = x1iw1,z + · · ·+ xniwn,z. (7.1)

Then X = (xij) is in GLn(Blog,E). Write the matrix of σ ∈ GK with respect

to the basis {w1, . . . , wn} by (In + ZUe,σ)Ae,σ. As e1,z, . . . , en,z are fixed by

GK , we have X−1Ae,σσ(X) = In for all σ ∈ GK .

For i = 1, . . . , n put ei = x1iw1 + · · · + xniwn. Then {e1, . . . , en} is a

basis of Blog,S ⊗S We over Blog,S .

Lemma 7.1. If T is the matrix of ϕDz for the basis {e1,z, . . . , en,z}, then T

is also the matrix of ϕBlog,S⊗SWe for the basis {e1, . . . , en}.

Proof. The assertion follows from the definition of {e1, . . . , en} and the fact

that w1,z, . . . , wn,z, w1, . . . , wn are fixed by ϕ. ���

In Section 4.1 we attach to W an element cB(W ) in H1
B(W

∗
z ⊗ Wz).

Consider the composition

H1
B(W

∗
z ⊗Wz) → H1(GK ,W

∗
e,z⊗Be,E

We,z) → H1(GK ,Blog,E⊗E (D
∗
z⊗Dz)).

As the matrix of σ ∈ GK for the basis {e1, . . . , en} is In+ZX
−1Ue,σX, from

the discussion in Section 4 we see that the image of cB in H1(GK ,Blog,E⊗E

(D∗z ⊗Dz)) is the class of the 1-cocycle

(Ue,σ)ijw
∗
j,z ⊗ wi,z = (X−1Ue,σX)ije

∗
j,z ⊗ ei,z.

Let πhℓ be the projection

Blog,E ⊗E (D∗z ⊗Dz) → Blog,E ,
∑

j,i

bjie
∗
j,z ⊗ ei,z 7→ bhℓ. (7.2)
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For h = 1, . . . , n, let ǫ′h be the additive character of GK such that ǫ′h ◦

recK(p) = 0 and ǫ′h ◦ recK |o×
K
= ǫh|o×

K
.

Theorem 7.2.

(a) For any pair of integers (h, ℓ) such that h < ℓ we have πhℓ([c]) = 0.

(b) For any h = 1, . . . , n, πh,h([c]) coincides with the image of [ǫ′h] in

H1(GK ,Blog,E).

We call (a) the projection vanishing property.

Proof. The filtered E-(ϕ,N)-module attached toWz/Filh−1Wz isDz/Fh−1Dz .

We denote the image of eℓ,z (ℓ ≥ h) in Dz/Fh−1Dz again by eℓ,z.

Let δ′h be the character of GK such that δ′h = 1 + Zǫ′h. By Lemma 3.5

there exists an element

x ∈ (Bmax,E ⊗Be,E
(W/Filh−1W )e)

GK=δ′
h
,ϕ[K0:Qp]=αi,z(1+Zvp(πK)ǫh(p))

whose image in Dz/Fh−1Dz is eh,z. Write x = eh + Z
∑
ℓ≥h

λℓeℓ with λℓ ∈

Blog,E.

As the matrix of σ ∈ GK for the basis {e1, . . . , en} is In +ZX−1Ue,σX,

we have

[1 + Zǫ′h(σ)]x = [1 + Zǫ′h(σ)](eh + Z
∑

ℓ≥h

λℓeℓ)

= σ(x) = eh + Z
∑

ℓ≥h

(X−1Ue,σX)ℓheℓ + Z
∑

ℓ≥h

σ(λℓ)eℓ.

For ℓ > h, comparing the coefficients of eℓ we obtain

(X−1Ue,σX)ℓh = (1− σ)λℓ,

which shows (a). Similarly, comparing coefficients of eh we obtain

(X−1Ue,σX)hh − ǫ′h(σ) = (1− σ)λh, (7.3)

which implies (b). ���
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8. The proof of Theorem 1.2

We will need the following lemmas.

Lemma 8.1. The inclusion E →֒ Be,E induces an isomorphism

H1(GK , E)
∼
−→ ker(N : H1(GK ,Be,E) → H1(GK ,Blog,E)).

Proof. The proof is identical to that of [13, Corollary 1.4]. ���

Lemma 8.2. The map N : Bϕ=p
log,E → B

ϕ=1
log,E is surjective.

Proof. The proof is identical to that of [13, Lemma 1.2]. ���

For the proof of Theorem 1.2 we may assume that S = E[Z]/(Z2), and

z is the closed point defined by the maximal ideal (Z). Let W be as in

Theorem 1.2. Replacing W by the E-B-pair FtW/Fs−1W and replacing F

by the induced refinement on FtW/Fs−1W , we may assume that s = 1 and

t = n = rankBe,E
(We). Let e1,z, e2,z , . . . , en,z be a K0⊗QpE-basis of Dz such

that

(K0 ⊗Qp E)e1,z
⊕

L
⊕

(K0 ⊗Qp E)en,z (8.1)

with L = ⊕n−1
i=2 (K0 ⊗Qp E)ei,z a perfect 1-decomposition of Dz for F (see

§6.2 for the meaning of perfect decompositions). Let e∗1,z, e
∗
2,z , . . . , e

∗
n,z be

the dual basis of D∗z over K0 ⊗Qp E.

LetD1 be the quotient ofDz by L,D
∗
2 the quotient ofD

∗
z by⊕

n−1
i=2 (K0⊗Qp

E)e∗i,z. Put D = D∗2⊗D1. The images of e1,z and en,z inD1 are again denoted

by e1,z and en,z, and the images of e∗1,z and e∗n,z in D∗2 are again denoted by

e∗1,z and e
∗
n,z respectively. So e

∗
1,z⊗e1,z, e

∗
1,z⊗en,z, e

∗
n,z⊗e1,z, e

∗
n,z⊗en,z form

aK0⊗QpE-basis of D . Let D0 be the filtered E-(ϕ,N)-submodule of D with

a K0 ⊗Qp E-basis {e∗1,z ⊗ e1,z, e
∗
n,z ⊗ e1,z, e

∗
n,z ⊗ en,z}. Let W = (We,W

+
dR)

(resp. W0) be the E-B-pair attached to D (resp. D0). Note that

ϕ[K0:Qp](e∗1,z ⊗ e1,z) = e∗1,z ⊗ e1,z, ϕ
[K0:Qp](e∗n,z ⊗ en,z) = e∗n,z ⊗ en,z,

ϕ[K0:Qp](e∗n,z ⊗ e1,z) = p−[K0:Qp]e∗n,z ⊗ e1,z,

and

−N(e∗1,z ⊗ e1,z) = N(e∗n,z ⊗ en,z) = e∗n,z ⊗ e1,z, N(e∗n,z ⊗ e1,z) = 0
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Let ~LF = ~LF ,s,t be the L-invariant defined in Definition 6.5. As (8.1) is

a prefect decomposition, we have

Fil0(K ⊗K0 D) = Ee∗n,z ⊗ (en,z + ~LFe1,z)⊕ E(e∗1,z − ~LFe
∗
n,z)⊗ e1,z

⊕E(e∗1,z − ~LFe
∗
n,z)⊗ (en,z + ~LFe1,z).

and

Fil0(K ⊗K0 D0) = Ee∗n,z ⊗ (en,z + ~LFe1,z)⊕E(e∗1,z − ~LFe
∗
n,z)⊗ e1,z.

Consider W as an infinitesimal deformation of Wz. In Section 4.2 we

attach to this infinitesimal deformation an element cB(W ) in H1
B(W

∗
z ⊗Wz).

Let [c] be the image of cB(W ) by the composition

H1
B(W

∗
z⊗Wz) → H1(GK ,W

∗
e,z⊗Be,E

We,z) → H1(GK ,Blog,E⊗K0⊗QpE(D
∗
z⊗Dz)),

and choose a 1-cocyle c representing [c]. Write c in the form

c =
∑

j,i

cj,ie
∗
j,z ⊗ ei,z

with ci,j being a 1-cocycle of GK with values in Blog,E. By the projection

vanishing property (Theorem 7.2 (a)) we have [c1,n] = 0.

Lemma 8.3. There exist ξ1, ξn ∈ Be,E and γ1,0, γ1,τ , γn,0, γn,τ (τ ∈ Emb(K,E))

such that

c1,1(σ) = (σ − 1)ξ1 + γ1,0ψ0(σ) +
∑

τ∈Emb(K,E)

γ1,τψτ (σ)

and

cn,n(σ) = (σ − 1)ξn + γn,0ψ0(σ) +
∑

τ∈Emb(K,E)

γn,τψτ (σ)

for any σ ∈ GK .

Proof. Let c̄B be the image of cB in H1
B(W ), and let c̄ be the 1-cocycle

c̄ =
∑

j,i∈{1,n}

cj,ie
∗
j,z ⊗ ei,z
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of GK with values in Blog,E ⊗K0⊗QpE D . Then the image of c̄B in

H1(GK ,Blog,E ⊗K0⊗QpE D)

is [c̄].

Note that c̄ has values in We = (Blog,E ⊗K0⊗QpE D)ϕ=1,N=0. So, in

particular c1,1 and cn,n have values in Be,E . As Nc̄ = 0, we have

N(cn,1) = c1,1 − cn,n, −N(c1,1) = N(cn,n) = c1,n.

As [c1,n] = 0, the statement follows from Lemma 8.1. ���

Write δi = δi,z(1 + Zǫi). Let ǫ′i be the additive character of GK with

values in E such that ǫ′i ◦ recK(p) = 0 and ǫ′i ◦ recK |o×
K

= ǫi|o×
K
. Then there

are ǫi,τ (τ ∈ Emb(K,E)) such that ǫ′i =
∑

τ∈Emb(K,E)

ǫi,τψτ .

Lemma 8.4. For h = 1, n we have [K0 : Qp]γh,0 = −vp(πK)ǫh(p) and

γh,τ = ǫh,τ .

Proof. We keep to use notations in the proof of Theorem 7.2. By (7.3) and

Lemma 8.3 we have

(σ − 1)(λh) = −(X−1UσX)hh +
∑

τ∈Emb(K,E)

ǫh,τψτ (σ)

= −(σ − 1)ξh − γh,0ψ0(σ) +
∑

τ∈Emb(K,E)

(ǫh,τ − γh,τ )ψτ (σ).

Note that there exists ω ∈ W(Fp) such that ϕ(ω) − ω = 1, where W(Fp)

is the ring of Witt vectors with coefficients in the algebraic closure of Fp.

Then (σ − 1)ω = ψ0(σ). Hence

∑

τ∈Emb(K,E)

(ǫh,τ − γh,τ )ψτ (σ) = (σ − 1)(λh + ξh + γh,0ω).

In other words, the cocycle
∑

τ∈Emb(K,E)

(ǫh,τ − γh,τ )ψτ (σ) is de Rham. By

Lemma 5.2 we have γh,τ = ǫh,τ and λh + ξh + γh,0ω ∈ E. Then

(ϕ[K0:Qp]−1)λh = −(ϕ−1)ξh−γh,0(ϕ
[K0:Qp]−1)ω = −[K0 : Qp]γh,0. (8.2)
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By our choice of the basis {e1,z, . . . , en,z}, Y1 = ⊕n
i=2Zei,z is stable by

ϕ. Put Yn = 0. Let x be as in the proof of Theorem 7.2. By Lemma 7.1 we

have ϕ[K0:Qp]eh,z = αh,zeh,z. Thus for h = 1, n we have

ϕ[K0:Qp](x) = (1 + Zϕ[K0:Qp](λh))αh,zeh (mod Yh).

On the other hand,

ϕ[K0:Qp](x) = (1 + Zvp(πK)ǫh(p))αh,zx

= (1 + Zvp(πK)ǫh(p))αh,z(1 + Zλh)eh (mod Yh).

Hence we obtain

(ϕ[K0:Qp] − 1)λh = vp(πK)ǫh(p). (8.3)

By (8.2) and (8.3) we have

[K0 : Qp]γh,0 = −(ϕ[K0:Qp] − 1)λh = −vp(πK)ǫh(p),

as wanted. ���

By Lemma 8.2 there exists some y ∈ B
ϕ=p
log,E such that N(y) = ξ1 − ξn.

Let c̄′ be the 1-cocycle of GK with values in Blog,E ⊗K0⊗QpE D0 such that

c̄′ = c′1,1e
∗
1,z ⊗ e1,z + c′n,ne

∗
n,z ⊗ en,z + c′n,1e

∗
n,z ⊗ e1,z

with

c′1,1 = γ1,0ψ0 +
∑

τ∈Emb(K,E)

γ1,τψτ , c′n,n = γn,0ψ0 +
∑

τ∈Emb(K,E)

γn,τψτ

and

c′n,1(σ) = cn,1(σ)− (σ − 1)y, σ ∈ GK .

It is easy to check that ϕ(c̄′) = c̄′ and N(c̄′) = 0. Hence c̄′ is a 1-cocycle of

GK with values in Xlog(D0).

Proposition 8.5. The image of [c̄′] in H1(GK ,Xlog(D0)) belongs to the

kernel of

H1(GK ,Xlog(D0)) → H1(GK ,XdR(D0)).
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Proof. Consider the following commutative diagram

H1(GK ,Xlog(D0)) //

��

H1(GK ,XdR(D0))

��

H1(GK ,Xlog(D)) // H1(GK ,XdR(D)).

The right vertical arrow in the above diagram is injective (see [13, Corollary

2.4]). So we only need to show that the image of [c̄′] in H1(GK ,XdR(D)) is

zero. Note that

[c̄′] = [c̄]− [c1,ne
∗
1,z ⊗ en,z] = −[c1,ne

∗
1,z ⊗ en,z]

in H1(GK ,XdR(D)). As the image of [c1,n] in H
1(GK ,Blog,E) is zero, so is

its image in H1(GK ,BdR,E/Fil
fBdR,E), where f is the smallest integer such

that e∗1,z ⊗ en,z ∈ Fil−fDK . Hence, the image of [c̄′] in H1(GK ,XdR(D)) is

zero. ���

Now, applying Lemma 5.3 to D0 with f1 = e∗n,z ⊗ e1,z, f2 = e∗1,z ⊗ e1,z

and f3 = e∗n,z ⊗ en,z, we get

γn,0 − γ1,0 =
∑

τ∈Emb(K,E)

Lτ (γn,τ − γ1,τ ).

Hence, by Lemma 8.4 we have

vp(πK)

[K0 : Qp]
(ǫn(p)− ǫ1(p)) +

∑

τ∈Emb(K,E)

Lτ (ǫn,τ − ǫ1,τ ) = 0.

As dδh(p)
δh(p)

= ǫh(p)dZ and d~w(ǫh) = (ǫh,τdZ)τ , we obtain

1

[K : Qp]

(
dδn(p)

δn(p)
−

dδ1(p)

δ1(p)

)
+ ~LF · (d~w(δn)− d~w(δ1)) = 0,

as desired. This finishes the proof of Theorem 1.2.
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