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Abstract

In this paper we study the derivatives of Frobenius and the derivatives of Hodge-Tate
weights for families of Galois representations with triangulations. We give a generalization
of the Fontaine-Mazur L-invariant and use it to build a formula which is a generalization

of the Colmez-Greenberg-Stevens formula.

1. Introduction

In their remarkable paper ﬂﬂ], Mazur, Tate and Teitelbaum proposed a
conjectural formula for the derivative at s = 1 of the p-adic L-function of an
elliptic curve E over Q when p is a prime of split multiplicative reduction.
An important quantity in this formula is the so called L-invariant, namely
L(E) = log,(qr)/vp(qr) where qp € Q, is the Tate period for E. This
conjectural formula was proved by Greenberg and Stevens ﬂ§] using Hida’s
families. Indeed, for the weight 2 newform f attached to E, there exists a
family of p-adic ordinary Hecke eigenforms containing f. A key formula they
proved is

£(E) = 22 W) (1.1)

where « is the function of U,-eigenvalues of the eigenforms in the Hida family.

On the other hand, they showed that —2% is equal to % Combining
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these two facts they obtained the conjectural formula.

In this paper we will focus on ([LI)) which was later generalized by

Colmez ﬂa] to the non-ordinary setting. We state Colmez’s result below.

Theorem 1.1 (ﬂa]) Suppose that, at each closed point z of Max(S) one
of the Hodge-Tate weight of V. is 0, and there exists o € S such that
(Bfri:SaS@)SV)GQP is locally free of rank 1 over S. Suppose zy is a closed

point of Max(S) such that V,, is semistable with Hodge-Tate wez’ghtsll 0 and
k > 1. Then the differential

da 1 1

s zero at zp, where L is the Fontaine-Mazur L-invariant of V.

See ﬂa] for the precise meanings of x and . Roughly speaking, dé is the

derivative of Frobenius, and dk is the derivative of Hodge-Tate weights.

The condition that “(B(ﬁizs‘fS®SV)GQP is locally free of rank 1 over S” in
Theorem [L1]is equivalent to that V admits a triangulation ﬂﬂ] So, Theorem
[CLTmeans that the derivatives of Frobenius and the derivatives of Hodge-Tate
weights of a family of 2-dimensional representations of Gq, with a triangu-
lation satisfy a non-trivial relation at each semistable (but non-crystalline)

point.

Colmez’s theorem was generalized by Zhang ﬂﬂ] for families of 2- dimen-
sional Galois representations of G (K a finite extension of Q) and Pot-
tharst ﬂﬂ] who considered families of (not necessarily étale) (¢, I')-modules

of rank 2 instead of families of 2-dimensional Galois representations.

In this paper we give a generalization of Colmez’s theorem which in-

cludes the above generalizations as special cases.

Fix a finite extension K of Q,. What we work with is a family of K-
B-pair (called S-B-pair in our context) that is locally triangulable. We will
provide conditions for Fontaine-Mazur L-invariant to be defined. Note that,

the L-invariant is now a vector with component number equal to [K : Q,].

n this paper, the Hodge-Tate weights are defined to be minus the generalized eigenvalues of
Sen’s operators. In particular the Hodge-Tate weight of the cyclotomic character xcyc is —1.
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Theorem 1.2. Let W be an S-B-pair that is semistable at a point z €
Max(S). Suppose that W is locally triangulable at z with the local triangu-
lation parameters (01,...,0,). Assume that for D, the filtered E-(¢, N)-
module attached to W, the Fontaine-Mazur L-invariant /357,5 (see Definition
60) can be defined for s,t € {1,2,...,n}. Then

1 A0up) _ d0D)\ | p s
(K Qp] <5t(p) 55(p) > + Lot - (dwi(d¢) — dui(ds)) = 0.

Here, @(0;) is the Hodge-Tate weight of the character ¢;.

In ﬂa] we proved Theorem for a special case, where we consider
the case of K = Q, and demand that the Frobenius is simisimple at z.
The motivation and some potential applications of our theorem was also

discussed in ﬂﬁ] .

Our paper is orginized as follows. In Section 2 we recall the theory of
B-pairs built by Berger. Then in Section 3 we extend a part of this the-
ory to families of B-pairs, and discuss the relation between triangulations
of semistable B-pairs and refinements of their associated filtered (¢, N)-
modules. In Section 4 we compare cohomology groups of (p,I')-modules
and those of B-pairs, and then attach a 1-cocycle to each infinitesimal de-
formation of a B-pair. In Section 5 we use the reciprocity law to build an
auxiliary formula for L-invariants. The L-invariant is defined in Section 6.
In Section 7 we prove a formula called “projection vanishing property” for
the above 1-cocycle. Finally in Section 8 we use the auxiliary formula in
Section 5 and the projection vanishing property to deduce Theorem

Notations

Let K be a finite extension of Q,, G i the absolute Galois group Gal(K /K).
Let Ky be the maximal absolutely unramified subfield of K. Let G?}) denote

the maximal abelian quotient of G.

Let Xcyc be the cyclotomic character of G, Hy the kernel of xcy. and
'k the quotient G /Hg. Then xcyc induces an isomorphism from I'x onto
an open subgroup of Z.

Let F be a finite extension of K such that all embeddings of K into an
algebraic closure of E are contained in E, Emb(K, E) the set of embeddings
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of K into E. We consider E as a coefficient field and let G acts trivially
on E.

Let reckx be the reciprocity map of local class field theory such that
reci (mg) is a lifting of the inverse of gth power Frobenius of k, where 7y
is a uniformizing element of K and k is the residue field of K with cardinal
number ¢q. Note that the image of reci coincides with the image of the Weil
group W C Gk by the quotient map G — G‘}}). Let 1rec;(1 Wi — K~

be the converse map of recg.

2. (¢,I'k)-modules and B-pairs

2.1. Fontaine’s rings

We recall the construction of Fontaine’s period rings. Please consult
H, B] for more details.

Let C, be a completed algebraic closure of Q, with valuation subring

oc, and p-adic valuation v, normalized such that v,(p) = 1.

Let E be {(z®);>0 | z® € C,, (x0+D) = 2() v i € N}, and let ET be
the subset of E such that 2 € oc,- fx,y € E, we define x + y and zy by

(e +9) = lim (20 4 YD ()@ = 0y,

Then E is a field of characteristic p. Define a function vg : E — R U{+0oo}
by putting vg((z(™)) = v,(x(®). This is a valuation for which E is complete
and E* is the ring of integers in E. If we let £ = (¢() be an element of
Et with ¢© = 1 and e®) = 1, then Eisa completed algebraic closure of
F,((e —1)). Put w = [¢] — 1. Let p be an element of E such that 5(©) = p.

Let A be the ring W(E") of Witt vectors with coefficients in E*, A
the ring of Witt vectors W(E), and Bt = A[1/p]. The map

9:Bt > C,, Z pFla] — Z pkx,io)
n>>—o0 n>>—0o0

is surjective. Let BJ; be the ker(f)-adic completion of B*t. Then teye =
log[e] is an element of B, and put Bqg = B [1/tcyc]. There is a filtration
Fil* on Byg such that Fil'Bar = @), BJgtlyc-
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Let B .. be the subring of Bt consisting of elements of the form

> n>0bu([P]/p)", Where b, € B* and b, — 0 when n — +00. Put By =

B x[1/teye); Bmax is equipped with a @-action. Put By = Byax([log[p]];

By, is equipped with a ¢-action and a monodromy N; Blog = Brax; Biog

is a subring of Bggr. Put B, = Bfwi. We have the following fundamental
exact sequence

0 Q, B, Bar/Blz —0.

If 7 and s are two elements in N[1/p] U {+o0}, we put Al"s! = A‘F{[a’%},

@} and Bl = Al"sl[1/p] with the convention that p/[@™>°] = 1/[@]
and [01°]/p = 0. We equip these rings with the > p- adic topology. There
are natural continuous Gg-actions on A[r s and B[T s- Frobenius induces
isomorphisms ¢ : A[r ] = A[prps} and ¢ : B g = Biprps- Ir <mp < s <
s, then we have the G g-equivariant injective natural map A[,,,s] — A[,,msd
For » > 0 we put Brlg = ﬂse[wroo) é[r,s] (equipped with certain Frechet
equipped with the inductive limit topology).

B
rig*

topology) and BLg = r>OB

Frobenius induces isomorphisms ¢ : Bilg = Bil’g and ¢ : Brlg = Bl

rig (

Put

+oo
AK(') =1 Z apw® | ay € 0y, ap — 0 when k — —o0)}
k>—o00

and Br; = Ag; [1/p]. Here K| is the maximal absolutely unramified subfield
of Koo = K(ptp). Then A K 18 a complete discrete valuation ring with p as
a prime element, and B K} is the fractional field of A K} The G g-action and
¢ preserve At o(w) = (1+w)? — 1 and g(w) = (1 + w)Xere@) — 1. Let A
be the p-adic completion of the maximal unramified extension of A K}, in K,
B its fractional field. Then ¢ and the Gx-action preserve A and B.

We put Bx = B and B}’(r — B NBI". Let BL’;K be the Frechet

completion of BT’T for the topology induced from that on BL;, and put

BLg K= 7'>0Br1g x equipped with the inductive limit topology. Frobunius

f,r f,pr t
induces injections B:” oK Brlg x and Brlg K< B! there are continu-

i rig, K’

7 ]
ous ['g-actions on Brlg x and Brigj(.

We end this subsection by the definition of E-(p, 'k )-modules ]
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Definition 2.1. An E-(¢,I'k)-module is a finite BiigK ®q, F-module M

equipped with a Frobenius semilinear action ¢,; and a comtinuous semilinear

I'k-action such that M is free as a BLg r-module, that idg; ® ppm
’ rig, K

BL@K ®<PvBI1g,K M — M is an isomorphism, and that ¢j; and the I" x-action
commute with each other.

By ﬂﬂ, Lemma 1.30] if M is an E-(p,'x)-module, then M is free over

BT K®QP E.

rig,

2.2. B-pairs

We recall the theory of E-B-pairs E, Iﬁh
Put B, p = B. ®q, E, Bj{R 1 = Biz ®q, E and Bar g = Bar ®q, E.

We extend the Gi-actions F-linearly to these rings.

Definition 2.2. An E-B-pair of G is a couple W = (W, WJR) such that

o W, is a finite B, p-module with a continuous semilinear action G g-action

which is free as a B.-module.

o Wir C War = Bar ®B, We is a G-stable By p-lattice.

By ﬂﬂ, Remark 1.3] W, is free over B, i and WjR is free over B:{R B

If V' is an E-representation of G, then W (V) = (B, g ®g V, B:{R £ ®F
V) is an E-B-pair, called the E-B-pair attached to V.

If S is a Banach F-algebra, we can define S-B-pairs similarly; to each
S-representation V' of G is associated an S-B-pair W (V) = (B g ®p
V, Bji_R,E KR V)

If Wy = (Wi, Wihig) and Wo = (Wa, Wl 1) are two E-B-pairs, we
define W7 @ W> to be

(Wie @) Wae, Wi @ Wolgr).
Be E B;R B

Here, Wi . @ Wy is equipped with the diagonal G i-action, and W1+dR®B+
B.r ) dR,E
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W; 4r is naturally considered as a G'k-stable BIR p-lattice of

Bar @8, (Wie () Wae) = Wiar X) Waar,

B. e Bar.E

where Wi gr = Bar @B, Wi, and Wy qr = Bar ®B, Wae.

tw = (W, W(;LR) is an E-B-pair with Wyr = Bgr ®B, W, we define
the dual of W to be W* = (W2, W(E;L), where W/ is Homp, (W, B, ) equipped
with the natural G g-action, and W(;};L is the G -stable lattice of Byr @B,
We* = HodeR(WdR, BdR) defined by

{¢ € Homg,, (War, Bar) : {(z) € B} for all z € Wi}

The relation between (¢, 'k )-modules and B-pairs is built by Berger

E] We recall Berger’s construction below.

Let M be a (¢, 'k )-module of rank d over the Robba ring Biig - Berger
B] showed that

We(M):= (Bl [1/t] @5  M)*~!

I'ig rig, K
is a free Be-module of rank d and equipped with a continuous semilinear

G i-action.

For sufficiently large rog > 0 we can take a unique I'x-stable finite free
BL’; c-submodule M" C M such that

T _
Bl‘ig,K ®BT,7‘ MT’ = M

rig, K
and

1 . Typr r = T
ldBT,PT ® QDM . Brig,K ®BT,7‘ M — Mp

rig, K rig, K

for any r > r¢. Berger E] showed that the B;{R—module

rig, K

—1 n—1
W(;FR(M) = BQLR ®imBT,(p—1)pn—1 MP=r

is independent of any n such that (p — 1)p"~! > rq, and showed that there
is a canonical G g-equivariant isomorphism Bgr ®B, We(M) = Bgr ®BIR
Wi (M).
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Put W(M) = (We(M),Wiz(M)). This is an E-B-pair of rank d =

rank M.
BIig,K

The following is a variant version of Berger’s result B, Theorem 2.2.7].

Proposition 2.3 (ﬂﬁh, Theorem 1.36). The functor M — W (M) is an exact
functor and this gives an equivalence of categories between the category of
E-(¢,T'k)-modules and the category of E-B-pairs of Gk .

Proposition 2.4. The functor M +— W (M) respects the tensor products
and duals.

Proof. Let My and Ms be two E-(p, ' )-modules. By taking ¢-invariants,
the isomorphism

(BL,[1/1] ®gir M) DB}, @q,E01/1 (Bl [1/1] DBl M)

rig, K

S B/ eg (M@ M)

rg rig, K

induces a Gi-equivariant injective map
We(Ml) ®Be,E We(M2) — We(Ml ® MQ)

Here, M; ® My denotes the E-(¢,I'k)-module M, Rpt 9, F M,. Com-
rig, K 52

paring dimensions and using ﬂﬂ, Lemma 1.10] we see that this map is in

fact an isomorphism. From the above Berger’s construction we see that the

natural map
War (M) OBf,®q,F Wi (Ma) — Wi (M) @ My)

is an isomorphism. This proves that the functor M — W (M) respects tensor
products. The proof of that it respects duals is similar. O

2.3. Semistable E-B-pairs

Definition 2.5. An E-(p, N)-module over K is a Ko ®q, E-module D with
a ¢ ® l-semilinear isomorphism ¢p : D — D, and a Ky ®q, F-linear map
Np : D — D such that Nppp = peopNp. A filtered E-(¢, N)-module over
K is an E-(¢, N)-module with an exhaustive Z-indexed descending filtration
Fil* on K ®k, D.
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We have an isomorphism of rings

Ko, E= @ E- a®b— (r(a)h)s, (2.1)
T€Emb(K,E)

where E; is a copy of F for each 7 € Emb(K, E). Let e, be the unity of E;.
Then1=)"_e,;. Put D; = e, (K ®g, D). Then K ®, D = b D,
T€Emb(K,E)

Let Fil- denote the induced filtration on D..

Definition 2.6. Let W = (W,, W) be an E-B-pair. We define Di5(W) =
(Bmax ®B8 We)GK, Dst(W) = (Blog ®B8 We)GK and DdR(W) = (BdR ®Be
W,)9%. Then we have dimg,(D7(W)) < rankg W, for ? = cris,st, and
dimg (Dgr(W)) < rankg, W.. We say that W is crystalline (resp. semistable)
if dimg,(D2(W)) := rankg, W, for ? = cris (resp. st).

If W is a semistable E-B-pair, we attach to W a filtered E-(¢, N)-
module as follows. The underlying E-(y, N)-module is Dy (W); the filtration
on Dar(W) = K @, Dst(W) is given by Fil'Dag (W) = /W3 N Dar(W).

Proposition 2.7.

(a) The functor W +— Dg (W) realizes an equivalence of categories between
the category of semistable E-B-pairs of G and the category of filtered
E-(p, N)-modules over K.

(b) If W1 and Wy are semistable, then so is Wi @ Wa.
(¢) The functor W — Dy (W) respects the tensor products and duals.

(d) If
0 Wi W W 0

is a short exact sequence of E-B-pairs, and W is semistable, then Wy
and Wy are semistable.

(e) The functor W — Dg (W) is ezact.

Proof. Assertion (@) follows from E, Proposition 2.3.4]. See also ﬂﬂ, The-
orem 1.18 (2)].

Let Wi and W5 be two E-B-pairs. The isomorphism

(Biog @B, W1) @B),,0q, F (Blog @B, W2) = Biog @B, (W1 @ Wa)
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induces an injective map
Dst(Wl) ®K0®QPE Dst(W2) — Dst(Wl (024 Wg) (22)

When W; and Wy are semistable, the dimension of the source over Kj is
rankg, Wirankg, W2

Q) . The dimension of the target over Kj is always equal to
or less than rankg, (W, @ W) = rankBegfgikBe "2 Hence, [22) is an iso-

morphism, and so W; ® Ws is semistable. This proves (D). Similarly, the

isomorphism
(Bar ©B, W1) @Byreq,# (Bir @B, Wa2) = Bar ®B, (W1 @ Wa)  (2.3)
induces an isomorphism
Dar(W1) ®Kwq,2 Dar(W2) = Dar(W1 @ Wy).

Via the isomorphism (2.3)) the filtration on (Bqr @B, W1)®B,req, £ (Bir ®@B.
W3) coincides with that on Bgr ®B, (W1 ® W3). Therefore, the filtration
on Dggr(W7) ®Koq,E Dgr(Ws2) and that on Dgr(W7 ® W) coincide. In-
deed, they are the restrictions of the filtrations on (Bgr ®pB, W1) ®Bar®q, E
(Bar ®@B, W2) and Byr ®B, (W1 ® Wh) respectively. Similarly we can show
that W — Dy (W) respects duals. This proves (@).

For (dl) we have the following exact sequence
0 —— Dy (W1) — Dy (W) —— D (W2). (2.4)

So (d)) follows from a dimension argument. Furthermore, when W is semistable,
D (W) — Dy (W) is surjective. For any i € Z we write d;(W) for
dimg Fil'Dg (W). As the maps in the exact sequence (Z4) respect filtra-
tions, we have d;(W) < d;(Wh) + d;(W2). Similarly, we have dy_;(W*) <
dy—; (W) + di—;(W5). As W +— Dg (W) respects duals, we have d;(W) =
dimg (Dgr(W)) — d1—;(W*). Then

dZ(W) = dimK(DdR(W)) — dl_i(W*)
> (dimg (Dar(W1)) — di—i(W7)) + dimg (Dar(W2)) — di—i(W3)
= d;(W7) + d;(Wa).
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Thus we must have d;(W) = d;(W1) + d;(W2) for all ¢ € Z. In other words,
the maps in (2.4) are strict for the filtrations, which shows (@). O

By E, Proposition 2.3.4] the quasi-inverse of the functor Dy is given by

Dp(D) = ((Biog ®x, D)*~ "=, Fil'(Bar ®k, D))- (2.5)

For a filtered E-(¢, N)-module D we put
Xiog(D) = (Biog®@x, D)?=N=0 and Xgr(D) = Bar®@x, D/Fil®(Bar @, D).
If Dp(D) = (We, W), then Xioq(D) = W, and Xqr(D) = (Bar ®B,
We)/ W(;FR.
3. S5-B-pairs of Rank 1 and Triangulations

3.1. S-B-pairs of rank 1
Let S be a Banach F-algebra.

For any a € S* we define a filtered S-p-module D, as follows. As a
Ky ®q, S-module,

Da = KO ®QP S = EBTZKQ‘—)ESGT;
the ¢ ® 1-semilinear action ¢ on D, satisfies
pleid) = ep-1, pleg-1) =ep2, ..., go(egﬂ_f) = aeq;

the descending filtration on D, x = K ®q, S is given by FilODmK = Du K
and Fil' D, ;¢ = 0.

Lemma 3.1. Ifa € S satisfies that a—1 is topologically nilpotent, then there

exists a unit ug € BmaX®KOS such that @Ko Qel (ug) = aug. Consequently

{z € Bmax@)KoS : go[Ko:Qp] () =ax} = (Be,K0®KOS)Uo.

Proof. Let Q" be the completed unramified extension of Qp. Then there

exists an inclusion Qgr — Bax that is compatible with .
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As gp[KO’QP} —1is surjective on Q", there exists a sequence cg = 1,¢1, - - -
of elements in Q)" such that

(()D[K():Qp] — ]-)CZ =Ci_1
for ¢ > 1. The image of ¢; by the map
Q;r — Bmax — Bmax®KOS

is again denoted by ¢;. Put

e -
ug = Zci(a — 1)~
=0

Then ug is a unit and we have w[KonP}uo = auy. O

Proposition 3.2. Ifa € S satisfies that a—1 is topologically nilpotent, then
Dg(D,) is an S-B-pair of rank 1. Here Dp is the functor defined by (Z3).

Proof. For each z € Bnlax®QpDa we write z = Y cre, with ¢, € Bmax®K0,7’5'
i1 (i = 1,...,[Ko : Qp]) and
F0:Qp] (ciq) = aciq. Our assertion follows from Lemma [B.1] O

Then ¢(2) = z if and only if ¢(c,i) = ¢

For any a € S*, let §, : K* — S* denote the character such that
0q(mx) = a and 5(1\0;( = 1.

Remark 3.3. In the case of S = F, for any u € E*, Dg(D,,) coincides with
the E-B-pair W(d,,) defined in ﬂﬂ] (see [11, §1.4]). From now on the base
change of W(4,) from E to S is again denoted by W (d,).

Let 6 : K* — S* be a continuous character such that §(mg) is of
the form d6(7x) = au, where u € E* and a € S satisfies that a — 1 is
topologically nilpotent. We call such a character a good character. Let W,
be the resulting S-B-pair in Proposition3.2l Let ¢’ be the unitary continuous
character K* — E* such that 5’\0;( = 5\0;( and ¢'(rx) = 1. By local class

field theory, this induces a continuous character 8+ Gk — S* such that
¢ oreckx = ¢'. Then we put

W(9) = W(S(0") ® W (6u) & Wa,

where W (S(¢")) is the S-B-pair attached to the Galois representation S(&).
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If 0 is a continuous character 0 : K* — S*, we write log(d) for the
logarithmic of ] 0 which is a Z-linear homomorphism log(d) : K — S.

For any 7 € Emb(K, E) we use the same notation 7 to denote the
composition of 7 : K < E and E — S. Then {7 : K — S} is a basis of
Homgz, (£, S) over S. Write log(0) = > _ k.7, k; € S. We call (k;); the
weight vector of § and denote it by w(J). We use w,(d) to denote k.

Remark 3.4. Let S be an affinoid algebra over E. For any continuous
character § : K* — S* and any point zy of Max(.S), there exists an affinoid
neighborhood U = Max(S’) of zp in Max(S) such that the restriction of § to
U is good.

Lemma 3.5. Let § be a character of K* with values in S = E[Z]/(Z?), §
the character of K* with values in E obtained from § modulo (Z). Write

§ = 05(1 + Ze), where dg is the character K* S EX < §%. Let € be the

additive character of Gi such that € orecik(p) =0 and € o reCK|o;<( = e|olx<.

Assume that W (8) is crystalline and @Uo°Q) acts on Des(W(6)) by a.
Then there is a nonzero element

z € (Bmax,E ®B67E W(5)6)‘p[Ko:QP]:O‘(H‘sz)(WK)E(p)),G'K:(H-Ze’)
whose reduction modulo Z is a basis of Dg (W (8)) over K ®q, E.

Proof. This follows from the fact that W (§) = W (ds) ® W11 sy sy ©
W(l+Z€). O

3.2. Triangulations and refinements

Now let S be an affinoid algebra over E. For any open affinoid subset
U of § and any S-B-pair W let Wy denote the restriction to U of W.

Definition 3.6. Let W be an S-B-pair of rank n, zy a point of Max(S). If
there is

e an affinoid neighborhood U = Max(Sy) of zo,

e a strictly increasing filtration

{0} = FilgWy Cc FilhWy C --- C Fil, Wy = Wy



300 BINGYONG XIE [December

of saturated free sub-Sy-B-pairs, and

e n good continuous characters d; : Q,; — Sy

such that for any i = 1,...,n,
Fﬂz‘WU/Fﬂi_le ~ W((SZ),

we say that W is locally triangulable at zg; we call Filg a local triangulation
of W at zp, and call (01,...,0d,) the local triangulation parameters attached
to Fil,.

Please consult ﬂa, @] for more knowledge on triangulations.

To discuss the relation between triangulations and refinements, we re-

strict ourselves to the case of S = F.

Let D be a filtered E-(p, N)-module of rank n. The operator ¢50:Qrl on
D is Ky ®q, E-linear. We assume that the eigenvalues of lEoQl . D 5 D
are all in Ko ®q, F, i.e. there exists a basis of D over Ky ®q, I such the

matrix of @E0 Q] with respect to this basis is upper-triangular.

Following Mazur ﬂa] we define a refinement of D to be a filtration on D
O=FDcCcFHDC---CF,D=D

by E-subspaces stable by ¢p and Np, such that each factor
gt/ D = F;D/F;_1D (i =1,...,n) is of rank 1 over Ko ®q, E. Any refine-
ment fixes an ordering ar, ..., o, of eigenvalues of p!X0*Ql and an ordering
/Zl, . ,En of Hodge-Tate weights of K @, D taken with multiplicities such
that the eigenvalue of @E0:Qrl on grgE D is «; and the Hodge-Tate weight of
gri]: D is /2:;

We have the following analogue of ﬂ, Proposition 1.3.2].
Proposition 3.7. Let W be a semistable E-B-pair, D = Dg(W).

(a) The equivalence of categories between the category of semistable E-B-
pairs and the category of filtered E-(p, N)-modules induces a bijection
between the set of triangulations on W and the set of refinements on
D.
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(b) If (Fil;W) is a triangulation of W with triangulation parameters
(01,...,0,) that correspond to a refinement Fo D of D with the ordering

of Hodge-Tate weights being ki, . . . ,En, then 6; = &; II 7(z)Fir,
T€Emb(K,E)
where 9; is a smooth character.

Proof. Assertion (@) follows from the fact that Dg; is an exact. Assertion
(b)) follows from ﬂﬂ, Lemma 4.1]. O

4. Cohomology Theory

4.1. Cohomology of (p,I'kx)-modules and cohomology of B-pairs

Let M be a (¢,I'kx)-module. Assume that I'x has a topological gen-
erator . Define the cohomology Hg (M) by the complex C*(M) defined
by

,7_17 -1
(v=1,0-1)

COM)=M CY{M)=Mao M — C*(M) =M,

where the map C'(M) — C%(M) is given by (z,y) — (p — D)a — (y — 1)y.
Denote the kernel of C1(M) — C?(M) by Z'(M).

There is a one-to-one correspondence between H!'(M) and the set of
extensions of My by M in the category of (¢, Ik )-modules, where My =
BLg,KeO is the trivial (¢,I'x)-module with p(eg) = y(eg) = €o- Let M
be an extension of My by M, and let € be any lifting of ey in M. Then

the element in H'(M) corresponding to the extension M is the class of
(v = 1), (¢ — 1)é) € Z'(M).

In ﬂﬁh Nakamura introduced a cohomology for B-pairs and use it to
compute the cohomology of (¢, 'k )-modules.

Ifw = (WE,W(ILR) is an E-B-pair, let C*(W) be the complex of G-
modules defined by

COW) := W, — CHW) == War /Wi
Here, W, — Wyr/ WjR is the natural map.

Definition 4.1. Let W = (W,, W) be an E-B-pair. We define the Galois
cohomology of W by Hy(W) := HY(Gk,C*(W)).
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By definition there is a long exact sequence

o H(W) — H (G, W) — H' (G, War/ W) = -+ (4.1)

For a Gx-module M put C°(M) = M and let C*(M) be the space of
continuous functions from (Gg)** to M. Let &y : C°(M) — C*(M) be
the map x — (g — g(x) — z) and let &; : C*(M) — C?(M) be the map
[ ((g1,92) = fl9192) = fg1) — 91f(g2))-

Nakamura ﬂﬁh showed that HL(W) is isomorphic to ker(d;)/im(dp),
where &y and é; are defined by

o : CO(We) @ CO(Wi) — C'(We) @ CHWik) @ CO(War)

(@, y) = (0o(2),00(y), x — y),
o : CY (W) @ CHWR) © CO(War) — C*(W,) @ CEH (W) @ CH(WaR) :
(f1, fos ) = (01(f1),01(f2), f1 — f2 — do()).

The map H5(W) — HY(Gg,W,) is induced by the forgetful map

C'(We) @ CH (W) & CO(War) — CH(We).

There is a one-to-one correspondence between H'(Gf, W) and the set
of extensions of Wy by W in the category of E-B-pairs. Here, Wy = (B.®q,
K BdR ®q, F) is the trivial E-B-pair. Let W= (W, WdR) be an extension
of Wy by W. Let (e, wlg) be a lifting in W of (1,1) € Wy. Then the
clement in H} (W) corresponding to the extension W is just the class of
((0 = (0 = 1)), (0 = (0 — 1)WiR), We — Wig) € ker(dy).

By Proposition[2Z3]there is a one-to-one correspondence between Ext(Mq, M)
and
Ext(Wy, W(M)). It induces a natrual isomorphism

iar + Hyp(M) — Hp(W (M)).

4.2. l-cocycles from infinitesimal deformations

Let S be the E-algebra E[Z]/(Z2), M an S-(p, 'k )-module. Let {e1, ...,
en} be an S-basis of M, {eZ,..., ¢!} the dual basis of M*. Put M = M ®sE
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and M* = M* ®s E. Let e; ., denote e; mod Z, and e* denote e;‘ mod Z.
Then {e1 .,...,en .} is an E-basis of M, and {e] _,...
M*.

;€ ) is an E-basis of

The matrices of ¢ and ~ with respect to {ei,...,e,} are denote by /ng,
and A, respectively, so that gp(ej) = Si(Ay)ize and y(ej) = S, (A,)izei
Write Ay, = (I,, + ZU,)A, and A, = (I, + ZU,)A,. Put

cor(M) = (O _(Up)ije. ®eiz Y _(Uy)ije;, @eiz).
@] @]
Write Dg(M) = (W, W), Dp(M) = W and Dp(M*) = W*.

Let f1,..., fn be a basis of W, over B g, and let g1,..., g, be a basis of
WJ‘R over BIR - We write the matrix of o € G with respect to the basis
{fis- s fn} by (In + ZU. 4)Ac,s, and the matrix of o with respect to the
basis {g1,...,9n} by (In + ZUJ J)A(}LRJ. Here,

Ueo € Mn(Be,p), Ug 5 € Mu(Big p)s Aeo € GLu(Be,p),
and
Adg.o € GLu(Bgg p)-

Write (fl, ceey fn) = (gl, .. 7gn)(In + ZUdR)AdR and put
cp(M) = ((U =Y Ueo)isf=®fi2): (0= > (Uin,0)id95-®9i.2), Z(Udﬁ)ijgf,z®gi,z)-
i 5 2%}

Proposition 4.2.

(a) cor(M) is in ZY(M* @ M).

(b) cp(M) is in ker(dy wrew)-

(c) We have iy ([cor(M)]) = [cp(M)].
Proof. Tt is easy to verify (@) and (h).

Put Mg = M*®pgS. We consider M§®5M as an extension of M*®pg M
by itself, and form the following commutative diagram

My

|

0— M ®p M — M} ®s M —= M* @5 M —0,
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where the vertical map My — M* ®p M is given by 1 — Y 1", €, @ €z,
which does not depend on the choice of the basis {e,...,e,}. Pulling back
M§®5M via My — M*®pM we obtain an extension of My by M*®pM. Let
M denote the resulting extension. Then M is a sub-E-B-pair of M ®g M.
Put Dp(M) = (We, Wii)

A lifting of 1 in W, is Zj [7.®[;, and alifting of 1 in WJLR is Zj 95 .®g;-
We have

1 fi
(O-D)Yfj:0f = o(fin )00 P e
] i 3
= (fla o P (AL )T @ AL (14 2UL)
h
(i St @ ULz |
Ju
Similarly,
g1
(=065 995 = gher 0050 @ Ui | |
j 9n
and
9
g2

Zf]*,z ® fj - Zg;z ® g5 = (giz? s ’g:z,z) ® UéRZ
J J
dn

Hence the element in H5(Dp(M*®g M)) attached to the extension D (M)

is [ep(M)).
A similar computation shows that the element in Hi(M* ®p M) at-

tached to the extension M is [cor(M)]. Now (@) follows. O
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5. The Reciprocity Law and an Application

5.1. Reciprocity law

In ﬂﬂ, Section 2] using local class field theory Zhang precisely described
the perfect pairing

HY(Gk,FE) x H (Gk,E(1)) — H*(Gg, E(1)).

We recall it below.

The Kummer theory gives us a canonical isomorphism so called the

Kummer map
ln (K /(K" @7, B~ H'(Gx, B(1)
Z o; Qa; — Z az[(al)]
i i
Here () is the 1-cocycle such that

g(*/a) (@)
o n

for o € K* and g € Gk, where (?""\/a)? = #*\/a. Combining the Kummer
map and the exponent map

exp : pog — K*

and extending it by linearity we obtain an embedding from K ®q, £ to
H'(Gg, E(1)), again denoted by exp. Then we have

H'(Gx, E(1)) = exp(K ®q, E) ® E - [(p)].

Let Hom (G, E) be the group of additive characters of G with values
in E. As the action of G on F is trivial, H' (G, E) is naturally isomorphic
to Hom(Gg, E). Let ¢ : Gk — E be the additive character that vanishes on
the inertial subgroup of G i and maps the geometrical Frobenius to [Ky : Q).
For any 7 € Emb(K, E) let ¢, be the composition 7ologo recl}ml, where log

2Since the character 1, of the Weil group Wi sends any lifting of the gth power Frobenius to 0,
it can be extended to a character of G which is again denoted by
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is normalized such that log(p) = 0. Then {tg, % : 7 € Emb(K, E)} is an
E-basis of HY (G, E).

Lemma 5.1 (Zhang, Proposition 2.1). The cup product of

(Ioiﬁo + ZTEEmb(IﬂE’) a’TT;Z)T (ao’aT € E) and bO[(p)] + exp(b) (bO € E’b €
K ®QP E) 18

(aobo — tr1c/q, ((ar)s - 1) ) (w0 U [(p)]):

Here, (ar); is considered as an element in K ®q, E via the isomorphism
RI).
Lemma 5.2. For \g,\; € E (7 € Emb(K, E)), the extension of E (as a triv-

ial G -module) by E corresponding to the cocycle Moty —i—ZTeEmb(K,E) P
is de Rham if and only if A =0 for each T.

Proof. By ﬂﬂ, Lemma 4.3], the subspace of extensions of E by E that
are de Rham is 1-dimensional, and so consists of those corresponding to the

cocycles Aoty (Ao € E). O

5.2. An auxiliary formula

Let £ = (Ls)o:k—sE be avector. We consider £ as an element of K®q,E
via the isomorphism (2.1).

Let D be a filtered E-(p, N)-module: the underlying E-(¢, N)-module
D is a (Ko ®q, E)-module with a basis { f1, f2, f3} such that

0l fy = =Ko Qul f - IR0 Ql g, — £, - O Qul £ —
and
N(f1) =0, N(f2) =—f1, N(f3) = f1;
the filtration on
K @K, D= (K ®q, E)f1 ® (K ®q, E)f: ® (K ®q, E)f3
satisfies

0 if7 > 0.
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Let m; be the projection map

3
X]og(D) — Blog,E7 Zajfj = a;.
j=1

Lemma 5.3. Let ¢ : Gx — Xiog(D) be a 1-cocycle whose class in H' (G,
Xiog(D)) belongs to ker(H (G e, Xiog (D)) — H* (G, Xar(D))). Then there
erist

V2,05 V2,75 V3,0, V3,7 € B
(r € Emb(K, E)) such that

772(6) :’72,07!)0 + Z 72,T¢T

T€Emb(K,E)
and
m(c) =ysoto+ Y. Yartr
T€Emb(K,E)
Furthermore,
Y0—0= ¥,  Lr(var—Ysr)
T€Emb(K,E)

In our proof of Lemma we need the following

Lemma 5.4. Let D be an E-(¢, N)-module. If Fil; and Fily are two filtra-
tions on K @, D such that Fil)(K @, D) = Fil)(K @k, D), then the kernel
of

H'(G, Xiog(D)) = H' (G, Xar (D, Fily))

coincides with the kernel of

HY Gk, Xog(D)) = H' (G, Xar(D, Filp)).

Proof. The proof is similar to that of ﬂE, Proposition 2.5] O

Proof of Lemmal5.3. The argument is similar to the proof of ﬂﬁ, Lemma
5.1]. We only give a sketch.

Write ¢o = Ao f1 + Aoofo + A30f3. As c takes values in Xjoe(D), we
have Ay, A3, € E. This ensures the existence of ¥2.0,7v2,7,73,0, V3,7
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Let Fil be the filtration on D such that Fil~'!D = D and Fil'D =
Fil'D if i > 0. Then (D, Fil) is admissible. Let V be the semistable F-
representation of G attached to Dy = (D, Fil). By Lemma [54] [c] is in
the kernel of H'(G g, Xjog(Dv)) = H'(Gk,Xar(Dy)) and so there exists
a 1-cocycle ¢V : Gx — V such that the image of [¢(V] by H (G, V) —
HY (G, Xiog(Dy)) is [c].

We form the following commutative diagram

V! (5.1)
0 Vo V T 0
| ]
0 Vo 1 T 0

with the horizontal lines being exact, where Vj (resp. V') is the subrep-
resentation of V' corresponding to the filtered E-(p, N)-submodule of Dy
generated by fi (resp. by fo+ f3) which is admissible. From (&.1]) we obtain
the following commutative diagram

HY(Gg,V) —— HYGg,T) — H*(Gk, V)

SN

HY Gk, Vi) —= HY Gk, Th) —= H*(Gk, Vo),

where the horizontal lines are exact.

(1)
Write ¢ for the 1-cocycle Gx — V — T — T}. By a simple compu-
tation we obtain

)] = [<(’Y2,o —oot Y. (- 73;)%) fal,

T€Emb(K,E)

where fy is the image of fo € V in T}. Note that T} is isomorphic to E, and
Vo is isomorphic to F(1). Being the image of [myy, (c!)] in HY(Ty), [¢?)]
lies in the kernel of H (G, Ty) — H*(Gk, Vo). By m

extension of E by E(1), V; corresponds to the element [(p)] + exp(£). Now

, Lemma 5.5], as an

Lemma 5.1l yields our second assertion. O
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6. L-invariants

Let D be a filtered E-(p, N)-module of rank n. Fix a refinement F of
D. Then F fixes an ordering a1, ..., a, of the eigenvalues of p!50*Qvl and

—

an ordering 121, ..., ky of the Hodge-Tate weights.

6.1. The operator Nr

The operator ¢ induces a Ko ®q, E-semilinear operator ¢z on grl D =
n
@ FiD/F;_1D.
i=1

We define a Ky ®q, E-linear operator Nz on grl D. The definition is
similar to the one defined in ], so we omit some details.

For any i € {1,...,n}, if N(F;D) = N(F;_1D), we demand that Nr
maps gri]: D to zero.

Now we assume that N(F; D) 2 N(F;_1D). Let j be the minimal integer
such that

N(FD) € N(F;_1 D) + F;D.
Proposition 6.1. N(F;,_1D)NF;D = N(F;_1D)N F;_1D.

Proof. Note that F;D, F;_1D, N(F;—1D) + F;D and N(F;—1D)+ F;_1D
are stable by ¢. Thus (N(Fi—1D) + F;D)/(N(F;—1D) + F;_1D) is a ¢-
module, and so must be free over Ky ®q, 2. Hence the map

FiD/Fj1D = (N(Fi—1D) + F;D)/(N(Fi-1 D) + Fj1D) (6.1)
is an isomorphism. It follows that N(F;_1D)NF;D=N(F;—1D)NF;—1D.0
The operator N induces a K¢ ®q, E-linear map
FiD/Fi-1D — (N(Fi_1 D) + F;D)/(N(Fi_1 D) + Fj_1 D).

We define the map Nr : gri]:D — gr]fD to be the composition of this map
and the inverse of (6.1]).

Finally we extend N7 to the whole grl D by K, ®q, F-linearity. Note
that Nror = porNr. By definition, for any i we have either N (gr7 D) = 0
or N(gr/ D) = gr]fD for some j.
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Definition 6.2. For j € {1,...,n—1} we say that j is marked (or a marked
index) for F if there is some i € {2,...,n} such that Nx(gr/ D) = gr]]»:D.

Note that ¢ and j in the above definition are determined by each other.
We write i = t£(j) and j = sz(i).

Proposition 6.3. The following two assertions are equivalent:

(a) s is marked and t = tx(s).
(b) NFiyD N F,D = NF1D O\ Fy_1D and NF,D (\ F,D 2 NF.D
NFs_1D.

Proof. We have already seen that, if (@) holds, then (L) holds. Conversely,
we assume that (Bl) holds. Then NFD N FsD 2O NF,_ 1D N FsD. Thus
NF,D 2 NF,_1D.

We show that NF.D & NF,_1D + Fs_1D. If it is not true, then there
exists y € FyD\F;—1D which is a lifting of a basis of grf D over Ky ®q, F
such that N(y) € Fs_1D. For any z € F;D, write z = w + Ay with w €
Fi-1D and X € Ko ®q, E. If N(z) is in F,D, then N(w) is also in FyD.
But NF,_1DNFsD = NF,_1D N Fs_1D. Thus N(w) is in Fs_1 D, which
implies that N(z) = N(w) + AN(y) is also in Fs_1D. So, NF;D N F;D =
NF:DNFs_1D, a contradiction.

From NF,DNFsD 2 NF,_1DNFsD we see that there is x € FD\F;_1 D
such that N(z) € FsD. We must have NF,D C NF,_1D + F,D. Other-
wise, let j be the smallest integer such that NAD C NF_1D + F;D and
assume that j > s. Then Nr(z + F_1D) = 0, which contradicts the fact
that Nz : grf D — gr]f D is an isomorphism. O

6.2. Strongly marked indices and L-invariants

Assume that s is marked for F and ¢t = tz(s). We consider the decom-

positions
FiD/Fs-1D = (Ko ®q, ) - s © L ® (Ko ®q, E)é

that satisfy the following conditions:

o F1(FD/Fs-1D) = (Ko ®q, E)és and Fy_s(F;D/Fs—1D) = (Ko ®q,
E)és @ L, where F is the refinement on F;D/F, 1D induced by F.
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e Both L and (Ko ®q, F)és ® (Ko ®q, E)é; are stable by ¢ and N;
(p[Konp}(ét) = ey and N(ét) = €.

Such a decomposition is called an s-decomposition.

Remark 6.4. s-decompositions may be not exist. However, if ¢ is semisim-
ple, then s-decompositions always exist (see ﬂﬁ])

Let dec denote an s-decomposition F;D/Fs_1D = Ees & L @ Fe,.

There is a natural isomorphism Ees;® Ee, — (FyD/Fs—1D)/L of (o, N)-
modules. Usually the filtration on the filtered E-(yp, N)-submodule Ees® Ee;
and that on (F;D/Fs_1D)/L are different.

When these two filtrations satisfy certain compatible condition, we say
the decomposition dec is perfect. Precisely, we say that dec is perfect if for
any 7 : K < E we have ks ; < k-, and if there exist kg ., k; - and Lyecr € E

satisfying ks . < ki, < ki, < ki, such that the following conditions hold.

e The filtration on the filtered E-(p, N)-submodule Fe; @ Ee, satisfies

Eés,r S Eét,’r if 4 < ks,’m
Fill(Ee, ® Ee;) = { E(er + Lace,r€s,r) if ksr <1 < ki1,
0 ifi >k,

e The filtration on the quotient of 7D /Fs_1D by L satisfies

Ees, @ Eé, . if i <k .,

Fil F,D/Fs 1D = E(6; + Lace,r8s) if K < i < kyr,
0 if @ > kyr,

where the images of €5 and €, in F;D/Fs_1D are again denoted by é;

and €.

Definition 6.5. If there exists a perfect s-decomposition, we say that s
is strongly marked (or a strongly marked index). In this case we attached
to each pair (s,t) with ¢ = tx(s) an invariant E]:,S,t = (Ldec,r)r, where
dec is a perfect s-decomposition. Proposition below tells us that L. Fosit
is independent of the choice of perfect s-decompositions. We call E;,S,t
the Fontaine-Mazur L-invariant associated to (F,s,t), and denote Lgec - by

E]:,s,t,’r-



312 BINGYONG XIE [December

In the case of t = s + 1, s is strongly marked if and only if ks » < k¢ +

for all 7.

Proposition 6.6. If dec; and decs are two perfect s-decompositions, then
Edecl,’r = Edecz,r fOT any T.

Proof. The argument is similar to the proof of ﬂE, Proposition 4.9]. O

Let D* be the filtered E-(p, N)-module that is the dual of D. Let F be
the refinement on D* such that

FiD* == (Fp_iD)r ={y e D*: (y,x) = 0 for all 2 € F,,_;D}.

We call F the dual refinement of F.

If L € M are submodules of D, then M+ c L‘. The pairing (-,-) :
L+ x M induces a non-degenerate pairing on L*/M* x M/L, so that we
can identify L+/M~ with the dual of M/L naturally. In particular, grl-]: D*

is naturally isomorphic to the dual of grf 41-;D. Thus gr{E D* is naturally

isomorphic to the dual of grl D.

Proposition 6.7.

(a) N# is dual to —Nr.
(b) s is marked for F if and only if n + 1 — tx(s) is marked for F.

(c) s is strongly marked for F if and only if n+1—1tx(s) is strongly marked
for F.

Proof. The proof of (@) is similar to that of ﬂﬁ, Proposition 4.14]. The
proof of (b)) is similar to that of ﬂa, Proposition 4.13]. The proof of (@) is
similar to that of ﬂE, Proposition 4.15 (a)]. O

7. Projection Vanishing Property

Put S = E[Z]/(Z?). Let z be the closed point defined by the maximal
ideal (Z) of S.

Let W = (W, W(;FR) be an S-B-pair. Let {wy,...,w,} be a B, g-basis
of We. Suppose that W admits a triangulation Fils. Let (d1,...,d,) be the
corresponding triangulation parameters. Then for each i = 1,...,n there
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exists a continuous additive character ¢; of K™ with values in ' such that

0; = 5i,z(1 + ZEZ)

Suppose that W, the evaluation of W at z, is semistable, and let D, be
the filtered E-(¢, N)-module attached to W,. Let F be the refinement of D,
corresponding to the induced triangulation of W, and let {e; ., e2.,..., €.}
be a (Ko ®q, E)-basis of D, that is compatible with F i.e. ;D = (Ky®q,
Ele1. ® - ® (Ko ®q, E)e;.. Let a;. € E be such that Lp[Ko:QP](ei7Z) =

QG 264 2 mod -/—:ifl .

Let ;5 € Biog,r (4,7 = 1,...,n) be such that
€i,z = T1;W1,2 +- TniWn, z- (71)

Then X = (x;5) is in GL,(Biog ). Write the matrix of o € G g with respect
to the basis {w1,...,w,} by (I, + ZUes)Aco. As €iz,..., ey, . are fixed by
Gk, we have XflAevaa(X) = I, for all 0 € Gg.

For i = 1,...,n put ¢, = x;w1 + -+ + xp;wy,. Then {e,...,e,} is a

basis of B10g75 ®g W, over Blog,S-

Lemma 7.1. If T is the matriz of pp, for the basis {e1z,...,en -}, then T

is also the matriz of B, sosw. for the basis {e1,... ey}
Proof. The assertion follows from the definition of {eq, ..., e,} and the fact
that wy ,,...,wp,., w1,...,w, are fixed by ¢. O

In Section 4.1 we attach to W an element cg(W) in Hy(W} @ W,).

Consider the composition
Hp(W:@W.) — H'(Gr, W, ®B, ;We.:) = H'(Gx,Biog s @£ (D:@D.)).

As the matrix of 0 € Gk for the basis {ey,...,e,} is I, +ZX_1U67UX, from
the discussion in Section 4 we see that the image of cg in H!(G, Biog, £ ®F
(Df ® D,)) is the class of the 1-cocycle

(Ue,a)ijw;,z R w; , = (Xier,aX)ije;Z X €4 -
Let 7, be the projection

Biog,r @5 (D; ® D) — Biog, £, Z bji€} . @ € + bpe. (7.2)
J»e
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For h =1,...,n, let €, be the additive character of G such that €}, o
_ / _
reci(p) =0 and €, o reCK|02 = eh|0§.
Theorem 7.2.

(a) For any pair of integers (h,l) such that h < £ we have mhe([c]) = 0.
(b) For any h = 1,...,n, mpu([c]) coincides with the image of [€},] in
Hl (GK7 Blog,E)-

We call (@) the projection vanishing property.

Proof. The filtered E-(p, N)-module attached to W, /Fil,_1W,is D, /F_1D..
We denote the image of ey, (¢ > h) in D,/Fj,_1 D, again by e ..

Let 0, be the character of Gk such that ¢, = 1+ Ze),. By Lemma 3.1

there exists an element
. =5 K0 Qpl—p,
T e (Bmax,E‘ ®Be,E (W/Fllh_ﬂ/V)e)GK_éhv‘P 0:Rpl=q; > (14+Zvp (i )en(p))

whose image in D,/Fy_1D, is ey .. Write x = e, + Z Y Meg with Ay €
(>h

Blog,E-
As the matrix of ¢ € G for the basis {e1,...,e,} is I, + ZX U, X,

we have

1+ Zej o))z = [L+ Zej(o))(en + Z Y Meee)
{>h

=o(z)=ep+ ZZ(Xﬁer,JX)gheg + ZZ a(Xe)es.
>h >h

For ¢ > h, comparing the coefficients of e, we obtain
(X UeoX)en = (1 — )N,
which shows (@). Similarly, comparing coefficients of e}, we obtain
(X e o X)pn — €p(0) = (1 — )M, (7.3)

which implies (D). O
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8. The proof of Theorem

We will need the following lemmas.

Lemma 8.1. The inclusion E — B, g induces an isomorphism

HY(Gk,E) = ker(N : H'(Gg,Bep) = H (G, Blog.E))-

Proof. The proof is identical to that of ﬂa, Corollary 1.4]. O

Lemma 8.2. The map N : Bfg’% — Bf)?E is surjective.

Proof. The proof is identical to that of ﬂE, Lemma 1.2]. O

For the proof of Theorem [[Z we may assume that S = E[Z]/(Z?), and
z is the closed point defined by the maximal ideal (Z). Let W be as in
Theorem Replacing W by the E-B-pair F;W/Fs_1W and replacing F
by the induced refinement on F,W/Fs;_1W, we may assume that s = 1 and
t=n= rankBe’E(We). Let ez, €2.z,...,6n, be a Ko®q, E-basis of D, such
that

(Ko @q, E)er.. D LEP (Ko ®q, E)en, (8.1)
with L = @' (K ®q, F)ei. a perfect 1-decomposition of D, for F (see
§6.2 for the meaning of perfect decompositions). Let €] 21€3 4.+, Ep , DE

the dual basis of D} over Ky ®q, E.

Let D be the quotient of D, by L, D3 the quotient of D} by 69?:_21(K0®Qp
E)ezz. Put 9 = D5®D;. The images of e; , and e, . in D1 are again denoted
by e1 ., and ey, ., and the images of e] , and e}, , in Dj are again denoted by
€7, and ey, respectively. So €], ®e1;, €] ,Qep 2, €, Q€1 €, . Qey , form
a Ky®q, E-basis of 2. Let 2 be the filtered E-(¢, N)-submodule of 2 with
a Ko ®q, E-basis {e] , ®ei1., €, ., ®e1z, €, , Qe }. Let W = (¥, 0
(resp. #4) be the E-B-pair attached to Z (resp. %). Note that

QD[KOZQP}(BT,Z ® el,z) = eiz @ ez, QD[KOZQP}(G:L,Z ® en,z) = 6:172 @ €n,z,
SD[Ko:Qp](e;';,z ® 617z) = p*[Ko:Qp}e;';’Z ® ey z,
and

_N(eiz ® 61,2’) - N(e;';,z ® €n7z) - e;,z ® €1,z5 N(e;,z ® 61,2’) =0
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Let £ F= C F.,s,t be the L-invariant defined in Definition As B is
a prefect decomposition, we have

Fil’(K ©x, 7) = Be;,, @ (en. + Lrerz) ® B(ef, — Lre),,) @ e
GBE(eT,z - E]'—e;';,z) ® (67172 + Efel,z)'

and

Fil'(K ®, Z0) = B¢}y, ® (en. + Lre1.) @ E(e} . — Lrel, ) @ ey

Consider W as an infinitesimal deformation of W,. In Section 4.2 we
attach to this infinitesimal deformation an element cg(W) in Hy (W} @W,,).
Let [¢] be the image of cg(W) by the composition

H%?(W:®Wz) — Hl(GK’ W:,z®Be,E We,z) Ny s (GK’ B10g7E®KO®QpE(D:®DZ)),
and choose a 1-cocyle ¢ representing [c]. Write ¢ in the form
c = Z cj,ie;Z (024 €.z
jsi
with ¢; ; being a 1-cocycle of G’k with values in Byoe . By the projection

vanishing property (Theorem @)) we have [c;,] = 0.

Lemma 8.3. There exist&1,&, € Be g and v1,0, 71,75 Yn,0, Yn,r (T € Emb(K, E))
such that

01,1(0) = (J - 1)51 + ’71,0¢0(U) + Z ’71,T¢T(J)

T€Emb(K,E)

and

Cn,n(U) = (J - 1)£n + 'Yn,OQ/JO(O-) + Z 'Yn,ﬂ/)ﬂ'(a)

T€Emb(K,E)

for any o0 € G

Proof. Let ¢g be the image of cp in H5(#'), and let ¢ be the 1-cocycle

c= : : C]yzej,Z ® elvz
Ji€{ln}
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of G’k with values in By g OKo®q,E 2. Then the image of ¢p in
1
H (GK7 Blog,E' ®K0®QPE -@)
is [¢].

Note that ¢ has values in 7, = (Biog,r RKo®q, E 2)P=1N=0""Go, in

particular ¢i 1 and ¢, , have values in B, 5. As N¢ = 0, we have
N(Cn,l) = C1,1 — Cn,n, —N(Cl,l) - N(Cn,n) =Cin-
As [c1,,,] = 0, the statement follows from Lemma Bl O

Write §; = 0; (1 + Ze¢;). Let €; be the additive character of G with

values in E such that € orecx(p) = 0 and €] orecg| x = €], . Then there
K K

are €, (7 € Emb(K, E)) such that €, = > € s

r€Emb(K,E)
Lemma 8.4. For h = 1,n we have [Ky : Qplyvno = —vp(7K)en(p) and
Yh,r = €h,1-

Proof. We keep to use notations in the proof of Theorem [T.21 By (7.3]) and
Lemma [8.3] we have

C=Dn) = ~X VX + Y. enstbr(o)
T€Emb(K,E)
= —(c =D& —movo(0) + Y. (enr = m)Ur(0).
T€Emb(K,FE)

Note that there exists w € W(F,) such that ¢(w) —w = 1, where W(F,)
is the ring of Witt vectors with coefficients in the algebraic closure of F,,.
Then (0 — 1)w = o(0). Hence

> (enr = mo)e(0) = (0 = D(Ah + & + Yhow).

T€Emb(K,E)
In other words, the cocycle > (€n,r — Vhr)¥-(0) is de Rham. By

T€Emb(K,E)
Lemma B2 we have v, » = €;, > and A\, + &, + p 0w € E. Then

(LP[K():QP] . 1))\h _ —(90_ 1)§h —’)’h70((P[K0:QP} _ 1)w = —[KO : Qp]’Yh,O- (82)
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By our choice of the basis {e1 .,...,e, .}, Y1 = @] yZe; . is stable by
. Put Y,, = 0. Let = be as in the proof of Theorem By Lemma [T we
have cp[Ko:QP]eh,z = oy .ep, .. Thus for h = 1,n we have

PlFol(z) = (14 Zp W (N,))ap cen  (mod Vy).
On the other hand,

PRl () = (14 Zvy(ni)en(p))an v
= (14 Zvp(mr)en(p))an-(1 + ZAp)ep,  (mod Yy).

Hence we obtain
((p[Konp} — 1))\11 = Up(Td'K)eh(p). (8.3)
By (82) and (83]) we have
(Ko : Qplyno = — (@50 — 1)\, = —v,(70)en(p),

as wanted. a

By Lemma there exists some y € Bfgg% such that N(y) = & — &,
Let & be the 1-cocycle of G with values in Biog, e ® Ko®q, B 2, such that

1 /% / * o
C =0C11€12 ®e1,z + Cnnbn,z @ en,z + Cn,16n,z ®e1,z
with

i1 =700 + Z Vs Com = Tno%o + Z Yr,rr

)

T7€Emb(K,E) T€Emb(K,F)

and

c;z,l(a) = Cn,l(U) - (U — 1)y, oceGg.

It is easy to check that ¢(¢') = & and N(¢') = 0. Hence & is a 1-cocycle of
Gk with values in Xjo5(2)).

Proposition 8.5. The image of [¢] in H' (G, Xiog(Z0)) belongs to the

kernel of

Hl(GK, Xlog(go)) — Hl(GK, XdR(-QO))-
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Proof. Consider the following commutative diagram

HY (G, Xiog (%)) — H' (Gre, Xar(%0))

| |

HY Gk, Xiog(2)) — H'(Gx, Xar(Z))-

The right vertical arrow in the above diagram is injective (see ﬂE, Corollary
2.4]). So we only need to show that the image of [¢] in H' (G, Xqr(2)) is
zero. Note that

[€] = [e] = [ernel . ®enz] = —[cinel . @ en

in HY (G, Xar(2)). As the image of [c1,,] in HY (G, Biog p) is zero, so is
its image in H'(G, Bar.E/ Fil/ Bgr.r), where f is the smallest integer such
that e] , ®en,. € Fil~/ Zx. Hence, the image of [¢] in H'(Gx,Xqr(2)) is
ZETO0. O

Now, applying Lemma (3] to 2, with f; = €he®e€1z, f2=€], €1,
and f3 =], , ® ey, we get

Yn,0 = V1,0 = Z Lr(Ynr = M,7)-

T€Emb(K,E)

Hence, by Lemma we have

%(en(p) — 61(}?)) + Z ET(En,T - 61,7’) =0.

T€Emb(K,E)
As (isih(g;) = ex(p)dZ and dwi(ey) = (€p,rdZ),, we obtain
1 don(p) _ doi(p) ) S B
- + Ly - (dwi(dy,) — dw(d)) =0,
7w (o~ e *Er 0 - )

as desired. This finishes the proof of Theorem
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