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Abstract

In this paper, we introduce high codimensional Heisenberg groups and we give an

explicit formula for the associated Szegé kernel.

1. Introduction

Let (X, T%°X) be a CR manifold of dimension 2n + 1, n > 1, and let
D,()q) be the Kohn Lalpacian acting on (0, ¢) forms. The orthogonal projection
5@ . L%O,q) (X) — Ker Déq) onto Ker Déq) is called the Szegd projection, while
its distribution kernel S@ (z,y) is called the Szeg kernel. The study of the
Szegb projection and kernel is a classical and important subject in several

complex variables and CR geometry.

For p € X, let £, be the Levi form of a X at p. Given ¢, 0 < ¢ < n,
the Levi form is said to satisfy condition Y (¢) at p € X if for any |J| = ¢,
J:(jlaj%""jq)a 1 S]l <j2 <L e <jq Sn_l’ we have

n—1
DN =D N <D Il
j=1

j¢J jeJ

where A\, j = 1,...,(n — 1), are the eigenvalues of £,. If the Levi form is
non-degenerate at p, then Y'(¢) holds at p if and only if ¢ # n_,n,, where
(n—,n4) is the signature of £, i.e. the number of negative eigenvalues of
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L,is n_ and ny +n_ = n — 1. When the Levi form satisfies condition
Y (q) on X, then Kohn’s subelliptic estimates with loss of one derivative for
the solutions of Dl(,q)u = f hold, cf. E, Iﬂ], and hence S is a smoothing
operator. When condition Y (g) fails, one is interested in the singularities of
the Szegd kernel 1D (z, y).

A very important case is when X is a compact strictly pseudoconvex
CR manifold (in this case Y (0) fails). When X is compact, strongly pseudo-
convex and Dl()o) has L? closed range, Boutet de Monvel-Sjostrand H] showed
that S© (x,y) is a complex Fourier integral operator with complex phase. In
particular, S(©) (x,y) is smooth outside the diagonal of X x X and there is a
precise description of the singularity on the diagonal z = ¥, where S (z, z)

has a certain asymptotic expansion. Hsiao [6] showed that if X is compact,
the Levi form is non-degenerate, Y (q) fails and Dl()q) has L? closed range
for some ¢ € {0,1,...,n — 1}, then S@(z,y) is a complex Fourier integral
operator.

When the Levi form is degenerate, Hsiao and Marinescu H] obtained
Szegd kernel asymptotic expansions on the non-degenerate part under lo-
cal closed range assumption. Recently, Hsiao and Savale ﬂﬁ] established
pointwise Szegd kernel asymptotic expansions on three dimensional weakly
pseudoconvex CR manifolds of finite type under the assumption that 9, has
L? closed range.

The description of the Szeg6 kernel had profound impact in Several
complex variables, CR and complex geometry H, @, B, IE, Iﬂ, IE, B, IE],
to quote just a few. These ideas also partly motivated the introduction of
alternative approaches, see ﬂﬁ, ,Iﬂ] Recently, Fritsch, Herrmann and
Hsiao [3] considered CR manifolds of high codimension. They obtained G-
equivatiant CR embedding theorem for CR manifolds of high codimension
and CR orbifold version of Boutet de Monvel’s embedding theorem. Thus,
it is very natural and interesting to study Szeg6 kernels for CR manifolds of
high codimension. Moreover, Fritsch, Herrmann and Hsiao also showed that
any CR orbifold of hypersurface type comes from the quotient X/G, where
X is a CR manifold and G is a compact CR Lie group acting on X. Hence,
the study of Szeg6 kernels for CR manifolds of high codimension could has
applications in CR orbifold geometry. In this paper, we consider a high
codimensional Heisenberg group, we give explicit formula for the associated
Szegd kernel. The main inspiration of this work comes from M]
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We now formulate our main results. Consider H = H™? = C" x R?. Let
(z,t) = (z + iy, t) be coordinats of H, where z = (21,...,2,) = x + iy =
(r1+1iy1, ...,y +1iyy), be coordinates of C", t = (t1,...,tq) be coordinates
of RY. Let

© = (¢1,...,04) € C®(C™,RY).

Consider

d
9 dp O
THOH = Lii=— -3y = 52— i=1,....d%.
span{ j aZj Zizlazj at@"] ) ) }

Then, (H, T%°H) is a CR manifold of codimension d (see Section 2.2). Let
dm :=dxdyy - - - de,dy,dty - - - ditg
be the flat Lebesgue measure on H and let
Hy = {uGLZ(H); Liu=0,j = 1,...,n}.

Let (--) be the L? inner product of C2°(H) induced by dm and let L?(H) be
the completion of C2°(H) with respect to <,>. Let

P:L? 5 H,

be the orthonormal projection from L?(H) onto H,;, with respect to (--). We
also write (w,0) to denote (z,t). Let S = S(w, z,0,t) € 2'(H x H) denote
the distributional kernel of P. We call S the Szeg6 kernel. Formally,

< Pu,v >= /u(z,t)v(w,H)S(w,z,H,t)dm, u,v € L*(H).

The goal of this work is to give an explicit formula for S when ¢ is quadratic.
Fix

)‘j = ()\U,...,)\dj) GRd, j=1,....n.
In this paper, we always tale ¢ of the form:

p=> |z°A; € C=(C",RY),
j=1
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Put
Av={neR? 93>0, forall j=12...,n},
By=Axn{veR? | |v| =1}.

The main result of this work is as follows:

Theorem 1. With the notations used above, we have

on—d n+d—1II(v- A;
Sw 26,0 = 55 /B (o -([(t+— 5) —)@Ew,z)]];wddg(”) L

in sense of Fourier integral, where

n
O(w,2) = Y Aj(lwj — 2z +wjz; — w;;)
j=1

and dQ(v) is Euclidean surface measure of the sphere.

The integral () is defined in the sense of oscillatory integral (see also
Section 5).

Remark 1. From Theorem [ we see that if By # 0, then S(w, z,0,t) has
singularities and hence the space H; is non-trivial. On the other hand, if
By = 0, then H,, is trivial.

Remark 2. Our method is inspired on d = 1, in M] Using distribution
theory we get F : (L%, H;) — (L%_WHn.@) is an isometry isomorphism,
combine the uniqueness of orthonormal projection, we get P = F 'K F,

therefore we can use knowing K, to calculus Szeg6 kernel.

2 F 2
L~ —— LTW

b g

]:71
Hy —— Hyyp
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2. Preliminaries

2.1. Notations

We shall use the following notations: N = {1,2,...}, Ny = NU {0}, R
is the set of real numbers, Ry := {z € R | z > 0}. Let m € N. For a multi-
index a = (aq,..., ) € NJ', we denote by |a| = oy + -+ + ayy, its norm
and by [(a) = m its length. « is strictly increasing if a; < ag < -+ < .

Let z = (21,...,2n), 25 = 2; + 1y, j = 1,...,n, be coordinates of C".
Let a = (ou,...,a,) € Nj be a multi-index. We write

24 =21y, =72,

i_l(i_ii> i_l(iﬂi) 1 .

82’]‘_2 Ox;j 0y; ’ sz_Q Ox; 0y; A

For j,s € Z,set ;, =1if j = 5,0, =01if j # s.

Let M be a C°° paracompact manifold. We let TM and T*M denote
the tangent bundle of M and the cotangent bundle of M, respectively. The
complexified tangent bundle of M and the complexified cotangent bundle of
M will be denoted by CT'M and CT*M, respectively. Write (-, -) to denote
the pointwise standard pairing between T'M and T*M. We extend (-, )
bilinearly to CI'M x CT*M. Let G be a C'*° vector bundle over M. The
fiber of G at x € M will be denoted by G,. Let E be a vector bundle over
a C'°° paracompact manifold M;. We write G X E* to denote the vector
bundle over M x M; with fiber over (z,y) € M x M; consisting of the linear
maps from £, to G,. Let Y C M be an open set. From now on, the spaces
of distribution sections of G over Y and smooth sections of GG over Y will be
denoted by 2'(Y,G) and C*(Y, G), respectively.

Let G and E be C°° vector bundles over paracompact orientable C*°
manifolds M and Mj, respectively, equipped with smooth densities of inte-
gration. If A : CX° (M, E) — 2'(M,G) is continuous, we write A(z,y) to
denote the distribution kernel of A.

Let H(z,y) € 2'(M x M;,G X E*). We write H to denote the unique

continuous operator C2°(My, F) — 2'(M,G) with distribution kernel
H(z,y). In this work, we identify H with H(x,y).



256 YANG-ZHI LIN [September

Notations of differential:

(i) If (x,y) € R™™. The gradient operator is denoted by V, and V,u =

(Ugys Ugyy -y Uz, )y Vgt = (Uyy, Uy, - . Uy, )

(ii) The high order differential operator is denoted by V¢ = az‘fla‘iaa‘z;}"
with order |a| for all a € Nfj, where the absolute value of multi-index
is |a] = Yay.

(iii) Let X; be vector fields for i = 1,...,n. Then Vxu = (Xju,..., X,u).

(iv) The high order differential of vector field X is denoted by V% =
X0 XGn,

(v) Let F = (Fy, Fs,..., F,):C" — C™, VxF denotes the m x n matrix
with entries (VxF);j = X F;.

Notations of spaces:

Let X = C™, H or other Euclidean subspace.

(i) Let m denotes the Lebesgue’s measure. For p > 1, the LP space is
denoted by LP(X), consisting of all u with [ |u[Pdm < co.

(ii) The space LH(X) denote the LP space with respect to weight p that
consisting of measurable v with Hu||§5(X) = [y [ulPe%dm < 0.

(iii) Let H be a inner product space, and its inner product and norm are
denoted by (-,-)g and || - ||z, in particular, || - || :== || - |2 and (-,-) =
<" '>L2 :

(iv) The test function space is collection of smooth functions with compact
support and denoted by Cg°(X).

(v) The Schwartz space on X is denoted by .(X), which is collection of
smooth functions f with sup |p(z,t)V® f(z,t)| < oo for all multi-index
a and polynomial p.

2.2. Cauchy-Riemann manifold

Definition 1 (Cauchy-Riemann manifold). Let X be a smooth manifold
with dimension 2n + d, n,d > 1, and let T%°(X) be a subbundle of CT(X).
The pair (X, T1°(X)) is said to be a CR manifold or a CR structure if
(i) dime Tp"°(X) = n, for every p € X.
(i) THO(X) N TN (X) = {0}. (TON(X) := TLO(X)).
(iii) For any tangent vector fields V, W € C®(X,T%°(X)), we have the
commutator [V, W] is also in C*°(X, T°(X)).
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In this case we say that (X,719(X)) or X is a n-dimensional CR manifold
with codimension d, or simplify, n-dimensional CR manifold if d = 1; if d > 1

we say that X is high codimensional CR manifold.

For the convenience for the reader, we recall some basis facts for CR
manifolds of codimension one. Let (X, T1%(X)) be an orientable not neces-
sarily compact, paracompact CR manifold of dimension 2n+1 of codimension
one. Fix a smooth Hermitian metric (-|-) on CT'X so that (u|v) is real if
u, v are real tangent vectors and 710X is orthogonal to 791X := T10X.
Then locally there is a real vector field T of length one which is pointwise
orthogonal to T1°(X) @ T%'(X). T is unique up to the choice of sign. For
veCrX,

Locally there exists an orthonormal frame e, . . . , e,, of the bundle 70X,
The real (2n) form w = i"e; A€; A ... Ae, A€, is independent of the choice
of the orthonormal frame. Thus w is globally defined. Locally there exists
a real 1-form wy of length one which is orthogonal to T*'°X @ T*%!X. The
form wyg is unique up to the choice of sign. Since X is orientable, there is a
nowhere vanishing (2n—1) form © on X. Thus, wy can be specified uniquely
by requiring that w A wg = fO, where f is a positive function. Therefore
wp, so chosen, is globally defined. We call wg the uniquely determined global
real 1-form. We take a vector field T" so that

T|=1, (T,w)=—1. (3)

Therefore T is uniquely determined. We call T' the uniquely determined

global real vector field. We have the pointwise orthogonal decompositions:

CT*X =T"X @ T X @ {\wo; X € C},

4
CTX =TYX @ T X @ {\T; A e C}. @

For p € X, the Levi form £, is the Hermitian quadratic form on Tp1 0x
defined as follows. For any Z, W € Tpl’oX7 pick Z,W € C®(X, T0X) such
that Z(p) = Z, W(p) = W. Set

ﬁp(Z,W) = _<[Z 7W](p) 7w0(p)>7 (5)
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where [Z ,W} = Z )W — W Z denotes the commutator of Z and V. Note
that £, does not depend of the choices of Z and W.

We now come back to our situation. We introduce some notations.

Notation 1.

(i) The points in C™ x R will be deboted by (z,t) = (z + iy, t) = (z,y,1),
(w,n), (w,0), where z € C*, t,n,0 € R? 2,y € R® and w € C".
(ii) The vector fields Z; and T; denote 8%1_ = %(8‘; - iaiyi) and —i(%, re-
spectively.
(iii) Let ¢ : C* — R%. Define vector field L;, by L; = Z; + (Z;p) - V.

Definition 2. Let H = H™¢ = C" x R? be the Heisenberg group, and let
TYH = spanc{L;}, then (H, T1°H) is a high codimensional CR manifold.
Let A\j = (Aij,-- -5 Agj) € R for j =1,...,n. Define ¢ : C* — R? by

o(2) = Zlz|N;, (6)

in this paper, the CR structure of Heisenberg group H always defined with
respect to .

The space L*(H) is defined in Notation of space (i). Moreover, for
u € L*(H),

2 = u2 X = u2 X .
/H uf2dm(z, 1) = /H [u2dm(z, y.t) /H [u2dm(z)dm(y)dm().  (7)

Define the Hermitian metric on CTH such that

T LT 1L 791 |
1

(Li, Lj) = (L;, L) == 55@%

The Hermitian metric on CT*H is induced by duality of CTH as follows:
For a given point p € H an anti-linear map I' : CT,H — CT H is defined by

(T'v)(u) = (u,v), for u,v € CT,H. (8)

For w, v € CT H
(w,v) == (T 1w, T ). 9)
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For analogous, we define an inner product on AP(CT*H) by

(ur ANug A -+ Nup,v1 Ava A -+ Awp) = det((ug,v5))i 5 (10)
where u; and v; are 1-forms, 1 =1,...,p.
Recall the vector field T; := —i% and the complex tangent bundle
CTH = T"’H o T'H ¢ CT, (11)

where CT' := spanc{T;}.
Define AMYT*H := I'(TYOH), A%!'T*H := I'(T*'H) and the space of (p, q)-
forms APAT*H := AP(AYOT*H) A (AY(A%IT*H)) (or T*P9H).

Put

w; = dt; + Z ingDide — Z'ZjSDide, (12)
J

then w; are orthogonal to AMOT*H @ A%'T*H, and hence
CT*H = AY°T*H & A»'T*H & spanc{w;}. (13)

Let dL; and dl_Lj be the dual vectors of L; and fj respectively, 7 =1,...,n.

The volume form dv is define by

dv=2""|dLy A---dL, NdLy A -+~ NdLy Adwi A -+~ dwg| = dm.  (14)

2.3. Cauchy-Riemann complex

There are many way to introduce the Cauchy-Riemann operator, in
this paper, we will use the distributional way to introduce Cauchy-Riemann
operator, for the reason that firstly, we define the test function space Q7 and

094 for smooth g-forms and (0, ¢)-forms, that is
Q7 := C°(H, AYT*H) and Q%9 := C°(H, A®IT*H). (15)
In fact we have the cochain complex

0—0 Lot 4. 4ol (16)
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consider the orthogonal projections 79 : AACT*H — A%T*H, we have the
following property.

Proposition 1. 79+2 o d? = 79 (d)791(d), in particular (7971 o d)? = 0,
for all ¢ > 0.

Proof. This a consequence of the observation m9t! o d = 79! o d o 79 for
all ¢ > 0. O

Proposition [l leads that the projections 77 ¢ = 0,1,...,2n + 1 induce a
functor 7: (Q ,d ) — (Q° ,7(d)).

Definition 3. The tangential Cauchy-Riemann operator is defined by

Op == mod, (17)
that is

Opu =71 o du, u e AYITH, (18)
Proposition [l shows 0, is closed.

Since dimc T5°H is n, we have the diagram of cochain complexes

0 0 4 oo 44 ogn 4 o+l 4

e

d d d
0 00,0 b, 0.1 b b, 0n 0

(19)
Now, we want to extend 9, form Q%9 to L? space, by using the following

proposition.

Proposition 2. Let A : C° — C° be a linear operator, then A can be
extended a closed linear operator on L?.

Proof. Let A* be the adjoint operator with respect to to L?-inner product,
then A** is a closed extension of A on L?, and

Dom(A*) = {u € L*|v — (u, A*v) is continuous for all v € C>°},  (20)

clearly, Au = A*u if v € C2°, we still denote A™ by A, and a equivalent
expression in (20) is

Dom(A) = {u € L*|Au € L?}. (21)

O
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Denote Lg by the L2-norm space for (0, q)-forms on H, extend 0, to Lg

in the sense of the distribution ¢ = 0,1,...,n, and let
Dom(y) = {u € @AM T*H|u € Lg and dyu € L?1+1}’ (22)

let Domg = Lg N Dom(9,) and that we have the cochain complex

Oy O

0 —— Domy —j’——> Domy Dom,, —j)——> 0 (23)

Similarly, define 5;; by the adjoint operator of dj such that
(OFu,v) = (u,Oyv) for u, v e Q¥ (24)
extend 5; to L? by the same way, and let
Dom(9;) = {u € ®A®T*H|u € L? and dju € L_,}, (25)
let Domy = Lg N Dom(9;) and that we have the chain complex

Op Op

0 —— Domy, LN Dom; Domg %0 (26)

2.4. The Kohn Laplacain for functions

Kohn laplacain is defined by the tangential Cauchy-Riemann operator,
Op = w05 + 0y 0y (27)
Dom(Op) ={u € @ZZOAO’qT*H\u € Domg N Dom; and Oyu € LZ}. (28)

In this paper, we focus on the (0,0)-form, that is function case, we will
straightforwardly define [, = DI()O) on (0,0)-form, and that

Op = 0,0y = —2XL; L;. (29)

Notation 2.

(i) The domain of Oy is therefore that Dom((Jy) = {u € NDom/(L;) |L; L;u
€ L? for all i}.
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(ii) The kernel of Kohn Laplacian Oy is denoted by Hy := ker [, since
(Opu, u) = || Liu||?, we have Hy = Nker L; is a closed subspace.

(iii) The Szegd projection P : L* — Hy is the orthonormal projection from
L? onto Hp.

(iv) The Szegd kernel S is the distributional kernel of (u,v) — (Pu,v), that
is S € 9'(H x H, L*(H) X L*(H)) and

(Pu,v) = /u(z,t)v(w,H)S(w,z,H,t)dm.

Note that the kernel may not be represented as an integration.

3. Partial Fourier Transformation

3.1. Definition and Basic Propositions

Let u € L?. We are going to define the (inverse) partial Fourier trans-
form with respect to real variable t. Choose x(#) € C°(R?) so that x() = 1
when 0] < 1 and x(#) = 0 when |0 > 2 and set x;(0) = x(0/j), j € N. Let

j(z,m) = (271)% /Rdu(z,é?)xj(é?)ew”dﬁ e C*H), j=12,.... (30)

From Parseval’s formula, we have

/H 1y (2, m) — (2, )2 dim
- /H u(z, 0)]2 s (6) — xi(@)>dm — 0, 4,k — 0.

Thus, there is @(z,m) € L? such tht 4;(z,n) — 4(z,n) in L%O q)(Hru(I)O)-
We call @(z,n) the partial Fourier transform of u(z,6) with respect to 6.
Similarly, we can define @(z,7) the inverse Fourier transform of u(z,#) with

respect to 0. We write

w(z,n) = ! im e0)u(z,0)e 0
=g i [ Xtz )

(31)
w(z,m) = lim x(eB)u(z, )™ dm(8)

(2)% =0t JRa
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Proposition 3. The partial Fourier transform is an well defined isomor-
phism.

Proof. Let u € . (H), be a Schwartz function, by Plancherel theorem with
respect to real variable ¢ that

fila = [ [ laGPdmedn) =l @2)

On the other hand *: .7 (R%) — . (R?) is an isomorphism (with respect
to L?—norm), so (i(z,-)) = u(z,-) and a(z,n) € .#(H) by symmetry, we
have * : Y(H) — .#(H) is an isometric isomorphism that extend to an
isometric automorphism on L?(H). O

Proposition 4. The relation of differential with respect to real variable t and

partial Fourier transform is the same as differential and Fourier transform,

and given by
(i) (Viulz,-
(i) (Viu(z-))

(iii) (u,v) = (a,v) = (u,0) (Plancherel theorem),

for all o € N&, where n® = n{? -+ 03, and u,v € (H). In particular, (iii)
hold for all u, v € L*(H).

3.2. The Space with Weight

Notation 3. Let p : X — R be a weight function, X = C", H or other
FEuclidean subspace.

(i) The space L%(X) denotes the L? space with respect to the weight p

2 x) = [ lulPe™?dm < oo.

consisting of measurable u with ||ul%.
P

(ii) The closed subspace consisting of all weakly holomorphic functions in
L%((C") is denoted by H,(C"). Moreover, H,.,(H) is collection of all
functions, for which weakly holomorphic with respect to z variable in
L%,W(H).

Definition 4. Let E(z,n) = ¢79) and define F : L*(H) — L2 ,(H) by
(Fu)(z,n) = (z,n)E(z,n). Clearly, 4E € L7 (H), if u € L*(H). Therefore
F is an isometric isomorphism.
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Theorem 2. F : Hy, — H,.,(H) is an isometric isomorphism. This trans-
form determine the relation between the kernel of O, and holomorphic func-
tions in L. ,(H).

Proof. Let f, g € (H) be Schwartz functions, and let ZJ’»‘ be the adjoint
operator of Zj with respect to the weight 7 - ¢, then

(F.Z;9hnp = {Zi f,9B™") = (f,~(Z; = 2(Zj0) - 1)) (33)

on the other hand, for v € H;, and v € . (H), we have

(u, (=Z; + (Zjo)Vr)v) = <u,L;v> =0, (34)
and Plancherel theorem gives
(u, Ljv) = (i, (Ljo) ) = (4, (= Z; + (Zj) - 0)D)
= (4, (=Zj +2(Zjp - m)(BE)E™")
= (Fu, Z; Fo)yp. (35)

Now, let g € C°(H), then gE~' € C°(H), hence F~lg = gE~! € .#(H).
Combining [B3), (34) and (B5) we have

(Fu, Z5g)np = (u, L5(F'g)) =0 for all g € .7(H). (36)

It follows that Fu is weakly holomorphic with respect to variable z, therefore
Fu € H,.,(H). The converse also follows from (B3]), ([B4) and (B5), this
proved the theorem. Od

4. Weighted Holomorphic space and Bergman Kernel

Theorem [2] shows the relation between the kernel of [, and weighted
holomorphic functions, now we study Bergman kernel instead of Szegé ker-

nel, and via the transform F to get Szegd kernel.

Proposition 5. Let f € H,.,(C"). Then f is holomorphic. Here, of course,
means that f has a version g is holomorphic, that is, f = g almost every

where and g is holomorphic.
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Proof. Let u € C°(C",[0,1]) be a radical function and > 1 on B(0,1).
Put pe(z) = e 2"u(2), for f € Hyo(C"), f€:= f % pe. Then {f} from an
approximate of identity, and each of f€ is holomorphic. On the other hand,

by mean value property,
PO PN =1 ) £ w)dm )
<Gl - féuL;z,,w(m 0, (37)

as €,0 — 0. Hence, {f¢} is compactly Cauchy sequence and therefore con-

verges to a holomorphic function. The result follows. O

Proposition 6. Let f € H,.,(H). Then for almost 1, z — f(z,n) is holo-
morphic. Hence, weakly holomorphic and strongly holomorphic are equiva-
lent in L%_JH).

Proof. From Fubini’s theorem,
[ s et ram(e) < oc

for almost all n € R%. More precisely, there is a negligible set Ag C R? such
that

[5Gt redm(e) < o,

for every n ¢ Ag. Let g € C°(C"). Fix j =1,...,n, put

nn) = [ FenZiae dmiz)

if n ¢ Ao, h(n) =0if n € Ayg. We can check that
/ 1F(z,n)|? e 2@ dm(2) ‘Z* ‘2672”"P(z)dm(z). (38)

For R > 0, put
or(n) = (% )h0).

where 7 € C®(R?%), 7 =1 on || < R, 7 = 0 outside || > R. From @), we
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have

d d
[ 16 dm) < /n|<R' ()] dm(n)
<C / / F ()2 e 2@ dm(n)dm(z) < oo, (39)

where C > 0. Let ¢pi(n) € CX(RY), k= 1,2,..., with

i [ lénatn) = or)l? dm(s) = . (40)

k—+o00

Fix Kk =1,2,.... From Theorem [2, we have

[ roensmdnn) = [ [ £GnZaEonume A dm(z)dmo)
:/ [ 1 Z; Gratmgl@)e 2 dm(z)dm()
()

From (I]) and (0), we have

[ ) (i = [ hmontndmn)

= lim h(n)prk(n)dm(n)
—+00 JRd

= 0. (42)

Letting R — oo, we get h(n) = 0 almost everywhere. We have proved that
for a given f(z) € C°(C™),

/ F(zm)Zig(2)e?"#F dm(2) = 0
n (Cn
almost everywhere.

Let us consider the Sobolev space H!(C") of distributions in C* whose
derivatives of order < 1 are in L?. Since H!(C") is separable and C2°(C")
is dense in H'(C"), we can find g € C®(C"), k = 1,2,..., such that

{v1,v9,...} is a dense subset of H'(C™). Moreover, we can take {g1, g2, ...} C
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Span {v;} so that for all g € CZ°(C") with
suppg C B, :={z € C"; |z| <r}, r>0,

suppgr C By, k =1,2,..., such that g, — g for k — oo in H'(C").

Now, for each k, we can repeat the method above and find a measurable

set Ay, D Ay, |Ax| =0 (Ao is as in the beginning of the proof), such that
[ e Zue im0

for all n ¢ Aj. Put A =J, Ax. Then, |A| =0 and for all n ¢ A,
. f(z,n)Z;vk(z)e_Zn"p(z)dm(z) =0

for all k. Let g € C2°(C™) with suppg C B,. From the discussion above, we
can find g1, gs,..., suppgy C B, k =1,2,..., such that g — g in H'(C"),
k — oco. Then, for n ¢ A,

f(zm)Z;g(z)e 21 dm (2)

cn
= [ FenZ (=g Odm(:)
+ [ FEnZ ) e Odm()
= [ FenZ (- g e Odm(:)
— 0as k — +o0. (43)
The theorem follows. O

Proposition 7. Let K, : L3(C") — H,(C") be the orthogonal projection
from L%((C") onto H,(C"™). If e is locally bounded, then the distributional

kernel exists such that
(Kaf)() = [ $)E(w.dm(w) for all § € L(C). (1)

We say that the kernel K, is called the Bergman kernel.
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Proof. Note that for ever given compact set K, we have

sup | f| < Ck sup |ep|\|f\|L%(Cn), for all holomorphic function f. (45)
K K

Let z € C", the evaluation functional f — K, f(z) is dominated by L%—norm,
by Riesz representation Theorem, there is g,(w) € L%(C") such that

(5o)() = [ £(w)g-(w)im(w) (46

We rewrite K,(w, z) := g.(w), then the result proved. O

Proposition 8. Assume that n- @ is locally bounded, then the distributional
kernel of K : L2 (H) — Hy.,(H) exists such that

(K1) (=) = / F (w0, ) K (w, 2, m)dm (w). (47)

for all u € L%_¢(H). Moreover, this kernel is also called the Bergman ker-
nel.

Proof. Let f € LEW(H), then for almost every 0, f, := f(-,n) € ng((:”),
by Proposition [ K,.,(f;) is holomorphic with respect to z and

Han(fn)HL?

n-p

@y < Wfallez,cny- (48)

Integrating this inequality with respect to n obtains

/ (Ko ) (2) 22" dm(z,1) < / FEm)Pe?edm(z,n).  (49)

On the other hand, if f € H,.,(H), then for almost every n, f, € H;.,(C").
Hence, (K f)(z,1) = (K., fy)(2) for all z and almost every 1 and therefore

(K1) (zm) = / £ (w0, ) K (w, 2, m)dm (w). (50)

O
Lemma 1. Let K, be the Bergman kernel with respect to p(z) := L\j|z;|?
in space H,(C"), then we have

n _ _
Ky(w,2) = Ay --- An@) e~ I (Jwj 257w, 2=, 2)+ X5 (|25~ |w; )
T
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for every scalar \; > 0.
Proof. Note that

Ky(w,z) = Zfi(z)ﬁ(w)e—Qp(w)

for every orthonormal basis {f;} in H,(C"). Since every holomorphic func-
tion is compactly limit of linearly combination of 2, m = (my,ma ..., my)
e (N U{0})", e=2(2) is a radical function and z?"e~2(*) is integrable, we

have {2™} from an orthogonal basis in H,(C"). Therefore
_ 1 —m_m —2p(w)
K,(w,z) = Z ERIE w™zme , (51)

where the summation takes over all nonnegative multi-index m.

On the other hand, for ¢ > 0, m € NU {0} ,we have

>~ 2m+1 _—2cr? 1 2m+1 —r? 1 m!
o T (& dT‘ = (2@)m+1 T € d’l" = W? (52)

Thus,

Hz‘m‘H%p(Cn) = (271)”/ 1 rartMe 2P dm(r)

(RF)™
1 T\ m!
DY <§) 2nm (53)
where A = (A1,...,\,). Hence,
207 = (20)™ ot
Ky(w,z) =X+ Ay (%> Z %wmzme 2p(w)
=X\ (g>ne22>\j(@ﬂr|w\2) (54)
T

n _ _
:)‘1"')\n(g> o= SN (=2 2wy 2=y )+ 5 (12 2= hws )
T

Corollary 1. Recall @) that ¢(z) = X|z;|?\; with A\; € R? for j =1,...,n.
The Bergman kernel with respect to 1 - ¢ in space Hy.,(C") is

2\n ‘ —n-P(w,z (p(z)—p(w
Ky (w, 2) = (;> [, - e oo meE o)), (55)
j=1
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where ®(w, 2) 1= p(w — z) + L(w;jz; — wjz;)Aj, and n-A; > 0.

Theorem 3.

K,](w, z) = Kn-cp(wa Z)XAA (n)

= (E>HXAA (W)ﬁ)\j - e~ T eW2)+ (p(2) —p(w))

™ "
J=1
is the Bergman kernel K with respect to - ¢(2) in space H,(H), where x a,
is the characteristic function of Ay , and Ay = {n € R%n - A >0, j=
1,2,...,n}.

Proof. By Proposition§, we only need to check K, = K, x4, or equivalently
[ = fxa, for every f € H,.,(H). Let f € H,.,(H) , consider sets E; =
{n-A; <0,}, since f(-,n) is holomorphic for a.e. 1, we have sub-mean
inequality:

1

ol < o

/[ } |F((r1e, reet® . rpet®) + 20, 1)) dm(6),
0,27|™

(56)
for every r; > 0. We multiply both sides of (B6l) by ri7s - - - rpe” 212 then
integrate it from 0 to R in each coordinates, and yields that

2 fDR(o)n |f(z + z0,m)|Pe =219 dm(2)
|f (z0,m)|" < e~ 21¢(=)dm(z)

, (57)
fZO+DR(0)"

where Dg(0)™ is the n-dimensional unit polydisc centered at the origin.

Since f € L%_JH), for almost 7, |f(-,n)[?e~2"%() is integrable, and
hence for almost 7, [, |f(z,m)|?e27¢() dm(z) < oo, then right hand side
of (B7) tends to zero as R tends to oo, if n € Ej. Hence, f = 0 a.e. in
C" x Ej for all j, that is f = fxa, a.e. for every f € H,, it follows that the
orthogonal projection

K L?]@(H) - Hmp(H) is (Kf)(zan) =< f7 Rﬁ('7z) > (58)

O



2020] EXPLICIT FORMULA FOR SZEGO) KERNEL 271
5. The Proof of Main Theorem

Consider the figure (), the Szegd projection represent as F 'K F, for-
mally,

(Pu)(z,t)

= ﬁ/ / / efit'”efn'“’(z)Kn(w,z)e”""(w)em'eu(w,H)dm(ﬂ,w,n).
™ Rd Jcd JRrd
(59)

If Fubini’s Theorem can be worked, then Pu will become

1 —in-(t—0)—n-(p(z)—p(w
(27T)d/Hu(w,9)< y K, (w, z)e =0 (e(z)—¢ ))dm(n)>dm(w,9).
(60)
Therefore,
S(w,z,0,t) = | Sdm(n) (61)
Rd
in sense of oscillatory integral, where
Q 1 —in-(t—0)—n-(p(2)—p(w
S = (27T)dK77(w’Z)6 7-(t=0)—n-(p(2)—p(w))
A i [(10)—in(w,2)]
= XA, H Aj-me " w2l (62)
j=1
Note that
Ky (w,z) = <E>"XA ﬁ ;- pe R () () (63)
n\w; . r ] : J
]:

by Theorem 3l

Proposition 9. If u € L*(H) N L*(H) and KFu € L}]_¢(H). Then the
Fourier transform can be write down for exactly integral formula, and there-

fore we have (B9)

(Pu) (=) = / w(w, ) Ky (w, 2)e 0100 din (8, w, ), (64)
HxRd

for a.e. (z,t).



272 YANG-ZHI LIN [September

Theorem 4. For u € C° and x be any suitable smooth cutoff, then

e—0F

(Pu)(z,t) = lim u(w,G)/ Xe(n)g(w,z,H,t,n)dm(n)dm(w,H), (65)
H R4

where ®(w,z) = p(w — z) + E(w;z; — w;zj)\; and x(en) = xe(n) is the
scaling of x.

Proof. Let uc(w,0,n) :=u(w,d)x(en) € C(C*"xRIxR?). By Theorem [

Ky(w, 2) = (3)"9% ][ - e T @A) (g6)
T
j=1
and therefore
~ on—d i . A
S(w7 z, 97 t’ 7’]) = n——i—dXAk (77)1—[)\] . 776—@77~[(t—9)—2<1>(w72)]_ (67)
T

j=1
On the other hand, the real part of phase function is
Re(—in - [(t = 0) —i®(w,2)]) = —=Re(n - ®(w,z)) = —n- p(w - 2)

= =30 - Ajlw; — 2> =~ —O(|n]) (68)

if xa,(n) > 0. Hence, S is bounded and integrable with respect to 1 out
side the diagonal {w; = z;, for all j}, and therefore ucS is integrable over
C" x R? x R?, according Fubini’s Theorem, we have

/ / i Sdm(w, 0)dm(n) = / u(w,H)/ xeSdm(n)dm(w, 6). (69)
Rd JH H Rd
On the other hand, the continuity of projections gives that

F Y KFu) = F pKFu) — Puin L% (70)

Since u(w, ) € LY(R?) , and "%y K Fu (compact support with respect to
n) € L'(R?), and by Proposition [

Pu = lim F ! (x.KFu) = lim u(w,@)/ xeSdm(n)dm(w, ). (71)
H R

e—0F

O
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Remark 3. Since S is bounded a.e., x can be replace by any function in

LYRY) N L*(RY) with y. — 1 a.e.

Next, we study S with respect to polar coordinates in formal sense:

/Rdg:/,%g:/v_l /Ooord—lgdrdfz(v), (72)

-/\j>0

where d€2(v) is Euclidean surficial measure.

Theorem 5. For a suitable x, we have for every u € C°,

(Pu)(z,t) = lim [ u(w,0)S(w,z,0,t)dm(w,0), (73)

e—0t Jm

where

_ 5_2¢ (n+d— 1)y )\
K /Rd XeS = S /BA (iv - [(t —0) — i®(w, 2)] + e)n-i-ddQ(U)? (74)

and By = AxN{|v| = 1} the intersection of Ay and d—1 dimensional sphere.

Proof. Let ¥ be the part of phase function ¥(w, z,0,t) = (t —0) —i®(w, 2),

then
2n7d

S = WXA)‘ H )‘_] . 776_”].\1/. (75)
7j=1

Formally, if the order of integrals can be changed, then

/Tn+d_1(H)\j . U)e—irv-\lf _ /(HU . )\j)/rn-i-d—le—irv-\I/. (76)

Since Re(irv - ¥) = Yo - A\jlw; — 2;|> > 0 when w # 2 and v lies in integral

area. By the formula:

/ tme~*dt = mla~ ™Y | for m > 0 and Re(x) > 0, (77)
0
we have
n+d—1_—irv- W o (TL + d— 1)'
/’I" (& dr = W, (78)
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and hence

S =
Ax

on—d (n+d—1)1Tv - A,
dQ)(v).
[ g dat) (79

However the order of singularity of ([79)) is d, the surficial integral is therefore

does not exists. Now we put
S = Sxe := Se~el, (80)
then S, apply to ([T9) with out singularity
5 ond (n+d— 1) -\,
Se= [ Se= L. 81
‘ /Rd ¢ qntd /B)\ (iv - U + ¢)ntd (81)

Hence, we conclude that:

n—d

(Pu)(z,t) = lim [ u(w,0) SedQ(v)dm(w, 9). (82)

antd o+ H B,

Theorem 6. Put Pou= [uS,, for u € L*(H), then

P — Pu in L*(H), (83)
thus, the Szegd kernel
on—d (n+d—1)Tv - \;
S 0,t) = l___dQ 84
0500 = 353 [, Gl o e S &

in sense of Fourier integral, where ®(w, z) = p(w — 2) + L(w;jZ; — w;2zj)\j

= S(lwj — z[* + w;z — Wz ;.
Proof. We first suppose that

Poau = F Y (xKFu), (85)
since K Fu € wa(H), by continuity that

XeKFu— KFu = FPou— Pu. (86)
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To see &), let ps(w,d) = e 0UwIHOD | then
F Y xKFpsu) = F Y (xKFu) as &§—0F. (87)

On the other hand,

1

/ julpsdmu,0) < { / ]u\Qdm(w,G)}%{ / pm(w,0)} < oo, (89)

and since x K Fpsu € L}T@(H), by Proposition @ that

Pk Fpsn) = [ups [ Sxcim(adm(e,0) = [ums. (s9)

Since S, is bounded, (87) and (89)) show (85]). This proves the result. O
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