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Abstract

In this paper, we study the existence and the uniqueness of solution of coupled G-
forward-backward stochastic differential equations (G-FBDSEs in short). Our systems are
described by coupled multi-dimensional G-FBDSEs. We construct a mapping for which
the fixed point is the solution of our G-FBSDE, where we prove that this mapping is
a contraction. In this paper we do not require the monotonicity condition to prove the

existence.

1. Irﬁoduction

BSDEs were first introduced by Bismut in 1973. Later, EL\ general non-
lirgar BSDEs in the framework of the Brownian motion were first set forth
introduced by Pardoux and Peng in El], and since then, the theory of BSDEs
has developed very quickly, see El-Karoui, Peng and Quenez [15]; Bahlali et
al. [2], and there have been an interesting applications in st@chastic optimal
control and finance (see for example [2]).

Associated with the BSDEs theory, the field of fully coupled FBSDEs
has also developed very quickly since the work of Antonelli [1]; we refer to,
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Cvitanic and Ma ﬂ], Delarue ﬂg], Ma and Yong @], Pardoux and Tang ﬂﬂ],
Peng and Wu ﬂﬂ], and Zhang @], ete.

Recently and since the introduction of the g-expectation based on BSDE
by Peng ﬂ2__4|], this theory has quickly developed and has been of interest to
many authors, among whom we mention ﬂa, Iﬂ, IE, Iﬂ, @] After that,
an abstract sublinear or G-expectation space with a process called the G-
Brownian motion was introduced by Peng, (see ﬂﬁ, Iﬂ, IE, ]) and by Denis
and Martini ﬂa] who suggested a structure based on the quasi-sure analysis
from the abstract potential theory to construct a similar structure using a
tight family of possibly mutually singular probability. The main difference
between the small g-framework and the big G-framework is that in the g-
framework we can’t let the uncertainty in the diffusion, whereas in the G-
framework both the drift and the diffusion can have uncertainty. In recent
years, the framework of G-expectation has found increasing applications in
the domain of finance and economics; for example, Epstein and Ji @, ]
study the asset pricing with ambiguity preferences, and Beissner E] has

studied the equilibrium theory with ambiguous volatility, in addition to many

others see e.g M, IE, Iﬁ, @, @]

The application of FBSDE in the standard case has been the interest of
many authors; we refer to ﬂﬁ, Iﬂ, IE]

In this paper, we study the existence and the uniqueness of the following

FBSDE system in the G-framework:

dXs = b(s, Xs, Ys, Zs)ds+o (s, Xs, Ys)dBs+hij(s, Xs, Yo)d(B', BI)s,

d}/:i - _f(87X87 }/;7 ZS7MS)dS - g’lj(saXS7}/:3)d<Bl7B']>8
+ZsdBs + dMy, s € [t,T],

Xt =x, YT - (P(XT),Mt = 0,

(1)

(X,Y,Z, M) is the solution of our FBSDE where X,Y,Z are square inte-
grable adapted processes and M is a decreasing G-martingale, and the initial
value » € R? is a given vector, B is a [-dimensional G-Brownian motion, (B)

is the quadratic variation of the process (Bs)s>0-
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The coefficients are given by:

For simplicity we take ¢ = 0. We prove the existence of the solution in
one dimension, and yet, the result is still valid in a multi-dimension case.

In this paper with additional conditions we prove existence and unique-
ness without the monotonicity condition that Wang et. al. @] suppose.
In addition to that here we allow that the solution of the forward equation
X can have any dimension, not necessarily one-dimensional like the case of
@], where they needed it for the comparison reasons.

In many applications of stochastic optimal control, solving the corre-
sponding HJB equation with probabilistic methods is required, especially in
high dimensional problems see e.g. ﬂﬂ] In these cases where we do not know
the exact value of the volatility, but only a range of it, like the case of finance,
the corresponding HJB equation in a fully non-linear G-PDE equation, and
in case of high dimension we can’t solve this end by the usual methods like
the finite difference, so a probabilistic representation is required, and when
the control enter the diffusion see e.g. B, IE], this will produce a fully cou-
pled G-FBSDE, and this which motivate our work, also another application
is when we apply the stochastic maximum principle we end with a G-FBSDE.

The paper is organized as follows: In the next section, we give some
preliminaries and existing results on the G-fretwork that we will use in our
article; we also set the hypotheses that ensure the existence of the solution
of the G-FBSDE (J). In section 3, we give our main result and its proof.
The proofs of some technical lemmas are recorded in the Appendix.
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2. Preliminaries and Hypothesis

In this section, we present some notations of spaces and existing results

on the G-expectation that we will use in our article.

2.1. Notations

In this section, we present the following spaces notations that we use in

our article:

o Chiip (Rd) is the space of bounded and Lipschitz continuous functions on R%;

o Lip(Qr) = {ga(Btl, By in>1t,...,t, €[0,T),p € Cb,lip(RdX”)};

po={E(mP)}

e L7.(Qr) is the completion of L;,(Qr) under the norm || 7 |
N-1
o« MY(O,T) = {n = L &l 0=t <<ty =T.E€ Lip(Q,) }:

N—-1
o MZY(0,T) = {"715 = S Gl 0=tg<---<tn=T, &€ Lg(Qti)};
1=0

e MZ(0,T) is the completion of Mg’o (0,T) under the norm

I = {/OTE(st)}%;

e ME(0,T) is the completion of M3(0,T) under the norm

11l ag2= {E(/OT mfrds) )

e HE(0,T) := the completion of MZ(0,T) under the norm

o= (B[( [ ) T}

o S2(0,T) :={h(Bi,ni--- Biyni) i t1, ...t € [0,T],h € Cyiip(R"T1) };
e S2.(0,T) is the completion of S&(0,T") under the norm

1

sz ={B( sup )}
s€[0,T]
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2.2. Preliminaries

This section aims at recalling some introductory concepts in the G-

framework. For more details we refer the readers to e.g. @]

S. Peng in 2006 has introduced the functional E(.) : £;,(Q) — R, named
G-expectation which defines a sublinear expectation on L;,(€2), and which

means that it satisfies the following properties:

1) Monotonicity: B(X) > E(Y) if X >Y.

(

(

(3) Sub-additivity: For each X,Y € H, B(X +Y) < E(X) + E(Y).
( >

)

2) Constant preserving: B(l) =1 for 1eR.
)

4) Positive homogeneity: B(AX) = AE(X) for X\ > 0.

The corresponding canonical process (B¢)¢>o of the functional [ on the sub-
linear expectation space (€2, Lip(Q),E) is called a G-Brownian motion

which is characterized by the following:

Definition 1. A d-dimensional process (Bi);>¢ on a sublinear expectation
space (Q,H, I@) is called a G-Brownian motion if the following properties are
satisfied:

(i) Bo(w) =0,

(ii) For each t,s > 0, the increment By, s — By is N ({0}, sE)ll is distributed
and is independent from (By,, By,,..., B, ), for each n € N and 0 <
1< ... <tp <t

where Y is a non-negative d x d symmetric matrices.

A very interesting property of the G-Brownian motion is that its quadratic
variation (B) is as the G-Brownian motion B itself; it holds that the incre-
ment (B)iys — (B); is independent from ((B)s,, (B)iy,---,(B)t,), 0 < t; <

. <tp <t and (B)es — (B) < (B),.

We also need the following BDG type of inequalities in the G-framework

1IN ({0}, s%) is called the G-normal distribution see[2d]
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Proposition 1 (@]) Let B € ML(0,T) with p > 2. Then we have
Ji BedB; € LL(Qr) and

E(( /OT ﬁtdBt(p> < c,,fa(‘ /OT 32d(B), g). 2)

Proposition 2 (@]) For each n € HE(0,T) with a > 1 and p € (0, ], we

have

poi([ [ i) ) <B( s | [

where, 0 < ¢, < Cp < 00 are constants.

T P

7)< z‘pcpﬁ«:([/o nids| ),

Lemma 1 (@]) Letp>1,ne ME([0,T]) and 0 < s <t <T. Then

E( sup | / “nam)|) < (2@ - o / mldd). (3)

s<u<t
Lemma 2. For 6 € Sé, we have:

B [ i) < TiE( s j0cF).

s€[0,T]

Furthermore, for n € HZ(0,T), we have that (fg Ns8sdBs)ejo,r) 8 an

uniformly integrable martingale, equal to 0 at time t = 0, so,

fE(/tT nsasdB) ~0

Let be the following well-known inequalities:

Lemma 3. Forr >0 and 1 < q,p < oo, with%—l—%:l, we have

la +b)" < max{1,2" " Y(|a|" + |b]") for a,beR (4)
po|ple

lab| < Ja? + u (5)
p q

By this we can get
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Proposition 3 (@]) For each X,Y € H, we have

<\X+Y\> < 2 (E(X]") +E(Y])) (6)
xv)< (E \erwqu)) (7)
(E <|X+Y|p>>% < (B(XP)7 + (E(YP))7, (8)

where r > 1 and 1 < p,q < 00, wz’th%%—%:l

L
Y

In particular, for 1 <p < p', we have (E(]X\p))% < ( (1X|P ))

We suppose the following hypothesis (H) which ensures the existence
and uniqueness of a solution of the fully coupled G-FBSDE ().

Hypothesis(H)

(H1) For fixed z € R% y € R", z € R"*! suppose that
b(. 2.y, 2), o(2,y), hi(,z,y) € ME([0,T]), also for fixed z,y,z,m, we
have f(.,x,y,z,m), gi;(.,x,y) € Mé([O,T]),@ € L’é(QT)

(H2) We suppose also that:

[b(s, 2.y, 2) = b(s, 2"y, 2 )P <kl — ' + |y — /| + |2 = 2']?),

(i (s, 2,y) = hij(s, 2,y )]? < k(jlz = 2'P + [y — y']?),

lo(s,2,y) — o(s, 2",y )P < ko — 2> + kaly — o/,

[f(s,2,y, 2,m)=f(s, 2",y 2/, m) P <k(Jz—a' P+[y—y/ P+ [z—2" P+ m—m'[?),
19i,5(s,2,y) = gij(s, 2",y )P < k(e — 2" + |y — /),

@ (2) — (2")]* < K|z — '

3. Main Results

In this section, we present our main result which is about the existence

of a unique solution of our G-FBSDE ({]) given in the following theorem.

Theorem 1. Under our assumption (H), there exist a constant C; > 0
dependant on the Lipschitz coefficients k, ki1, ko, such that for all0 < T < CY,
the G-FBSDE () has a unique solution (X,Y,Z, K) € Hé’zT
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Remark 1. This result can’t be extended to the case where o depend to Z
with |o(s,z,y,2) — o(s,2", ¢/, 2)* < kile — o' + kaly — /' * + kslz — 2'2,

indeed, the system:

dX, = Z,dB,,
dY, = Z,dB, + dM,, s € [t, T, (9)
Xe =z, Yp=Xp, My =0,

has an infinity number of solutions, because for any Z € H, g(O, T) and any
decreasing G-martingales M such that My = 0 and My € LZ.(Qr); the tuple
(X,Y,Z, M) with X,, := x+ ftu ZsdBs and Y, := x — M7y is a solution of the
G-FBSDE (@)

Proof. The proof of Theorem [ is based on the fixed point theorem,
and for this, we define the following map: For (X,Y,Z, M), (U, V,W,R) €
ME(0,T) x &4(0,T) := é’?T we define (X,Y,Z, M)(resp. (U,V,W,R))
as the image of (X,Y,Z, M) (resp.(U,V,W, R)) by the map F where:
G4(0,T) := S4(0,T) x HZ(0,T) x LZ(Q7), and

FHY — He (XY, Z,M) = F(X,Y,Z,M) = (X,Y,Z,M) (10)

where (X,Y, Z, M) are defined by:
for t € (0,77,

t t
Xt::c+/ b(s,Xs,Ys,Zs)ds—F/ o(s, X, Ys)dBs
0 0

t ~
+/ h(s, Xs,Ys)d(B)s, (11)
0
and,
~ T ~ ~
YtZ‘P(XT)Jr/ f(s,Xs,Ys, Zs, Ms)ds
¢
T ~ T T
—l—/ g(s,XS,YS)d(B>S—/ ZSdBS—/ dMs. (12)
t t t
Remark 2.

(1) The space H, éQT is a Banach space as a product of Banach spaces MC%(O, T),
S%(0,7), H%(0,T), and LZ(Qr).
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(2) The map f is well defined. Indeed, because Y and Z are given respec-
tively in SZ(0,7), HZ(0,T), and the coefficients b, and h hold the
conditions (H), then X in equation (II)) exists (see e.g. ﬂﬁ]) as the so-
lution of this equation and belongs to MZ([0,T]), and so we plug-in X
in the G-BSDE equation (I2]); then we have also }75, Zs, M s which exist
(see e.g. @]) as the solution of the BSDE (2] and belong to &%(0,7) =
S2,(0,T) x HZ(0,T) x L% (Qr) for fixed (X, M) € MZ(0,T) x LZ(Qr).

The idea of the proof is to show that the map [ is a contraction, and
for this, let the following notations: Zs = )E'S — US,E = ZS — Wsandgjs =
Yo Vi, ag = Xo=Us,ys = Yo =V, wg = Zg=W, iy = My—Ry,my = My—Ry.

So,

t ~

t
- / (b(s, X, Yo, Zs)—b(s, Uy, Vi, W,))ds+ / (05, X0, Yy)—0(s, Ty, Va) B,
0 0

[ 06, K0 0) — (s, 0 Vi), (13
0

and,
T

@t:ﬁ - ‘Z:yT—i_/ (f(87X87 }297 Zsa MS)_f(87 U87 ‘787 WS; RS))dS
t

T T T
+ / (95, X0 Va)— (5, Uy, Va))d(B) o~ / (Z,—W.)dB, — / d(3T,~ Ry).
(14)

The proof that the map F is a contraction mapping is based on the

following lemmas:

Lemma 4. For a given 8 > 0, there exist positive constants C1,Co depending
only on k, ki, ko, 1,1, T, s.t.:

T X . . T
/ e~ 2Bt (|, |?)dt < cga( sup |yt|2> + 02E</ |zs|2d5>. (15)
0 te[0,T] 0
Proof. For the proof see Appendix A. O

Lemma 5. For a given 5 > 0, there exist positive constants Ch,Co, Cs
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depending only on k, ki, ks, [,1,T, 3 s.t.:

T T
B(|jzr[2) < C1E( sup yyt\2)+02E</ \z5\2d3)+03/ e 2B (|7, 2)dt. (16)
te[0,T] 0 0

Proof. For the proof see Appendix B. O

Lemma 6. There exist a positive constants Cs,Cy, Cs5,Cq, depending only
on T, k1,1, 8 s.t.:

T
E< sup |ﬂs|2> <3 (|mT|2) —|—C4/ efQﬁsIE(|xs|2)ds
s€[0,T 0

+ C5E(/OT |55|2d8> + Gl (|21 [*). (17)

Proof. For the proof see Appendix C. O

Lemma 7. There exist a positive constants Cy,Cs, Cy, C1g, depending only
on T, k,1,1,5 s.t.:

T
B( [ lafPds) <CoE( sup [5.P) + o (jmrds)
0 s€[0,T]

T
+ Cg/ 672[381@(‘%5’2618) + CloE(’i'T‘Q). (18)
0

Proof. For the proof see Appendix D. O

Lemma 8. There exist a positive constants Ci1,Ci2,Ci13, Ci4, C15, depend-
ing only on T,k, 1,1, B s.t.:

E(jmr[?) < cufa( sup |ms|2) +012fE( sup |gs|2) +013E(/0T|§S|2d5)

s€[0,T s€[0,T7]
T A A
" CM/ e PR (|as[*)ds + CisE (|27 ). (19)
0
Proof. For the proof see Appendix E. O

Now we return to the proof of our main results. From Lemmas @l to [}

for a given 8 > 0, there exists a constant C' = C ;. . 7,5 > 0, such that
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VT;0 < T < C, and there exist constants wy,ws,ws,wys € (0,1) depending
only on k, T, 3,1,1 s.t.:

T T
/ 6*255E(’j8’2)d8+E( sup \§3]2> +E</ \Eslzds) —HE( sup \ms\Q)
0 0

s€[0,T] s€[0,17]

T
gwl/ efzﬁsE(]x8]2)ds+w2E( sup \y8]2>
0 s€[0,7]

+w3E</OT|zs|2ds> +W4E< sup |ms|2>. (20)

s€[0,T]
It is noted that the following two norms are equivalent on
— T A T A
Mg(o,T),/O e 2PUE(|Z|?)dt ~ /O E(|Z:|*)dt

and so, the map F is a contracting mapping from the Banach space HéQT
to itself, which ensures the existence of a unique fixed point (X,Y, Z, M) €

Hé’ZT which is (from the definition of f ) the solution of the FBSDE ({l) and
this proves our main theorem. O

Appendices
Appendix A. Proof of Lemma [4]
We have from (I3]),

T = /0 (05, K Y Z2) = b5, T Ve W) s + /0 (o5, % Y2)
s, U VB, + [ (his, X Yo) = his, Do Voa(B),
By Young’s inequality and simple calculations, we have for e, ¢e9, €3
B(lz:?) < (i; + 2+ 2)E(laP)
: /0 (b(s, X, Yay Z4) = bls, Uy, Vi, W) s

E
(\/Ot Y,) ~ o(s,0,, V.)dB,| )
SE(

[ 65,07 = his, O v ).

>

“\ “\ “\
— 0= ;| e
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Using Lemma [Tl and Lipschitz conditions

S 9 €1 | €2 | €3\ f/1- (2 kt ¢ [ o 2 2
Bz < (5 + 2+ 5 ) B + 5B (| (2 + ysl? +|2/2)ds)
2 2 2 2e1 \ Jo

Col? v [t kT(A+02 .0 [t
+ o ( [ (ks -+l ) )+ EL D [ Gl +10.2)ds)
€ 0 0

3263
€1 kiga €3\ a2
I—(5+—+ %) ) E(|z]")

2o T2 T
kT kCQP kT(i+l)2 /t A9

< - (|7, |?)d

= (251 T T3, | B2 )ds

kKT kl? kT(l‘+l)2> o o kT ¢ [T
+T|( —+—+——-)E( su s +—E< Zs 2ds)
(261 262 3263 (SE[OPT] ‘y ’ ) 261 0 ‘ ‘

2

We multiply both sides of the inequality by e~2%* and integrate them on

[0,T7], and simple calculations give

T
& g 13 _ A
<1 (224 —3))/0 e 2PUR (|7, dt

2 2 2
< 55 * k;fip * kT;;;DQ) /0 "R (2, ) ds
72 7 2 .
+%<% z@izl + kT:(fQ ;D >(1—625T)E<52}é% ]w)
+ 4];2(1 —B_QBT)E</OT|zS|2d5).

Let

2 283 (2_51 2e9 325

€1 & € 1 kT  kiCyl?  kT(I+1)?
E:1_(_1%__2%_3%_ +12+(_))>
2 2
for big 8 and small &1, &9, 3, we have that € > 0, and then

T
/ e PR (|7, %) dt
0

T (kT keCol®  KT(1+1)? _opT
- = 1—
<251 T, T T 32 >( e )

k o [T
1—e 2K 2ds).
(e (/0 2f?ds)

E( sup \y8]2>
s€[0,T7]
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Appendix B. Proof of Lemma
We have

T
jT :/ (b(87XS7}/tS7ZS) - b(saﬁ&V%WS))dS
0
T B B T B
+ [ o6, Re Y=ol 0 VB + [ (b, XY
0 0 ~
— h(s,Us, Vy))d(B)s

By using the same technique as the previous lemma, we have that

T 72 T7 2 T
(AT B2 BT [y v,
0

E(lzr|?) <= (==

lerP) <z (5 * 2 T 52
T (kT kol®> kT(+1)%\ - N KT -/ (T,
(57 —)E( J+amg (] 1)
8’(28’1 2, 32 ) up el ) o B, 1l

for & = (1 —(F+2+ %3)) , for strictly positive, and small enough £/, &), £5.

Appendix C. Proof of Lemma
We have

T
Ut — Yr :/ (f(s,Xs, Y, Zs, Ms) — f(s,Us, Vs, Wy, Ry))ds
t
T ~ ~
+/ (g(S7X87}/t9) - g(s7US7‘/S))d<B>S
t
T _ 5 T 5 5
—/ (Zs — W,)dB, —/ d(M; — Ry).
t t
We apply Ité’s formula on |g;|?
T ~ ~
2 = — / 2izdB, + [9(Xr) — o(Ur)?
t
T ~
4 / 251(f (5, Xy Vo, Zoy M) — £ (5, Us, Ve, Wi, Ry))ds
t

T
+ / 2Wi(g(s, Xo,Ya) — g(5,Us, Va)d(B)s
t

T _ T _ B
- / Z.2(B), - / 251 d(3T, — Ry)
t t
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T T
2+ [ z2dB), < - / 20s2sdB, + ka2
t t

T
+ k/ 2($sgs + |gs|2 + YsZs + gsms)ds
t
T

T
k / 25 (s + §2)d(B)s — / 25 odin.
t t

T T
Jt :/ 2|gs|dms / 2gszsst
T
sup |ys| <2k sup |ys|/ zeds + 2k sup |ys| / ds
s€[0,T] s€[0,T] s€[0,T]

+ 2k sup ]ys\/ \zs\ds—i—Qk sup ]ysl/ |ms|ds
s€[0,T]

+k/0 (=252 + 117 [2)d(B),s

Let

K / G Pd(B)s + K2z + Jr — .
t

By Lemma (3.4) in ﬂﬁ] J; is a G-martingale. By using Young’s and the
BDG inequalities, with simple calculations

E( sup ]55\2) < (s3k + 2kT + Gk + ok + ColT (k + ker)) E( sup ]335]2>
s€[0,T s€[0,7

kT k(I +1)2T /TA ) kT . /T2
+(—+—— E(|zs|“)ds+—E Zs|“ds
(gg 16<1>0<“> %(OH)
. kT2 ..
+ kE(|z7|?) + §—5E(|mT|2)

¢=1- (§3k+2kT+§4k+§5k+CZiT(k+k§1))

) . kKT k(I +02Ty [T KT o (7
E WJ2) <(= 4+ 2 / B(|z,|?)d +—IE/ J2d
< (Sg%%}!y\)_(gg = ) | Bl ds+ — (0 2] 8)

. kT2 ..
+ kE(|Z7|?) + g—5E(\mT]2).

B swp i) <2 (AL 4 MDY P oyas + ([ jaas)

€[0T 1661

k - kT2
+ EE(\ET\ )+ —E(\mT! ).
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Appendix D. Proof of Lemma [7]
T
G — Gr =/ (F(5, Xo, ¥y Zo, My) — (5, Us, Vs, Wi, Ry))ds
t
T ~ ~
+/ (g(S7XS7}/t9) _g(s7US7‘/S))d<B>S
t
T R T R
—/ (7. — W.)dB, —/ AT, — By).
t t

We apply Ité’s formula on ||

T
2 = — / 20 7:dBs + [p(Xr) — o(Ur)?
t

T
+/ Qgt(f(saX&}/;a
t

87MS) - f(87 U87 ‘/87 W87 RS))dS

N

T
+ / 20 (g(5, X, V) — g5, U, Va)d( B,
t
T B T 5 5
—/ |Zs|2d<B>s—/ 2gid(M; — Ry)
t t
T T
/ Z,|2d(B), < —/ 20 ZsdBg + k|27 |
t t
T
+ k/ 2(568@8 + |gs|2 + YsZs + gsms)ds
t
T T
+k/ 2y8(x8+ys)d(B>S—/ 2ysdm
t t
. T R T
B( [ lala),) <B(kerP+k [ 2g+ 152+ 5.5+ gam)ds
t t
T T T
+k/ 2y5(x5+ys)d<B>s—(/ 2y5dms+/ QgSESdBS))
t t t
R T ~ T
B( [ 1)) <BllerP+k [ 2w+ 5P + g2 + gom.)ds
t t
T
Tk / 20a(s + 7:)A(B):)
t

T

+B( - (/tT2ysdms+/t 2§,%dB, ) )
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With some simple calculations, we have for some strictly positive 1, ¢5, S},

S

‘ 2

T
E(/ \25\2d<B>8) < E(g{,,k +2KT + 4k + Lk + sup |7
0 s€[0,T]

kT’
+ — \xs\ ds+—/ |Zs] ds—i—k\xT\Z
5

q3
_ k
+(k+k<1) [ wrams k [npam),),
0 S1.J0

From Proposition

fE(/OT |Zs|2ds>

1 . kT [T
< 5 (gék—i—?kT—i—gjtk—i-gék) E( sup \@8\2) + 5 / E(\xS\Q)dS
[Fea s€[0,T] [Feass Jo

FE(Imr?)
265

_l’_

KT - (T, koo,
B( [ ads) + gBlar) + 5

l262§fl
ColT . _ EC@+D%*T (T

+ k+ k) E( su 82+7‘/Em8d
oy (b4 b B( sup ) + =5 [ Bla s

(1~ g B 1)

1 IT -
<—(g3k+2kT+§4k+g5k+ CalT (k+k<1))IE( sup |z75|2)
%c 5€[0,7

I<\.

z+l2T kT T e 2y —28s
e o ng) / (|4 2)e 2 ds
k kT2
+ g Ber ) + B

Appendix E. Proof of Lemma [§
T ~ ~

mT—mt: —gt+ﬂT+/ (f(S)XS,YS)ZSaM) f(S Usa‘/sa S Rs))ds
t

T T
+ / (905, X0, Vo) — g5, U, Va))A(B) s — / (Z, —1W,)dB,.
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T T
+ /t (9(s, X5, Ys) — g(s,Us, V3))d(B)s — /t Z5dBs.

By taking t = 0, and using that m; = 0, we have for some 1, d2, d3, d4, 05

jmr|” < \mT\QJr 557 S V.2 + 2|2
1 s€[0,1
I o N )
+ﬁ‘/ (f(s,Xs,Ys, Zs, M) —f(S,Us,V;,WS,RS))ds‘
21Jo
53 _ 12 1 T ~ ~ 2
+ —|mr| +—‘ (9(s,Xs,Ys) —g(s,Us, Vs))d(B)s
2 2551/,
0 Ly ks
w bl g | [ s Pl e
2 204

X 1 .
E(lmr|?) < 3 (61 + 69 + 03 + 04 + kd5) E(jmr|?) + §E< :EéPT] ’@s\2>

T T . ~
+—25 E(/ I(f(s,Xs,Ys,Zs,Ms)—f(s,Us,V;,Ws,Rs))Ist)
2

- 2
T sup ‘/ —g(S,USa‘/S))d<B>S )
t€[0,T]
1 k
N su ZS —|— —E x 2 .
204 te[olgf]‘/ 205 (o)

From Proposition2] we have for 6 =1 — % (61 + 02 + 93 + 4 + kd5), and we
chose §; for i = 1,2,3,4,5 small enough such that § > 0 and

R C(Tk(L+1)?  Tky~r [T o _oss
E(mrl?) < 5 (g5 +@)E(/O [P ds

2 72 2 .
(o 3, B

o 3]
s€[0,T]

5

LTk PCoNoy [T Tk . R

s s JBL L = I (|7 ).
* 5(2(5Q+ 2(54) </0 ’28’ d8>+255 (’mT‘ )+2555 (’xT‘ )
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