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Abstract

Motivated by the super-Petersburg game, we consider the super-heavy tailed indepen-

dent and identically distributed (iid) random variables whose tail are characterized by slow

variation. This article explores strong laws of large numbers and central limit theorems for

a class of super-heavy tailed random variables with two types of truncations, respectively.

We apply our results to the logPareto distributions and the super-Petersburg distributions.

1. Introduction

1.1. Notation

Functions log(·) and lg(·) denote logarithms whose bases are e and 2,

respectively. For positive functions f(x) and g(x) the symbol f(x) ≍ g(x)

means that there exist positive constants C1, C2 and a satisfying that

C1 ≤ f(x)/g(x) ≤ C2 for x ≥ a.

Similarly, f(x) ∼ g(x) and f(x) = o(g(x)) denote limx→∞ f(x)/g(x) = 1

and limx→∞ f(x)/g(x) = 0, respectively. Moreover, for positive sequences
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{an} and {bn} we use the same notation an ≍ bn, an ∼ bn and an = o(bn),

respectively.

1.2. Super-heavy tailed distributions

The distribution for the St. Petersburg game is known as one of the

simplest examples with infinite expectation. The game is the following.

Peter tosses a fair coin repeatedly until it falls heads. If this happens at the

kth trial, he gives Paul 2k ducats for k ∈ N = {1, 2, 3, . . .}. Letting XSt be

a payoff, we have

P(XSt = 2k) = 2−k for k ∈ N. (1)

Although the fee of the game can be considered as the expectation, which is

calculated as EXSt = 2 · 1
2 + 22 · 1

22 + · · · = ∞, it does not fit our intuition

(see [15, Section X.4]). The distribution of Eq. (1) is sometimes called the

Peter and Paul distribution (see [7, Section 8.8.2, page 372]), but let us

call it the St. Petersburg distribution. In 1738, D. Bernoulli [5] proposed

expE logXSt < ∞ instead of EXSt as the “moral expectation”. However,

it is pointed out that considering the logarithmic utility function in this

situation is ad hoc by giving the following super-Petersburg game constructed

by K. Menger (see [12, page 30], [21, page 635], [28, Section II, page 32] and

[31, Section 4]). If Peter tosses the coin repeatedly, and it falls heads at the

kth trial, then Paul receives 22
k
ducats for k ∈ N. Letting XsP be a payoff,

we have

P(XsP = 22
k

) = 2−k for k ∈ N, (2)

and call it the super-Petersburg distribution, since Samuelson [28] used the

word “super-Petersburg paradox”. Note that the same calculation of EXSt

yields that E logXsP is also infinite.

Let us consider the distribution of XsP by comparison with the distri-

bution of XSt. They are both heavy-tailed in the sense of [16, Equation

(1.1), page 2], and EXSt = EXsP = ∞. However, we can see that EXSt

barely diverges to infinity but EXsP certainly diverges to infinity. Indeed,

the decay orders for tail functions x 7→ P(XSt > x) and x 7→ P(XsP > x)
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are different. Namely, the tail probabilities of XSt and XsP are

1

x
≤ P(XSt > x) =2−⌊lg x⌋ =

2{lg x}

x
<

2

x
for x > 2 (3)

and

1

lg x
≤ P(XsP > x) =2−⌊lg lgx⌋ =

2{lg lg x}

lg x
<

2

lg x
for x > 4, (4)

where ⌊x⌋ and {x} are the integer and the fractional parts of x for x > 0,

respectively. The distribution of Eq. (3) is in a class of power laws, i.e.

P(X > x) ≍ x−α for 0 < α ≤ 1. (5)

There are many results of limit theorems for iid random variables of this

type distribution, in particular it is interesting when α = 1 (see [1], [2], [3],

[22], [25], [26] and references therein).

To handle with random variables like Eq. (4), let us introduce super-

heavy tailed distributions.

Definition 1.1 (Super-heavy tail). A distribution of a nonnegative random

variable X ≥ 0 is super-heavy tailed if there exists a slowly varying function

L(x) > 0 satisfying that

P(X > x) =
1

L(x)
. (6)

Moreover, it is O-super-heavy tailed if Eq. (6) is replaced by

P(X > x) ≍ 1

L(x)
. (7)

We usually call Eqs. (6) and (7) “slowly varying tailed” and “O-slowly

varying tailed”, respectively, but we dare to use the word “super” to corre-

spond to the “super-Petersburg game”.

For the notion of the slow or regular variation, we refer to the textbooks

[7], [18, Section A.7] and [20, Appendix B]. According to Alves et al. [4, page

214], several authors gave different definitions of the super-heavy tail. The

above definition of Eq. (6) is written in Falk et al. [14, Section 2.7, page 75].

Alves et al. [4] defined it only when L(x) in Eq. (6) is Π-varying (see [14,

Class B, page 79], for Π-variation, see [7, Chapt. 3] and [20, Appendix B,

page 361]). Zeevi and Glynn [32] defined it when X satisfies E log(1+ |X|) =
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∞, which means that the moral expectation diverges. Here, we consider the

generalization from Eq. (6) to Eq. (7), since we would like to deal with

the case that the tail function is not slowly varying like Eq. (4) (see Remark

4.1). Note that the class of O-super-heavy tailed distributions is a subclass of

dominatedly varying distributions (see Embrechts et al. [13, Section 1.4.1,

page 49]) and O-subexponential distributions (see Shimura and Watanabe

[30]).

While the St. Petersburg distribution is not super-heavy tailed, the log-

Pareto distribution (Eq. (41)) and the super-Petersburg distribution (Eq. (2))

are typical examples for super-heavy and O-super-heavy tailed distributions,

respectively. It does not seem that these are well-studied. Indeed, Cormann

and Reiss [10, page 94] reported that even the logPareto distribution was

rarely investigated in statistical inference. In probability theory, it might be

difficult to directly obtain limit theorems with respect to super-heavy tailed

distributions for the following reasons.

(i) The super-heavy tailed random variable does not have the relatively

stable property that is also regarded as a weak law of large numbers,

because it does not satisfy the condition of [7, Theorem 8.8.1, page

373].

(ii) The super-heavy tailed random variable does not belong to the domain

of attraction of any stable distributions, because it does not satisfy the

Doeblin-Gnedenko criterion [18, Theorem 9.3.2, page 432].

(iii) The super-heavy tailed random variable does not belong to the max-

domain of attraction of any extreme value distributions. Indeed, the

direct proof for the logPareto random variable (see Eq. (41)) is given

in [17, Example 2.6.1, page 88]).

1.3. Our contributions and organization of the article

To overcome the difficulties, Darling [11] and Nagaev, Vachtel [23] stud-

ied distributional limit theorems for super-heavy tailed iid random variables

using a ingenious normalization.

In this article, we try another way by considering truncations for heavy

tailed random variables. We give strong laws of large numbers and central
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limit theorems for sums of iid O-super-heavy random variables with trunca-

tions, respectively. Györfi and Kevei [19] studied them for the St. Petersburg

distribution of Eq. (3). Their results were generalized by [24] to a class of

distributions of Eq. (5). We examine them for a class of distributions which

correspond to Eq. (5) by extension the case of α = 0.

The organization of the article is as follows. In Section 2 after giving

two types of truncations and technical assumptions, we claim main results

for the strong law of large numbers (Theorem 2.1) and the central limit

theorem (Theorem 2.2). Section 3 presents proofs of the theorems after two

lemmas. Finally, Sections 4.1 and 4.2. illustrate examples for the logPareto

distributions and the super-Petersburg distributions, respectively.

2. Truncations, Assumptions and Results

2.1. Truncations

2.1.1. Definition of min-truncation and default-truncation

For a nonnegative random variable X ≥ 0, we define two types of trun-

cations with a level x > 0 as follows.

X(x) = min{X,x} = XI{X≤x} + xI{X>x}, (8)

X̂(x) = XI{X≤x}, (9)

where IA denotes the indicator random variable

IA(ω) =

{
1, for ω ∈ A,

0, for ω 6∈ A.

For the sake of convenience, we call Eqs. (8) and (9) the min-truncation and

the default-truncation, respectively.

2.1.2. Interpretation of truncations

These truncations, which are given in [9, Example 6.2.2, page 182], can

be interpreted as a game in the following sense. Let us suppose that Peter

has x ducats. Then for the min-truncation X(x) he pays Paul all x ducats

when the payoff X is greater than x ducats. By contrast, for the default-

truncation X̂(x) he does not pay at all in this case.
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As a result, we find that the min-truncation, which may be a peace-

ful procedure for Paul, is easier to obtain limit theorems than the default-

truncation (see Remark 2.2 (i)).

2.2. Assumptions

If X is a O-super-heavy tailed random variable, then by Eq. (7) there

exist C1 > 0, C2 > 0 and x0 > 0 satisfying that

C1

L(x)
≤ P(X > x) ≤ C2

L(x)
for x > x0. (10)

For the slowly varying function L(x) and C1, C2, we suppose the following

technical assumptions.

(A1) For the function L(x) in Eq. (10) there exist c > 0 and a0 ≥ x0 such

that

L(x) = c exp

{∫ x

a0

ε(u)

u
du

}
for x ≥ a0, (11)

where ε(x) is positive, continuous, slowly varying and o(1).

(A2) For i = 1 and 2, there exists a random variable X̃i whose distribution

function Fi(x) with a constant ai > 0 is

Fi(x) = P(X̃i ≤ x) =

{
1− Ci

L(x) , for x ≥ ai,

0, for x < ai.
(12)

2.2.1. Remarks on Assumptions

(i) Eq.(11) is a normalized slowly varying function (see [7, Equation (1.3.4),

page 15]), which is from Representation Theorem (see [7, Theorem

1.3.1, page 12] and [29, Theorem 1.2, page 2]).

(ii) Assumption (A1), which is required by some technical reasons, does

not affect the tail behavior of X. Although it seems to be strong (see

Remark 3.2), we suppose it for clarity and simplicity. Since Assumption

(A1) implies the differentiability of L(x), the function ε(x) is calculated
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by

ε(x) =
xL′(x)

L(x)
, (13)

and we have

fi(x) =

{
Ciε(x)
xL(x) , for x ≥ ai,

0, for x < ai,
(14)

where fi(x) is the probability density function of X̃i for i = 1 and 2.

Note that x 7→ ε(x)/L(x) in Eq. (14) is a slowly varying function by

the assumption of slowly variation for ε(x). Therefore, [7, Sec. 3.0,

page 127] or [20, Theorem B.2.12, page 377] yields Fi(x) in (A2) is

Π-varying. Hence so is L(x).

(iii) It is true that Assumption (A2) yields that ε(x) ≥ 0 by [29, Lemma

1.7, page 15], but we suppose ε(x) > 0 which means L′(x) > 0.

2.3. Results

Let X1,X2, . . . be iid random variables whose distribution is given by

Eq. (10). We define

Sn(x) =

n∑

i=1

Xi(x) and Ŝn(x) =

n∑

i=1

X̂i(x),

and call them the min-truncated sum and the default-truncated sum, respec-

tively. Letting ln be the number of trials of the game, we suppose

ln ∈ N and lim
n→∞

ln = ∞. (15)

Moreover, letting cn be the level of the truncation, for nontriviality we also

suppose

cn > 0 and lim
n→∞

cn = ∞. (16)

Then we have the next statements.

Theorem 2.1 (Strong law of large numbers). Under Assumptions (A1) and

(A2) and Eqs. (15) and (16), the following claims hold.
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(i) For the min-truncated sum, it follows that

lim
n→∞

Sln(cn)

ESln(cn)
= 1 a.s. (17)

if

L(cn) = o

(
ln

log n

)
. (18)

(ii) For the default-truncated sum, it follows that

lim
n→∞

Ŝln(cn)

EŜln(cn)
= 1 a.s. (19)

if

L(cn)

ε(cn)
= o

(
ln

log n

)
. (20)

Remark 2.1. It is true that Conditions (18) and (20) may be strong, but

it does not seem to be so easy to find some kind of converse to these results.

Theorem 2.2 (Central limit theorem). Under Assumptions (A1) and (A2)

and Eqs. (15) and (16), the following claims hold.

(i) For the min-truncated sum it follows that

lim
n→∞

Sln(cn)− ESln(cn)√
VarSln(cn)

= N(0, 1) in distribution, (21)

if and only if

L(cn) = o(ln), (22)

where N(0, 1) is the standard normal distribution.

(ii) For the default-truncated sum it follows that

lim
n→∞

Ŝln(cn)− EŜln(cn)√
VarŜln(cn)

= N(0, 1) in distribution, (23)

if and only if

L(cn)

ε(cn)
= o(ln). (24)
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Remark 2.2.

(i) It is easy to see that Eqs. (18) and (20) yield Eqs. (22) and (24), re-

spectively. Since ε(x) = o(1), Eqs. (20) and (24) also yield Eqs. (18)

and (22), respectively.

(ii) Conditions of Eqs. (18) and (22) for O-super-heavy tailed distributions

correspond to [24, Eqs. (13) and (23)] for power laws with index α,

respectively.

3. Proofs

3.1. Lemmas

We use two lemmas to prove Theorems 2.1 and 2.2.

Lemma 3.1. Under Assumptions (A1) and (A2), the random variable X

with Eq. (10) satisfies

P(X̃2 > x) ≥ P(X > x) ≥ P(X̃1 > x) for x ≥ a∗, (25)

where

a∗ = max{a0, a1, a2}.

Moreover, it follows that

EX = ∞. (26)

Proof. Eq. (25) holds by combining Eqs. (10) and (12). To obtain Eq. (26),

we check EX̃1 = ∞. This is given by EX̃1 = limx→∞

∫ x

0 P(X̃1 > t)dt and∫ x

0 P(X̃1 > t)dt ∼ x
L(x)→∞ as x → ∞ because the function x 7→ 1/L(x) is

slowly varying.

Using Lemma 3.1 and Eq. (13) we have the following statement.

Lemma 3.2 (Estimations of truncated moments). Under Assumptions (A1)

and (A2), the random variable X with Eq. (10) satisfies

E (X(x))k ≍ 1

L(x)
xk for k ∈ N, (27)

E
(
X̂(x)

)k
≍ ε(x)

kL(x)
xk for k ∈ N, (28)
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where “≍” in Eqs. (27) and (28) holds uniformly k ∈ N, respectively, i.e.,

for Eq. (27) there exist C ′
1 > 0, C ′

2 > 0 and x0 > 0 satisfying that

C ′
1

xk

L(x)
≤ E (X(x))k ≤ C ′

2

xk

L(x)
for x > x0 and k ∈ N.

Remark 3.1. Since ε(x) = o(1), it follows that

E
(
X̂(x)

)k
= o

(
E (X(x))k

)
for each k ∈ N. (29)

Proof of Lemma 3.2. Fix i ∈ {1, 2}. By Karamata’s theorem ([7, Propo-

sition 1.5.8, 26 page]) we have

E
(
X̃i(x)

)k
= k

∫ x

0
yk−1P(X̃i > y)dy =

∫ x

0
(yk)′

Ci

L(y)
dy ∼ Ci

L(x)
xk (30)

for sufficient large x ≥ ai. Since Eqs. (25) and (26) tell us

E
(
X̃1(x)

)k
≤ E (X(x))k ≤ E

(
X̃2(x)

)k
(31)

for sufficient large x > a∗, we have Eq. (27) by inserting Eq. (30) to Eq. (31).

Next, since ε(x)/L(x) is slowly varying from Sec. 2.2.1 (ii), it follows

that

E

(
̂̃
Xi(x)

)k

= EX̃i

k
I
{X̃i≤x}

=

∫ x

ai

tkfi(t)dt = Ci

∫ x

ai

ε(t)

L(t)
tk−1dt

∼ Ciε(x)

kL(x)
xk (32)

for sufficiently large x > a∗, which implies Eq. (28).

Remark 3.2. To obtain (27), we use only properties that L(x) is slowly

varying, and limx→∞ L(x) = ∞. Note that L(x) does not have to be nor-

malized.

3.2. Proof of Theorem 2.1

(i) Although we can prove by a similar method of the proof of [24, Theorem

1.2 (ii)], here we use a bypass method. Let us fix δ > 0. By Bennett’s
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inequality (see [8, Theorem 2.9, page 35] and [27, Problem 2.6.3, page

78]), we have

P

(∑ln
i=1 {Xi(cn)− EXi(cn)}

ESln(cn)
> δ

)

≤ exp

(
−VarSln(cn)

c2n
h

(
cnESln(cn)δ

VarSln(cn)

))
≤ exp

(
− K1ln
L(cn)

)

= n
−

K1ln
(logn)L(cn) ≤ n−2,

where h(u) = (1 + u) log(1 + u) − u > 0 for u > 0 and K1 > 0. The

second inequality follows from ESln(cn) ≍ lncn/L(cn) and VarSln(cn) ≍
lnc

2
n/L(cn). The last inequality follows from Eq. (18). The same pro-

cedure implies

P

(∣∣∣∣∣

∑ln
i=1 {(Xi(cn))− E(Xi(cn))}

ESln(cn)

∣∣∣∣∣ > δ

)
≤ 2n−2.

Hence the first Borel-Cantelli lemma yields Eq. (17).

(ii) Since EŜln(cn) ≍ lnε(cn)cn/L(cn) and VarŜln(cn) ≍ lnε(cn)c
2
n/L(cn),

there exists K2 > 0 such that

P



∑ln

i=1

{
X̂i(cn)− EX̂i(cn)

}

EŜln(cn)
> δ


 ≤ n

−
K2lnε(cn)
(log n)L(cn) ≤ n−2.

The last inequality follows from Eq. (20). The rest of the proof is the

same of (i).

3.3. Proof of Theorem 2.2

This is similar to the proof of [24, Theorem 1.3].

(i) Eq. (22)⇒Eq. (21): For the sake of convenience, we put

sln(cn) =
√

VarSln(cn) ≍
√

lnc2n
L(cn)

=

√
ln

L(cn)
cn. (33)

It is known that the Lyapunov condition ([6, Equation (27.16), page
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385])

ln
(sln(cn))

3
E|X1(cn)− EX1(cn)|3 = o(1) (34)

implies the central limit theorem i.e. Eq. (21). From Eqs. (27) and (22)

we have

ln
(sln(cn))

3
E|X1(cn)− EX1(cn)|3 ≍

√
L(cn)

ln
= o(1),

which means Eq. (34).

Eq. (21)⇒Eq. (22): Because of the Lindeberg theorem [27, Theorem

4.1, page 114]), Eq. (21) implies that for δ > 0

E

(
(X1(cn)− EX1(cn))

2

VarX1(cn)
I{|X1(cn)−EX1(cn)|≥δsln (cn)}

)
= o(1). (35)

The expectation is bounded by

E

(
(X1(cn)− EX1(cn))

2

VarX1(cn)
I{|X1(cn)−EX1(cn)|≥δsln (cn)}

)

≥ 1

VarX1(cn)
E
(
(X1(cn)− EX1(cn))

2I{|X1(cn)−EX1(cn)|≥δsln (cn),X1>cn}

)

≥(cn − EX1(cn))
2

VarX1(cn)
P (X1(cn) ≥ δsln(cn) + EX1(cn),X1 > cn) . (36)

From Eq. (27) we see

(cn − EX1(cn))
2 ∼ c2n and VarX1(cn) ≍

c2n
L(cn)

.

This equation and Eqs. (35) and (36) assure us that

P (cn ≥ δsln(cn) + EX1(cn),X1 > cn) = o

(
1

L(cn)

)
.

Therefore, Eq. (10) implies that for sufficient large n

cn < δsln(cn) + EX1(cn). (37)

Now, EX1(cn) = o(sln(cn)) because of Eqs. (27) and (33). Hence
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Eq. (37) implies

lim
n→∞

cn/sln(cn) = 0. (38)

Thus we have Eq. (22).

(ii) We use the same manner of the proof of (i). Assume Eq. (24). Then

putting

ŝln(cn) =

√
VarŜln(cn) ≍ cn

√
lnε(cn)

L(cn)
, (39)

we can check the Lyapunov condition

ln
(ŝln(cn))

3
E|X̂1(cn)− EX̂1(cn)|3 ≍

√
L(cn)

lnε(cn)
= o(1).

Thus we have Eq. (23). Next, assuming Eq.(23), we have cn/ŝln(cn) =

o(1) by the same argument. This condition means Eq. (24).

Remark 3.3. The calculation of [24, Proof of Theorem 1.3, page 14, line 12]

corresponds to Eq. (36). Although the same result for Eq. (38) was obtained,

it contains a wrong calculation. Hence it should be fixed to the argument

which corresponds to Eq. (36).

4. Examples

4.1. logPareto distributions

In this section, we suppose ν ∈ N. Let Xν-lP be a random variable with

P(Xν-lP > x) = 1/ logν x for x ≥ eν(1), (40)

where

eν(x) =

{
x, for ν = 0,

exp(eν−1(x)), for ν ≥ 1,

logν x =

{
x, for ν = 0,

log(logν−1 x), for ν ≥ 1.

We call the distribution defined by Eq. (40) the ν-logPareto distribution. In

particular, the 1-logPareto distribution

P(X1-lP > x) = 1/ log x for x ≥ e (41)
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is the standard logPareto distribution (see Galambos [17, Example 1.3.3,

page 13]). Since the function x 7→ 1/ logν x is slowly varying, the function

ν-logPareto distribution is super-heavy tailed because of Eq. (6).

Let us consider the ν-logPareto distribution. It turns out that it satisfies

Assumptions (A1) and (A2) with respect to

L(x) = logν x and ε(x) =




ν∏

j=1

logj x




−1

for x ≥ eν(1)

(c.f. [3, Lemma 5.1 (i)]), X̃ν-lP

1 = X̃ν-lP

2 = Xν-lP, c = C1 = C2 = 1, x0 = a0 =

a1 = a2 = eν(1) and the density function is

f1(x) = f2(x) =


(logν x)

ν∏

j=0

logj x




−1

for x ≥ eν(1).

Therefore, Theorems 2.1 and 2.2 are applicable to this setting. Here we

illustrate concrete examples for each truncation as follows. For the sake of

simplicity and comparison, we assume ln = n for all the examples below.

Moreover, we put Sn =
∑n

i=1X
ν-lP

i , where Xν-lP

1 , . . . ,Xν-lP

n are iid random

variables with (40).

(i) min-truncation: We suppose

cn = eν(n
β) for 0 < β < 1. (42)

Then Eq. (18) holds because L(cn) = nβ = o(n/ log n). Since

ESn(eν(n
β)) ∼ n1−βeν(n

β), it follows that

lim
n→∞

Sn(eν(n
β))

n1−βeν(nβ)
= 1 a.s. (43)

Eq. (42) automatically implies Eq. (22) by Remark 2.2 (i). Hence√
VarSn(eν(nβ)) ∼ n

1−β

2 eν(n
β) yields

lim
n→∞

Sn(eν(n
β))e−nβ − n1−β

√
n1−β

= N(0, 1) in distribution. (44)
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(ii) default-truncation: We suppose

cn =

{
en

β
, for 0 < β < 1

2 , if ν = 1,

en
γ

, for 0 < γ < 1, if ν ≥ 2.
(45)

(a) Consider the case of ν = 1. Since L(en
β

)/ε(en
β

) = n2β = o(n/ log n)

for 0 < β < 1
2 , Eq. (20) holds. Hence we have two limit theorems

which correspond to Eqs. (43) and (44), respectively, where

EŜn(e
nβ

) ∼ n1−2βen
β

and

√
VarŜn(en

β
) ∼ n

1
2
−β

√
2

en
β

.

(b) Consider the case of ν ≥ 2. Since

L(en
γ

)

ε(enγ )
= nγ(logν−1 n

γ)
ν−1∏

j=1

logj n
γ = o

(
n

log n

)
for 0 < γ < 1,

Eq. (20) holds. Hence we have two limit theorems which correspond

to Eqs. (43) and (44), respectively, where

EŜn(e
nγ

) ∼ n1−γen
γ

(logν−1 n
γ)
∏ν−1

j=1 logj n
γ

and √
VarŜn(en

γ ) ∼ n
1−γ
2

√
2(logν−1 n

γ)
∏ν−1

j=1 logj n
γ
en

γ

.

In addition to Eq. (45), it turns out that Eq. (20) also holds for

cn =

{
e
√
n(log n)−1

, if ν = 1,

en(log n)
−3
, if ν ≥ 2.

4.2. Super-Petersburg distributions

In this section, we suppose ν ∈ N∪{0}. Let Xν-sP be a random variable

with

P(Xν-sP = 2 ν+1(k)) = 2−k for k ∈ N, (46)
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where

2ν(x) =

{
x, for ν = 0,

22ν−1(x), for ν ≥ 1.

Moreover, we also define the ν times iterated logarithm of base 2 as follows.

lgν x =

{
x, for ν = 0,

lg(lgν−1 x), for ν ≥ 1.

We call the distribution defined by Eq. (46) the ν-super-Petersburg distri-

bution. In particular, X0-sP and X1-sP are equivalent to the St. Petersburg

random variable XSt and the super-Petersburg random variable XsP, respec-

tively.

Remark 4.1. The tail function of XSt = X0-sP (see Eq. (3)) is not regularly

varying with index −1 (see [7, Section 8.8.2, page 373]). Similarly, putting

gν-sP(x) = P(Xν-sP > x) = 2−⌊lgν+1 x⌋ for x > 2 ν+1(1), (47)

we have gν-sP(x) is not slowly varying for ν ≥ 1. In fact, if t = 2ν+1(n) for

n ∈ N and x = 1/2 then

gν-sP(tx)

gν-sP(t)
= 2−⌊lgν+1(tx)⌋+⌊lgν+1(t)⌋ = 2−⌊lgν+1(2ν+1(n)/2)⌋+n ≥ 2,

because x 7→ lgν+1(x) is strictly increasing. Compare gν-sP(x) to functions

x 7→ 2 + sin(log log x) and x 7→ ⌊log x⌋ which are both slowly varying.

We consider X̃ν-sP

1 and X̃ν-sP

2 in Assumption (A2) with tractable distri-

bution functions instead of Xν-sP. It turns out that it satisfies Assumptions

(A1) and (A2) with respect to

L(x) = lgν x and ε(x) =


(log 2)ν

ν∏

j=1

lgj x




−1

for x ≥ eν+1(1),

c = lgν(eν+1(1)), C1 = 1, C2 = 2, x0 = 2ν+1(1), a0 = eν+1(1), a1 = 2ν(1),

a2 = 2ν+1(1) and the probability density functions for X̃ν-sP

1 and X̃ν-sP

2 are
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respectively

f1(x) =

{
1

(log 2)ν (lgν x)
∏ν

j=0 lgj x
, for x ≥ 2ν(1),

0, for x < 2ν(1),

f2(x) =

{
2

(log 2)ν (lgν x)
∏ν

j=0 lgj x
, for x ≥ 2ν+1(1),

0, for x < 2ν+1(1).

We assume ln = n, and put Sn =
∑n

i=1 X
ν-sP

i , where Xν-sP

1 , . . . ,Xν-sP

n are iid

random variables with (46).

(i) min-truncation: We suppose

cn = 2ν(n
β) for 0 < β < 1.

Then Eq. (18) holds because L(cn) = nβ = o(n/ log n). Hence we have

two limit theorems which correspond to Eqs. (43) and (44), respectively,

where

ESn(2ν(n
β)) ∼ n2−⌊β lgn⌋2ν(n

β) and
√

VarSn(2ν(nβ)) ∼
√
n2−⌊β lgn⌋2ν(n

β).
(48)

In fact, since E
(
X̂ν-sP(x)

)k
= o(E(Xν-sP(x))k) for k ∈ N by Eq. (29),

it follows from Eq. (47) that

E (Xν-sP(x))k = E
(
X̂ν-sP(x)

)k
+ xkP(Xν-sP > x)

∼ xkP(Xν-sP > x) = xk2−⌊lgν+1 x⌋,

which yields Eq. (48).

(ii) default-truncation: We suppose

cn =

{
2n

β
, for 0 < β < 1

2 , if ν = 1,

2n
γ
, for 0 < γ < 1, if ν ≥ 2.

(49)

(a) Consider the case of ν = 1. Since L(2n
β
)/ε(2n

β
) = (log 2)n2β =

o(n/ log n) for 0 < β < 1
2 , Eq. (20) holds. Hence we have two

limit theorems which correspond to Eqs. (43) and (44), respectively.

However, it is not very easy to give simple forms both EŜn(2
nβ

) and√
VarŜn(2n

β
).
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(b) Consider the case of ν ≥ 2. Since

L(2n
γ
)

ε(2nγ )
=nγ(log 2)ν(lgν−1 n

γ)

ν−1∏

j=1

lgj n
γ = o

(
n

log n

)
for 0 < γ < 1,

Eq. (20) holds. Hence we have two limit theorems which correspond

to Eqs. (43) and (44), respectively.

In addition to Eq. (49), it turns out that Eq. (20) also holds for

cn =

{
2
√
n(logn)−1

, if ν = 1,

2n(log n)
−3
, if ν ≥ 2.
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