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Abstract

Let G be a semisimple group over the complex numbers. We show that the flag
manifold B of G has a version B(Z) over the tropical semifield Z on which the monoid
G(Z) attached to G and Z acts naturally.

0. Introduction

0.1. Let G be a connected semisimple simply connected algebraic group
over C with a fixed pinning (as in [3, 1.1]). In this paper we assume that
G is of simply laced type. Let B be the variety of Borel subgroups of G. In

, 2.2, 8.8] a submonoid G>p of G and a subset B¢ of B with an action
of G>¢ (see ﬁ, 8.12]) was defined. (When G = SL,,, G> is the submonoid
consisting of the real, totally positive matrices in G.) More generally, for any
semifield K, a monoid &(K) was defined in ﬂ§], so that when K = R we
have &(K) = G>¢. (In the case where K is R~ or the semifield in (i) or (ii)
below, a monoid G(K) already appeared in B, 2.2, 9.10]; it was identified
with &(K) in [9).)

This paper is concerned with the question of defining the flag manifold
B(K) over a semifield K with an action of the monoid &(K) so that in the
case where K = R we recover B>g with its G'>g-action.

In ﬂﬁ, 4.9], for any semifield K, a definition of the flag manifold B(K)
over K was given (based on ideas of Marsh and Rietsch ﬂﬂ]), but in that
definition the lower and upper triangular part of G play an asymmetric role
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and as a consequence only a part of &(K) acts on B(K) (unlike the case
K = R when the entire (K) acts). To get the entire &(K') act one needs
a conjecture stated in [9, 4.9] which is still open.

In this paper we get around that conjecture and provide an unconditional
definition of the flag manifold (denoted by B(K)) over a semifield K with
an action of &(K') assuming that K is either

(i) the semifield consisting of all rational functions in R(z) (with = an
indeterminate) of the form z¢f/fo where e € Z and f1 € Rz], fo € R[z]
have constant term in R~ (standard sum and product); or

(ii) the semifield Z in which the sum of a, b is min(a, b) and the product
of a,bis a+b.

For K as in (i) we give two definitions of B(K); one of them is elementary
and the other is less so, being based on the theory of canonical bases (the
two definitions are shown to be equivalent). For K as in (ii) we only give a
definition based on the theory of canonical bases.

A part of our argument involves a construction of an analogue of the
finite dimensional irreducible representations of G when G is replaced by the
monoid &(K) where K is any semifield.

Let W be the Weyl group of G. Now W is naturally a Coxeter group
with generators {s;;i € I} and length function w — |w|. Let < be the
Chevalley partial order on W.

In §3 we prove the following result which is a Z-analogue of a result (for
R.o) in [10).

Theorem 0.2 The set B(Z) has a canonical partition into pieces P, ,(Z)
indexed by the pairs v < w in W. FEach such piece P,,,(Z) is in bijection
with ZW1=101 - in fact, there is an explicit bijection ZI*!=17! 5 Pyw(Z) for any
reduced expression of w.

In §3 we also prove a part of a conjecture in ﬂg, 2.4] which attaches to
any v < w in W a certain subset of a canonical basis, see 3.10.

In §4 we show that our definitions do not depend on the choice of a (very
dominant) weight .

In §5 we show how some of our results extend to the non-simply laced
case.
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1. Definition of B(Z)

1.1. In this section we will give the definition of the flag manifold B(K)
when K is as in 0.1(i), (ii).

1.2. We fix some notation on GG. Let wy be the longest element of W. For
w € W let Z,, be the set of all sequences i = (iy,142,...,%y,) in I such that

W = Siy Siy - - - Siypyy M= |W|.

The pinning of G consists of two opposed Borel subgroups BT, B~ with
unipotent radicals U',U~ and root homomorphisms z; : C — U™, y; :
C — U™ indexed by i € I. Let T = BT N B~, a maximal torus. Let )
be the group of one parameter subgroups C* — T'; let X be the group of
characters T — C*. Let (,) : Y x X — Z be the canonical pairing. The
simple coroot corresponding to ¢ € I is denoted again by i € V; let i’ € X
be the corresponding simple root. Let X+ = {\ € X;(i,\) > 0 Vi € I},
Xt ={\ e X;(i,\) > 1 Vi € I}. Let G(R) be the subgroup of G
generated by x;(t),y;(t) with i« € I,t € R. Let B(R) be the subset of B
consisting of all B € B such that B = gB*g~! for some g € G(R). We have
G>0 C G(R), B>9 C B(R). For i € I we set 8; = y;(1)z;(—1)y:(1) € G(R),
an element normalizing T'. For (B, B") € B x B we write pos(B, B') for the
relative position of B, B’ (an element of ).

1.3. Let K be a semifield. Let K' = KL{o} where o is a symbol. We extend
the sum and product on K to a sum and product on K' by defining o+a = a,
a+o=a,0o0xa=o0,axo=oforaec K and o+ 0 =o0,0x o0 =o. Thus
K' becomes a monoid under addition and a monoid under multiplication.
Moreover the distributivity law holds on K'. When K is Rsg we have
K' = R with o = 0 and the usual sum and product. When K is as in
0.1(), K' can be viewed as the subset of R(z) given by K U {0} with o =0
and the usual sum and product. When K is as in 0.1(ii) we have 0 € K and

o # 0.

1.4. Let V = *V be the finite dimensional simple G-module over C with
highest weight A € X*. For v € X let V, be the v-weight space of V with
respect to 7. Thus Vy is a line. We fix ¢+ = A¢T in Vy, — 0. For each
i € I there are well defined linear maps e¢; : V. — V,f; : V. — V such

that z;(1)§ = >_,5¢ t”egn)é’,yi(t)g = D >0 t”fi(n)é for € € V,t € C. Here
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egn) =) tel: V — V,fi(n) = (n)1fr:V — V are zero for n > 0. For
an integer n < 0 we set egn) =0, fi(n) = 0.

Let 3 = *B be the canonical basis of V (containing ) defined in H]
Let £~ be the lowest weight vector in V' — 0 contained in 5. For b € 8 we
have b € V,, for a well defined v, € X, said to be the weight of b. By a
known property of 3 (see ﬂ, 10.11] and E, §3], or alternatively E, 22.1.7)),
fori € I,b € B,n € Z we have

eE”)b = Z oy inls fi(n)b = Z bbb
vep vep

where

Copim € N, dppin € N.

Hence for i € I,b € B,t € C we have

zithb= D ayint™, wuOb= > dypint"t.
b epneN bepneN

For any i € I there is a well defined function z; : 5 — Z such that for b € 5,
t € C* we have i(t)b = t%®)p,

Let P = *P be the variety of C-lines in V. Let P®* = *P*® be the set
of all L € P such that for some ¢ € G we have L = gV). Now P°® is a
closed subvariety of P. For any L € P® let G, = {g € G;gL = L}; this is a
parabolic subgroup of G.

Let V® = AV*® = Upcpe L, a closed subset of V. For any £ € V,b € 8
we define §, € C by § = > ;c58b. Let Voo = Mg (resp. VR) be the set
of all £ € V such that & € R>¢ (resp. & € R) for any b € 5. We have
V>0 C Vr. Note that Vg is stable under the action of G(R) on V. Let
P~y = /\PZO (resp. Pr) be the set of lines L € P such that LN V5o # 0
(resp. LNVRr # O) We have P>y C Pr.

Let V2, = AVZ‘O =V*N Vs, Py = Apéo = P* N Psyo.
Now let K be a semifield. Let V(K) = *V(K) be the set of formal

sums £ = Zbeﬁ &b, & € K'. This is a monoid under addition (Zbeﬂ &b) +
(D bep §6b) = >opep(§p+E&,)b and we define scalar multiplication K'xV(K) —

V(K) by (k, Y pesE6b) = Ypes (k)D.
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For £ =3 ,c5&b € V(K) we define supp(§) = {b € ;& € K}

Let End(V(K)) be the set of maps ¢ : V(K) — V(K) such that {(¢ +
&) = C(&) + (&) for £,¢ in V(K) and C(k¢) = k((€) for € € V(K),k € K.
This is a monoid under composition of maps. Define o € V(K) by o, = o for
all b € 8. The group K (for multiplication in the semifield structure) acts
freely (by scalar multiplication) on V(K) — o; let P(K) = *P(K) be the set

of orbits of this action.

For i € I,n € Z we define e/, £ in End(V(K)) by

)

0 = S aaalls 10 =Y doal

b'ep e
with b € 3. Here a natural number N (such as ¢y i, O dpyy ip) is viewed
as an element of K' given by 14+1+---+1 (N terms, where 1 is the neutral
element for the product in K, if N > 0) or by o € K* (if N = 0).

For i € I,k € K we define i* € End(V(K)), (—i)* € End(V(K)) by

i*(0) =Y kb, (—i)F(0) = Y KA,

neN neN

for any b € 8. We show:

(a) The map i* : V(K) — V(K) is injective. The map (—i)F : V(K) —
V(K) is injective.

Using a partial order of the weights of V', we can write V(K) as a direct
sum of monoids V(K)s,s € Z where V(K)s = {o} for all but finitely many
s and (—4)* maps any ¢ € V(K)s to & plus an element in the direct sum of
V(K)y with s’ < s. Then (a) for (—4)* follows immediatly. A similar proof

applies to i*.

For i € I,k € K we define i* € End(V(K)) by i*(b) = k*®b for any
b € 5. Let B(K) be the monoid associated to G, K by generators and
relations in ﬂg, 2.10(i)-(vii)]. (In loc.cit. it is assumed that K is as in 0.1(i)
or 0.1(ii) but the same definition makes sense for any K.) We have the

following result.
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Proposition 1.5. The elements i*, (—i)*,i* (withic I, k€ K) in End(V (K))
satisfy the relations in ﬂg, 2.10(i)-(vii)] defining the monoid &(K) hence they
define a monoid homomorphism G(K) — End(V(K)).

We write the relations in loc.cit. (for the semifield R~ ) for the endomor-
phisms z;(t), yi(t),i(t) of V with ¢ € R~o. These relations can be expressed
as a set of identities satisfied by cyp in, dpp in, 2(b) and these identities
show that the endomorphisms ¥, (—i)*,i* of V(K satisfy the relations in
loc.cit. (for the semifield K'). The result follows.

1.6. Consider a homomorphism of semifields r : K1 — K5. Now r induces
a homomorphism of monoids &, : &(K;) — &(K3). It also induces a
homomorphism of monoids V; : V(K1) — V(K2) given by >, 5&b —
> bep ()b From the definitions, for g € &(K1),§ € V(K1), we have
Vi(g€) = &,(9)(Vr(§)) where g€ is given by the &(K;)-action on V(K;)
and &,.(g)(V;(§)) is given by the B(Ks)-action on V(K3). Assuming that
r: Ky — K is surjective (so that &, : (K1) — &(K3) is surjective) we
deduce:

(a) If E is a subset of V(K1) which is stable under the &(Ky)-action on
V (K1), then the subset V,.(E) of V(K3) is stable under the &(Ks)-action
on V(K3).

1.7. In the remainder of this section we assume that A € Xt+. Then
L — G, is an isomorphism 7 : P* = B and

(a) 7 restricts to a bijection 7> : P2, = B>o.
See [A, 8.17].

1.8. Let © be the set of all open nonempty subsets of C. Let X be
an algebraic variety over C. Let X; be the set of pairs (U, fy) where
Ue€ Qand fy : U — X is a morphism of algebraic varieties. We de-
fine an equivalence relation on X; in which (U, fy), (U’, fur) are equivalent
if fulvnur = furlunur- Let X be the set of equivalence classes. An element
of X is said to be a rational map f : C> X. For f € X let 1; be the set
of all U € Q such that f contains (U, fyy) € Xy for some fi7; we shall then
write f(t) = fu(t) for t € U. We shall identify any = € X with the constant
map f, : C — X with image {z}; thus X can be identified with a subset of
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X. If X' is another algebraic variety over C then we have X x X/ = X x X’
canonically. If F: X — X’ is a morphism then there is an induced map
F:X — X';to f: Cr X it attaches f': C > X’ where for some U € Q
we have f/(t) = F(f(t)) for all t € U. If H is an algebraic group over C
then H is a group with multiplication H x H=Hx H — H induced by
the multiplication map H x H — H. Note that H is a subgroup of H.
In particular, the group G is defined. Also, the additive group C and the

multiplicative group C* are defined. Also B is defined.

1.9. Let X be an algebraic variety over C with a given subset X>o. We
define a subset X>q of X as follows: X> is the set of all f € X such that
for some U € Q¢ and some € € Ry we have (0,e) C U and f(t) € X>¢ for
all t € (0,¢). (In particular, G is defined in terms of G, Gso and Bxg is
defined in terms of B, B>¢.) If X’ is another algebraic variety over C with a
given subset XZ ), then X x X' with its subset (X x X")>0 = X>0 x XL, gives

rise as above to the set X x X’>q which can be identified with )N(ZO X X/>0'
If : X — X'is a morphism such that F'(X>9) C X%, then the induced
map F: X — X' carries X>0 into X>0 hence it restricts to a map F>0 :
Xs0 — XL, From the definitions we see that:

(a) if F is an isomorphism of X onto an open subset of X' and F carries
Xzo byjectively onto Xlzm then the map on s a bijection.

Now the multiplication G x G — G carries G>¢ x G>o to G>o hence it
induces a map Gsg x G>9 — G>( which makes G'>q into a monoid; the
conjugation action G x B — B carries G>g x B> to B> hence it induces
a map G>g X B>g — B> which define an action of the monoid G>o on
Z§>0 We define C*~ >0 in terms of C* and its subset C%, := R~g. The
multiplication on C* preserves C%, hence it induces a map_ é*>0 X é*>0 —
C* >0 which makes C*>0 into an abehan group. We define C>0 in terms
of C and its subset C>¢ := R>g. The addition on C preserves C>o hence
it induces a map Csp x C>9 — Cs¢ which makes Cs¢ into an abelian
monoid. The imbedding C* € C induces an imbedding C*>o — Cso; the
monoid operation on Csq preserves the subset C*>( and makes C*sq into
an abelian monoid. This, together with the multiplication on (5*20 makes
C*> into a semifield. From the definitions we see that this semifield is the
same as K in 0.1(i) and that ézo is the monoid associated to G and K in

, 2.2] (which is the same as &(K)). We define B(K) to be Bs with the
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action of G>g = &(K) described above. This achieves what was stated in
0.1 for K as in 0.1(i).

1.10. In the remainder of this section K will denote the semifield in 0.1(3i)
and we assume that A € X+, We associate Psg = *P>q to P and its subset
P>p as in 1.9. We associate ]5;0 = ’\]5;0 to P*® and its subset P2, as in 1.9.
We write P*(K) = *P*(K) = P%,. -

We associate Vo = *Vso to V and its subset Vs as in 1.9. We can
identify Vo = V(K) (see 1.4). We associate ‘72.0 = /\‘72.0 to V* and its subset
V2, as in 1.9. We write V*(K) = *V*(K) = V2. We have V*(K) C Vxq.

The obvious map ' : V' — 0 — P restricts to a (surjective) map al, :
Vo9 — 0 — P> and defines a map a% : Voo — 0 — Pso. The scalar
multiplication C* x (V —0) — V —0 carries CLox (Vo0 —0) to Voo =0
hence it induces a map 6*20 x (Va0 —0) — Vg — 0 which is a (free) action
of the group K = (,JV*ZO on Vg —0 = V(K) —0. From the definitions we see
that ., is surjective and it induces a bijection (V(K) —0)/K = Psq. Thus
we have Psg = P(K) (notation of 1.4). Note that P*(K) c P(K).

The obvious map a : V®* — 0 — P*® restricts to a (surjective) map
aso: V2 —0 — P2, and it defines a map asq : V*(K) = VS, —0 — P2, =
P*(K )7 The (free) K-action on Va0 — 0 considered above restricts to a (?ree)
K-action on V*(K) — 0 = V2, — 0. From the definitions we see that > is

constant on any orbit of this action. We show:

(a) The map a>q is surjective. It induces a bijection (V*(K)—0)/K—=P*(K).

Let f € P2,. We can find U € Qy, € € R~ such that (0,¢) C U and f(t) €
P2, for t € (0,€). Using the surjectivity of a>o we see that for ¢ € (0,¢) we
have f(t) = a(z¢) where t — x; is a function (0,€) — V2,—0. We can assume
that there exists B € B(R) such that 7(f(t)) is opposed to B for all t € U.
Let O = {B; € B; B; opposed to B}; thus we have 7(f(t)) € O forallt € U.
Let B € ONB(R) and let & € Vg — 0 be such that 7(C¢') = B’. Let Up be
the unipotent radical of B. Then Ug — O, u +— uB'u~! is an isomorphism.
Hence there is a unique morphism ¢ : O — V*—0 such that ((uB'u™!) = u¢’
for any v € Up. From the definitions we have ((ONB(R)) C (Vo NV*) —0.
We define f': U — V* —0 by f/(t) = ((n(f(t))). We can view f’ as an
element of V* — 0 such that a(f’) = f. Since n(f(t)) € B(R), we have
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f'(t)y e (VRNV®) —0for t € (0,¢). For such t we have a(f'(t)) = f(t) =
a(xy) hence f'(t) = z;zy where t — 2, is a (possibly discontinuous) function
(0,e) — R —0. Since z; € V>9 — 0 and R(V>9 — 0) = V>0 — 0, we see
that for t € (0,€) we have f'(t) € (V>0 — 0) U (—=1)(V>¢ — 0). Since (0,¢) is
connected and f’ is continuous (in the standard topology) we see that f'(0, €)
is contained in one of the connected components of (V¢ —0)U(—1)(V>0—0)
that is, in either V>9 — 0 or in (—1)(V>o — 0). Thus there exists s € {1, -1}
such that sf’(0,e) C V5o — 0 hence also sf’(0,e) C V2, —0. We define
U — V* =0 by f'(t) = sf'(t). We can view f" as an element of
‘72.0 — 0 such that a>o(f’) = f. This proves that a>¢ is surjective. The
remaining statement of (a) is immediate.

Since P* and its subset P2, can be identified with B and its subset B>
(see 1.7(a)), we see that we may identify P*(K) = B(K). The action of
&(K) on P*(K) induced from that on V*(K)—0 is the same as the previous
action of &(K), see ﬂ§, 2.13(d)]. This gives a second incarnation of B(K).

1.11. Let Z be the semifield in 0.1(ii). Following B], we define a (surjective)
semifield homomorphism r : K — Z by r(2°f1/f2) = e (notation of 0.1).
Now r induces a surjective map V,. : V(K) — V(Z) as in 1.6. Let V*(Z) =
AV*(Z) C V(Z) be the image under V;. of the subset V*(K) of V(K). Then
V(Z) — o=V, (V*(K) —0).

The Z-action on V(Z) — o in 1.4 leaves V*(Z) — o stable. (We use
the K-action on V*(K) —0.) Let P*(Z) = *P*(Z) be the set of orbits of
this action. We have P*(Z) C P(Z) (notation of 1.4). From 1.6(a) we see
that V*(Z) — o is stable under the &(Z)-action on V(Z) in 1.6. Since the
&(Z)-action commutes with scalar multiplication by Z it follows that the
&(Z)-action on V(Z) —o and V*(Z) — o induces a &(Z)-action on P(Z) and
P*(Z).

1.12. We set B(Z) = *P*(Z). This achieves what was stated in 0.1 for the
semifield Z. This definition of B(Z) depends on the choice of A € X**. In
84 we will show that B(Z) is independent of this choice up to a canonical

bijection. (Alternatively, if one wants a definition without such a choice one
could take A such that (i, \) =1 for all i € I.)
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2. Preparatory Results

2.1. We preserve the setup of 1.4. As shown in M, 5.3, 4.2], for w € W and
i=(i1,%2,.-.,im) € Ly, the subspace of V' generated by the vectors

PR et

im

for various ¢q, ¢, ..., ¢y in N is independent of i (we denote it by V%) and
Y = BN V™ is a basis of it. Let V' be the subspace of V generated by the

vectors

eldm) gldm-1) egfl)bw

tm Z.’mfl

for various dy,do, . ..,d,, in N, where
bw :w§+7
W =384, Sy - - - Si, -

We show:

(a) Ve =y,

We show that V' c V'i. We argue by induction on m = |w|. If m = 0, the
result is obvious. Assume now that m > 1. Let ¢1,¢9,...,¢y, be in N. By
the induction hypothesis,

(b) S e

Tm
is a linear combination of vectors of form

f(01)€(dm)e(dm—1) CIA

i G dm—1 T iy TS W

for various ds, . . . , d;, in N. Using the known commutation relations between
fi, and e; we see that (b) is a linear combination of vectors of form

e(dm)e(dmfl) - eg;iz)fi(fl)bsilw

im Tm—1

for various ds, ..., d,, in N. It is then enough to show that

fi(CI)bSilw — egfl)éilbs’ilw
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for some d; € N. This follows from the fact that
(c) €i bs; w =0 and bs, « 15 in a weight space of V.

Next we show that V'l € V*. We argue by induction on m = |w|. If m = 0
the result is obvious. Assume now that m > 1. Since V¥ is stable under
the action of ¢;(i € I), it is enough to show that b, € V*. By the induction
hypothesis, by, « € V¥1». Using (c), we see that for some ¢; € N we have

bu = disbs 0w = [ Vb, € FIVEIE VY,
This completes the proof of (a).

From E, 28.1.4] one can deduce that b, € §. From (a) we see that
by € V. It follows that

(d) by € BY.

2.2. For v < w in W we set
Byw = {B € B,pos(B*, B) = w,pos(B~, B) = wv}
(a locally closed subvariety of B) and
(By,w)>0 = B>0 N By -
We have B = Uy<wy in WBvw: B>0 = Up<w in W (Bu,w)>0-

2.3. Recall that there is a unique isomorphism ¢ : G — G such that
Az (1) = yi(t), ¢(yi(t)) = x;(t) for all i € I,+ € C and ¢(g) = g~ for all
g € T. This carries Borel subgroups to Borel subgroups hence induces an
isomorphism ¢ : B — B such that ¢(B") = B, ¢(B~) = B*. Fori € I we
have ¢(s;) = éi_l. Hence ¢ induces the identity map on W. For v < w in W

we have ww; < vwr; moreover,

(a) ¢ defines an isomorphism Buw; ww, — Bow-
(See ﬂg, 1.4(a)] From the definition we have
(b) #(G>0) = G>o.
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From B, 8.7] it follows that

(c) ¢(Bzo) = Bxo.

From (a), (¢) we deduce:

(d) ¢ defines a bijection (Buw; vw;)>0 — (Byw)>0-

By E, §3] there is a unique linear isomorphism ¢ : V' — V such that

d(g€) = p(g)¢(€) for all g € G, € € V and such that ¢(¢1) = €75 we have
d(B) = B and ¢?(€) = for all € € V.

2.4. Assume now that A € X*+. Let B € B,,, and let L € P*® be such that
n(L)=B. Let £ € L—0, b € 3. We show:

(a) & #0 = be BYNe((B™r).

We have B = gBtg~! for some g € BTwB*. Then & = cg¢* for some
c € C*. We write g = g'irg” with ¢ € Ut,¢g” € BT. We have £ = /g'wéT =
' g'by, where ¢ € C*. By 2.1(d) we have b,, € f*. Moreover, V" is stable
by the action of U™; we see that £ € V. Since &, # 0 we have b € Y. Let
B’ = ¢(B). We have B' € By, vw, (see 2.3(a)). Let L' = ¢(L) € P* and
let § =¢(§) € L' =0,V = ¢(b) € 8. We have &, # 0. Applying the first
part of the proof with B, L, &, v, w, b replaced by B’, L', £, v, w', b’ we obtain
b € g1, Hence b € ¢(5¥™!). Thus, b € f* N ¢(BY™1), as required.

2.5. We return to the setup of 1.4. For i € I we set

Ve ={E e Viei€) =0} = {€ € Vi> Geppia = 0 for all o € 31,
bep
Vi —{g € Vifil) = 0} = {€ € Vi &dypin = 0 for all ¥ € 8.

bep

If £ € V59, the condition that Zbeﬁ &vevpy i1 = 0 is equivalent to the condi-
tion that &cppy i1 = 0 for any b, in 5. Thus we have

VooN Ve = {f eVanil= ) §bb}

bepi

where 8% = {b € f;¢p1yi1 = 0 for any b’ € f}. Similarly, we have

Veon Vi = {eeVane = Y b}

bepfi
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where /i = {b € B;dpy ;1 = 0 for any ¥’ € B}.

Now the action of $; on V defines an isomorphism 7; : V¢ — v If
b € 3% we have T;(b) = fi(<i’yb>)b = s Db i (i) b5 in particular, we have
Ti(b) € Voo N V/i. Thus T; restricts to a map T VsoNVE — Voo N Vi,
Similarly the action of §; ! restricts to a map 7} : Voo N V/i — Voqn Ve,
This is clearly the inverse of 7.

2.6. Now let K be a semifield. Let

V(K)" z{Z&,b;gb eK'ifbe g =ocifbe ,3_/3«31}7

bep

V)Y ={ Y aha e K ithe ph g =oitbe g - i)

bep

We define 7; g : V(K) — V(K) by

S G Y O duy i)V

bep b'ep bep

(notation of 1.4). From the results in 2.5 one can deduce that

(a) Tix restricts to a bijection T} g+ V(K)% SV(K)fi.

2.7. Let K be a semifield. We define an involution ¢ : V(K) — V(K)

by (3 pes b) = Dpep Eomb- (Here & € K'; we use that ¢(8) = 8.) This
restricts to an involution V(K)—o — V(K)— o which induces an involution
P(K) — P(K) denoted again by ¢.

3. Parametrizations

3.1. In this section K denotes the semifield in 0.1(i). For v < w in W we
define By, (K) = Byws as in 1.9 in terms of By, and its subset (B,,u)>0-
We have

B(K) = |—|v§w in WBv,w(K)‘

3.2. We preserve the setup of 1.4. We now fix v < w in W and i =
(11,12, .. ,im) € Zy. According to ﬂﬂ], there is a unique sequence q1,q2, . . .,
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gm with g € {s;,,1} for k € [1,m], q1¢g2...¢m = v and such that ¢; <
a2 < - < qq- . gm and q1 < Q156,192 < q1G2Si55 - G142 - Q-1 <
q192 - - - Gm—15i,,- Let [17m]/ = {k = [Lm];QR = 1}7 [Lm]// = {k = [17m];
qr = si, t- Let A be the set of maps h : [1,m]" — C*; this is naturally an
algebraic variety over C. Let A~ be the subset of A consisting of maps
h:[1,m]" — Rsg. Following m], we define a morphism o : A — G by
h— g(h)1g(h)2...g(h)y, where

() g(h)k = yi, (h(k)) if k € [1,m]" and g(h)x = %, if k € [1,m]".
We show:

(b) If h € Asq, then o(h)é € V¥, so that o(h) is a linear combination of
vectors b € B*. Moreover, (o(h)ET)p,, # 0.

From the properties of Bruhat decomposition, for any h € Ao we have
o(h) € BTwB™, so that o(h)(t = cuwét = cuby, where c € CT, v € U™.
Since b, € V¥ and V¥ is stable under the action of U™, it follows that
cuéT € V. More precisely, ub,, = by, plus a linear combination of elements
b € 5 of weight other than that of b,,. This proves (b).

We show:

(c) Let h € Asg. Assume that i € I is such that |s;w| > |w| and that b €
is such that (o(h)éT), # 0. Then vy # vy, +14'.

Since |s;w| > |w| we have e;b,, = 0. We write o(h)z™ = cub,, with c,u as
in the proof of (b). Now ub,, is a linear combination of vectors of the form
€j,€js - - €, by with j; € I. Such a vector is in a weight space V (v) with
v=uy, +i1+jo+ -+ i +i5+--- 474, =4 then k=1 and j; = .
But in this case we have ej ej, ... ¢, by, = €;b, = 0. The result follows.

3.3. Let h € A>¢. Let k € [1,m]”. The following result appears in the proof
of [1d, 11.9].

(a) We have (g(h)gs19(M)ig2 - g(h)m) @i (@) g(h)r19(M)iga - - g(h)m €
Ut.

From (a) it follows that for £ € V' we have

€in(9(Mkr19(M)ky2 - - g(M)m&) = g(M)rs19(M)kr2 - - - g(R)im(€€)
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where ¢/ : V' — V is a linear combination of products of one or more factors
ej,j€I. When £ =T we have ¢/¢ =0 hence ¢;, (9(h)g+19(h)k+2 - - - g(R)m&T)

= 0. We can write uniquely

9Mes19(Msz - g€ =Y (grs19(M)isz - g(W)m€T)y
veX

with (g(h)pr19(M)kr2 .- g(W)méT), € V,,. We have

> cil(gWinigMisz . g(h)mE™)y) = 0.

veX

Since the elements e;, ((9(h)g+19(R)g+2 .. g(h)m&T),) (for various v € X)
are in distinct weight spaces, it follows that e;, ((9(h)k+19(h)k+2 - - g(R)mET))
=0 for any v € X. If £ € V, satisfies ¢;, £ = 0, then

(b) $i,& = "¢
(If (i, v) < 0 then & = 0 so that both sides of (b) are 0.) We deduce

() g (k19 (Pisz - g(R)mET),)
=1 (Mg Mz - g(B)mE ™))

for any v € X.

3.4. Let h € Aso. For any k € [1,m] we set [k,m] = [k,m] N [1,m],
[k, m]” = [k,m] N [1,m]”. Let Es) be the set of all maps x : [k,m]" — N.
(If [k, m]" = 0, E>j, consists of a single element.) For x € Esp and k' € [k, m]
let x> be the restriction of x to [k',m]'.

We now define an integer c(k, x) for any k € [1,m]” and any y € > by
descending induction on k. We can assume that c¢(k’, x’) is defined for any

k'€ [k+1,m])" and any X' € E>1. We set ¢, = (ix, ) where

(a) v=A-— Z x (k)i — Z c(k, X>x )i} € X.

KkE[k+1,m]’ KE[k+1,m]";c(k,x>x)>0

This completes the inductive definition of the integers c(k, x).
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Next we define for any k € [1,m] and any x € €5 an element Jj, € V
by

T =9(0)Eg(MX,, - g(h)5E™
where
g(h)X =h(r)X FX) 5 e [k m),
g(h)X :f.(C(H’X|2“) if k € [k,m]".

K i

For k € [1,m] we show:
(b) gMkgWkg1 - g(Wm€" = Y Tix-
XEE>k

We argue by descending induction on k. Assume first that k = m. If
k € [1,m]" then

(et =Y h(k)" f = 37 T
n>0 XEE>k
as required. If k € [1,m]”, then g(h)p{™ = $;, T = fi(lfi’“”\>)£+, see 3.3(b).

Next we assume that k < m and that (b) holds for k replaced by k + 1.
Let X’ = Xx>k+1. By the induction hypothesis, the left hand side of (b) is

equal to
(c) gMe D Trriy
XEE> k11

If £ € [1,m], then clearly (c) is equal to the right hand side of (b). If
k € [1,m]”, then from the induction hypothesis we see that for any v € X

we have

(9(h)kg1 - g(h)mET )y = Z (Tks1x)v = Z Tr+1,x

XEE> k41 XEES k41,0

where E>p41,, is the set of all x € E5441 such that

v=A- > x(w)i - > ok, Xz,

Kk€E[k+1,m]’ KE[k+1,m]" c(k,X>r)>0
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Using this and 3.3(c) we see that

g kg(W) ks - g(h)m&" =D fzklk’ Mkr19(Mera - - g(M)m€))
veX
iV c(k
:Z fi(:% ) Z Tit1x = Z flk ) Tet1xIz11 = Z Thx-
veX Xegszrl'V X€€2k Xegzk

This completes the inductive proof of (b).

In particular, we have

(d) g(h)1g(h)z ... g(Mm&" =" Ty,

X€EE

where £ is the set of all maps x : [1,m]" — N. This shows that for any b €
there exists a polynomial P, in the variables zx, k € [1,m] with coefficients
in N such that the coefficient of b in g(h)1g(h)s ... g(h)mET is obtained by
substituting in P, the variables zy by h(k) € Rsq for k € [1,m],h € A>o.
Each coefficient of this polynomial is a sum of products of expressions of
the form dy, p, ;n € N (see 1.4); if one of these coefficients is # 0 then after
the substitution xy — h(k) € R~ we obtain an element in R~ while if all
these coeflicients are 0 then the same substitution gives 0. Thus, there is a
well defined subset 3, ; of 3 such that Pb|xk:h(k) is in Ry if b € B, and is
0ifbe B — By

For a semifield K we denote by A(K7) the set of maps h: [1,m] — Kj.
For any h € Kj we can substitute in P, the variables x; by h(k) € Kj
for k € [1,m]’; the result is an element P, g, € Ki Clearly, we have
Pb,h,K1 e Ky ifbe Bv,i and Pb,h,K1 =oifbe B — Bv,i~

From 3.2(b) we see that b, € S, ;.

We see that for a semifield Ky, h +— Zbeﬁ Py y kb is a map Ok, :
A(Ky) — V(K1) —o and

(d) Ok, (A(K1)) C {S € V(KL);supp(§) = Bu,i}-

(supp(§) as in 1.4.) Let wg, : A(K;) — P(K;) be the composition of
0, with the obvious map V(K;) — o — P(K;). From the definitions, if

K1 — Ky is a homomorphism of semifields, then we have a commutative
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diagram

A(Ky) —4 P(KY)

l !

A(Ky) —25 P(I)

where the vertical maps are induced by K1 — Ko.

3.5. In this subsection we assume that m > 1. We will consider two cases:

(I) t1 = Siys

(I1) t; = 1.
In case (I) we set (v/,w') = (85,0, siw), I = (2,43, ...,0m) € Zy. We have
v < w' and the analogue of the sequence q1,qo, ..., ¢y, in 3.2 for (v, w', 1)

iSq2,93, -+, Qm-

In case (II) we set (v/,w') = (v, s;;w), ' =i. We have v" < w' and the
analogue of the sequence q1,qa, ..., ¢y in 3.2 for (V,w',i) is q2,43,- .., gm.
For a semifield K let A’(K7) be the set of maps [2,m] — K; (notation
of 3.4) and let 0} : A'(K1) — V(Ki) — o, wy, :+ A(K1) — P(Kip) be
the analogues of O, ,wg, in 3.4 when v, w is replaced by v',w’. From the
definitions, in case (I), for h € A(K7) we have

(a) 9K1 (h) = 7;1,K1 (QlKl (h’[2,m]’)

(notation of 2.6(a); in this case we have 0} (hljg,) € V(K1) by 3.3(a)

and the arguments following it); hence

(b) WK, (h) = [7;11K1](wlf{1 (h’[2,m]’)

where [T, k,] is the bijection (V(K;)% — o)/K; — (V(K1)fn — o)/K;
induced by T, x, @ V(K1) — V(Ki)/in (the image of Wi, (Pl2my) is
contained in (V(K7)% —o)/K7).

From the definitions, in case (II), for h € A(K) we have

(c) Orcy (h) = (=i0)" ) (O, (hlj2my)

(notation of 1.4).
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3.6. In the remainder of this section we assume that A\ € X+, In the setup
of 3.5, let h, h be elements of A7) Let & = O, (lpmy); & =05, (hlizmp)
be such that (—i;)")(€), (—i1)")(€) have the same image in P(K). We
show:

(a) h(i1) = h(i1) and &, € have the same image in P(K).

By 3.2(a), (b) (for w’ instead of w),

(b) by appears in & with coefficient ¢ € Ky; if b € B appears in £ with
coefficient # o then vy, # vy, , + 1.

Similarly,

(¢) by appears in & with coefficient ¢ € Ky; if b € B appears in € with
coefficient # o then vy, # vy, , + 7.

From our assumption on A we have by # by, = fi(:)bw/ and fi(ol)bw/ # o. By
(b), (¢) we have

(—i))M (&) = By + h(il)cfi(ol)bw/ + K{-comb. of b €  of other weights,
(—il)ﬁ(il)(é) = By + Eﬁ(il)fi(ol)bw/ + K{-comb. of b € 3 of other weights.

We deduce that for some k € K; we have ¢ = ke, ¢h(iy) = keh(ir). Tt
follows that h(i;) = h(i1). Using this and our assumption, we see that for
some k € K1 we have (—iy)")(€) = (—ip)"1)(cf). Using 1.4(a) we deduce
¢ = c£. This proves (a).

3.7. In the setup of 3.4 we show:

(a) wk, : A(K1) — P(Ky) is injective.

We argue by induction on m. If m = 0 there is nothing to prove. We now
assume that m > 1. Let wy, : A'(K1) — P(Kip) be as in 3.5. By the
induction hypothesis, wi, is injective. In case I (in 3.5), we use 3.5(b) and
the bijectivity of [7;, k,] to deduce that wg, is injective. In case II (in 3.5),
we use 3.5(c) and 3.6(a) to deduce that wg, is injective. This proves (a).
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3.8. According to m],

(a) b+ o(h)Bta(h)~! defines an isomorphism T from A to an open subva-
riety of By containing (By.)>0 and T restricts to a bijection

AZO :> (Bv’w)zo.

(The existence of a homeomorphism Rl;ﬂolflvl 5 (Byw)>0 was conjectured in

.

We define flzo in terms A and its subset A>p as in 1.9. Note that flzo
can be identified with the set of maps h : [1,m]" — K that is, with A(K)
(notation of 3.4). Now 7: A — B, (see (a)) carries A>( onto the subset

(By,w)>0 of By hence it induces a map

(b) A(K) = Asg — émvwzo which is a bijection.
(We use (a) and 1.9(a)).

3.9. From the definition we deduce that we have canonically

(a) BZO = |—|v,w in W,vngv,wzo-

The left hand side is identified in 1.10 with P®(K), a subspace of P(K).
Hence the subset éwvwm of B> can be viewed as a subset P, ,,(K) of P(K)
and 3.8(b) defines a bgjection of A(K) onto P, (K). The composition of
this bijection with the imbedding P, ,,(K) C P(K) coincides with the map
wi : A — P(K) in 3.4. (This follows from definitions.)

Similarly, the composition of the imbeddings
(Buw)>0 C B>o = P3y C P> = P(R>0)

(see 1.7(a)) can be identified via 3.8(a) with the imbedding wr., : A>0 —
P(R~0) whose image is denoted by P, ,,(R>0).

Recall that P*(Z) is the image of P*(K) under the map P(K) — P(Z)
induced by r : K — Z (see 1.11). For v < w in W let P, ,(Z) be the
image of P, ,,(K) under the map P(K) — P(Z). We have clearly P*(Z) =
Uy<wPyw(Z). From the commutative diagram in 3.4 attached tor : K — Z
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we deduce a commutative diagram

AK) —— P, (K)

l

A(Z) — Pv,w(z)

in which the vertical maps are surjective and the upper horizontal map is a
bijection. It follows that the lower horizontal map is surjective; but it is also
injective (see 3.7(a)) hence bijective.

3.10. We return to the setup of 3.4. If K is one of the semifields R~¢, K, Z,
then the elements of P, ,,(K;) are represented by elements of £ € V/(K;) —o
with supp(§) = B,;. In the case where K; = R~g, Py, (K1) depends only
on v,w and not on i. It follows that 3, ; depends only on v, w not on i hence
we can write 3, ,, instead of 3, ;.

Note that in ﬂg, 2.4] it was conjectured (for R~¢) that the set [[v,w]]
defined in |9, 2.3(a)] in type Ay should make sense in general. This conjecture
is now established for R ¢ by taking [[v,w]] = B, (and the analogue of the
conjecture for K; as above is also established).

Using 2.4(a) and the definitions we see that

(a) Bv,w - Bw N ¢(6Uw1)~

We expect that this is an equality (a variant of a conjecture in ﬂg, 2.4], see
also 9, 2.3(a)]). From 3.4 we see that

(b) b € Bu,uw-
From 2.3(d) we deduce:

(C) (rb(ﬁwwj,vwf) = ﬂv,w-
Using (b), (c) we deduce:

(d) ¢(bvw1) € ﬂv,w-
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3.11. For K; as in 3.10 and for v < w in W, v/ < w' in W, we show:

(a) If Pyow(K1) N Py (K1) # 0, thenv =", w=w'.

If K is Ry or K this is already known. We will give a proof of (a) which
applies also when K; = Z. From the results in 3.10 we see that it is enough
to show:

(b) Ifﬂv,w - B’Mﬂ;ﬂ, then v = ”U,) w = w,'

From 3.10(b) we have b, € B, . hence b,y € B, so that (using 3.10(a))
we have b,y € 8%. Using 2.1(a) we deduce that b, € V'! (with i as in 2.1).
It follows that either by, = by, or vy, , — v, is of the form jj + j5 +--- 4 jj,
with j; € I and k > 1. Interchanging the roles of w,w’ we see that either
by = by Or v, — 1, is of the form G4+ gh 4+ gh with j, € T and K > 1.
If by, # by then we must have j; + jj+- -+ ji + 71 + 75+ -+ i = 0, which
is absurd. Thus we have b,, = b,s. Since A € X" this implies w = w’.

Now applying ¢ to the first equality in (a) and using 3.10(c) we see that
Bww; ww; = Buw'w, vw;- Using the first part of the argument with v, w, v, w’
replaced by wwr, vwy, w'wr, v'wy, we see that vw; = v'w; hence v = v'. This
completes the proof of (b) hence that of (a).

Now the proof of Theorem 0.2 is complete.

3.12. Now ¢ : B — B (sce 2.3) induces an involution B — B and an
involution B>y — Bso denoted again by ¢. From 2.3(a), (d) we deduce that
this involution restricts to a bijection Bl;:w 150 év,vw>0 for any v < w in
W. The involution ¢ : B>g — Bsg can be viewed as an involution of P*(K)
which coincides with the restriction of the involution ¢ : P(K) — P(K) in
2.7. The last involution is compatible with the involution ¢ : P(Z) — P(Z)
in 2.7 under the map P(K) — P(Z) induced by r: K — Z. It follows the
image P*(Z) of P*(K) under P(K) — P(Z) is stable under ¢ : P(Z) —
P(Z). Thus there is an induced involution ¢ on B(Z) = P*(Z) which carries
Py, vw; (Z) onto P, ,(Z) for any v < w in W.
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4. Independence on A

4.1. For A\, X in X" let * P be the set of lines in *V @ V. We define a
linear map £ : *V x XV = AV @MV by (£,&) — £ ® €. This induces a
map E : *P x Np 5 AN p,

Let K be a semifield. Let S = 28 x ¥'3. Let ' V(K}) be the set of
formal sums u = ) s uss where us, € K 1 This is a monoid under addition

(component by component) and we define scalar multiplication
Ki x V(K = MV(K))

by (kY scstss) — > icg(kus)s. Let End(M 'V (K1)) be the set of maps
¢ MV(K) = MV(K) such that ((€ + &) = ((€) +¢(¢) for £¢ in
ANV(KL) and C(k€) = kC(€) for € € MWV(K)),k € K|. This is a monoid

under composition of maps.

We define a map
E(Ky) : "V(K) x YV(K)) =V V(KY)
(2 anb) (X &bh) = D Gty (brbh).
b1EXB v, eNp (b1,b])eS
We define a map
End(*V(K,)) x End(MV(K,)) — End(*V(K)))

by (7,7') + [(b1,b)) — E(K1)(7(b1),7'(V)))]. Composing this map with the

map

&(K;) — End(*V (K1) x End(NV(K)))
whose components are the maps
®(K1) — End(*V (K1), 6(Ki) — End(MV(K)))

in 1.5 we obtain a map &(K;) — End(M 'V (K1)) which is a monoid homo-
morphism. Thus &(K;) acts on *'V (K} ); it also acts on AV (K1) x X V(K1)
(by 1.5) and the two actions are compatible with E(K7).
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Let o be the element u € ' V(K) such that ug = o for all s € S. Let
AN P(K7) be the set of orbits of the free K action (scalar multiplication)
on V'V (K,) — o. Now E(K}) restricts to a map

(V(E)) = o) x MV (K1) —0) = MV(K) — o
and induces an (injective) map
E(K1) : "P(K1) x Y P(K1) — ™ P(K1).

Now &(K1) acts naturally on *P(K;) x ' P(K}) and on * P(K}); these
& (K7 )-actions are compatible with E(K7).

4.2. For A\, ) in X there is a unique linear map

DAYy S v ey
which is compatible with the G-actions and takes AN ¢+ to A6t @Y T, This
induces a map I : MY P — A p,

For b € ' 3 we have
TO) = > epppbr @b
(bl,bll)ES

where €b,by b, € N. (This can be deduced from the positivity property E,
14.4.13(b)] of the homomorphism r in E, 1.2.12].) There is a unique map

(K : "NV (K — M VIIKY)

compatible with addition and scalar multiplication and such that for b €
AN 3 we have
D(Kq)(b) = Z €b b, (b1, 07)
(b1,b/1)€5
where ¢, . are viewed as elements of K}. Since I is injective, for any
b € M 3 we have €ppy b, € N—{0} for some by, b, hence ey, i € K1, when
viewed as an element of K. It follows that I'(K;) maps *** V(K;) — o into
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ANV (K,) — o. Hence T'(K) defines an (injective) map

[(EKy) : MY P(Ky) — M P(KY)
which is compatible with the action of &(K) on the two sides.

4.3. We now assume that K is either K as in 0.1(i) or Z as in 0.1(ii) and
that A € Xt X € Xt so that A+ X € X+, We have the following result.

(a) Let £ € N P*(Ky). ThenT(K1)(L) = E(K1)(L1, L)) for some (L1, L))
€ AP*(K,) x N P(K}) (which is unique, by the injectivity of E(K1)).
Thus, £ — L is a well defined map H(K;) : "N P*(K;) — *P*(K).

We shall prove (a) for K7 = Z assuming that it is true for K3 = K. We can
find £ € N P*(K) such that £ € Y P*(Z) is the image of £ under the
map M P*(K) — AN P*(Z) induced by r : K — Z. By our assumption
we have T'(K) (L) = E(K)(Ly, L)) with (£, £}) € *P*(K)x* P(K). Let £,
(resp. £1) be the image of £; (resp. £}) under the map *P*(K) — *P*(Z)
(resp. NP(K) — ' P(Z)) induced by r : K — Z. From the definitions
we see that T'(Z)(L£) = E(Z)(L1, £}). This proves the existence of (L1, L}).
The proof of (a) in the case where K1 = K will be given in 4.6.

Assuming that (a) holds, we have a commutative diagram

AN pr(i) S AP (K)

| |
M pez) 2, Ape(z)

in which the vertical maps are induced by r : K — Z.

4.4. We preserve the setup of 4.3. For each w € W we assume that a
sequence i, = (i1,%2,...,im) € I, has been chosen (here m = |wl|). Let
Z(K1) = Up<w in wAyw (K1) where A, , (K1) is the set of all maps [1,m]" —
K, (with [1,m]" defined as in 3.2 in terms of v,w and i = i,). From the

results in 3.9 we have a bijection

AD(K,) : Z2(K,) 3AP*(K))
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whose restriction to A, (K1) is as in the last commutative diagram in 3.9
(with i =i, ). Replacing here X\ by A + X we obtain an analogous bijection

MND(KY) - Z(Ky) S PE).
From the commutative diagram in 3.4 we deduce a commutative diagram

*D(K)
—

Z(K) AP (K)

A
z(z) 2%, spez)
and a commutative diagram

A+ ,
B(K) —5% MNP (K)

| !

A+2/
Z(Z) ﬂ) /\J”\/P‘(Z)

in which the vertical maps are induced by r : K — Z.

4.5. We preserve the setup of 4.3. We assume that 4.3(a) holds. From the
commutative diagrams in 4.3, 4.4 we deduce a commutative diagram

(*D(K))~'H(K)* D(K)

Z(K) Z(K)

| |

A —1 AN
2(Z) (*D(Z))" " H(Z)*"" D(Z) 2(Z)

in which the vertical maps are induced by r : K — Z. Recall that K is K
or Z. We have the following result.

(a) AD(K)) " H(K )M D(K,) is the identity map Z(K,) — Z(K1).

If (a) holds for K; = K then it also holds for K; = Z, in view of the
commutative diagram above in which the vertical maps are surjective. The
proof of (a) in the case K1 = K will be given in 4.7.

From (a) we deduce:

(b) H(K4) is a bijection.
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4.6. In this subsection we assume that K1 = K. Let k = C(z) where x is
an indeterminate. We have K' € k. For any A € Xt we set *Vx =k @ V.
This is naturally a module over the group G(k) of k points of G. Let B(k)
be the set of subgroups of G(k) that are G(k)-conjugate to B (k), the
group of k-points of B*. We identify *V (K with the set of vectors in *Vj
whose coordinates in the k-basis *3 are in K'. In the case where A € X*+,
we identify *V*(K) — 0 with the set of all £ € *V(K) — 0 such that the
stabilizer in G(k) of the line [£] belongs to B(k). (For a nonzero vector &
in a k-vector space we denote by [¢] the k-line in that vector space that
contains &.)

Now let A € XTT X € X*. We show that 4.3(a) holds for A\, \. We
identify /\”\/V(K ) with the set of vectors in Vi @y NVi whose coordinates
in the k-basis *3 ® '8 are in K.

Then E(K) becomes the restriction of the homomorphism of G(k)-
modules E' : M x Vi — i @i M Vi given by (£,€) — & @k € and
I'(K) becomes the restriction of the homomorphism of G(k)-modules I" :
AN Vie = Wik Qx ’\/Vk obtained from I' by extension of scalars.

Let Ly = M6F] C i, Ly = VEF] € MV, Lyyy = PV € MV
Now let f S )\+)\/V'(K) — 0. Then [g] = gLA+>\, for some g c G(k) hence

=g(Lx ® Ly) = (9Lx) ® (g(Lx) = E'(gLx, g(Ly)
=E'([g(*eN)], [V EN)).

([¢]

~—

To prove 4.3(a) in our case it is enough to prove that for some ¢, in k* we
have cg(*¢ét) € AV (K), dg(Met) e YV(K). We have & = cog(MNeT) for
some ¢y € k* and I'(€) = I'(€) € "M V(K). Thus, ¢oI"(g(**N&) € "V (K)
that is, co(g*¢t) @ (¢M€t) € MWV(K). Tt is enough to show:

(a) If z € i, 2/ € Mk, co € kK* satisfy coz @ 2/ € 'V (K) — 0, then
cze W (K)—0, dZ e NV(K)—0 for some ¢, in k*.

We write z = Y, ag b, 2 = Yyevg 2t with 2,2, in k. We have
cozbzl’), e K' for all b,b'. Replacing z by cpz we can assume that ¢y = 1
so that 2z, € K 'for all b, b and 22 # 0 for some b,b. Thus we can find
by, € '3 such that Zl/’B € K. We have zbzl’76 € K' for all b. Replacing z by
zl”éz we can assume that z, € K' for all b. We can find by € *§ such that
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2y, € K. We have z,z;, € K' for all /. It follows that z}, € K' for all V.
This proves (a) and completes the proof of 4.3(a).

4.7. We preserve the setup of 4.3 and assume that K1 = K. We show
that 4.5(a) holds in this case. Let v < w,i be as in 3.2 and let A(K;) be
as in 3.4. Let h € A(K;). We have ™ D(K1)(h) = [0k, ()N F] where
ok, : A(K1) — G(k) is defined by the same formula as ¢ in 3.2. (Note that
for i € I, y;(t) € G(k) is defined for any ¢ € k.) Hence

(05, (M ET) ® (o5, ()N ET)]
E(K1)([ox, (W &Y ok, () €7)

L(K1)M D(K)(h)

so that
H(K1)"™ D(K1)(h) = [ok, (W)Y = *D(K1)(h).

This shows that the map in 4.5(a) takes h to h for any h € A(K;). This
proves 4.5(a).

4.8. We now assume that K is either K as in 0.1(i) or Z as in 0.1(ii) and
that A € Xt X € X+, From 4.3(a),4.5(a) we have a well defined bijection
H(K,) : ™Y P*(K;) 5 2P*(K,). Interchanging A, N we obtain a bijection
H'(Ky) : ™Y P*(K,) 5 Y P*(K}). Hence we have a bijection

van = H'(K)H(K) ™t AP (Ky) S P(KY).

From the definitions we see that H(K;) is compatible with the &(Kj)-
actions. Similarly, H'(K7) is compatible with the &(K7)-actions. It follows
that ) y is compatible with the & (K )-actions. From the definitions we see
that if \” is third element of X1, we have

TN = YN NYAN

This shows that our definition of B(K7) is independent of the choice of \.
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5. The Non-simply Laced Case

5.1. Let § : G — G be an automorphism of G such that §(B") =
BT,6(B7) = B~ and §(z;(t)) = xy(t), 6(yi(t)) = yui(t) for all i € I,t € C
where 7 — ¢ is a permutation of I denoted again by 6. We define an au-
tomorphism of W by s; — s5(;) for all @ € I; we denote this automorphism
again by 6. We assume further that s;ss;) = ss)s; for any ¢ € I. The
fixed point set G® of § : G — G is a connected simply connected semisimple
group over C. The fixed point set W° of § : W — W is the Weyl group of
G? and as such it has a length function w + |w|s.

Now 4 takes any Borel subgroup of G to a Borel subgroup of G hence it
defines an automorphism of B denoted by 4, with fixed point set denoted by
B%. This automorphism restricts to a bijection B>o — B>p. We can identify
B% with the flag manifold of G by B — BN G%. Under this identification,
the totally positive part of the flag manifold of G° (defined in B]) becomes
By = B> NB°. For A € X we define §(\) € X by (6(i),6())) = (i, A) for
all i € I. In the setup of 1.4 assume that A € X satisfies §(\) = A. There
is a unique linear isomorphism ¢ : V. — V such that §(¢g&) = d(g)d(&) for
any g € G,£ € V and such that §(67) = £*. This restricts to a bijection
B8 — [ denoted again by 6. For any semifield K; we define a bijection
V(K1) = V(K1) by Yoy = e s 85-15)b where & € Kj. This induces
a bijection P(K;) — P(K;) denoted by 6. We now assume that K is as in
0.1(i), (ii). Then the subset P*(K;) of P(K}) is defined and is stable under
§; let P*(K1)? be the fixed point set of § : P*(K;) — P*(K1). Recall that
®(K) acts naturally on P(K;). This restricts to an action on P*(K;)® of
the monoid &(K7)? (the fixed point set of the isomorphism &(K;) — &(K;)
induced by §) which is the same as the monoid associated in [§] to G° and
K. We set B(K) = P*(K1)°.

The following generalization of Theorem 0.2 can be deduced from The-
orem 0.2.

(a) The set B°(Z) has a canonical partition into pieces Py .,.5(Z) indezed by
the pairs v < w in WO. Fach such piece P, w:5(Z) is in bijection with
ZIwls=1vls - in fact, there is an explicit bijection ZI®ls—Ivls S Pyaws(Z) for
any reduced expression of w in W,
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