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Abstract

Let X be a compact connected CR manifold of dimension 2n + 1,n > 1. Let X be a
paracompact CR manifold with a transversal CR S'-action, such that there is a discrete
group [' acting freely on X having X = )?/F We introduce the Fourier components of
the L?-Ray-Singer analytic torsion on X with respect to the S'-action. We establish an
asymptotic formula for the Fourier components of the L2-analytic torsion with respect to

the S'-action.

1. Introduction

In @], Ray and Singer introduced the holomorphic analytic torsion for
O-complex on complex manifolds as the complex analogue of the analytic
torsion for flat vector bundles @] In E], Bismut and Vasserot established
the asymptotic formula of the holomorphic analytic torsion associated with
powers of p of a given positive line bundle over a compact n-dimensional
complex manifold, as p — 400, by using the heat kernel method of E] (see
also ﬂﬁ, Sect. 5.5]). In ﬂﬂ], M. Puchol extended the results of Bismut and
Vasserot on the asymptotic of the holomorphic torsion to the fibration case.
Recently, S. Finski ] studied the asymptotic expansion of holomorphic
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analytic torsion associated with powers of p of a given positive line bundle
over a compact n-dimensional complex manifold, as p — +oo, and proved
that the asymptotic expansion contains only the forms p™ ¢logp, p™~* for
1 € N. The first two leading terms were proved by Bismut and Vasserot 1n
E The L>-torsion have been studied under different assumptions, see M

H Iﬂ Iﬂ |2__4| @ In @ Su study the asymptotics of the holomorphlc
L?-torsion associated with a power of a positive line bundle.

In orbifold geometry, we have Kawasaki’s Hirzebruch-Riemann-Roch for-
mula @] and also general index theorem ﬂﬁ] Ma ﬂﬂ] first introduced an-
alytic torsion on orbifolds and obtained an immersion formula for Quillen
metrics in the case of orbifolds, which is expressed explicitly in the form of
characteristic and secondary characteristic classes on orbifolds. Ma’s results
should play an important role toward establishing an arithmetic version of
the Kawasaki-Riemann-Roch theorem in Arakelov geometry. In ], S. Fin-
ski also calculated the general asymptotic expansion of the analytic torsion
for a compact complex orbifold.

Gromov-Henkin-Shubin ﬂl_AI, Theorem 0.2] considered covering manifolds
that are strongly pseudoconvex of complex manifolds and analyzed the holo-
morphic L?-functions on the coverings. Todor-Chiose-Marinescu gener-
alized in a similar manner the Morse inequalities of Siu-Demailly @
coverings of complex manifolds. The study of problems on CR manlfolds
with S'-action becomes active recently, see ﬂg, IB, IE, IE, IE] and the refer-
ences therein. In particular, Hsiao-Li E] established the Morse inequalities
for Fourier components of Kohn-Rossi cohomology on X by using the Szego
kernel method. Inspired by the results of |1 _ Iﬁg Iﬂ , the authors es-

tablish Morse inequalities for Fourier components of reduced L?-Kohn-Rossi

. This

cohomology with values in a rigid CR vector bundle on a coverﬁ mani-
]
generalizes the results of ﬂﬁ] to CR covering manifolds with S'-action. We

fold over a compact connected CR manifold with S'-action, see

present a proof by the heat kernel method, which is inspired by Bismut’s
proof |2, Iﬂ] of the holomorphic Morse inequalities. The crucial estimate for
Fourier components of the heat kernel of Kohn Laplacians was given in ﬂﬁ]

CR geometry is an important subject in several complex variables and
is closely related to various research areas. To study further geometric prob-
lems for CR manifolds, it is important to know the corresponding heat kernel
asymptotics and to have (local) index formula and the concept of analytic
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torsion. The difficulty comes from the fact that the Kohn Laplacian is not
hypoelliptic. Thus, we should consider such problems on some class of CR
manifolds. It turns out that Kohn’s [0, operator on CR manifolds with S*
action, including Sasakian manifolds of interest in String Theory (see ﬂﬁ]),
is a natural example of geometric significance among those transversally el-
liptic operators initiated by Atiyah and Singer (see ﬂﬁ], ﬂﬂ], ﬂﬁ] and ﬂ§])
In ﬂﬁ], Hsiao-Huang considered a compact connected strongly pseudoconvex
CR manifold X and introduced the Fourier components of the Ray-Singer
analytic torsion on X with respect to the S'-action. They established an
asymptotic formula for the Fourier components of the analytic torsion with
respect to the Sl-action. In ﬂa, P. 3501-3502], Finski showed that Theo-
rem 1.5 of ] gives a refinement of the asymptotic formula of ﬂﬁ] In this
work, we consider a compact connected strongly pseudoconvex CR. covering
manifold X and we introduce the Fourier components of the L?-Ray-Singer
analytic torsion on X with respect to the S'-action. We establish an asymp-
totic formula for the Fourier components of the L?-analytic torsion with
respect to the S'-action and generalize the results of ﬂﬁ] to CR covering
manifolds.

1.1. Main results

Now we formulate the main results. We refer to other sections for no-
tations and definitions (see Definition 211 221 23] and B1), 322))
used here. In this work we assume that X is a compact connected strongly
pseudoconvex CR manifold of dimension 2n 4+ 1,7 > 1 with a transversal
CR S'-action ¢ on X. For z € X, we say that the period of x is 27“, e N,
if €% o x # x, for every 0 < 6 < 27”, and €7 oz = 2. For each £ € N, put

X, = {z € X; the period of z is 2} (1.1)
and let
p = min{l e N; X, # 0}. (1.2)

It is well-known that if X is connected, then X, is an open and dense subset
of X (see Duistermaat-Heckman ﬂﬁ]) Assume X = X, UX,, U---UX,,,
p=:p1 <py < <pi. Set X == X, We call v € X;op a regular point
of the S! action. Let Xging be the complement of X,¢g .
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Let X be a paracompact CR manifold, such that there is a discrete
group I' acting freely on X having X = X/F Let 7 : X — X be the
natural projection with the pull-back map 7* : T X — TX. Then X admits
a pull-back CR structure TOX = m*T10X and, hence, a CR manifold. We
assume that X admits a transversal CR locally free S' action, denote by e?.

We further assume that the map
I'xX =X, (7,Z)—y0% VieX, Vyel.

is CR, see (2.1), and

efoyoi=no0e?oz VieX, Voe[0,2n], Vyel.

Let E := *E be the pull-pack bundle of a rigid CR vector bundle E over
X. Then E is a I-invariant rigid CR vector bundle over X. We denote by
)?reg the set of regular points of the S'-action on X. Note that since T acts
on X freely so that )~(/F = X, hence, we have )N(reg /T = Xieg = Xp.

Let N be the operator acting on T*0ax by multiplication by ¢. Let
A€ (T;O”f( ® F;) K (T;O”)? ® E5), where E is a rigid CR vector bundle
over X. Denote by STrp[A] the T-supertrace of A on X, see (ZR). Let

L L2 (X, T X @ E) — (Ker Oy )t
be the orthogonal projection. In fact, for Re(z) > n, we can define
Oy (z) = —M [STrp [Ne—tﬁbmnrin]} — —STip [N(ﬁbm)—znrin] .

Then we define exp(— %5{) m(0)) as the mth Fourier component of the analytic
torsion on the compact strongly pseudoconvex CR, covering manifold X with
a transversal CR S! action. We refer to Section 2 and Section 4 for more

details. Our main theorem is the following

Theorem 1.1. With the above notations and assumptions, as m — 400,

we have

~ R dw,
Op.m(0) = Z—r /Xlog(det (m—))e_mTwo A (—wp)+o(m™), forp|m,

T 2
0. (0) = o(m™),  for ptm,

(1.3)
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where r denotes the rank of E and R € End(T0X) is defined in (30).

WhenT" = {e} and p = 1, we deduce the following result of Hsiao-Huang,
see ﬂﬁ, Theorem 5.5]. We denote by exp(—16; (0)) the m-th Fourier com-
ponent of the analytic torsion on the compact strongly pseudoconvex CR

manifold X with a transversal CR S! action, where Op,m(2) is defined in

(4.14) of [1d).

Corollary 1.2. With the above notations and assumptions, as m — +0oo,

we have

0y (0) = % /X log (det (%))emdgf A (=wp) + o(m™), (1.4)

where T denotes the rank of E and R € End(T"°X) is defined in (30).

Note that Theorem 1.5 of , P. 3501-3502] gives a refinement of Corol-
lary (L2).
2. Preliminaries

2.1. Some standard notations

We use the following notations: N = {1,2,...}, Ng = NU {0}, R is the
set of real numbers, Ry := {r € R; z > 0}, R := {x € R; x > 0}. For a

multiindex o = (a1,...,0,) € Nj we set | = oq + -+ + . For 2 =
(x1,...,@y) We write
o olal
Let z = (21,...,2n), 2j = T2j—1 +1ix2j, j = 1,...,n, be coordinates of C".
We write
2Y =2z, 2V =27 E,
0 1 0 0 0 1 0 0
8Zj:—:_< —1 )) afj:T:_( +Z )5
aZj 2 8562]'71 83:2]- aZj 2 8562]'71 83:2]-
Hlal Hlal
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Let X be a C'*° orientable paracompact manifold. We let TX and T* X
denote the tangent bundle of X and the cotangent bundle of X, respectively.
The complexified tangent bundle of X and the complexified cotangent bundle
of X will be denoted by CTX and CT*X, respectively. We write (-,-)
to denote the pointwise duality between T*X and TX. We extend (-,-)
bilinearly to CT"X x CI'X. For v € CT*X, v € CT'X, we also write
u(v) == (u,v).

Let E be a C"*° vector bundle over X. The fiber of E at z € X will be
denoted by E,. Let F' be another vector bundle over X. We write £ X F
to denote the vector bundle over X x X with fiber over (z,y) € X x X
consisting of the linear maps from E, to F,.

Let Y C X be an open set. The spaces of smooth sections of £ over
Y and distribution sections of E over Y will be denoted by C*(Y, E) and
D'(Y, E), respectively. Let E'(Y, E) be the subspace of D'(Y, E) whose ele-
ments have compact support in Y. For m € R, we let H™(Y, E) denote the
Sobolev space of order m of sections of E over Y. Put

Hjg. (Y,E) = {ue D'(Y,E); pu € H"(Y,E), Yy € C°(Y) },

H™ (Y,E) = H™(Y,E)nE'(Y,E).

comp

2.2. CR geometry

Let (X,T'%X) be a paracompact orientable not necessarily compact
CR manifold of dimension 2n + 1, n > 1, where T'9X is a CR structure
of X. That is, T"°X is a subbundle of rank n of the complexified tangent
bundle CT X, satisfying T"°X N T%'X = {0}, where T%'X = T10X and
V,V] C V, where V = C®(X,T'YX). We assume that X admits a S?
action: S' x X — X. We write € to denote the S' action. Let T €
C>(X,TX) be the global real vector field induced by the S! action given
by (Tu)(z) = % (u(e® o z)) |o=o, u € C(X).

Definition 2.1. We say that the S* action ¢ is CR if [T, C>=(X,T'°X)] C
C>(X,T'YX) and the S' action is transversal if for each € X, CT(z) ®
To°X T X = CT,X. Moreover, we say that the S! action is locally free
if T'# 0 everywhere.
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We assume throughout that (X, 710 X) is a connected CR manifold with
a transversal CR locally free S action €? and we let T be the global vector
field induced by the S action. Let wy € C*°(X,T*X) be the global real
(Reeb) one form determined by (wq, u) = 0, for every u € T'0X @& T X

and (wp, T') = —1. Assume X = X, UXp, U --UXp, (see (CI)), p =:
p1 < po < -+ < pi. In this work, we assume that p;y = 1 and we denote

Xreg = Xp, = X1

Definition 2.2. For p € X, the Levi form £, is the Hermitian quadratic
form on T,°X given by L,(U V) =—L(dwo(p), UNV), U,V € T, X.

Definition 2.3. If the Levi form £, is positive definite, we say that X is
strongly pseudoconvex at p. If the Levi form is positive definite at every

point of X, we say that X is strongly pseudoconvex.

Denote by T*40X and T*%' X the dual bundles of 79X and 791 X, re-
spectively. Define the vector bundle of (0, q) forms by T*%¢X = AY(T*%1X).
Put T#0*X .= @je{o,l,...,n}T*O’jX- Let D C X be an open subset. Let
0%4(D) denote the space of smooth sections of 74X over D and let Qg’q(D)

be the subspace of 2%9(D) whose elements have compact support in D. Put

0" (D) = @je{o,l,...,n}QO’j(D)a
98’.(17) = @je{o,l,...,n}Qg’](D)-

Similarly, if E is a vector bundle over D, then we let Q%¢(D, E) denote the
space of smooth sections of T*%4X @ E over D and let Qg’q(D, E) be the

subspace of 2%4(D, E) whose elements have compact support in D. Put

Qov.(DvE) = @jE{O,l,...,n}QOJ(DvE)v
Q*(D,E) := @je{m,_n?n}Qg’j(D,E).

Fix 0y €] — 7, [, O small. Let

de : CT,X — CTi0,,X
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denote the differential map of €% : X — X. By the CR property of the S?
action, we can check that
; 1,0
de'™ : T)OX - T'; X,
i0 0,1
de : TP'X = T X, (2.1)

de'®(T(z)) = T(e'x).

Let (e'%)* : A"(CT*X)—A"(CT*X) be the pull-back map by e, r =
0,1,...,2n+ 1. From (21, it is easy to see that for every ¢ =0,1,...,n,

(%) - T X—Tr0ax. (2.2)

00 1
Let u € Q%9(X). Define

_2
~ o9

(See also ([BI3).) For every 6 € R and every u € C°(X,A"(CT*X)), we
write u(eox) := (e¥)*u(x). It is clear that for every ue C>®(X, A" (CT* X)),

we have

Tu : ((ew)*u)|9:0 e 09(X). (2.3)

1 [T . :
u(z) = Z %/ u(e” o z)e” ™0 dp. (2.4)
meZ -

Let 05 : Q¥9(X) — Q09+1(X) be the tangential Cauchy-Riemann op-
erator. From the CR property of the S! action, it is straightforward to see

that (see also (B314)))
Tgb = ng on QO’.(X).

Definition 2.4. Let D C U be an open set. We say that a function u €
C>®(D) is rigid if Tu = 0. We say that a function u € C*°(X) is Cauchy-
Riemann (CR for short) if 9yu = 0. We call u a rigid CR function if dyu = 0
and Tu = 0.

Definition 2.5. Let F' be a complex vector bundle over X. We say that
F is rigid (CR) if X can be covered with open sets U; with trivializing

frames { ]-1, ]-2, . ,f]’-"}, 7 =1,2,..., such that the corresponding transition

matrices are rigid (CR). The frames { ]-1, ]-2, e ,f]’-"}, 7 =1,2,..., are called
rigid (CR) frames.
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Definition 2.6. Let F' be a complex rigid vector bundle over X and let
(-|-)F be a Hermitian metric on F. We say that (-|-)p is a rigid Hermitian
metric if for every rigid local frames fi, ..., f, of F', we have T'( f; | fr )r = 0,
for every j,k=1,2,...,r.

It is known that there is a rigid Hermitian metric on any rigid vector
bundle F' (see Theorem 2.10 in ﬂg] and Theorem 10.5 in ﬂﬁ]) Note that
Baouendi-Rothschild-Treves H] proved that 719X is a rigid complex vector
bundle over X.

From now on, let E be a rigid CR vector bundle over X and we take a
rigid Hermitian metric (-|-)g on E and take a rigid Hermitian metric (- |-)
on CTX such that TWOX 1 TO1X, T L (T'OX @ T%'X), (T|T) = 1.
The Hermitian metrics on CT'X and on E induce Hermitian metrics (- |-)
and (-|-)g on T*%*X and T*** X ® E, respectively. Let A(z,y) € (T,*X ®
E,)X(T;"* X @ E;). We write |A(z, y)| to denote the natural matrix norm of
A(z,y) induced by (- |-)g. We denote by dvy = dvx (z) the volume form on
X induced by the fixed Hermitian metric (- |-) on CT'X. Then we get natural
global L? inner products (-|-)g, (-|-) on Q°*(X, E) and Q%*(X), respec-
tively. We denote by L?(X, T** X @ E) and L*(X,T*%9X) the completions
of Q%4(X, E) and Q%9(X) with respect to (-|-)g and (-|-), respectively.
Similarly, we denote by L?(X,T*%*X ® F) and L?(X,T***X) the comple-
tions of Q%*(X, E) and Q%*(X) with respect to (-|-)g and (-|-), respec-
tively. We extend (-|-)g and (-|-) to L*(X, T*** X ® E) and L?(X,T*%*X)
in the standard way, respectively. For f € L*(X,T*"*X ® E), we denote
IfI% == (f|f)g. Similarly, for f € L*(X,T*%*X), we denote ||f|* =
(f11).

We also write 0, to denote the tangential Cauchy-Riemann operator

acting on forms with values in F:
0y : Q% (X, E)—=Q" (X, E).
Since F is rigid, we can also define T for every u € Q%4(X, E) and we have

Ty = 0pT on Q" (X, E). (2.5)
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For every m € Z, let

QY(X,E) := {u e WYX, E); Tu = imu}, ¢q=0,1,2,...,n,

0% (X, B) = {u € Q"*(X, E); Tu = imu} . (2.6)

For each m € Z, we denote by L2 (X, T*%X ® E) and L2,(X,T*%9X) the
completions of QnY(X, E) and Q%Y(X) with respect to (-|-)z and (-|-),
respectively. Similarly, we denote by L2 (X, T*** X ® E) and L2 (X, T*"*X)
the completions of Q" (X, E) and Qs (X) with respect to (|- )z and (-|-),

respectively.

2.3. Covering manifolds, Von Neumann dimension

In this subsection, we recall the background on CR covering manifolds,
ﬂﬁ, Section 2]. Let (X,T%°X) be a compact CR manifold of dimension
2n+ 1, n > 1. Let X be a paracompact CR manifold, such that there is
a discrete group I' acting freely on X having X = X JT. Let 7 : X > X
be the natural projection with the pull-back map «* : TX — TX. Then
X admits a pull-back CR structure TOX = p*T10X and, hence, a CR
manifold. We assume that X admits a transversal CR locally free S' action,

denoted by €. We further assume that the map
I'xX > X, (7,2)— ok, VieX, Vyel.

is CR, i.e.
1,0 37 1,0 v~
Y (T37X) C T, X, (2.7)

and

0 0

e?oroz=~0e? o7, V:?EX', Vo € [0,2x], Vv eTl.

It is easy to see that the S'-action e’ on X induces a transversal CR locally
free S! action, also denoted by €. We denote by T := n*T the pull-back
one form on X , then T is the global real vector field induced by the S'-action
on X. Let Wy := 7m*wy be the pull-back one form on X , where wy is the

global real one form on X as defined in Subsection 2.2. Then, for p € X ,
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the Levi form Zﬁ is the Hermitian quadratic form on Tﬁl’o)? given by

L {dwo(n(@). 0 AmT), (28)

7

B0, 7) = —3-{do(@), T AV ) =

where ﬁ, Ve T],;’O)N(.

As usual, let Q%¢(X) denote the space of smooth sections of AY(T*01X).
We also denote by 35 : Q%4(X ) — QOatl(x ) the tangential Cauchy-Riemann
operator. Then T, = 0T on Q°*(X). Let E be a rigid CR vector bundle
over X, then E := 7*E is a I-invariant rigid CR vector bundle over X.
Again let Q%49(X | E) denote the space of smooth sections of AY(T*01X) @ E.
We again denote by 9, : Q20¢(X, E) — QOatl(X E) the tangential Cauchy-
Riemann operator. Then again 78, = 9,7 on Q%*(X,E). We denote by
LA(X,T*9X ® E) and L*(X,T**4X) the completions of Q%4(X, E) and

0%4(X) with respect to the corresponding pull-back metrics (-|-)= and

E
(+]-). Similarly, we denote by L?(X,T***X ® E) and L*(X,T***X) the
completions of Q%*(X,E) and Q%*(X) with respect to the corresponding

=~ and (-]-).

pull-back metrics (-|-)z

As usual, for every m € Z, let

QX E) = {u € Q¥(X, E); Tu = Zmu} , ¢=0,1,2,....n,
- o (2.9)
0 (X E) = {u € Q" (X,E); Tu= zmu} .

For each m € Z, we denote by L2,(X,T*%4X @ E) and L2,(X,T*%4X) the
completions of Q0Y(X,E) and Q9%7(X) with respect to the corresponding
pull-back metrics (-|-)z and (-[-). Similarly, we denote by L2 (X, T X ®
E) and L2 (X, T**X) the completions of Q9% (X, E) and Q%°(X) with re-

~and (-]-).

spect to the corresponding pull-back metrics (-|-)z

Recall that U C X is called a fundamental domain of the action of T' on

X if the following conditions hold:

1L X =U,er(T),
2. nU)N»U)=0 for y,7 €L\mn #92, (2.10)
3. U\U is of measure 0.
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We can take U to be Sl'-invariant and with the pull-back S'-action
e, We construct such a fundamental domain in the following: From the
discussion in the proof of ﬂ§, Theorem 2.11], we can find local trivializations
Wi, ,Wn such that X = Ué\f:le and each W; is Slinvariant. For each
J, let W; C X be an Sl-invariant open set such that = : Wj — Wj is
a diffecomorphism and a CR map with inverse ¢; : W; — Wj. Define
Uj = Wi\(Uic;W; N W;). Then U := U;$;(U;) is the fundamental domain

we want.

It is easy to see that
L*(X,E) ~ L’T ® L*(U,E) ~ L’T ® L*(X, E). (2.11)

We then have a unitary action of I by left translations on LT by t,8, = 4.,
where {6, : n € T'} is the orthonormal basis of L’ formed by the delta
functions. It induces a unitary action of I' on L? ()N(, E) by v = Ty =t,®Id.

Let us recall the definition of the Von Neumann dimension or I'-dimension
of a T-module V C L2(X,T*X ® E), sec also ﬂﬂ, Definition 3.6.1]. We
shall denote by .Z(A) the space of bounded operators of the Hilbert space
H. Let ot C Z(L°T) be the algebra of operators which commute with
all left translations and denote the unit element of I' by e. We define
Trr[A] := (Ade, dc), A € op. Note that a I-module is a left I'-invariant sub-
space V' C L°T". The orthogonal projection Py on V is in @4 for a I'-module
V. Set dimpV := Trp[Py]. Now we replace L2T by L%(X,T*9X @ E).
Then to any operator A € Z(L3(X,T*4X ® E)), we associate operators
ayn € L(LA(U, T*94X ® E)) such that a~n(f) is the projection of A(d, ® f)
on C8, ® L*(U,T**9X ® E). In addition, if A € @4 and A is positive, then
Ay = Qe -1, and

Trr[A] = Tr[ae] > 0,
is well-defined. The orthogonal projection Py on V C L? ()Z' ,T*09X ® E’) is
in @/ for a I'-module V.

Definition 2.7. The Von Neumann dimension or I'-dimension of a I'-module
V' is defined by

dimp V.= TI‘F [Pv]
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3. Asymptotic expansion of heat kernels of Kohn Laplacians

In this section, we recall the definition of heat kernels. Then we recall the
asymptotic ex@nsions of heat kernels of Kohn Laplacians on a CR covering

manifold, see [19, Section 3].

3.1. Asymptotics of heat kernels of Kohn Laplacians on a compact
CR manifold

Since Ty, = 0T and FE is a rigid CR vector bundle with a rigid Hermi-

tian metric, we have
Opm = 0p : QU(X, E)—= Q%% (X, E), Vm € Z.
The m-th Fourier component of Kohn-Rossi cohomology is given by

3 . 00 0,g+1
HY (X, B) = Ker_ab.%m (1X, E)—>Qm0 (X.B) 3.1)
7 Imd, : Q07 (X, B)—= Q%Y (X, E)

We also write
3, - Q" (X, E)—=Q%* (X, E)
to denote the formal adjoint of 9 with respect to (-|-)g. Since (-|-)g and
(-|-) are rigid, we can check that
Td, = 8,7 on Q"*(X, E),

_pman e ; (3.2)
Dy = 0y Q02 (X, E)—Q0* (X, E), Vm e L.

Now, we fix m € Z. The m-th Fourier component of Kohn Laplacian is given
by

Opn = Dn + Opm)? : Q00 (X, B)—Q0° (X, E). (3.3)
We extend O, to L2 (X, T** X @ E) by
Opm : Dom Oy, © L2,(X, T X @ B)—L2 (X, T**X @ E),  (3.4)

where Dom [y, := {u € L2, (X, T*** X @ E); Oy pu € L2,(X, T** X ® E)},
where for any v € L2,(X,T*%*X ® E), Op,,u is defined in the sense of
distributions. We recall the following results (see Section 3 in B])
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Theorem 3.1. The Kohn Laplacian Uy, is self-adjoint, Speclly,, is a
discrete subset of [0,00] and for every v € Specy ,, v is an eigenvalue of

Up,m with finite multiplicity.

For every v € Specly ,, let {ff, e ,fc’l’y} be an orthonormal frame for
the eigenspace of [, ,, with eigenvalue v. The heat kernel e~ Mom (1, y) is

given by

dy
@y = Y Y M @eWu), 69

veSpecy , j=1
where fY(z) ® (f]”(y))T denotes the linear map:

F@) e (fy): T;°°X @ BE,~T;"*X @ E,,

u(y) € T, X @ Ey— f} (x)(u(y) | [} (¥) e € T;°X ® E,.

Let e7em + [2(X, T*0*X @ E)—=L2 (X, T***X ® E) be the continuous
operator with distribution kernel e =" e.m (x, 3).
We denote by R the Hermitian matrix R € End(T"°X) such that for
V,W eT"X,
idwo(V,W) = (RV |W). (3.6)

Let {w;}}_; be alocal orthonormal frame of TH0X with dual frame {w’ Sy
Set

n
Yo =—i Y dwolw;, @)@ A g, (3.7)
lj=1

where 15, denotes the interior product of @;. Then 74 € End(T***X) and
—idwy acts as the derivative 74 on T*%*X. If we choose {wj}?zl to be an
orthonormal basis of 719X such that

R(z) = diag(ai(x), - ,a,(x)) € End(T}0X), (3.8)
then .
va(x) = =Y aj(@)@ A g, (3.9)
j=1

Define det R(z) := a1 (x) - - - an(x).
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Fix z,y € X. Let d(x,y) denote the standard Riemannian distance of

x and y with respect to the given Hermitian metric. Take ¢

2
0<C<inf{—7r,
Pk

2T 2T

Dr DPr+1

=l k-1,

For x € X, put

; 2
A, Xong ) = inf {d(w, e ); ¢ <0 < =~ ¢}
p
The following result generalizes Theorem 3.1 in ﬂﬁ], see ﬂﬂ, Theorem
3.2].

Theorem 3.2. With the above notations and assumptions, for every e > 0,

there are mg > 0, g9 > 0 and C > 0 such that for all m > mg, we have

P oamson), det(R t
e—%Db,m (.’IJ,.%') B Z e p mz(27r)—n—1mn € ( )eXp( Vd) ((L‘) ® IdEx
pry det(1 — exp(—tR))
_ 750mcz(z,Xsing )2
< em" 4+ Cm"t "e 7 , Y(t,z) € Ry X Xyeg - (3.10)

3.2. BRT trivializations

To prove Theorem [B2] we need some preparations. We first need the

following result due to Baouendi-Rothschild-Treves @]

Theorem 3.3. For every point xo € X, we can find local coordinates x =
(.Tl, ... ,$2n+1) = (2,9) = (Zl, ... ,Zn,tg), zj = X2j-1+ i:t?zj, 7 =1,...,n,
Tont1 = 0, defined in some small neighborhood D = {(z,0) : |z| < §,—¢eo <
0 <eot of xo, 6 > 0,0 <eg <, such that (2(zo),0(zo)) = (0,0) and

0

~ o0
11
2= 490392 i1 4y
J 6,2]‘ 6,2]‘ 89’ ’ ’

T

where Zj(z),j = 1,...,n, form a basis of T3’ X, for each x € D, and o(z) €
C*(D,R) is independent of . We call (D, (z,0),¢) BRT trivialization.
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By using BRT trivialization, we get another way to define Tu,Vu €
0%9(X). Let (D, (2,0),¢) be a BRT trivialization. It is clear that

{d'zj1 /\"'/\dﬁ,l <g<--<Jg STL}
is a basis for T;O’qX7 for every x € D. Let u € Q%9(X). On D, we write

w= Y uj.dE A AdE, (3.12)

1<j1<<jg<n

Then, on D, we can check that

Tu= Y, (Tuj.g)dz Ao Adz, (3.13)

1<j1<<jg<n

and Tu is independent of the choice of BRT trivializations. Note that, on
BRT trivialization (D, (z,8), ), we have

5b:ZdEj/\(i —ia—?(z)ﬁ). (3.14)

3.3. Local heat kernels on BRT trivializations

Until further notice, we fix m € Z. Let B := (D, (z,0),¢) be a BRT
trivialization. We may assume that D = Ux| — ¢,¢[, where ¢ > 0 and U
is an open set of C™. Since F is rigid, we can consider ' as a holomorphic
vector bundle over U. We may assume that F is trivial on U. Consider a
trivial line bundle L—U with non-trivial Hermitian fiber metric |1 |i L =e 2.
Let (L™, h"™)—=U be the m-th power of (L,h"). Let Q"9(U, E ® L'™) and
QY9(U, E) be the spaces of (0,q) forms on U with values in £ ® L™ and E,
respectively, ¢ = 0,1,2,...,n. Put

VAU E @ L") = Djeqor,..m L (U, B & L),
QU B) = @jeqo0,..my L (U, ).
Since L is trivial, from now on, we identify Q%*(U, E) with Q%*(U, E @ L™).

Since the Hermitian fiber metric (-|-)g is rigid, we can consider (-|-)g as

a Hermitian fiber metric on the holomorphic vector bundle E over U. Let
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(-, -) be the Hermitian metric on CT'U given by

o 9,0  0p, 0 0  9p, . 0. .
‘o5 0 oz TP o Tian P PR LB

(-, -) induces a Hermitian metric on T*%*U := SV “0.5U, where T*%7U
is the bundle of (0,7) forms on U, j = 0,1,...,n. We shall also denote
this induced Hermitian metric on 7*%*U by (-, -). The Hermitian metrics
on T*%*U and E induce a Hermitian metric on 7*%*U @ E. We shall also
denote this induced metric by (-|-)g. Let (-, -) be the L? inner product on
0%*(U, E) induced by (-, -), (+|-)g. Similarly, let (-, -),, be the L? inner
product on Q%*(U, E ® L™) induced by (-, -), (-|-)g and h".

The curvature of L induced by h” is given by RE := 20dp. Let RL €
End(T'°U) be the Hermitian matrix given by

RMW,Y) = (R'W,Y), WY e T''U.

Let {w;}}_; be alocal orthonormal frame of 7' LOU with dual frame {w’ i
Set

wa=—Y_ RF(w;, W)W A 1z, (3.15)
l?j

where 15, denotes the interior product of w;.
Let
0: Q" (U, E®L™)—=Q"UEoL™)

be the Cauchy-Riemann operator and let
" QMU E @ L™ —Q" (U, E ® L™)
be the formal adjoint of & with respect to (-, - ). Put
Opm =@+ : Q" (U, E @ L™)—=Q%(U,E o L™). (3.16)

We need the following result (see Lemma 5.1 in ﬂg])

Lemma 3.4. Let u € Q0 (X, E). On D, we write u(z,0) = ¢™%%(z),
u(z) € Q%*(U, E). Then,

e ™0 1 (€M) = e ™00, (u). (3.17)
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Let z,w € U and let T(z, w) € (Ti"*U @ E) K (T3"°U @ E.). We write
|T'(z,w)| to denote the standard pointwise matrix norm of 7'(z,w) induced
by (-|-)g. Let Qg”(U, E) be the subspace of Q%*(U, E) whose elements
have compact support in U. Let dvy be the volume form on U induced by
(-, -). Assume T(z,w) € C(U x U, (T3>*°U ® E,) R (I3"°U ® E.)). Let
u € Qg”(U, E). We define the integral [ T(z,w)u(w)dvy (w) in the standard
way. Let G(t,z,w) € C®°(Ry x U x U, (To*U @ E,) R (T3"*U @ E.)). We

write G(t) to denote the continuous operator
G(t) : (U, B)=Q"* (U, E),

u%/G(t,z,w)u(w)dvU(w)
and we write G'(t) to denote the continuous operator

G'(t) : (U, B)—Q"* (U, E),

u—> / wmw)dvy (w).

We consider the heat operator of [lp ,,,. By using the standard Dirichlet
heat kernel construction (see ﬂﬂ]) and the proofs of Theorem 1.6.1 and

Theorem 5.5.9 in 23], we deduce the following

Theorem 3.5. There is Apn(t, z,w) € C°(Ry x U x U, (To*U @ E,) K
(T3%°U ® E.)) such that

lim Ag,,(t) =1 in D'(U,T**U ® E),
t—0+ ’

. . (3.18)
3 m(O0u+ —Ap(t)(Op ) = 0, Vu € (U, E), ¥t >0,

and Apm(t, z,w) satisfies the following:

(I) For every compact set K € U, a1, a0, b1, 2 € Nij, there are constants

Coia2,81,8:,k > 0 and g9 > 0 independent of t and m such that

0192298 5% (AB,m(t, 2 w)emW(w)—W”) ‘ (3.19)

|z —wl|?

< Cal7a27ﬁ17527K(?)n+|a1|+\a2|+\51|+\52|67m50 T V(t 2z, w) ERY x K x K.
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(IT) Apm(t,z,2) admits an asymptotic expansion:

det(R") exp(twy)
det(1 — exp(—tRL))

Apm(t,z,2) = (2m) "m" (z2) ® Idg, +o(m™)

(3.20)
in CY(U, End(T**U)® E) locally uniformly on Ry xU, for every £ € N.
Here we use the convention that if an eigenvalue a;(2) of R(2) is zero,

det(RL) (Z) is 1

then its contribution for Tt (—exp (D)) 7.

t

3.4. L? Kohn-Rossi cohomology on a covering manifold

Let
ﬁb : Domﬁb C Lz(f’T*Oﬂ)Z') N Lz()?,T*O”X')

be the Gaffney extension of the pull-back Kohn Laplacian on X. By a result
of Gaffney, O, is a positive self-adjoint operator (see Proposition 3.1.2 in
Ma-Marinescu [23]). That is, O is self-adjoint and the spectrum of Oy is
contained in Ry . Now, we fix m € Z. As in (B3], we introduce the m-th
Fourier component of the Kohn Laplacian E'b,m on Q?ﬁ'()? , E) We can easily
see that ﬁb,m is also self-adjoint. By the second isomorphism of 2.I1]), we
can see that, for any v € T,

TW(Dom(ﬁb,m))CDom(ﬁb,m)’ T’Yﬁb,m:ﬁb,mTW on Dom(lﬁb,m)- (3'21)

Consider the spectral resolution Ef\(ﬁb,m) of ﬁbm acting on
L2 (X, T*X ® F). (See [23, Appendix C.2]). The proof of the following
lemma is similar to Lemma 3.6.3 in Ma-Marinescu [23], see |19, Lemma 3.7].

Lemma 3.6. For any g =0,1,--- ,n and A € R, then Ef]\(ﬁbm) commutes
with T, its Schwartz kernel is smooth and

dimp EY(Dpm) < +00.

Definition 3.7.

(a) The m-th Fourier component of the space of harmonic forms #*(X, E)
is defined by

’Hg’m(f(, E) = Ker(ﬁb,m) = {s € Dom ﬁb,m : Iﬁbyms = O} )
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(b) The m-th Fourier component of the g-th reduced L? Kohn-Rossi coho-

mology is given by

Ker 9, N L2,(X,T*X @ E)

Hy ) (X, E) = iy 1 L2 (X, 700X @ B)] (3.22)
where [V] denotes the closure of the space V.
We can easily obtain the following weak Hodge decomposition
L2(X, T X ® E) = H*(X, E) @ [Im(Jp,)] @ [Im(y,,,)] (3.23)
By ([323]), we the the isomorphism
Hy 3ym(X,E) = H (X, E). (3.24)

3.5. Asymptotics of heat kernels of Kohn Laplacians on a covering
manifold

Assume that X = DiUD2J---JDn, where B; := (Dj,(2,0),¢;) is
a BRT trivialization, for each j. We may assume that, for each j, D; =
Ujx] —20,26;{C C" xR, 6; >0, 0; >0, U; = {2z € C" |z] <;}. For each
j, put ﬁj = ij] —%, %[, where Uj = {z eC™ |z| < %} We may suppose
that X = D1 (JD2J---J Dw.

Let {¢;} be a partition of unity subordinate to {f)]} Then {1;%]- =
tiom} is a partition of unity subordinate to {ﬁw}, where Wﬁl(ﬁj) =
Uygpﬁw‘ and 157” and ﬁw,j are disjoint for vy # 5. For each v € I and
each j, we have ﬁ%j = ﬁv,jx]—%, %[, where (7%3' = {z eC™ |z < HTJ}
Then X =J. . UYL, D ;.

Fixyel and j=1,2,...,N. Put

K, ;= {z € U, ;; there is a 0 €] — %, 6"’77[ such that ¢ ;(z,0) # 0} :

Let 7, (2) € C3°(U,,;) with 7, ; = 1 on some neighborhood W, ; of K, ;

)

Let o, € Cg°(] — %2, 22 with [0,;(6)d0 = 1. Let Ap_ n(t,zw) €
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C®(Ry % (7%]‘ X (7%]-, (TIT,O"(?%j@Ew)@(T:O”ﬁ%j ®E,)) be as in Theorem B3
Put

H’Yajvm(t7 if’ @/)

= iw‘(E)e*m%(z)”m‘ggBm,m(t, z,w)eri (w)*im"ﬁ,j(w)a%j (n), (3.25)
where T = (z,0), y = (w,n) € C" x R. Let

N
o 1 3 T o .
Fm(t’ x’ y) = % / H’Yajvm(t7 x’ ezu © @/)elmudu' (326)
s

yel' j=1""

Note that when I' = {e}, T (t,Z,7) = D(t, (%), 7(7)) is defined in
14, (3.31).

From Lemma[34] off-diagonal estimates of A B;m(t,7,Y) (see (3.19), we
can repeat the proof of Theorem 5.14 in [8] with minor change and deduce
that, see ﬂﬂ, Theorem 3.9],

Theorem 3.8. For every £ € N, £ > 2, and every M > 0, there are ¢y > 0

and mqg > 0 independent of t and m such that for every m > mg, we have

He_%ib,m (EI’.Vv g) - fm(tv §7 y

<e e M). 2
Doz <€ 70 vie@M).  (327)

From Theorem 3.6.4 in ﬂﬂ], we have

Proposition 3.9. For any tg > 0, > 0 and any v € I';j = 1,2,--- | N,
there exists C > 0 such that for any z € U, j,m € N,t > tq,

Hng'vm(t’ z,2) — A, m(t, m(2), W(z))‘

< Cexp (—ﬁ&“) .

Cl(ﬁ-\,,jXﬁ%]‘) 32t

From (3.11) of [19] (see also (3.31) in [1d)), @Z5), @20), Proposition B

and the fact that 1;%]» = 1p; o m, we can easily deduce that

Lemma 3.10. With the above notations and assumptions as in Theorem[3.8,

we have

Ol xX) < Cexp <_%60) '
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From Theorem 3.8, Lemma and Theorem 3.5 of ﬂﬁ], we have, ﬂﬂ,
Theorem 3.12],

Theorem 3.11. For every £ € N, £ > 2, and every M > 0, there are ¢y > 0
and mg > 0 independent of t and m such that for any € X and m > mo,
we have

o5 (@,3)— =50 (x(@), 7(@))|

m
< — .
CZ(XXX)_CeXp( . e()), Vte (0, M)

By Theorem B.21 and Theorem 311l we have, ﬂﬂ, Theorem 3.13],

Theorem 3.12. With the above notations and assumptions, for everye > 0,

there are mg > 0, g > 0 and C > 0 such that for all m > mg, we have

» .

— L0y m(5 5 el -n—1,_n det(R) exp(tva) ~

e mbm(x . r)—Y e P 27 m ——(m(x))®1dg_ -
—eomd(7(F), Xging )2 ~

<em"+CmM et Y(F) € Ry X Xieg- (3.28)

Recall that since I' acts on X freely so that X /T = X, hence, we have
Xreg /T = Xieg -

3.6. Asymptotic expansion for the heat kernels of the Kohn Lapla-

cians

From Theorem B.11] and Theorem 3.6 of ﬂﬁ], we have

Theorem 3.13. There exist Ay, o(t, m(Z)) € C°(Ry x X, End(T** X ® E))
with |Ap, (t,m(Z))| < Cp, for every (t,z) € Ry x X, where Cy > 0 is a
constant independent of m, { = —n,—n + 1,..., such that for any k € N,
there exists C > 0 such that for any t €]0,1],m € N* and every x € )Z', we

have the asymptotic expansion

~ k
m e m (@, F) — Y At (@) < Ot (3.29)

{=—n

Moreover, for every { = —n,—n+1,..., we can find Ay, o(7(Z)) € C(X,
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End(T; 05X @ Er)) with

Apy(m(3)) = Ag(n(F)) ® Idg, ;) +O(m™/?) (3.30)

in CY(X,End(T*%*X) ® E) uniformly on X such that there exist C > 0 and
go > 0 independent of t and m such that for any t €]0,1],m € N*, we have

egmd(mw(T), X
t

‘Am,e(tvﬂ(?c)) — Ape(n(2))| < Ce™ , VT € Xpeg,  (3.31)

where Ay(m(z)) € C®°(X,End(T***X)), £ = —n,—n+1,..., are as in (3.12)

of [16].

Let Trg[exp(—-£0p,,)] be the trace of the operator exp(—-£0;,,,) acting
on QYY(X, E). It is well-known that (see Theorem 8.10 in [28])

Tryfoxp(—— Ty m)] = / Tryfexp(—— ), )dvx (). (3:32)

X

By ﬂﬂ, (3.6.7)] and ﬂﬂ, (3.6.8)], as in (B.32), see also ﬂﬁ, Proposition
4.2],

Proposition 3.14. We have
t ~ 0 ~ ~
Trr 4 [exp(——Dbm)] = / Tr, {e_%mb’m(x,x)] dv g (T). (3.33)
m U

Now, we fix ¢ =0,1,2,...,n. Let A € (T;"*X ® E,) X (T3"* X ® E,).
Let ei(x), - ,eq(z) be an orthonormal frame of T3"'X @ E,. We write
@ 4 = Z?:1<A€j|€j> p. For the proof of our main result, we need to

know the asymptotic behavior of

/ Tr(Q) Am7ﬁ(t,x)de(:C)) f = —Nn,—n =+ 1, e
X

Let U be a fundamental domain of 7 : X — X. Then we have
_t0 ~ o~ ~ _tQ
Tr, {e m bvm(:c,:c)] dvg(z) = [ Tr, {e m-bm(zx)|dox(x).  (3.34)
U X

Then we have the following theorem.
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Theorem 3.15. With the notations used in Theorem B3, fix £ = —n, —n+

2
1,.... Wecan finda? ,€R, j=0,1,2,..., with
lgn agw / Try (A¢(z) ® Idg,) dux (z),
e . X (3.35)
. 5 -
W%gnooamg—(), 7=1,2,...,

z I
aﬁw 1s independent of t, for each 7, afme‘ < Cj, for every m € N, where

C; > 0 is a constant independent of m, j =0,1,2,..., such that

/ Try A o(t, z)dvx (x Za
X

]

t2  as t—0", uniformly in m. (3.36)

M\N

In particular,

" e gfe™E )~ bt R,
+ -+ as t—07, uniformly in m, (3.37)

where for each j = 0, %, 1,..., by —nyj € C is independent of t and there is
a constant C’j >0 mdependent of m, such that by, —nij| < C'j, for every

m € N, and

m—o0

lim b . / Tr, (A_n+%(x) ® IdEz) dvx (x), if j is an even number,

lim b =0, ifj is an odd number. (3.38)

_ J
m—oo My—N+3

Proof. By 329), 333) and [B34), using the proof of Theorem 3.7 of ﬂﬁ],

we prove the theorem. Od

3.7. Spectral gap of Dg)qgn

Fix ¢ =0,1,...,n. Let O} : DomO}") < L2,(X,T"%X @ B)—~L% (X,
T*%9X @ E) be the restriction of Db,m on (0, q) forms. By the same argument
as in Theorem 3.10 of ﬂﬁ], we have the following theorem.

Theorem 3.16. Let u,(f{) be the lowest eigenvalue of ﬁl()q)n. There exist con-
stants ¢; > 0,c9 > 0 not depending on m such that, for ¢ > 1 and m € N,
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1D > com = cy. (3.39)

4. Analytic torsion on CR manifolds with S'-action

In this section we first study Mellin transformation, then we define the
Fourier components of the analytic torsion for a rigid CR vector bundle £

over the CR manifold X with a transversal CR S!-action.

4.1. Mellin transformation

Let I'(z) be the Gamma function on C. Then for Rez > 0, we have

F(z):/ e 't at.
0

['(2)~! is an entire function on C and

[(2)™' =24+ O(2*) near z = 0. (4.1)
We suppose that f(t) € C*°(R) verifies the following two conditions:

o
~ —k+d +
L f(t) Zf_k+%t 2 as t—07, (4.2)
j=0
where k € Ny, f_k+l~ eC,j=0,1,2,....
2
II. For every § > 0, there exist ¢ > 0, C' > 0 such that

f()] < Ce™, ¥t >4 (4.3)

Definition 4.1. The Mellin transformation of f is the function defined for
Rez >k,

MG = 575 " peea (4.4)

We recall the following theorem, ﬂﬁ, Theorem 4.2].
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Theorem 4.2. M|f] extends to a meromorphic function on C with poles

i
{e 27€7J€Z}7

and its possible poles are simple. Moreover, M|f] is holomorphic at 0,

contained in

M(f](0) = fo (4.5)

and

1
8]gz[f](0) — / fokJﬂt kJrg)ld

2k — .
/ 1) Z B (46)
=0

l_
2

2. Definition of the Fourier components of the analytic torsion

Let N be the number operator on T*0’°)~(, ie. N acts on T*04X by
multiplication by ¢. Fix ¢ = 0,1,--- ,n and take a point z € X. Let
e1(%),- - ,eq(¥) be an orthonormal frame of T2/ X ® E;. Let A € (T2"*X ®

Eg)&(T*O°X®E~) Put Trg A = 39_ (Aejle;) 7 and set

Tr A .= iTrjA

STr A := Z j ) Tr; A

(4.7)

Let A: C®(X, T**X ® E)—»C™(X,T***X @ E) be a continuous operator
with distribution kernel A(%,§) € C®(X x X, (T;"* X@ Ep)R(T;** X @ E)).

As in (333)), we set

Trr 4[A] ::/UTrq A7, 7)dv ()
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and put

Trp[A] := > Trp [A]
j=0

STrp[A] := ) (—1)7 Trp [A].
7=0

(4.8)

Let

I, : L2,(X, T**X ® E) — Ker Oy,
be the orthogonal projection and let
L L2(X, T X @ E) — (Ker Oyt
be the orthogonal projection, where
(Ker ﬁbvm)J‘ = {u € L2 (X, T X ®E); (u v)s =0, VveKer E‘b,m} .
By ﬂg, Theorem 1.7], we have the following asymptotic expansion:

]

[ee]
STe[Ne ™~y B, ot 2 ast—=0t, (4.9)
7=0

1\3\\7

where Bm _nys € Cisindependent of ¢, j =0,1,2,....
’ 2
By [334) and Lemma 4.3 of ﬂﬁ], we have the following

Lemma 4.3. Fiz ¢ =0,1,...,n. For every 6 > 0, there exist ¢ >0, C' >0
such that

Trr,q[eftib”"ﬂi]‘ <Ce™™, Vt>4 (4.10)

From (B24), @) and Lemma 3 we see that STrp[Ne omITL] sat-
isfies (A2) and ([£3). By Definition ] for Re(z) > n, we can define

Opm(z) = —M [STrF[Ne—tﬁbmnrin]} — —STir [N(ﬁbm)—znrin] . (411)

By Theorem [£.2] we have the following lemma.
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Lemma 4.4. gb,m(z) extends to a meromorphic function on C with poles

i
{e 27€7J€Z}7

its possible poles are simple, and gbym(z) is holomorphic at 0. Moreover,

~ 1 _ 2n R \ a

0 =
1

contained in the set

(SIS

2n—1
— B

m,—n+

1

%0 - dt
— | smyp [Ne_tmb’mﬂﬂ =

e,
o~

i=0 -

+I7(1) (B — STrp[NTL,,)). (4.12)

Definition 4.5. Fix m € Z. We define exp(—%gf) (0)) as the m-th Fourier
component of the L?-analytic torsion for the rigid vector bundle E over the
CR covering manifold X with a transversal CR S'-action.

5. The Asymptotics of the Analytic Torsion

Recall that we work with the assumption that X is strongly pseudocon-
vex. From Theorem [3.15] we deduce

Theorem 5.1. With the notations used before, we have

m_”STrp[Ne_%Dbﬂn] ~ ZBmy_nJr%t_”*'% as t—07, uniformly in m,
§=0
(5.1)
where, for each j = 0, %, 1,..., By,—ntj € C is independent of t and there

is a constant Cj > 0 independent of m, such that |By, —n4j| < C'j, for every
m € N, and

lim B ;= rk(E)/XSTr pNA_nJr%(x)de, if 7 is an even numb(er, |
5.2

lim B, i = 0, if 7 is an odd number,

where Ag(x) € C*°(X,End (T***X)®FE) is as in (3.12) of ﬂﬁ], (= —n,—n+
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5.1. Asymptotics of the analytic torsion

By Theorem [B16] and Theorem B.12] using the same proof of Theorem
3.10 of ﬂﬁ], we have

Theorem 5.2. There exist C,c,c > 0 such that for any q > 1,t > 1,m € N,
we have

m~ " Trr 4 [e*#ﬁbvﬂ < Cexp(—(c—d/m)t). (5.3)
By the above results and proceeding as in the proof of Theorem 5.5 of
|, we have the main result of this work

Theorem 5.3. As m — +o0o, we have

Y pr m_R —m&a - n
O 1 (0) /Xlog<det< o ))e 2 A (—wo)4o(m"), forp|m,

T4

0, (0) = o(m™), for ptm,

(5.4)

where 1 denotes the rank of E and R € End(T'°X) is defined in (B0).
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