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Abstract

For a compact CR manifold (X,T"°X) of dimension 2n + 1, n > 2, admitting a
St x T? action, if the lattice point (—pi,. .., —pa) € 7% is a regular value of the associate
CR moment map pu, then we establish the asymptotic expansion of the torus equivariant

Szego kernel Hi,??mm mpy (%, Y) as m — +oo under certain assumptions of the positivity

.....

of Levi form and the torus action on Y := = (—p1,..., —pa)-

1. Introduction and Statement of The Main Results

Let (X, T'9X) be a Cauchy-Riemann (CR for short) manifold of di-

mension 2n + 1, and Dl(f) be Kohn Laplacian for (0,¢)-forms on X. The

2
(0.q
tion, and we call its distributional kernel TI9)(z,y) the Szeg6 kernel. The

orthogonal projection II(9) : L )(X) — ker Dl(f) is called the Szeg6 projec-
study of the Szeg6 kernel is a classical subject in several complex variables
and CR geometry. For example, when X is the boundary of a strongly pseu-
doconvex domain in C", n > 2, which implies that X is a strongly pseudo-
convex CR manifold, Boutet de Monvel and Sjostrand M] proved that when
q =0, IO (z,y) is a Fourier integral operator with complex valued phase
function. This kind of description of kernel function has profound impact
in many aspects, such as spectral theory for Tolgglitz operator, geometric

quantization and Kéhler geometry E, , , IE, ,Iﬂ]
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In some recent progress ﬂg, Iﬁ, IE], people start to consider CR mani-
folds with Lie group action GG. The study of G-equivariant Szegd kernels is
closely related to the problems of equivariant CR embedding and geomet-
ric quantization on CR manifolds. The goal of this paper is especially to
understand the asymptotic behavior of torus equivariant Szeg6 kernel. Let
us briefly explain out motivation. Within the manifolds drastically studied
on this topic, Sasakian manifold, which is a compact, strongly pseudocon-
vex and torsion free CR manifold, stands for the odd-dimensional counter
part in Kahler geometry and serves as a significant example. We say a CR
manifold (X,7T19X) is a quasi-regular Sasakian manifold if it admits a CR
and transversal circle action. If X is quasi-regular, in ] they showed that
dim H, g,m(X ) =~ m™ and the Szeg6 kernel for H. I()),m(X ) admits a full asymp-
totic expansion as m — o0, where Hgm(X ) is the space of m-th Fourier
component with respect to the circle action of the global CR functions on
X. We say a CR manifold (X, TH°X) is an irregular Sasakian manifold if
it endows with a CR transversal R-action, which does not come from any
circle action. Suppose now X is irregular and 7" be the fundamental vec-
tor field of the R-action. Take a R-invariant L2-inner product on X and
consider the weak maximal extension of 7" on L? functions, then in ﬂﬂ] it
was shown that T is a self-adjoint operator, and the spectrum of T, de-
noted by Spec(T), is a countable subset in R. Moreover, all the spectrum
of T are eigenvalues. On irregular Sasakian manifolds, it is important to
understand the space Haa(X) = {u € €°(X) : pu = 0,Tu = iou},
where 9 denotes the tangential Cauchy-Riemann operator on X. Differ-
ent from the quasi-regular situation, in general it is very difficult to see
which o € Spec(T) makes dimH,?} o(X) > 0. It is revealed in ] that if
we sum over « between 0 and k then the weigted Szeg6 kernel for the space

Daespec(r) H, P (X) admits an asymptotic expansion in k as k — +00. Ac-
0<a<k
cordingly, there are many a € Spec(T') such that Hl?’a(X ) is non-trivial,

and it is natural to fix such « and consider the Szegd kernel for the space
HY  (X) as m — +oc. This is the motivation of our work. In fact, in

, Section 3] they pointed out that for an irregular Sasakian manifold
X, the R-action on X comes from a CR torus action denoted by T9+!,
the Reeb vector field T can also be induced by T%t! and the spectrum
Spec(T) = {popo + pup1 + -+ + papa : (po,p1,---,pa) € Z*T}, where
10, - - - b are real numbers linearly independent over Q. Hence the problem

above is equivalent to the study of the Szegé kernel for H} (X)

mpo,mpi,...,Mpd
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as m — +oo for some lattice point (pg,p1,...,pq). For simplicity, we take
po = 1 in this article. Write 791 = 81 x T?. Suppose that the S'-action
is CR and transversal and the T%action is CR. We prove that if the lattice
point (—p1,...,—pg) is a regular value of the associate CR moment map p,
see (L)), then there is a full asymptotic expansion of the torus equivariant
Szeg6 kernel as m — +o0o under certain assumptions of the positivity of
Levi form and the torus action on Y := pu~'(—py,...,—pq). In particular,
for o := po + pip1 + - - - + papa € Spec(T'), the space H,?yma(X) is non-trivial
as m — +o00.

We now briefly introduce some notations and the main results. Let
Ty be the induced vector field of the S'-action, and T1,...,Ty be the ones

for T9-action. In other words, Tou(z) := %‘0:0 u(e o x) and Tju(x) :=
0 i0 L
0 Hj:ou((l,...,ezJ,...,l)ox), for j =1,...,d and u € €°(X). We

define Ty and Tj act on (0, g)-forms via Lie derivatives L7, and Lr;, j =
1,...,d, respectively. Choose Ty to be the Reeb vector field on X, see ([2Z1]),
and wy to be its dual one form, see (Z2). Fix a lattice point (p1,...,pq) € Z¢
and any m € N:= {1,2,3,...}, we consider the space of equivariant smooth

(0, g)-forms
Qgg:g%pl,---,mpd(X) ={u € QO (X): “Tyu=mu, —iTju=mpju, j=1,...,d}.

Since the group action is assumed to be CR, we can take the Jj-subcomplex
(51), Q%S;;lph...,mp (X )) and define the corresponding Kohn-Rossi cohomol-

08y Hy oo mpy (X)) Here Jp we mean the tangential Cauchy-Riemann

operator on X with respect to Ty, see (2.3]). Let (-|-) be a torus invariant Her-
mitian metric on CTX and let (-|-) be the torus invariant L?-inner product

on Q9 (X) induced by (-|-). Let L%O Y —— mp, (X ) be the completion of
Q(qu)

mmpr....mpa (X) With respect to the given torus invariant L2-inner product

(+|-) and take the Gaffney extension of Kohn Laplacian D,()Q) to the L2-space,

see ([2.8), then we have the Hodge theorem such that

H} (X) = H] (X)

b,m,mp1,...,mpq b,m,mp1,...,mpq
_ 72 (9) (0,q)
- L(O,q),m,mpl,...,mpd (X) M ker |:lb C Qm,mpl,...,mpd (X)’

and that HY

bm.mpy ...mpd(X) is finite dimensional for each ¢ = 0,...,n,

though the Kohn Laplacian D,()Q) is not elliptic, and in general it may not be
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hypoelliptic, neither. We use the notation Hg,ql?mpl,,,,,mp ,(x,y) for the torus

equivariant Szeg6 kernel, which is the distribution kernel of the orthogonal

projection H%?mph,,,7mpd : L%()’q)(X) — Hg,m,mpl,...,mpd(X) with respect to
C1)-

Because the group action here is CR, we can check that the one form wq

is torus invariant. We hence consider the torus invariant CR moment map

e X =R px) = <<w0(:c),T1(:C)>, e <w0(x),Td(:c)>>, (1.1)

where we identify (7,7%)* = (R%)* = R%. In this work, we need

Assumption 1.1. The given lattice point (—p1,...,—pg) € 7% is a reqular
value of .

Assumption 1.2. The torus action S* x T? is free nearY .

Assumption 1.3. The induced Levi form L is positive near the set Y :=
~1
M (_p17"' 7_pd)

The main result in this work is as follows:

Theorem 1.1. Let (X, T%°X) be a compact connected CR manifold with
o2n + 1, n > 2, admitting a S* x T action, where the S'-part is CR and
transversal and the T%-part is only required to be CR. For the lattice point
(p1,...,pq) € Z¢ and T%-invariant CR moment map u satisfying Assump-
tions [L], and [L3], then we have the following full asymptotic expansion
for the torus equivariant Szegd kernel: On one hand, let 2 be an open set
containing Y, then

1y (2.) = O(m™™)

m,mpi,..., ,Npq

on (X \Q)x (X\Q) ifqe{0,...,n}. On the other hand, for eachp €Y,
we can find a neighborhood denoted by Dy, such that

1) (z,y) = O(m™™)

m,mpi,...,,mpd
on Dy, x Dy if g€ {1,...,n}. Finally, on Dy x D,,

1) (z,y) = ™ @EWp(z, 4, m) mod O(m™>).

m,mpi,...,,MpPq
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Here, the phase function f € €°°(D,x D,) satisfies Imf >0, f(xz,x) =0 for
allz € YND, and dy f(x,x) = —wo(x), dy f(x,x) = wo(x) for allz € YND,;
also, the symbol satisfies
nd
b(z,y,m) € S, *(1; D, x Dp)
e . nd
b(x,y,m) ~ Zm"*%*]bj(x,y) in Sy, > (1;Dp x D)
=0

where bj(x,y) € €>°(D, x Dp), j = 0,1,2,... and bo(xz,z) > 0 for all
r €Y ND,.

We refer the semi-classical notations such as O(m~°), A = B+O(m~>°),

SE (1; D, x D,), and asymptotic sums ~ in SF _ to Section 2.3.

loc

Note that Theorem [T holds on a class of manifolds slightly more general
than Sasakian manifolds, for we only assume the Levi form is positive near
the submanifold Y instead of being positive on the whole X. Also, from
Theorem [Tl we can conclude:

Corollary 1.1. Let (X,T'°X) be an irregular Sasakian manifold and T be
the fundamental vector field induced by the prescribed R-action on X. It is
known that R-action comes from a S' x T%-action. Assume T = poTy +
piTy + -+ + pgTy, where Ty is the vector field induced by S'-action and
Ti, ..., Ty are the vector fields induced by T%-action and jug, i1, . .., ftqg are
real numbers linearly independent over Q. If the lattice point (p1,...,pq) €
7% satisfies AssumptionsLT], [L2, for o := g+ p1p1 +- -+ papa € Spec(T),
{-Il?’ma (X) = {u € € (X) :
Opu =0, Tu = imau}.

(X) is non-trivial as m — oco. Here, Hy o

We now illustrate the strategy for the proof of the theorem. Since X is
NOT assumed to be strongly pseudoconvex in this paper, to establish the
asymptotics of torus equivariant Szegé kernel, we do not study Szegd pro-
jector Hﬁz?mpl,,,,,mp , directly; instead. we need to consider a number A > 0
and examine the Szeg6 projector for lower energy forms H(Sq;,m,mph...,mpd’
which is the orthogonal projection from L%qu) (X) to L(20,q),m,mp1,...,mpd X)nN
E((—o00,A]). Here, E((—00, A]) is the spectral projector and E is the spectral
measure for the self-adjoint operator Dl()q) under Gaffney extension 2.8 re-
spectively. We need to establish the content in Theorem [[T]in the following

version:
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Theorem 1.2 (=Theorem BIH3.2). With the same notations and assump-
tions used in Theorem [L1] and any fized A > 0, on one hand, for any open
set ) containing Y,

) (2,y) = O(m™>)

<A,m,mpi,....,mpq
on (X\Q)x (X\Q) ifqeA{0,...,n}. On the other hand, for eachp €Y,
we can find a neighborhood denoted by Dy, such that

) (,y) = O(m™>)

<A\,m,mp1,...,mpq

on Dy x Dy if g€ {1,...,n}. Finally, on Dy x D,,

IS (z,y) = ™ @bz, 4, m) mod O(m™>)

§A7m7mp17"'7mpd
for the same phase function f(z,y) € €°°(Dy x Dy) and symbol b(x,y, m) €
_d
S;"2(1; D, x D,) in Theorem L1l

loc

We will see in the beginning of the Section 3 that combining the spectral
property for Kohn Laplacian and Theorem for the case ¢ = 1, there is:

Theorem 1.3 (=Theorem B.3]). With the same notations and assumptions
used in Theorem [ILI], then for any A > 0, as m — 400,

(0) — H(O)

<Am,mpi,...,mpq m,mpi,...,mpq"*

Thus, from Theorem [[L3] Theorem actually implies Theorem [Tl

2. Set Up and Notation

In this section, we recall some basic language in CR geometry, definition
and properties of torus equivariant Szeg6 kernel, and tools in semi-classical
analysis and microlocal analysis.

2.1. Cauchy—Riemann manifold and Kohn Laplacian

We follow the presentation in E, Chapter 4] and , Chapter 2]. Let X
be a smooth orientable manifold of real dimension 2n+1, n > 1, we say X is
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a Cauchy-Riemann manifold (CR manifold for short) if there is a subbundle

T'9X c CTX, such that

(1) dime Tp"X = n for any p € X.

(2) TMOX N T X = {0} for any p € X, where TO' X = T} VX,

(3) For Vi,V € €°(X,T0X), then [Vi, V5] € €<(X,T"°X), where [, ]
stands for the Lie bracket between vector fields.

For such subbundle 71X, we call it a CR structure of the CR manifold
X. Fix a Hermitian metric (-|-) on CTX such that T%°X 1 T%'X. For
dimension reason and the assumption that X is orientable, we can always
take a non-vanishing real global vector field 7' (Reeb vector field) such that

for all x € X, we have the orthogonal decomposition
X T X © CT(z) = CT, X (2.1)

and (T'|T) = 1 on X. Denote (-,-) to be the paring by duality between vector
fields and differential forms, and let I' : CT,, X — CT; X be the anti-linear
map given by (u|v) = (u,I'v) for u,v € CT, X, then we can take the induced
Hermitian metric on CT*X by (u|v) := (T~ *|l'"tu) for u,v € CTFX. Put

70X = T(TYX) = (T%'X & CT)" € CT*X, T*1X := T+L0X

and
wo := —I'(T), (2.2)
which is a globally defined non-vanishing 1-form satisfying

THOX T X ©Cwo(z) =CT X, (wo, T X T X) =0 and (wy, T) =—1.

We define the Levi form, which is a globally defined (1, 1)-form, by
_ 1 _—
Lo, ) = 5 (wole), [6,7] ()

where @, % € €°(X,T'0X) such that @4(z) = u € T3°X and 0(z) = v €
T+’ X. Note that by Cartan’s formula we can also express the Levi form by
—1

Ex(u,ﬁ) - 2_2 <dw0(x)7u /\6>7 u,v € TJ}70X'
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In other words,

Take the Hermitian metric on A"CT*X by

<U1/\"'/\Ur|vl/\"'vr>Zdet<<<uj|uk>) >,
jik=1

where u;, v, € CI*X, 5,k =1,...,r, and the orthogonal projection
70D . AICT* X — T .= AT X)

with respect to this Hermitian metric. The tangential Cauchy—Riemann

operator is defined to be
O = w00 o @ : (X, T01X) - ¢°(X, T X)), (2.3)
By Cartan’s formula, we can check that

9, =0.

Take the L2-inner product (-|-) on €*°(X,T**9X) induced by (-|-) via

(fl9) = /X Fl9)dVi, frg € E(X,T00X),

where dVx is the volume form with expression

dVX(.%') = \/det <<% 4 >> dry N - Ndzont
J

61‘k jk=1
in local coordinates (x1,...,T2,4+1), and we write 52 to denote the formal
adjoint of dj, with respect to the L?inner product (-|-). Denote Q9 (X) :=
€ (X, T*9X), then the Kohn Laplacian is the operator

O .= 9,8 + 9,0, : Q09 (X) — QO (X).

We have the following Bochner—Kodaira—Kohn formula for D,()Q), see ,
Proposition 2.3]:
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Theorem 2.1. Let p € X, {e;(x)}7_; be an orthonormal frame of D'
varying smoothly with = in a neighborhood of p, and {L;(x) 1 be the dual
frame of T2'X. Then we have

D(Q) ZL*L + Z ej AN ey ) Lj, Ly + (L) + €(L) + zero order terms.
7,k=1

Here, (L) = > _ja;L;, e(L) = > =1 b;jL; with smooth coefficeints a;
and b; for j,k = 1,...,n. Also, for each j,k =1,...,n, L;k» is the formal
adjoint of the differential operator L;, and 62’* is the adjoint of ex/\ given

by (er N ulv) = (u|ek’ v) for u € T*%X and v € T*O91 X,

2.2. Torus equivariant Szeg6 kernel

From now on, we assume that X admits a torus action in the form of
St x T?. Consider the vector fields

Tou(x) = % ) u(e o x)
=0
and 5
Tju(zx) = 8—6J ; u ((1, e 1) ox) ,
=0

where u € €°(X), z € X, j=1,...,d. Note that Ty and T1,... Ty are the
induced vector fields of the circle action and torus action, respectively. We
also assume that the circle action here is CR and transversal, i.e. Tj satisfies

[Ty, 6> (X, T X)] C €>(X,T""X) (2.4)

and
CTy(z) ®THX ¢ TH'X = CT,X for all z € X; (2.5)
the torus action here is also assumed to be CR, i.e. for all j = 1,...,d, T}

has the property
[Ty, ¢°(X, T X)] C (X, T""X). (2.6)

We choose T to be our Reeb vector field of X, i.e. T := Ty. Accordingly, the

cooresponding dual one form wy is torus invariant, because (ewl7 e ,ewd) o

el = e o (et .. ,ewd). Benefit from the CR and transversal circle action,
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we have the BRT coordinates patch from Baouendi-Rothschild-Treves H,
Proposition I.1]:

Theorem 2.2. Assume X is a CR manifold admitting a CR and transver-
sal circle action. Fixz a point p € X, then there exists € >0, § > 0 and
an open neighborhood D := {(z,0) : |z| <€, |0] < 6} and local coordinates
(1,22, ..., Ton—1,Ton, Tont1) = (21, - . ., 2n, 0) near p, where z; :=x9j_1+ixs;,
j=1,...,n, 0:=x9,41, such that (z2(p),0(p)) = (0,0) and the fundamental
vector ﬁeld induced by circle action is Ty = 596, Also, we can find a real
valued function ¢(z)=>""_ LA 1Zi2+0(|2]3) € €°°(D, R), where {Ajtj=y are
eigenvalues of the Levi form of X at p, such that {Z —az 192k) o }j .

0z; 00
forms a basis of T°Xx for all x € D. Moreover, we can take 6 = m when
the action at the point p is free.

By ([24) and (Z.8)), we can check that 0,T; = T;0, for all j = 0,1,...,d.
For any given lattice point (py,...,pq) € Z%, we put

009 (X):={u € QO (X): —iTou=mu,—iTju=mpju,j=1,...,d}.

M,MPL,...;MPg
For 0y: Qﬁg’%ph__,mpd( X)— -l %;11), mpX), we can take the Jj-subcomplex

(61,, ol n%pl, mpg (X )) and the corresponding Kohn-Rossi cohomology

_ ke @y : Qs mpa(X) = Qi) mpa (X)

d
0, 1 0,
Tmdy : Qs s (X) = Q00 e (X)

: (
b,m,mp1,...,mpq

From now on, we pick a S! x T%invariant Hermitian metric (-|-) on CTX.

Take the restriction 9., mp1,...,mpg = = 0y |00 , then we can check
e (. Qm, STNPY 5eeey mpd(X)

that the formal adjoint of gb,m,mpl,...,mp , satisfies

=% 0,41 0,9
bm,mp1,...mpg ab ’Q(O D mpg (X) an,mpl),---,mpd(X) - Qﬁn rr)tph ,mpd(X)'

So we can consider the Fourier component of Kohn Laplacian by

(9) ) .00,9) (0,9)
O mprecnps= O 0O () SO0, ()
M,MPT ey mpd( )

We pause here for a while to handle some issue on extending Kohn
Laplacian to L?-space as a self-adjoint operator. Let L(o )( ) to be the
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completion of Q%9 (X) with respect to the torus invariant L*-inner product
(:|') induced by (:|). Denote |jul|% := (ulu). Define the weak maximal
extension of Dl(f) by

Dom(Dl()qr)naX) = {ueL%Om (X):D£Q)ueL%07q) (X) in the distribution sense},
D,()qil all = Dl(f)u in distribution sense, for all u € Dom(D,()qg[1 a)  (2.7)

as in , Section 3.1]. For such extension, Dl(f) may not be a self-adjoint

operator, because it is non-elliptic, and it could also be non-hypoelliptic. So

in general we have to consider the Gaffney extension as in , Proposition

3.1.2], and this extension can make Dl()q) to be self-adoint. Precisely, take

the maximal extension 9, := gbmax and the Hilbert adjoint of O, on the
L?-space by

Fyr : Dom(Ty ) C Lig 41y (X) = L (X)),
where the domain is given by

Dom(gzyH) ={v e L(20’q) (X) : for all u€Dom(d), the operator urs (Jyulv)

is bounded linear}.

By Riesz representation theorem, for all v € Dom(éZ} 1), there is a w €
L(20,q)(X) such that (Jpulv) = (ulw) for all u € Dom(d,), and gzﬂv = w.
Then the Gaffney extension is given by

Dom(D,()q)) :={u € Dom(9y) N Dom(g;;H) :Opu € DomgaH,g;HUE Domdy},
O8u = (35, 140p + 0Dy )us for all u € Dom(T). (2.8)

Let Q07 (X) = {u € QOI(X) : —iTyu = mu} and L% | (X) be the
completion of Q0 (X) with respect to (-|-). We need the following:

,m

Proposition 2.1. The Gaffney extension and the weak maximal extension
(@ . ;0 2 2
for 0,7 coincides on L(qu)’m(X), and hence on Ly o 0 (X).

Proof. On one hand, by 527H\Q(O,q)(x) = 527 for all v € Q0.9 (X),

(Dl(f)u]v) = (u]Dl(,Q)v) = (u]Dl(fr)naXv) =: (D(Q) ulv), for all u € Dom(Dl()Q)),

b,max
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S0 Dl()?r)naxu = Dl()Q)u € L%qu)(X) for u € Dom(Dl()Q)). This implies that
Dom(Dl()Q)) C Dom(Dl(fgmz). On the other hand, though Theorem 2.1] sug-

gests that Dl(f) is not an elliptic operator (since the principal symbol
O (, \wo(x)) =0, for all A € R\ {0}), the operator Dl(f) — T2 is elliptic.

After applying the elliptic regularity for D,()Q) — T¢ on the space L%o 2 (X)),

we can check that

Dom(Ty" JNLZ (X)) =HE . (X).

b,max

Here, we let Hf (X) to be the Sobolev space of order s for (0,q) forms

on X with respect to a Sobolev norm || - ||s induced by the invariant L2-

inner product (-|-), and H(So,q),m(X) =H ) (X) HL%quLm(X). Accordingly,
Dom(Ij% ) N L2 o (X) = HE | (X) C Dom(d,); also, by Friedrichs
lemma , Lemma 3.1.3], for v € H(20 O

(X), we can find a sequence
{v;32, C Q09 (X) such that v; — v in L(2O,q)(X) and 521)]- — Jyv in
L%o q—l)(X) as j — oo. So for all u € Dom(dy), there is a constant C :=

|8, v||x < oo such that

|@sulv)] = lim [@pulvy)| = lim |(ul8yv))|
j—o00 j—o0
< Jim. lull x 1055l x = 1B0llx[lullx < Cillullx.
Thus,
Dom(Dl()(,]I)nax) N L%O,q),m(X) = H(QO,q),m(X) c DOm(Eb) N DOID(E;;H)

Next, we check that if v € Dom(D(Q)

b,max

there is a constant C5 > 0 such that

)N L%O,q)ym(X) - H(zo,q),m(X)v then

(Opu|Oyv)| < Col|ul|x for all u € Dom(dy).

If this is true, then 0 : Dom(D(q) ) — Dom@Z,H). Now, let w := Opv €

b,max
H (10 g+1) m(X), by Friedrichs lemma again, we can take a sequence {w;}72; C

Qe+ (X) such that w; — w in L%qu) (X) and dyw; — dyw in L%qul)(X).

Then for a constant Cy := |9, w|x < oo,

|(@sul@pv)| = lim |(@pufwy)| = lim |(ulFyw))|
Jj—00 j—o00
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. —* %
< lim jul|x[|0pwjllx = [[Oywllx[lullx < Coflullx.
j—o0

Similarly, we have 527 I Dom(D(q) ) — Dom(d}), so we can conclude

b,max

Dom(D(Q)

b,max

) N L2 g).n(X) € Dom(T§) N L2, ) (X). O

With the proposition, from now on, we take the extension

(@) . (@) 2
Db?mvmplv"vmpd : Dom(‘:‘bvqmvmplvvmpd) C L(qu)vmvmpl7"'7mpd (X)
2
- L(0=Q)7m7mp1="'ampd (X)
where
(@) o 2 @ 2
Dom (vamvmpmmpd) = {u € Ly (X) : OWu e L2 (X)}
2
mL(qu)7m7mp17"'7mpd (X)
and D(q) U= D(q)u in the distribution sense for all u €
bm,mp1,...,mpq b
Dom (Dl(fg%mphwmpd), to extend Dl()?r)n,mm,...,mz)d' We have some standard

(@)

spectral properties for Ll

Theorem 2.3. For

(9) . (9) 2
Db7m7mp17"'7mpd : Dom <|:|b7m7mp17"'7mpd> - L(O7q)mamp17"'=mpd (X)’
we have
(1) Dl()(,]"’)n,mpl,...,mpd s a non-negative and a self-adjoint operator.

(2) The spectrum Spec(D(q)

b7m7mp17"'7mpd
is a countable and discrete subset in [0,00).

(3) For each u € Spec(J}

bvmvmpl7"'7mpd)

) consists only of eigenvalues, and it

, the space of eigenforms

Hgv,uvmvmplv'“vmpd(X) = {u € Dom(Dl()?T)nymph,mpd) : ‘:‘l()q)u = /"Lu}
is a finite dimensional subspace of Qﬁ,?;?,lpl,m,mpd(x),
(4) Hgvmvmplv"'vmpd (X) = szmvmplv'“vmpd (X) = H27H:07m7mp17"'7mpd (X).

Proof. The argument is almost the same as the case E, Section 3] when
only circle action is involved, and for the modification to torus action we
refer to the proof in , Section 4]. O
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Let ng = dim?—lg’m’mpl’m < 00, and the torus equivariant Szeg6

mpg
kernel function

g

DI, @)= S @R = Yo (@] @) @9)
j=1

j=1

where { fq} 9, is an orthonormal basis for 1} For an open set

b,m,mp1,...,mpg"

D C X, take {e;(x)}]_; varying smoothly for z € D such that {e;(z)}]_,
is an orthonormal basis for 7o' X at every x € D. For a strictly increasing
index set J = {ji1,...,jq} with [J| = ¢, write e/ := ej, A--- Aej, and for
any u € QOI(X), write u(z) = ZIJ‘:q uy(z)e’ (z), where E\JI we mean
the summation only over a strictly increasing index set. Then we can find
the torus equivariant Szegd kernel function is the peak function similar in

ﬂE, Lemma 2.1], i.e.

(a) ' 2
T D s (8)= D SUD { [ @) 5w EH 1y (X JulFe =1}
|7|=q

Also, for all ¢ =0,...,n, the torus equivariant Szegé kernel

H(q) . mpyq (:Ca y) €EE™ (X X X, HOm(T*O’qX’ T*quX))

m,mpi,..

is the distribution kernel of the orthogonal projection

(X)

m,mp1,..., m,mpi,...,,MpPq

i) — L(20’q)( ) — HD)

with respect to (-|-). By Theorem 23] the projection is a smoothing operator,

and we can check that locally on D, we have the expression

9D, mpe@y) =S ST @y @) © (€ ()"

[|=q |/|=q
(2.10)

in the sense that

ngqz)mpl, ,mpd Z Z </ H'EZ, SMP1y...smpg,l, J(x’y)uJ(y)dVX(y))el(x)

|11=q|71=q
(2.11)

foru = Zi Jj=q U g€’ € QOD(X). We can check that for all strictly increasing
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index set I, J, |I| =|J| =q,

!/
> (D@ ) @) (@) = TD, (@), (212)
[7|=q

Here, T1(%) (x,y) € €°(D x D) for all strictly increasing index

m,mpi,....,mpg,1,J

set I and J, |I| = |J| = q. Moreover, we can also check that for all strictly

invrasing index set I and J, |I| = |J| = ¢,

g
I8 g0 2:8) = 2 E1 @) (213)
j=1
where qu = ZTK‘:CI fﬁKeK,j =1,...,ng, is an orthonormal basis for
%g7m7mpl7"'7mpd (X).

2.3. Notations in semi-classical analysis and microlocal analysis

We here present some convention in semi-classical analysis and microlo-
cal analysis ﬁ, B, Iﬂ] to describe and calculate the asymptotic behavior of the
torus equivariant Szeg6 kernel. Let U be an open set in R™ and let V' be an
open set in R™. Let £ and F be vector bundles over U and V, respectively.
Let ¢5°(V, F) and €°°(U, E) be the space of smooth sections of F' over V'
with compact support in V' and the space of smooth sections of E over U,
respectively; 2'(U, E) and &'(V, F) be the space of distributional sections
of E over U and the space of distributional sections of F' over V with com-
pact support in V', respectively. We say an m-dependent continuous linear

operator
Ay 65°(V, F) — 2'(U,E)
is m-negligible if

(1) for all m large enough A,, is a smoothing operator, which is equivalent

to (, Section 5.2])

Ay E'(V,F) = €*(U, E) is continuous
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or its Schwartz kernel A,,(x,y) is smooth, i.e.
Ap(z,y) € €U x V, ER F*),

where E'X F* is the vector bundle over U x V with fiber Hom(Fy, E,)
at each (z,y) e U x V.

(2) for any compact set K in U x V, multi-index «, 3 € N} and N € Ny,
where Ny := NU {0} and N := {1,2,3,...}, there exists a constant
Ck a8~ > 0 such that

|8§‘85Am(3:,y)| < Cgapnm ™ for all (z,y) € K, m large enough.

From now on, we also use the notation A,,(z,y) = O(m~=*°) or A,, =
O(m~2°) on U x V for an m-negligible continuous linear operator A,,. More-

over, for two continuous linear operators A,,, By, : 65°(V,F) — 2'(U,E),

we write
Ap(z,y) = Bp(x,y) mod O(m™ ) on U x V
or
Ay = By mod O(m™>)on U x V
if

(Am = Bu)(w,y) = Om™) on U x V.
Let W be an open set in RY, we define the space

S(L; W) :={a € €°(W) : sup |0%(z)| < oo for all o € NJ'}.
zeW

Consider the space S__.(1; W) containing all smooth functions a(z,m) with
real parameter m such that for all multi-index o € Név , any cut-off function
X € 65°(W), we have

sup sup |97 (x(z)a(z, m))| < occ.
meR zeW
m>1

For general k£ € R, we can also consider

Sﬁc(l;W) = {a(z,m) : m*k‘a(x,m) € S&C(l;W)}.
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In other words, S (1;W) takes all the smooth function a(z,m) with pa-
rameter m € R satisfying the estimate: for all x € W, multi-index o €
Nf and x € €5°(W) with supp(x) C K, K is a compact subset of W, then
there is a constant Cx o > 0 independent of m such that

102 (x(x)a(z,m))| < Cam®, for all m > 0.

For a sequence of a; € Sloc(l;W) with k; decreasing, k; — —oo, and a €
Sk (1, W). We say

loc

m) ~ Zaj(x,m) in Sllzoc(l W)

if for all [ € Ny, we have
I

a— Zaj e Sl (1, W).
=0

In fact, for all sequence a; above, there always exists an element a as
the asymptotic sum, which is unique up to the elements in S| >°(1; W) :=
NkSE.(1;W). The above discussion can be found in ﬂ and all the nota-

tions introduced above and can be generalized to the case on paracompact
manifolds.

Let M be an open set in R”, R” := R"\ {0}, N := {1,2,3,...} and
Np := NU{0}. Let p,d be real numbers such that 0 <¢§ < p < 1.

Definition 2.1.

(1) The symbol space with order m in type (p,d) on M x RY is denoted by

(M x RY), which is the space of all a € €>°(M x RY) satisfying: for

all compact subset K in M, and all multi-indices o € N, 3 € Név , there
exists a constant Cx o g > 0 such that

sup |0905a(x,0)| < Cra,6(1+ |0])7 71000,
(z,0)e K xRN

(2) A function ¢(z,6) € €>°(M xRY) is called a phase function if it satisfies:
Im(¢) > 0, ¢( M) = )\gb(x 0) for all A > 0 and every (x,0) € M x RV,

and d¢ = Z 8;5 dx; + Z 8(‘5 df; # 0 everywhere.
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mj

Let a; € Sp’(;(M x RY), j € Ny and m; N\, —00 as j — oo, then there
exists a € S;”g unique modulo S~°(M x R¥) such that

a— Z aj GSZL; for all k € No.
0<j<k

o0
We call such a the asymptotic sum of aj, denoted by a ~ > a;. The
j=0
space of classical symbols ST(M x RY) collects all a(z,0) € STo(M x
RM) such that a ~ >0 am—j(z,0), where the function a,,—; € €°°(M x
R™N) is positively homogeneous of degree m — j in the variable 6 # 0. Let
the symbol a € ST(M x RY) and ¢ be a phase function on X x RN, If there

is k € Ny such that m 4+ k < —N, then the oscillatory integral
I(a,¢) := / @0 gz, 0)do
RN

converges absolutely, and is a function in €*(M) . Moreover,

Proposition 2.2. For any m and a € ST(M x RY), there is a unique way
of defining I(a, ) € 2'(M) such that
(1) I(a,¢) = [pn e @ a(z,0)dd when m < —N.

(2) The map a — I(a,) is continuous.

For open sets U C R™, V C R", by the Schwartz kernel theorem ﬂl_AI,
Theorem 5.2.1], there exists a bijection between K4 € 2/(U x V) and a
continuous linear map A : €5°(V) — 2'(U) by the correspondence

(Au,v)p = (Ka,v Q@ u)uxv

forallu € €5°(V), v € €5°(U), where (-, -) means the pairing by duality and
the tensor product v ® u is defined (v ® u)(x,y) := v(z)u(y) € €5°(U x V).
We call K4 the distribution kernel of A. Let ¢ be a phase function on
(UxV)xRN, and a € Sm((U x V) xRY). A continuous linear operator
A:65°(V) — 2'(U) is called a Fourier integral operator if its distribution
kernel is an oscillatory integral of the form

Ka(z,y) = /ei¢($’y’9)a(w,y,9)d9-
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We formally write
Au(x) = // @Yz, y, 0)u(y)dydd, for all u € €5°(V).

In particular, when U = V and ¢(z,y,0) = (z — y,0), A is said to be a
pseudodifferential operator. We say a Fourier integral operator is properly
supported if the projections 7 : supp(K4) — U and 7y : supp(Kp) — V are
proper maps. The discussion here can be found in ﬂg], and all the notations

introduced above can be generalized to the case on manifolds.

In the rest part of this section, we collect the essential tool in Melin—
Sjostrand theory on Fourier integral operators with complex phase ﬂﬂ] For
z=ux+1iy € C, we write % :z%((%—i—%(%) and% =1 @—l@>. Let
W C C" be an open set, we say a f € €°° (W) is almost analytic if for any
compact subset K C W and any N € Ny, there is a constant Cy > 0 such
that

aof

a_(z) < Cy|Imz|N for all z € K.
Z

We say two almost analytic functions f; and fs are equivalent, or f; ~ fo, if
for any compact subset K C W and any N € Ny, there is a constant Cy > 0
such that

I(f1 = f2)(2)] < Cy|Imz|Y for all z € K.

For Wg := W N R", then for f € €°°(Wgr), f always admits an almost
analytic extension up to equivalence. One way is again via the Borel con-
struction, for example, see ﬂa, Section 2.2]. The following proposition is

about the critical point in the sense of Melin—Sjostrand:

Proposition 2.3. Assume f(x,w) is a smooth complex-valued function in a
neighborhood of (0,0) € R and that Imf > 0, Imf(0,0) = 0, f2(0,0) = 0,
det f (0,0) # 0. Let f(z,w) be an almost analytic extension of f to a
complex neighboehood of (0,0), where z = x + iy and w € C™. By implicit

function theorem, we denote Z(w) to be the solution of

of

B (Z(w),w) =0
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i a neighborhood of of 0 € C™. Then when w is real, for every N € N,

there is a constant Cn > 0 such that for all w € R™ near 0,

2 (fzw)w) o (fzw)

Z:Z(w)> ‘ < CN|ImZ(w)|N.
Moreover, there are constants C, Cy > 0 such that

Imf(Z(w),w) > C1[ImZ(w)|?, we R™, w near 0

and

Imf(Z(w),w) > Cy in;f2 (Imf (z, w) + |dy f (z,w)[*) , w € R™, w near 0
Te

where Q0 is an open set near the origin in R". We call f(Z(w),w) the

corresponding critical value.

We end this part by the Melin—Sjostrand complex stationary phase for-
mula , Theorem 2.3]:

Theorem 2.4. Let f(z,w) be as in the Proposition 23l Then there are
neighborhood U and V' of the origin of R™ and R™, respectively, and differ-
ential operators Cy; in x of order less equals to 2j with smooth coefficient
of w eV such that

‘/ et @0y (2, w)da

- (det <M>> eitf(Z(w),w) Z_(Cf,jﬁ)(Z(w),w))t_j (2.14)

21 -
Jj=0

n

is bounded by Cnt~N"2, where Cx is a positive constant, t > 1 and u €
65°(U x V). Here, the function

(det (tf;;fg),w))) .

is the branch of the square oot of the

(det (tf;;gg),w))) B

=



“BN14N33” — 2019/10/14 — 9:25 — page 351 — #21

2019] ASYMPTOTICS OF TORUS EQUIVARIANT SZEGO KERNEL 351

which is continuously deformed into 1 under the homotopy

se0,1] — —i(1 —s)f" (Z(w),w) 4+ sI € GL(n,C).

z

We note that all the discussion above can be generalize to the case on

manifolds.

3. Asymptotics for Lower Energy Torus Equivariant Szeg6 Kernel

In this section we study the asymptotics for lower energy torus equiv-

ariant Szegd kernel. First, we fix a number A > 0. Denote

q _ q
/Hbékymmm,---:mm (X) = EB /Hbauam,mpl,---,mpd (X)
0<p<A

where the space ’Ha %m’mpl’m,mpd(X ) is defined as in Theorem Apply
Theorem 23] it is clear that H] _, —

subspace of Qgg;?%pl,__,mpd(X). Consider the spectral projector

py (X) is still a finite dimensional

' L2 (X)) = HY (X).

<Ammpi,...mpa " (0,9) b,<Am,mp1,...,mpq

Denote H(q)

<A\,m,mp1,...,mpq
(q)
<\,m,mp1,...,mp,

(z,y) to be the distribution kernel of the spectral

projector II .- Let Ny == dimc Hg,g)\,m,mpl,. X) < oo and

X). De-

"ampd(

qa  Ng : q
{f2,,};24 be an orthonormal basis for the space Hy <y 1 i (

fine the torus equivariant Szegé kernel function on lower energy forms by

Nq Nq

I s @) 1= D U5 @ 1= D (7 (@) |7 (@) (31)
j=1 g=1

where {fZ, ; jy:ql is an orthonormal basis for H} _, mpr....mpy (X )- We note

that the relation ([Z3) and (ZI2) in Section 2.1 also holds here: for an

open set D C X, we take {e;(x)}]_; varying smoothly in z € D such
that {e;(z)}}_; form an orthonormal basis of T X for every z € D. For

a strictly increasing index set J = {ji,...,jq} with |J| = ¢, if we write
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e’ :=ej N+ Aej, then

(q) _ ! ) I J(*
3 im0 = D D T i mpar,a (@ 0)e (2) @ (7 (1)

[11=q |7I=q
(3.2)

in the sense that

H(CI) u(x)

<A\m,mp1,...,mpq

Z > ( / H(<qmmp1 ..... mpd,f,J(%y)uJ(y)de(y)) el (z). (3.3)

[1=q |J|=q

for u = Z"ﬂ:q uye’ € Q09 (X). We can check that

/
ST e @0 @) (@) =TID (@) (3.4)
|7]=q

(a)
Here, Hg,\,m,mpl,---,mpd,LJ

set I,J, |I| = |J| = q. Moreover, we can also check that for all strictly

(x,y) € € (D x D) for all strictly increasing index

increasing index set I, J, |I| = |J| = ¢,

(9)
H<)\mmp1, ,mpd,I,J Zf<)\j I f<)\j J(y) (35)
where fg/\j = ZTK‘:qf%AJ,KeK, j=1,...,N,, is an orthonormal basis for

Hb <\,m,mp1,.. pd(X)'

We divide our discussion of Szeg6 kernel on space lower energy forms
into the cases of the one away from Y and the one near Y, where YV :=
w1 (=p1,...,—pq) define by the torus invariant CR moment map

Wi X > RY pla) = (<wo<x>,n<x>>, - <wo<w>,Td<x>>),

satisfying Assumption [LT], and On one hand, for the case away

from Y, we can estimate the bound sup |u(z)| for the functions u €
xzeD

DNy =0
Hy < Ammpy.....mpy (X) With |ul[3% := (ulu) = 1 by Bochner formula of Dl()q)
and some standard PDEs argument. Combine with the relation ([B.1]), we

can show that:
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Theorem 3.1. For any open set £ containing Y,

H(Q)

<\,m,mp1,...,mpq (z,y)

=0(m™ ™)
on (X \Q)x (X\Q)ifqe{0,...,n}.

On the other hand, for the case near Y, if we also assume the Levi form

is positive near Y, then we can apply the Boutet—Sjostrand type theorem
, Theorem 4.1], i.e. in local picture H(f;\(:c, y) is in the form of a complex
phase Fourier integral operator, and we can study the asymptotic behav-
ior of Hg\,m,mpl,..
complex stationary phase formula. Precisely, we have

iy (x,y) using integration by parts and Melin-Sjostrand

Theorem 3.2. For each p € Y, we can find a neighborhood denoted by D,
such that

H(Q)

<\,m,mp1,...,mpq (z,y)

=0(m™>)
on D, x D, if ¢ € {1,...,n}. Finally, on D, x D,

©

<Am,mpi,...,mpq

(z,y) = ™ @bz, y,m) mod O(m™>).

Here, the phase function f € €°° (D, x D)) satisfies Imf >0, f(xz,z) =0 for
allz € YND, and dy f(x, x) = —wo(x), dy f(x, ) = wo(x) for allz € YND,;
also, the symbol satisfies

nd
b(z,y,m) € S, *(1;D, x Dp)

loc

o0
. _d
b(x,y,m) ~ Zm"*%*]bj(x,y) in SIT(L)C *(1; Dy x Dy)
§=0
where bj(x,y) € €>(Dy, x Dp), j = 0,1,2,... and bo(x,z) > 0 for all
r €Y ND,.

Finally, we show that the asymptotic behavior of kernel on lower energy
forms Theorem 3.1, Theorem actually coincide with the one for genuine
kernel Theorem [[.1] as m — +o0. The precise statement is as followed:

Theorem 3.3. Under the same assumption in Theorem [T, then for any

A>0, as m— 400

7 — 171©
d

m,mp1i,...,mp <Ammpi,...mpq’
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Proof. Decompose the space

0 0 0
/Hb,g)\,m,mpl,...,mpd (X) = Hb,m,mpl sy MPY (X) D Span0<u§)\Hb,u,m,mp1 ..... mpg (X) :

where

%gé/\,m,mpl,---,mpd(X) = @ {u e ng?:gr)zm ..... mpd(X) : Dl()q)u = pu}.
0<p<A

Apply Theorem and Theorem for the case ¢ = 1, then by the com-
pactness of X we know that

. 1 —
dlmC H;,g)\,m,mph...,mpd(X) - ATrH(S,)\,m,mpl,,,,7mpd(x)dVX(x) < C’NTn N'

After fixing an NV € Ny, we know that as m — +o0

/Hl%,gk,m,mpl,...,mpd (X) = {0}

Since the group action is required to be CR, Tjgb = 5ij for all j =
0,1,...,d. Combine this with Dl()q+1)5b = ngl()Q), we can find that for any
u € HY (X),0< <A,

b:/“b7m7mp1 yeees TP

9 1
abu € /Hb,gk,m,mpl,...,mpd (X)

for m large enough. However, this means that for some 0 < p < A, for m
large enough

pu = Dl()o)u = 52 (a)u) =0,

ie. Span0<ug/\7-l8%m7mm7___’mpd(X) = {0} as m — +4o00. Therefore, as
m — +00

bvmvmpl ----- mpq

Thus, for any A > 0, as m — 400

11 — Hg o 0

m,mpi,...,,npPq
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3.1. The asymptotic behavior away from Y

In this section we prove Theorem Bl Fix a number A\ > 0 and a point
p ¢ Y. Since Y is closed, there always exist a neighborhood D, near p and
aj€{l,...,d} such that

(wo(x),Tj(x)) # —pj for every x € D,,.
We may assume j = 1, i.e. p; + (wo(z), T1(x)) # 0 for all € D,. Consider
the vector field
F:= Tl + <WO)T1>T05
which is in € (X,TH°X & T%'X) because (wo, F)) = 0. We hence decom-
pose F' = L + L, where the vector field L € €> (X7 TLOX). From now

mpy (X)) with |ul3% = 1. Take a cut-off

function x € €5°(D,) with x = 1 near p. By Fourier inversion formula, we

on, we assume u € H; <Ammpr
<A mmpi,.

can see the multiplication operator x- as a properly supported zero order

pseudodifferential operator. Precisely, for any v € 65°(D))

¥0la) = gy [ [ SOty

If we also regard F' as a first order differential operator, then

F(xu) = x(Fu) + [F,x]u
- (’Lm(pl + <w07T1>) Xu + [Fv X]uv (36)
Cause we assume p; + (wo, 1) # 0 on D, from ([B.6]) there are constants
C,Cpy > 0 such that
1

ek < oy (IFGa) B + 1F xJul)
1 _
< = (L0l +IT0w % + Gollulk),  (37)
where [+, -] denotes the commutator between differential operators and we see

[F, x] as an order 0 properly supported pseudodifferential operator admitting
L? continuity (See |9, Theorem 3.6 and Theorem 4.5] for example). From now

on, we use notations such as Cy,C1,C5,... or C',C”, ... to denote positive
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constants independent of m. We need the following L?-estimate to control
B.D):

Proposition 3.4. For a given vector filed Z € €(X,T'°X), there is a
positive constant C' = C'(Z) such that

12613 +1Z61% < ¢ ((T§76]0) + I(Toslo)] + 1)
for every ¢ € Q(OO’Q)(DP).

Proof. First of all, for any p € X, let {€;(x)}]_; varying smoothly in =

near p such that {€;(z)}7_; be an orthonomal frame of ;%' X for all z near

p and {fj};‘zl be its dual frame on T4 X, z is near p. Since Lj’s are first
order differential operators, using integration by parts we can find the formal

adjoint f;’s and L7’s of L;’s and L; are

. _
L;=-L;+E; L;=-L; +Ej,

respectively, where F; are some terms of zero order. Now, we rewrite The-

orem [2.1] into the form
n n n
O =N"TiT+ > a;L + Y 0L+ cTo + d,
j=1 j=1 j=1

where aj, b;, ¢j , ¢ and d are smooth coefficeints, j = 1,...,n. Then for
¢ € Cg()oo(Dp)v

(T579]0) zz IZi0l% - Z (@;L;819)| = 3 |(bs L3619

J=1

— [(cTogl¢)| — [(do|o)]
Note that for any € > 0, we have

[(ajLiolo)| < [(Lja;ole)| + [([az, Li]olo)|
(a;0|L}0)| + Cullol%

(a; ¢ ;)| + (a;¢[E;0)| + Cull¢ll%

C —
< 1l + ellZellx + Callglk + Cullelk

ININ TN
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and
— — 1
2 2
(b5 Lj919)| < Caell Lol + lI¢l,
and

(cTodlo)| < G5l Tod | - ll#ll, I(del)] < Csll¢ll-

Take e small enough, then we get

IZi6l? < Cr (O 6l6) + [(Todlo) | + 6% ) (3.8)

and sum over j we have

1Zl1 < €4 ((C0616) + |(Tuolo)] + 1015 ) (3.9
So it remains to estimate ||L;¢[/% and ||Z¢|%. Observe that

IZ;015% =I(L;L;¢l0)]
<I(L;Ljold)| + (L, Ls]o|e)]

(Ere o))

k=1 k=1
<(IZ;¢l% + Csliol%)

1 _
+ Ca (AL + FolB + (1Tl + 615 + Toole)] ).

<|ILjol% +

where fir, gr, ¢ are some smooth coefficients. Choose € small enough, sum

over j, and apply ([B.8]), then we can also get
12611% < C1o (O 616) + (Toslo)| + 161 ) - (3.10)

Hence,
1Z6l% + 1Z61k < ¢ (O 9l6) + I(Toslo)| + Ik ) - =
Recall that from (3.1) we have

1 _
Ik < = (LGl + Il +Co) (3.11)
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and now Proposition B.4] implies that

HL(XU)Hg("‘HE(XU)Hg(‘FCOSC'((Déq)(Xu)\xu)—l—(To(xu)\Xu)—i—llxu]@()—i—Co.
(3.12)

We now estimate all terms in ([B.I2]) one by one. First, we have

(O (xw)xw) = (O ulxu) + (1O, xJulxu)

n

< Mixul% + << chLj + Z d;L; + 6T0>U|XU>

j=1 j=1

IN

Mixull% + ((chl)j + Zdjfj + eT0>ulxu>

J=1 J=1

Mol + ) I Lyulxu)l + Y |[(dsLyulxu) | + [(eToulxu)]  (3.13)

<
j=1 j=1
for some smooth coefficeints ¢;, dj;, e, 7 =1,...,n. Note that
Ciy 1o 20 112
|(eToulxu)| = |(eulmxu)| < == |lullx +em®[Ixullx; (3.14)

and for all j =1,...,n,

(e Lyulxw)l = [(cjulLi(xu))| + [(lej, Llulxw)]

C _
<1ww§+qw¢mm&+cmmw§0

€

IN

€

Cly
+( el + ellxul%

Cr2 + Cy

= ¢|[L;(xw)[% + (Cize + ) xul &k + lull%, (3.15)

and similarly

Ci5 + Cry

[(diLjulxu) | < el Li(xu)|% + (Croe + €)l|xullk + lull%- (3.16)

Second,

IN

| (XToulxw)| + [([To, x]ulxw)]
< mxullx + I[Zo, XJullx - [[xullx

|(To Oxu) [xu)]

A
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Cis
< bl + (Ll + el ). @7
Therefore, ||L(xu)|% + [|L(xw)|% is bounded above by
C" ((m+(m? + Cro)e) Ixullk +e (1L )i + 1L xw) 1) +Caoe ™ ull%) -

for some constant C’ > 0 independent of m and u. Take € small enough
and sum over j, then when m large enough, there is also a constant C” > 0

independent of m and u such that
ILOca) % + L0k < O ((m+em?)|xullk + € Hlul%)
holds. Back to the estimate (3.11]), i.e.
Om?|[xul% < [LOxw) % + IIL(xw) % + Co.

Recall that we assume |u||% = 1 here, so if we take a suitably small € such

that e < %, then when m large enough we can find

Proposition 3.5. For a point p € Y and D, a neighborhood of p with
D,NY =0, if we fix a number X\ > 0, then for each function x € €§°(Dp)

and g-form u € H} Ammpr . X) with |ul|3% =1, we can find a constant

mpa
Co,1 > 0 independent of m and u such that as m — +o0

1
< .
Iully < g

)

In fact, we can modify the above argument and improve the estimate
Proposition

Proposition 3.6. Assume the same p, D,, u in Proposition Bl For each
X € 65°(Dp) and any N € Ny, we can find a constant Cy y > 0 independent

of m and u such that as m — +oo

< ——m.
Il < g

To see this, we need to look back the estimate we did before, i.e. the

one appeared in [B37), BI2), BI3) and BI7). First, take another cut-off
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function 7 € €5°(D,) with 7 = 1 near supp(x), observe that ([B.7) can be

reformulated as

1
el < s (IFGeru)l + I, drul)
1 —
< o (LGl + Tl + Collrul}) . (3.18)

Note that (3I4) can be also viewed as
Co 2 2 2
|(eToulxu)| = [(erulmxu)| < —|rulx +em”[xullx-

Similarly, we rewrite (B.15]), (316]) into

|(¢j Ljulxu)| = |(¢j7 Ljulxu)]
< |(egrul L3 ()| + 1([eg7, Lylulxw)]

Cro -
< (L2l + e (1T 0l + Conlali) ) + 20l -l

= e[ L;(xw)llx + %HWH%( + Cuzellxullx +2C1aflullx - Ixullx, (3.19)
and
|(djLjulxu)| < EHLJ'(XU)||%(+%||7'UH§(+0165||XU”§(
+2C17|ullx - Ixullx, (3.20)

respectively. Also, we take ([BI7) in the form of
|(To (xw) [xu)| < mllxulls + 2Cslullx - [Ixullx- (3.21)

Therefore, we have a slightly different upper bound

C' ((m+ (m* + Cs)e) [Ixullk + e Hrullkx + e (II1L; xw)llx + 115 (xw)|% )
+2C19||ullx - [Ixullx) -

for ||L(xu)||% + [|L(xu)||%. Take e small enough and sum over j, then for

all large enough m,

IZOen 1% + IZOca)lIx
< C" ((m+em?) Ixulk + € Hrullk + 200 )ullx - Ixullx) -
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From (B.I]])

Cm?|Ixull% < IL0cw)ll% + L)% + CollTullk
we can take sutibly small € such that as m large enough

m?lxulk < O (¢ Hirullk + llullx - lIxullx + llrulk)

1 1
< C/// + +
B (60071(7')77”02 Co,l(x)m 0071(7)m2)
1
< . 3.22
< o (3:22)
’2
So [[xullx < - L and we can inductively apply B22) to get Proposition
0,3M2
B i

Finally, for p € Y, we take neighborhoods O, € D,, of p where D,NY =
(), and pick a bump function x € 65°(D,) with x =1 on O,. Denote || - ||x
to be a torus invariant Sobolev k-norm induced by (:|-). After applying the
Garding inequality to the 2k-order strongly elliptic operator (D,()q) — T3)*,

we have
lullf < ¢ (O - ) *ulu) + Jull% ) = O(m*).

Similarly, with the help of elliptic estimate on (Dl()q) — T2k, for large enough

m

IN

Il < O (O T3 vulxu) + Ixul)
Ch (@ = 1) ) + ([(©F = % ] ) + xulk )

< (O m il + fulbws Iculx + Il ) - (3.23)

IN

By Proposition 3.6 for any N € Ny, there is a constant Cj xy > 0 indepen-

dent of m and w such that
Ixullr < Cram ™, (3.24)

for all m large enough. Combine ([B.24]) with Sobolev inequality, for all
x € Op, p ¢ Y, k large enough, then for any N € N, there is a constant
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Cny > 0 independent of m and u such that
u(z)|; = [x(@)u(@)]; < ClIxulli < Cym™, (3.25)

for all m large enough. Now, consider a cut-off function 7 € €5°(D,), 7 = 1
on supp(y). For any differential operator P : Q(()O’q)(Dp) — Q09(D,) of
order [, where Q(OO’Q)(DP) = 6§°(D,, T*1X). Note that

Pu(z) = x(x)Pu(z) = P(xu)(z) + [x, Pl(Tu)(2)-

Thus, similar in 323]), for every x € O,, p ¢ Y, k large enough and any
N € N, there is a constant Cy > 0 independent of m and u such that

|Pu(z)li, < CF (IPOcw)lli + 1D, Pl(ru)[)
C¥ (Ixullz s + lIullesir) < Oym™ (3.26)

IN

for all m large enough. From (320 and (3:26]) and (3.3]), Theorem B holds.

3.2. The full asymptotic expansion near Y

In this section, we prove Theorem B2l We first calculate the cirle equiv-
ariant Szegd kernel. From now on, we fix a point p € Y and take a BRT
patch D near p as in Proposition . Let

Q;?,Q)(X) = {u € Q(O"J)(X) : —iTou = mu}

and L(20 9 m(X) be the completion of Q0 (X)) with respect to (:|-). With
respect to (+]-), denote Qq(%) to be the orthogonal projection

Q'gg) : L(20,q) (X) - L(20,q),m(X)'

Extend D,()q) by Gaffney extension (ZJ]), then Dl(f) is a self-adjoint operator.
We can hence apply generel theory for self-adjoint operator such as ﬂa] to
take the spectral projector

H(é’i : L%qu)(X) = Hy A\ (X) = E((—00, A]),



“BN14N33” — 2019/10/14 — 9:25 — page 363 — #33

2019] ASYMPTOTICS OF TORUS EQUIVARIANT SZEGO KERNEL 363

for any A > 0, where E((—o0, \]) is the spectral projection and E is the
spectral measure for Dl(f), respectively. Denote the m-th Fourier component

of the spectral projector by
H(é’i,m : L%qu)(X) = M cx(X) = Hj (X)) N L%O,q),m(X)'
We can check that on Q9 (X),

ne = g = kel

For a given point p € Y, let x = (z1,..., %0, Tont1) = (T, Zop41), Y =
(Y1, -y Y2nsY2n+1) = (U,%2n+1) be BRT trivialization as in Theorem
defined on D := D x (—m,m) C X near p, where D is an open set of C". Note
that by theory of Fourier series on the circle, Q%)u(:c) =5 [T em™myu(e o

x)df for any u € 009 (X ). In particular, under BRT coordinates, for all
ue QD) = €°(D, T9X),

Y u(z) = QWY u(x)

é A |
L em@( H%&(e”ox,ym(mdvx(w) 0
T D =

_ /D <% / ng(ewox,y)e—imﬂda) w(y)dV ().

In other words,

1 " i —im
n ,(z,y) = g/ 9 (e oz, )"0 do. (3.27)

Similarly, for a fixed (py,...,pq) € Z% , we can find that Hﬁﬁ?mpl mpgu(z) is

(27r)_d /X </Td Hg\m ((ewl, . ,eied) o x,y) e_imz?dpjejdﬁl, .. d0d>
u(y)dVx (y),

for all u € Q9 (X). Therefore,

(0)

S)\,m,mpl yeenyMPG (TI,', y)

1 . ) .
= o)l /Td Hg\’m ((6191, .. ,ezed) o, y) eilngzlpjojdﬂl, ...dfy. (3.28)
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Since we assume the Levi form is positive on Y, we can apply the result in
ﬂﬂ] for the case of constant signature (n_,n;) = (0,n) near Y. On one

hand, from [21, Theorem 4.1], we have:
Proposition 3.7. For each q=1,...,n—1, H(<qz\ is a smoothing operator
near Y .

Form Proposition B.7], using integration by parts with respect to 6 in
[B27)), beacuse the boundary term vanishes for periodic reason, we can show
that on € x €,

H(fz\’m(:c,y) =0(m ) forallg=1,...,n—1,

where (2 is an open set containing Y. In particular, from ([B.28]) and Theorem
B.1], we have:

Proposition 3.8. For each q=1,...,n—1, H(g\ mmpy...mpy (> Y) =0 (m ™)
on X x X.

On the other hand, from the statement and the proof of ﬂﬂ, Theorem
4.1], we know:

Proposition 3.9. For ¢ = {0,n}, locally on a coordinates patch D C X,
H(<_qz\ is in the form of complex Fourier integral operator. Precisely, in the
sense of oscillatory integral

H(gox)\(fﬂay) :/0 =@V (2, y, t)dt.

Moreover, for any small open neighborhood 2 containing Y and all x,7 €
%5 () such that supp(x) Nsupp(r) = 0, then XH(<O/)\T is a smoothing oper-
ator. Here the phase function locally on D is

¢—(,y) = Tant1 — Y2n+1 + D(2,9),
where T 1= (z1,...,%2n), U := (Y1,--.,Y2n) and ®(z,7y) is a complez-valued
function satisfying for some constant C >0, Im® (&, 1) > C|i—y|?, ®(z,9) =
—®(y,x), and ®(z,y) = 0 if and only if © =y, for all (z,y) € D x D. And
the symbol here satisfies

G_(.’L"y,t) € Q(D X D % R-f—)v
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oo

a_(z,y,t) ~ 3" (a_);(x,y) in SH(D x D x Ry),
j=0

where (a_)j(z,y) € €>*°(D x D), j=0,1,2,..., and
1
(CL,)O(IE,IE) = W|det£z|

Similarly,

M (wg) = [ e e0ay @y

where the phase on D is

O (2, y) = =¢_(2,y) = —Tant1 + Y2ns1 — (2, 9)
and the symbol
a+(x, Y, t) S Q(D x D x R-H T*Oan X T*O,nX)'

Also, for any small open neighborhood 2 containing Y and all x, T € €5°(2)

n)

such that supp(x) Nsupp(r) = 0, then XH(<)\T is a smoothing operator.

To calculate (B27)) via Proposition B9 we need to consider the integral
under the BRT coordinates patch D := D x (—m, ) in Theorem 221 First,
note that under BRT coordinates, for 2 € D and e o 2 € D, we have
e ox = (x1,..., %9, a1 + 0). Second, to make sure all the calculation
are under BRT patch, for (z,y) € D x D, we have to consider a smaller
open set D, C D such that D, C D, and cut-off functions xq, x1 € 6§°(D),
where xo = 1 on D, and x; =1 on supp(x). Notice that

(a,y) = emenn 1) | (2,y),

©

<A,m

where & := (x1,...,x9,,0). This holds because from (B3, H(Soz\vm(x,y) =

N 70 ; .
Zj:01 f%A,j(w)fgk,j(y) and fng(l“) = ezmz2n+1f%>\7j(x) by Top = %Wa
where {fg)\’j j-\;ol is an orthonormal basis for ’Hg’g)\’m(X). Now, for (z,y) €

D, x D,, we write

0 i 0 o
H(Siﬁn(x? y) = elmz2n+1H(§;\7m(x7 y)



“BN14N33” — 2019/10/14 — 9:25 — page 366 — #36

366 W.-C SHEN [September
TMT2n+1 T ] ]
_ ¢ -~ / H(S();\(eze o i’,y)eilmede
—Tr
eim12n+1 ™ . ~ .
= T/ Hg(e’g o &, y)xo(y)e "’ do
-7
where ,
S i0 o 270 (0 o —imb
I = “or xi(e” o 2)IIy (€ o 2, y)xo(y)e o (3.30)
-7
and ,
eimTans1 [T _— P i
=T [ A=) 0 b e o dy)xo()e s
-7
TMT2n+1 ™ . .
= GT/ ((1_X1)H(§02\X0) (e o &, y)e”™04dp. (3.31)
—Tr

In B31), since (1 — Xl)H(<O/)\X0 is a smoothing operator in view of Proposi-
tion 3.9, we can apply integration by parts with respect to . Because the
boundary term vanishes for periodic reason, we can find that Io = O(m™°).

As for ([B30), we shall write

i 0 o 4 A1) (w0 o 2 mo
I = T/ xi(e” o x,y)HS)\(eZ oZ)xo(y)e "™ do
—T
1MT2n 41 T el 0~ . . .
_ e 5 / / 6z¢>_(e 9oz,y)txl(6z9 o i)a, (619 0%, v, t)XO(y)efszdtda
@ -7 JO

eimx2n+1 s o . o ) O
:T/ /0 0= (@O Wt=imb | (i 0)a_((i,0),y,t)x0(y)dtdo
metmTanel T o0 (o) O Q
- o . YO (&, 0)a— ((d,6),y,mt) xo(y)dtdo (3.32)

where
Q/L(CC, Y, t) 9) = <0 — Yan+1 + (b(j:a ﬂ))t - 0.

Similarly, on Dp x D,,, we write H(g/z (@, y) = I3 + Iy, where

mez‘mm2n+1 ™ ECE . N
Iy :=T/ / e Oy (i, 0)ay ((i,0), 3, mt) xo(y)dido,
-7 JO
(3.33)
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and

elmrant1 [T n . R —im o
I ;:7/ (0 ) x0) (¢ 0 2 y)e ™0 = O(m ™). (3.34)

27 -

Here,
¢+($a Y, tv 0) = <0 — Yon+1 + 6(‘%7 :&))t — 0.

We first handle the case for ¢ = n:
Proposition 3.10. H(g/z (@) =O0(m™>) on D), x Dy,

Proof. Consider a cut-off function x2(6) € €5°(R), x2(f) = 1 when [0 < §
and x2(0) = 0 when § < [0] < m. Write

I3 =15+ I

where I5 has the integrand cut off by xs and Ig is the one cut off by 1 — yas.
Since t > 0, the term Bg—; =—t—1#0for all € (—m,7), so we can write

MYt — % (%) Take I5 = I + I, where I} is the integration taken
over 0 <t <1 and If is the one taken over ¢ > 1. By using integration by
parts with respect to 6, we can find both I} = O(m~>°) and I} = O(m™>°).
Thus, Is = O(m™°). As for Ig, for the case = # ¢, we have Imy, =
Im®(z,y) > 0, so Hg/z’m(x, y) = O(m~°) by the elementary inequality that

N

for any m, N € Ny, m” e~ < Cp for some constant Cy > 0. For the case

=19, vy = —(0 — yan+1)t — 0. Notice that we may assume 6 — yo,+1 # 0
on I by taking the open set D, small enough. Consider a cut-off function
7€ 65°(R), 7(t) = 1 when [t| <1 and 7(¢) = 0 when [t| > 2. Set

() = 7(27t) — 7(2'7t), jEN, T9:=T. (3.35)
Note that 77 = 1 and
2171 < |t| < 29 for t € supp(r;), 7 > 0. (3.36)

By the construction of oscillatory integral, for example see , Theorem
7.8.2], in this case

6imz2n+1 > T o im T %
Is = TZ/ /O ¢ ut 0. (1)(1 — xo(0))xi (2, 0)
j=0"""
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XA+ ((‘%’ 9)5 Y, mt) X0 (y)dtde

Decompose Is = I, + I}/, where

1MT 2041 T oo
I = T/ / Mt n (1)(1 = x2(60))xa (&, 0)
a —m JO

at((2,0),y,mt)xo(y)dtdd (3.37)

v eim$2n+l ©° T oo me (CE, 7t79) o
fo = T;//O BBt (6)(1 = x2(60) xa (#,0)

at ((£,0),y,mt)xo(y)dtdd. (3.38)

i —im(—(0—yant1)t—0)_ 0 (e O vans1)t70)
On one hand, in (3238]), because e n =& ) )

we can integration by parts with respect to ¢, and after combining (B.33]),
B38) and a4 (z,y,t) € ST(D x D x Ry, T*0"X WT*0"X), we can find that
I{ = O(m~"°). On the other hand, in (3.37)), we can also integration by parts
with respect to t; however, the boundary term appears at ¢ = 0. Fortunately,

thanks to y; has compact support in (—m,7) and e #=(0=y2n1)t=0) —
9 (e im(=(0—y2n41)t=0)

o0 ( im(t+1)

and no boundary term will appear. In this way, we can also find

), we can again apply integration with respect to 0,

I = O(m™). O

In particular, from (B28) and Theorem B we find that:

Proposition 3.11. H(j))\mmpl mpy (@, Y) = O0(m™) on X x X.
Next, for the case ¢ = 0, take the point p € Y which we set in the
beginning of this section, and we can find that at the point

(x,y,t,0) = (p,p,1,0),

there are
o
Imy_ =0, — =0
mw M 6t )

A
20 O

and

caZga 0 -1
- I 900t | — I
dety_ =det | 8, G | =det| S =-1#0.
otdh 902
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Thus the point (x,y,t,0) = (p,p, 1,0) satisfies the assumption in Proposition
Moreover, when (z,y) varies near (p, p) we can have the Melin—Sjéstrand
critical value in Proposition 23] because the system of equations

0y (z,y,t, 5) =0

ot

and -

op s

—(z,y,%,0) = 0
% (z,y,t,0)

also has the solution

({57 é) = (17y2n+1 - (I)('%vg)> € (C2
where
&*(xayaf’é) = <é—92n+1+@(i,?3)>5_é

is an almost analytic extension of ¢)_ with respect to (¢,6). Therefore, we

consider the decomposition also denoted by
L = 1I7 + I,

where I7 is the one cut off by a bump function y3(t,6) € €§°(R?) and I3
is the one cut off by 1 — x3. Here, x3 satisfies xy3 = 1 near (¢,0) = (1,0),
supp (x3(t,6)) C [3,3] x [-5, 5.

On one hand, similar to the proof of Proposition B.I0, consider a cut-off
function 7 € €5°(R), 7(t) = 1 when [t| < 1 and 7(t) = 0 when [¢t| > 2.
We also set 7; as in (B30]), 7 € N. Again, by taking D, small enough, we
may assume that 9y = Bg—{ =0 — yopt1 + ®(2,9) # 0 on Ig. Take the

decomposition Ig := Ig + I{, where

TMT2n+1 ™ oo
o= T [T [ e a1 - ) 1.0 2.0
™ —m JO

xa_((2,0),y,mt)xo(y)dtdd  (3.39)

meim@ans1 2 T [fO0 .
Il = e Z/ / ezmw_(z,y,t,e)Tj(t)(l —x3)(t,0)x1(Z,0)
j=17"T 0

xa_((ﬁﬁ, 0),y,mt)X0(y)dtd«9, (3.40)
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By e™¥- = % %), for (B:40]), we can take integration by parts with
respect to ¢, and combine with (3.35), B.36) and a_(x,y,t) € SH(DxDxR,)
to show that I{ = O(m~°°). Also, since x; has support in (=, 7), for (339)),
we can apply integration by parts with respect to ¢ and 6 as in Proposition
310l to show that I, = O(m™—°).

On the other hand, by the Melin—Sjostrand complex stationary phase

formula, see Theorem 2.4 up to an element in O(m~>°), the I7 can be written

into
%eim('&, (x,y,l,y2n+1 _q>(i=:’7))+m2"+1)14(x, Y, m)
— 'm(T2nt1-Y2n 41 +4’(537?3))A(:c, y,m)
where
Aw,y,m) = i

563(15 anH—‘I)(CQC, ??)))21(33, y2n+1_q)('%a ﬁ))d* ((i’ ?/2n+1—‘1>(i, g))’ Y, m)XO(y)

1 9

det <maﬁz<z,y,1,yzn+1@<a%,m>) 2

21

n

is in the symbol space S}’

(1;D, x Dy), X3, X1 and a_ is an almost an-

alytic extensions of x3, x1 and a_ in the varaible (t,0), respectively, and

O2p_  924_
P! o= agg gﬁgt Note that by basic properties of symbol space, we
ot00 962

have the expansion A(z,y,m) ~ 372, m" I Aj(z,y) in SE.(1;D, x D,),
where Aj(x,y) € €°°(D, x D,), and by the construction of almost analytic

extension, we can find that

Ao(p.p) = (a_)o(p.p) = JoorT. (3.2

We sum up the discussion so far as the following local result:

Proposition 3.12. Letp € Y, D be a BRT coordinates patch as in Theorem
22 near p and take an small enough D, C D such that ﬁp C D. For any
(xz,y) € Dy x Dy, the m-th Fourier component of the Szegd kernel on lower

energy functions is

), (@,y) = em@nn—wna @0 A (g, y,m) mod O(m™),
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Here, 2:=(x1,...,22), U:=(Y1,--.,Y2n); the function ®(z,y) is a complez-
valued function satisfying:

Im®(&,7) > C|z — )%, for some constant C' > 0,

and

for all (z,y) € Dy x Dy; and A(w,y,m) € St (1: D, x D) with asymptotic
expansion

Alw,y,m) ~ > m" I Aj(x,y) in Sp(1; Dy x Dy),
j=0
det Ep

Aj(.%',y) S CKOO(DP X DP)7A0(p7p) - ogn+l’

Before preceding, note that in view of Proposition 3.9 we see that H(SO/)\

is smoothing away from the diagonal. From this observation, we can eother

use integration by parts with respect to 6 in ([8.27) for the case near Y or
apply Thoerem B.1] for the case away from Y to show that :

Proposition 3.13. For (q1,q2) € X x X such that ¢1 and g2 are not in the
same St-orbit, then on U x V, Hg\m(a@,y) = O0(m~), where U and V are

some open neighborhoods of q1 and qs, respectively.
Now, for z € D, if (¢?1,... e?%)ox € D, let

o= (0h,...,00) = (&, xh, ) o= (€. eP) o (2, oy 11).
Recall that

(0)

S)\,m,mpl yeenyMPG (TI,', y)

1 . ) )
= G’ /Td Hg\’m ((6191, . ,ezed) o, y) eilngzlpjojdﬂl, ...dfy. (3.43)

Let p € Y with BRT coordinates patch D near p as in Theorem and
(z,y) € D x D. We first observe that (¢?1,...,e%) oz ¢ D, then

ng,, (.. ") or.y) = Om™).
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One way to see this is by writing
Hg\ " ((eiel, .. ,eiod) oz, y) = e’my?n“ﬂ(og\ " ((ewl, .. ,ewd) o, g])

Clearly, (¢1,... ¢e"%) oz and § must not in the same 51 orbit, otherwise
there exists a 6 € (—,m) such that (¢i1,... e®) oz =e o= (5,0) € D
leading to a contradiction. From Proposition B.13] this implies that

Hg\ " ((eiel, ey o, y) =O0(m™ ™).
In view of ([3.43), for simplicity, we assume
(e, %) oz e D forall (01,...,05) € T? and x € D. (3.44)

from now on. Moreover,

Proposition 3.14. Let p € Y and D, := D, x (—¢,¢), where ¢ is a small
number, as in Proposition[312, for (z,y) € Dy x D,, if (¢1,... 1) ox ¢

D, then H(S(Km((eiel, %) o y) = O0(m™™).

Proof. If (¢%1,... %) oz and y are in the same Sl orbit, i.e. there is a
0 € (—m, ) such that (e1,... e®)ox = ¢ og = (§,6) ¢ D,,, then there
must be |0 > € > |yany1]. Take cut-off functions xo, x1 € 65°(D), where
Xo = 1lon D, and x; = 1 on supp(x). Pick 7 € €5°(R), where 7(t) = 1 when
| <1 and 7(t) = 0 when |t| > 2, and set 7;(t) := 7(277t) — 7(2177¢t), j €
N, 79 := 7. From 329), 330), (31) and B32) we can find

et i 0 )
<>\m 01 ...,eed)ox,y) :Hiz\’m((yve)vy)
6

/Oe (0—y2n+1+P(§,9))t— )Xl(@e)a_((gi,e),y,t)XO(y)dtde

zm

zm@

/ w
e/ﬂ /000 O=vn0)=0) (5 0)a_ (5, 0), v, £)x0 (1)) dtd0
/

o /0 (002 220) 7)1 (9. 6)a— (5, 6). y. £)xo (y) 2t

zm@
/ / m(O=v2n4000) (1)1 (5, 0)a (5, 0), 9, £)x0 ()t
Jj= 1

=: Iy + L.
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Since 6 — yo2,11 # 0, we can apply integration by parts with respect to ¢
to show that I;p = O(m~°°); moreover, since x; has compact support in
0, we can also apply integration by parts with respect to 6 to show that

the boundary term appeared in partial integration with respect to ¢ in Iy is

also O(m™>°). So when (¢'1,... ¢%) o2 and y are in the same S'-orbit,
Hg\’m((ewl, ey ox y) = O0(m™®). And if (e, ... €)ooz and y are

not in the same S'-orbit, this proposition follows from Proposition B13l O
Again, from (343]), for simplicity, we assume
(e, ... ef)ox € D, forall (0y,...,00) € T%and x € D,.  (3.45)

from now on. From (B.43]), we can write

. . 1 A
(€. ) oz,y) = @ /T VeI I Al y,m)ddy - - dBy
(3.46)

where the phase function is
d
\II(:C’ Y, 91) cee Hd) = ‘T/2n+1 — Yon+1 + (b('%/) U}) - Zp]eja
j=1
and the symbol

B(z,y,01,...,04,m) = A(z',y,m).

We shall also notice that when (6;,...,64) # 0, there must be z/ # =,

otherwise we will have
1o(ei91,...,ei9d)ox: e o(l,...,1)ox
where 0y := 5, | —T2,41 mod (—7,7), contradicting Assumption[[2l Thus,
Im¥(z,y,01,...,0q) =Im®(i’',y) >0 for (6,...,04) # 0.

We hence consider a cut-off function x(61, .. .,04) € €5°(R?) such that y = 1
near (01,...,04) = (0,...,0). Write

1
@)

/ eimq’(z’y’el""ed)A(az', y,m)dby - --dby = Iy + 1o
Td
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where we cut the integrand of I1; by x(01,...,604) and the one for I15 by
1 — x(61,...,04). Note that in the integrand of I15 we have Im¥ > 0,
so I13 = O(m~°) by the elementary inequality that for any m, N € Ny,
mNe ™ < Cy for some constant C'y > 0. As for the I;, we shall apply the
Melin—Sjostrand stationary phase formula Proposition 23] to establish the

asymptotic expansion for torus equivariant Szego kernel.

We now fix a point p € Y and a small enough BRT patch D,, contain-
ing p. We claim that the point (z,y,601,...,04) = (p,p,0,...,0) satisfies
the requirement in the Proposition 2.3l To see this, first note that in real
coordinates (z,y) = (Z, Ton+1, Y, Yon+1) We have

U  Oah,, OB(d,y) O

20, ~ o9, ' ow o0, 7

Under the local expression of the phase function ﬂﬂ, Theorem 3.4] in terms

of canonical coordinates, we have relations
(2, y) = Tant+1 — Yon+1 + (2,9) and dp¢— (7, y)|o=y = —wo(z). (3.47)

We can hence get

06 (2, 00(3'.4) .
—wo(p) = (%W’) R (—d$2n+1 + %dm) (p,p,0)
9=0
(3.48)
and for 7 =1,...,d,
0
Ti(p) = 6—0< -71)O$> a=p
_ 0 26’1 i0g
= 6—< yeoes € )Ox) o—p
f1==0,=0
o2’ orhy,., & 0 0
- & — (L o 9 . (34
06, 0|+ ( 90, Oranii | 00; a&:) (p,0). (349)
= =VUg=

By the definition of Y and ([B48) and (3.49]), we know that for each j =
1,...,d,

0,1 | OB i) O
By = (o) T30 = (-t + I ) .,0)
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Thus

ov

—(p,p,0) =0forall j=1,....d.

o0, (p;p,0) J

Now, for j,k =1,...,d, we need to show that

PV N (P 200K 08 0B 0%\
00,00k ) ;4my  \ 00,00, 032 060;00,  Oi 90,001 )

0°® 0i' 0i' ._ \~2n - _0%® dzy Oy 20 9% ._ 20 00 0%,
where 525 55~ 59, = 2 ab=1 D70z, 90, 00 and 5z 5990, = e a’. 96,005,

Jj,k=1,...,d, is a non-singular matrix at (x,y,01,...,04) = (p,p,0,...,0).

Under BRT coordinates, see Theorem 2.2], write (z,w) = (21,...,2n, w1, ...,
wy,), where zj 1= xg9j, +ix; and wj 1= yaj_1 + y25. In ﬂﬂ, Theorem 3.6], it
suggests that the term ®(z,y) in the phase function is in the form of
. . ) . 8O‘+5¢ 2% P
O(2,§) = i((2) + d(w)) =2 > F——=(0)= — + O(|(z,w)["),
0290% al f!
lal+]BI<N
(3.50)

for every N € N, where the function ¢ is given by ¢(z) = >°7_; Njlzil? +
O(|z]?) and A,..., A, > 0 are the eigenvalues of the Levi form £, at the
point p. Hence, at (z,y,01,...,04) = (p,p,0,...,0), we have

0P

%(P,P, 0) =0.

Observe an easy fact from linear algebra: if A and B are real symmet-
ric matrix, and B is positive definite, then C' := A + i¢B is non singular.
(Consider the orthogonal decomposition B = P'P, and Q := P!, then
Q'CQ = Q'AQ + iId. Suppose det C' = 0, then —i is an eigenvalues of A,
contradicting the fact that all the eigenvalues of A are real). So it remains
to show that
0?® 0z’ 0z’
m (@8—;8—;> (p,p,0) is positive definite.
Since ®(&,9) has leading term 7 \j|2; —w;|* where \; >0, j =1,...,d,

we know that
2
Imw(p,p7 0) is positive definite.
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To examine whether the submatrix
9%2P 0z’ 01
I - 0
m (65&’2 00, ae,) (p, p,0)

is positive definite, it sufficies to take any 0 # u € Myx1(R) and D :=
oz’ oz’

960 T 904
: (p,0) and check that
20, T 904

0?® 01’ o' 923
! — _ t
u'Tm <8£’2 a6, 89k> (p,p,0)u = (Du) Imay":’2 (p,p,0)(Du) > 0

which is equivalent to examine whether D is of full rank. And this is in
fact guaranteed by assumption that the torus action is free near Y and the
assumption that p € Y is a regular level set. One way to see this is to take

the map o, : T,7¢ — T, X bya%j =T = 8%7 , 0(1,...,ei9j,...,1)ox.
ilg,=

For the torus action is free, i.e. {g € T?: gox = z,z near Y} = {e}, the

map o, is injective. So the column vectors

[ 0z oz
90, T 90,
[T, . ’Tj](p): ozl ozl (p,0)
90, 90,
81,271+1 81,271+1
L 001 C 00y

has rank d. Also, since p is in a regular level set, we know that

Hwo. Th)e . Owo.Ta)e
o0x1 o1
[d(Tl_:wo), . ,d(Td_lwo)](p) = 8<WO;T1>I 8(w0;Td)z (p)
Oz, Bagy
Nwo,T1)a . Hwo,Ta)a
8m2n+1 8$2n+1

is of rank d. Since the one form wy is torus invariant, we know that L,wo =0
for all j = 1,...,d. So the Cartan formula Lr,wo = Tjadwo + d(T}wo)
suggests that the one forms Tjudwy(p) # 0 for all j = 1,...,d, otherwise
for all j = 1,...,d, d(Tjowo)(p) = 0, leading to a contradiction. We also
note that Tpadwy = 0. One way to see this is that under BRT coordinates
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Theorem Ty = (%L and dwyq is independent of xg,11. Write

2n+1

2n+1

oz 0
T:(p) = E(p 0)——
J(p) Z 60] (p7 )axk7
k=1
and if we suppose that
! !
20, ' ooy
Bi=| : © ] (p,0)
ozl ozl
e R
has rank less than d, we can find numbers (aq,...,qq) € R? such that

Z?Zl akg—:g?(p,()) =0forall k=1---,2n and Z?Zlajag—gj“(p,()) #0

(recall [T1,...,T4](p) has rank d). However, this means that Ty(p) =
Z;'l:1 a;T;(p)

, which leads to a contradiction (7pidwp) (p) = 0. So the

PR 81323],“ (p,0)

oz o)

201 T 904
matrix D = | | (p,0) has full rank d, and we conclude that

ozl ozl

20, T 904

02w \?
det 0 0.
e (80j60k> . (p,p,0) #

The above discussion implies that the point (z,y,601,...,04) = (p,p,0,...,0)

satisfies the assumption in Proposition 2.3, where p € Y is fixed.

Let 6, (z,9),... ,éd(x, y) be the solution of the equations

oV . ~ .
~ x)y)el(x)y)""aed(x’y) :O’le)"')da
90,

in a neighborhood of (z,y) = (p,p) € C*>* with 0;(z,y) = 0 at (z,y) =
(p,p) for all j =1,...,d, where ¥ ia an almost analytic extension of ¥ in
the variable 60;’s and éj’s are allowed to be complex near (0,...,0) € C%
Accordingly, by complex stationary phase formula Proposition 2.4] and the

basic properties of almost analytic extension, up to an element in O(m~>°),
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the torus equivariant Szegé kernel H(<O/)\ mmpy....mpy (Ts Y) 18

[N

T/ n n -
(27T),deim\i/(x7y7él(Ly),m’éd(x’y)) (det mllléé(x’ Y, ‘91 (‘T’ y)a s ,Gd(IE, y)))
(

o 3.51)
X (51(x,y), . ,5d(x,y)) fl(;’(él(x,y), ... ,éd(x,y)),y,m).
We let
R (01,9, Oalw,y)) A@ Bi(2,y), . Oule,y). g, m)
b(x,y,m):= £0,

21

~ - 1
<det mlijgé(x7ya01(may)a"'ﬁd(aj:y))) 2

_d
and we can check that b(x,y,m) € S

loc

(1; D, x Dp). Moreover, for the

asymptotic sum

(o @)
. _d
b(a,y,m) ~ Y m"EIbi(x,y) in Sy 2(1; Dy x Dy),
=0
we can find that for p € Y, by construction of almost analytic functions, for

some constant C > 0,

I App) . ldetsy)

(2m) (det \Ijgg(p,p,o,...,O))é T gt ntl+g

7

bo(p,p) = > 0. (3.52)

N8

1
vy, (p,p,O,...,O)) 2

Here, we choose the branch as in Proposition Z4]such that (det ;

> 0. To finish the proof of Theorem B3] it establish the followings:

Proposition 3.15. Let f(x,y) := \il(:c,y,él(:c,y), .. ,éd(x,y)), then Imf >

0. Moreover,

f(SC,SC) =0, dzf(CC,SC) = _WO(:C)’ dyf(CC,CC) = WO(‘T)a bo(fE,fE) >0
forallz € Y ND,.

Proof. First of all, by Proposition 23] and 24 Imf > 0 holds. Second,
for p € Y and a small BRT patch D, near p, by the construction of almost
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analytic extension and (B.50]), we can find

f(p.p) = ¥(p,p,0) = 2(0,0) = 0. (3.53)

By continuity, we may assume that |f(z,y)| < 3 on D, x D, by taking D,
small enough. Also, for k=1,...,2n+ 1,

~ d ~ ~
0 3\11 8\11 8(9
9 pp) = 22 (50,00 + > —(p,p.0 B (P P:0)

Ozy, 6 =1 00,
) =1,...,2
_ 92 (0,0) = "
Owy, ck=2n+1.

and similarly

8f( )= 0:k=1,...,2n.
p,p) =
Oy —1:k=2n+1.

We can check that on D, wo(2)=—dxan41+i) 7, (g—j;dzj—a‘?—d%dij), and

hence
def(p,p) = —wo(p), dyf(p,p) = wo(p)- (3.54)

Second, for all z € Y N D,, we now prove

f(z,z) =0and d, f(z,z) = —wo(z), dyf(z,z) = wo(x).

For p € Y and a small BRT patch D,, near p, if we take any other ¢ € YND,,
and another small BRT patch D, near ¢, by the discussion in this section,

we can write

(0)

mmpy.mpg (T Y) = imf(z’y)b(x,y,m) mod O(m™°) on D, x D,

where f(p,p) =0, df (p.p) =0, |f(z,y)| < 2 on D, x D,,

s , _d
ba,y,m) ~ Y m"E b (2, y) in Sy 2(1; Dy x Dy),
=0

bj(xvy) € Cgoo(Dp X Dp)a bo(p,p) >0
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and
0 i _
I s o (2:9) = €™ Dby (2, y,m) mod O(m ™) on Dy x Dy,

where fl(Qa Q) = Oa dfl(Qa Q) = O’ |f1($,y)| < % on ‘Dq X ‘D(I’

= d_ . n—4
bi(z,y,m) ~ Zm”_E_J(bl)j(a@,y) in S| .7 (1; Dg x Dy),
=0

(01);(2,y) € €°(Dq x Dyg), (b1)o(q,q) > 0.

By consinuity, we may assume that |by(z,y)| > 0 on D, x D,. We arrange

(3.55)
into
emE=I@E (1 Yy m) = by (z,y,m) + e NEV Rz, y,m), (3.56)
and after evaluating at the point (z,vy) = (¢,q), we get
emMI=F @Dy (g g, m) = by(q,q,m).
Since
lim e—mImf(q,q) — lim ‘bl(Q7Q7m)’ _ ’(bl)O(Q7Q)’
m—00 m—o0 |b(g,q, m)| bo(q, )|
which is a non-zero finite number, we can conclude that Imf(q,q) = 0.

Moreover, notice that

lim /(@9 = lim b1(g:4,m) _ (b1)o(g:9)

m—o0 m—oo b(q,q,m) bo(q,q)

i.e. the limit exists. However, the limit

lim /(99 = lim ¢™Re/(@0) = lim (cos(mRef (g, q))+isin(mRef(q,q)))

m—o0 mM—r 00 m—o0

does not exists if |[Ref(q, q)| < %, Ref(q,q) # 0. Hence, we conclude that

flz,x) =0, for all z € Y N D,,. (3.57)
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Next, take derivative in both sides of ([B.53) with respect to xz;, j = 1,...,
2n + 1, and evaulate at (x,y) = (¢, q), then we have

.0 0 0 .
Zma—x](f - fl)(Qa Q)b(q’q,m) + 87jb((]’q’7n) = aijl(q,q,m) + R(x’y’m)’

where Io%(x,y,m) = %R(q,q,m) - ima%jfl(q,q)R(q,q,m) = O(m™>).
Therefore, for some constant C' > 0,

(%01 =0+ R) (q.0.m)]

%(f—ﬁ)(q,(ﬁ' = lim

mroo m|b(g, g, m)
. Cm"™ 2
< lim i 0
m—00 |bo(q,q)|m"75+
Hence, for all ¢ € Y N D,
0 )
T(f—fl)(q,q):(),jzl,...,Qn—i—l, (3.58)
Zj
Similarly, for all ¢ € Y N D,
0 )
F(f—fl)(q,q):(),jzl,...,?n—f—l. (3.59)
Yj
Combine (354), (35]) and (359), we establish
dof(x,x) = —wo(x), dyf(z,z) =wo(x) for all z € Y N Dy, (3.60)

In the last, from ([B.53]), by evaluating at the point (x,y) = (¢q,¢q), we can
find

b(q7 q, m) - bl (q7 q, m) + R(q7 q, m)7

where R(q,q,m) = O(m~°). Accordingly,

L g 2&em) _ bolg,9)

m—oo bl(q,q,m) (bl)O(qvq)

Thus, we can conclude that by(q,q) = b1(q,q) > 0, and since this holds for
all ¢ € Y N D,, we complete the proof of this proposition. O

Combine all the discussion in this section, the proof of Theorem [B.2] is
completed.
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