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Abstract

Let G’ be a connected reductive group over the complex numbers. We show that the
set of conjugacy classes of elements of G’ with semisimple part of finite order is in natural

bijection with the set of two-sided cells associated to a certain algebra.

0. Introduction

0.1. Let G’ be a connected reductive group over C. In [4] it was shown that
the set of unipotent conjugacy classes of G’ is in natural bijection with the
set of two-sided cells coming from an affine Hecke algebra associated to G,
a reductive group of type dual to that of G’. In this paper we extend this
to a bijection between the set of all conjugacy classes of elements of G’ with
semisimple part of finite order and the set of two-sided cells associated to a
certain algebra H containing the affine Hecke algebra, see Theorem 2.6. The
algebra H is an affine analogue of an algebra considered in [7, §31] which,
on the one hand, is a modified form of an algebra considered by Mars and
Springer [9] in their approach to the theory of character sheaves and, on the
other hand, as shown in [, §34], is closely related to the algebra studied by
Yokonuma in [10]. Most of the paper is concerned with showing that the

notion of two-sided cell can be defined for H.
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0.2. Notation. Let R be a commutative ring with 1 and let A be an
associative R-algebra with a given R-basis {b;;i € I} where I # (. For
K C I we write [K] = > ,cx Rb; C A. For i,i' € I we write 7' ~ep 4 if
for any K C I such that [K] is a left ideal of A we have i € K if and only
if / € K. This is an equivalence relation on I; the equivalence classes are
called the left cells of I. Replacing “left” by “right” we obtain an equivalence
relation ~y;g5; on I; the equivalence classes are called the right cells of 1.
Replacing “left” by “two-sided” we obtain an equivalence relation ~ on I;

the equivalence classes are called the two-sided cells of I.

By an affine Weyl group we mean a finite product of irreducible affine
Weyl groups. In particular, the group with one element is an affine Weyl
group.

Let A = Z[v,v™!] where v is an indeterminate.

1. Two-sided Cells

1.1. Let k, kK’ be algebraically closed fields. Let G be a connected reductive
group over k with a fixed Borel subgroup B and a fixed maximal torus
T CB. Let p=dimT, v = dim G/B.

Let G’ be a connected reductive group over k’ of type dual to that of G
with a fixed Borel subgroup B’ and a fixed maximal torus T/ C B’.

Let L (resp. L') be the lattice of one parameter subgroups k* — T (resp.
k'* — T'). We assume that L is also the group of characters T/ — k’* and
that L' is also the group of characters T — k*. We assume that the obvious
nondegenerate pairing (,) : L x L' — Z defined in terms of T is the same
as that defined in terms of T'. Let R C L (resp. R’ C L’) be the set of
coroots of G (resp. G') with respect to T (resp. T'); we assume that R
(resp. R) is also the set of roots of G’ (resp. of G) with respect to T’ (resp.
T). We also assume that the canonical bijection R <+ R’ defined in terms of
G is the same as that defined in terms of G’; we denote it by h <> h'. Let
{hs;i € I} C R be the set of simple roots of G’ determined by B’; we assume
that {hl;i € I} C R’ is the set of simple roots of G determined by B.

Let V= Q®L,V' = Q®L’; now (,) extends to a nondegenerate bilinear
pairing (,) : V. x V' — Q. Let V (resp. V') be a Q-vector space containing
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V (resp. V') as a subspace and let (,) : V x V' — Q be a nondegenerate
bilinear pairing extending (,): V. x V' — Q.

We shall consider two cases (we will refer to them as case A and case

=)

).
(A) Wehave V=V, V' =V'. Weset L=L,L' =L

(B) We have V =V & Qc, V' = V' ® Q¢ where ¢, are vectors such that

(e,d)y=1,{c,Vy=0,(V,d/) =0. Weset L=L®Zc, ' =L ®Z.

In case (A) we set I = 1.

In case (B) we write R = UeceR,, R = UeeR, where (R, R.) are
irreducible root systems and ¢ is an indexing set; we have a corresponding
partition I = Ll,eel, where I, indexes the simple roots/coroots in EQ,E'Q.
For each ¢ € € let 8, € R, be such that —f! is the highest root of R,. We
set I = I LI €. There is a unique function ¢ : R — Z~( such that dg, = 1 for
any ¢ € € and for any h, h in R we have (h, ﬁ’)éﬁ = (h,W)6;,. For any h € R
we have oy, € {1,2,3}. Foree € weset hy, =, +c€ L, h, =5, € L.

In both cases, for i € I we define a reflection s; : V- — V by s;(y) =
y— (y, hi)h; and a reflection s; : V! — V' by s;(x) = x — (h;, x)h} (this is the
contragredient of s; : V-— V). Let W (resp. W) be the subgroup of GL(V)
generated by {s;;i € I} (resp. by {s;;i € I}); taking contragredients we
identify W (resp. W) with the subgroup of GL(V"') generated by {s;;i € I}
(resp. by {si;i € I}). It is well known that W (resp W) is a Coxeter group
on the set of generators {s;;i € I} (resp. {s;;i € I}). In any case W is a
(finite) Weyl group. In case A we have W = W; in case B, W is an affine
Weyl group (said to be the affine Weyl group associated to G).

Let w +— |w| be the length function W — N; we set S := {s;;i € I} =
{w e W;w| =1}. For w € W we have w(L) C L, w(L') C L'. Hence the
W-action on V' induces a W-action on V' := V//L'. For y € L,A € V' we
define (y,\) € Q/Z by (y,\) = (y,z) where x € V' is a representative of \.
In case B we have V' = UgcqVZ where V! = {z € V';(c,z) = €}. The
image of V! under V' — V' = V'/L’ depends only on the image e of é under
the obvious map Q — Q/Z; we denote it by V.. We have V' = I_IQGQ/ZVE’.
In case A we sometimes write V{ instead of V’. We show:
(a) Any W-orbit on V' is finite.
In case A this is trivial since W is finite. Assume now that we are in case
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B. Let A € V' and let € V' be a representative of \. We can find an
integer ¢ > 1 such that gz € L’. Let Q be the subgroup of V' generated by
{0nh'; h € R}; this is the free abelian group with basis {dy,h};i € I}. For
z€ Qlet 6, : V' — V' be the linear map = — x + (¢, z)z; its contragredient
is the linear map y — y — (y,2)c, V. — V. We have 6, € W (compare |4,
1.5]) and z — 6, identifies Q with a normal subgroup @' of W such that
W = Q'W (semidirect product).

If z € Q then 04.(x) — z = (c,qz)z € Q C L'. Thus the stabilizer of
A in W contains Q'9. Thus the W-orbit of A contains at most §(W/(Q'7))
elements. Since §(W/Q') < oo and #(Q'/Q'?) < oo, we have §(W/(Q'7)) <

oo. This proves (a).

1.2. In case A we set R = R. In case B we set
R ={x € V;x =w(h;) for some i € I and some w € W},

we have R = {h + dpmec;h € R,m € Z}. In this case for x € R we set
X =N € R where x = h + épme with h € R,m € Z. The map R — R/,
x — X extends the map R — R, h — h' considered earlier and it is
compatible with the notation h, considered earlier.

In both cases, for x € R, the reflection oy : V= V, y — y — (y,X)x
and its contragredient o, : V' — V', x +— x— (x, z)X’ are defined and belong
toW. Let VT =3>",.,Q>0hi CV. Weset Rt = RNV*' R~ =—-R".

Let ¢1,%2,...,%, be a sequence in I such that w := s;,s;, ... s;, satisfies
|lw| = r. A standard argument shows that

(a) {x € RT;w(x) € R~} consists of exactly r elements, namely

SipSip_q - Sij+1(hij) fOTj = 1, e, T

For A € V' weset Ry = {x € R;(x,\) =0 € Q/Z}, Rf = R\N R™,
R, = R\NR™; let Wi = {w € W;w()\) = A}, a subgroup of W. Let W)
be the subgroup of W generated by {s,;x € Rx}. We have Wy Cc WJ. If

/—1

w' € Wy and x € Ry, then w'(x) € Rx; we have w'syw' ™" = s,(,) hence

w'Wyw'~! = W), so that W) is a normal subgroup of W}.

In case A we set Ry = R). In case B we set Ry, = {h € R;h +
mopc € Ry for some m € Z}; in the case where \ € VO’ we have R, =
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{h € R;(h,\) =0 € Q/Z}. In both cases we set R\ = {I/;h € R\} C R..
We show that for h,h € Ry we have 'h := si(h) € Ry.

Assume first that we are in case B. We have (h + mdye, \) = 0, (h +
mdjc, A) = 0 for some m,m in Z. We have "h=h—(h,k/)h € R, 6'h = §},.
Let 'm =m — (h, k)i € Z. We have

Ch+1mo,e,\) = (h— (h,B)Yh +mépe, \)

)
= —md(c, ) — (h, B')(h, \) + 'mép(c, \)
= —mdp(c,\) + (h, ' )1d; (¢, \) + 'mdy(c, \)
= —mb(c,A) + (b, B')on(c, A) + 'mép(c, A) = 0.

Thus (1h+1mdiye, A) = 0 so that Lh € R,. The proof in case A is the same

1

(we formally set m = m = 'm = 0 in the computation above.) We see that

(Ry,R,) is a root system.

‘We show:

(b) For A\ € V', Wy is a Coxeter group with length function w ~ |w|y =
t(x € R w(x) € Ry). Moreover, in case A, Wy is a Weyl group; in
case B, Wy is an affine Weyl group. If s € Wy, |s|x =1, then s = s,
where x is the unique element of R;\r such that s(x) € Ry .

In case A, W) is the Weyl group of (R, R)) and (b) follows. We now
assume that we are in case B. For any x € R) let H, = {z € V{;(x,z) = 0},
a hyperplane in the affine space V/. For w € Wy, x € Ry we have w(H,) =
Hy-1(y)- For z,2" in Vi —Uyer, ", we say that x ~ 2" if (x, z)(x,2") > 0 for
any x € Ry; this is an equivalence relation on V{ —U,cr, H,; the equivalence
classes are called A-alcoves. There is a unique A-alcove C that contains
{z € V{;(h;,x) > OVi € I}. Let Py be the set of all x € R} such that H,, is
a wall of C (that is, the closure of C) intersected with 7, is not contained
in any affine subspace of H, other than H,). We can apply the results in
[1, Ch.V, §3], especially Theorem 1; we see that W) is a Coxeter group on
the generators {sy; x € P\} and with the length function as in (b). To prove
the remaining statements of (b) we denote by RY(u € U) the irreducible
components of Ry. Note that if u # «' in U, we have (h,h') = 0 for h €

Y he Egl. For u € U let E, be the affine subspace ¢’ + Zhegg QN of V/;
let RY = {h+mdpc € Ry\;h € Ry, m € Z} and let W} be the subgroup of
Wy generated by {sy;x € Ry}. Now for x € RY, the affine space £, is stable
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under s, : V' — V’; hence E, is stable under Wy. We have Wy =[], o, Wi-
It is enough to show that for any u € U, W} is an affine Weyl group. For
any x € RY let Hy . = {x € Ey; (x,z) = 0} = H, N E,, a hyperplane in E,.
For z,2" in By — UyeruyHyu we say that x ~ 2’ if (x,z)(x,2") > 0 for any
X € Ry ,; this is an equivalence relation on E, — U, RKHXM the equivalence
classes are called the alcoves of E,. Using again the results in [1, Ch.V, §3],
we see that it is enough to show that some (or equivalently any) alcove in
E, is bounded. Let h7,j = 1...,t be the simple coroots in RY with respect
to the set of positive coroots RY N VT. Let h® be a coroot in RY of the
form Zje[l,t] n;h? where n; € Z~ for all j. For each j € [1,t] we can find
mj € Z>qo such that x? := h? + m;djc € R} (here 0; = d5,;). We can find
mo € Z~g such that x° := —hY + mydgc € RY (here 69 = dp0). Let

{z € EBu; ()X, ) > OV € [0,¢]}

= {z € BEy; (W, x) > —m;0;¥j € [1,1], Z n;(h, z) < modo}.
€L ]

X

Note that X contains at least one alcove and is bounded. (If z € E,, then
—m;d; < (b, x) < modo/n; for all j € [1,].) It follows that some alcove in
E, is bounded. This completes the proof of (b).

We show:
(c) Let A€ V'. Ifi € I is such that s; € Wy then h; € Ry.

We have [s;|y = fi(x € Ry;si(x) € Ry) < f(x € R";si(x) € R—) = 1.
Thus |s;|x < 1. Since s; is an element of W), other than 1 we have |s;[y > 1
hence |s;|y = 1. By (b) we have s; = s, for a unique x € R}, hence x = h;.
This proves (c).

Let A€ V'. Let iy, 42, ...,4, be asequence in I such that w :=s;,s;, ...5;
e W{, |lw| = r. Define T = {j € [1,7];s;, .
X ={x € Rf;w(x) € Ry }. We show:

T

<0845 184;Sijq -+ Si e W,

r

Let j € Z. Then s;; € W, 4 (n hence by (c) we have h;; €

SijpqSir (V) so that s;, .. 'sij+1(hij) € Ry). By (a), Sy - -Sij+1(hij) (] S I)

are distinct in {x € R";w(x) € R™}. Thus, j — s;,...si;,,(hi;) is an
injective map ¢ : 7 — X.
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Now let x € X. From (a) we see that for some j € [1,7] we have
X = Si, - Si;4, (hi;). Since x € Ry we have

h;.

5

€ RsijJrl...si,.()\)
so that

Si;

= Wsi]'+1 Sip (>‘)

and therefore j € Z. We see that ¢ is surjective hence a bijection. This

proves (d).

‘We show:

(e) Any right coset wWy C W (w € W) contains a unique element w; such
that wi(RY) C RT. We have |wi| < |wiz| for any z € Wy — {1}. We

write w1 = min(wWy).

In case A this is proved in [3, 1.9]. The following proof applies in both
cases A,B. We can find wy € wW) such that |w;| < |w;yz| for any z € W.
For any x € Ry we have |wis,| # |w1| hence |w1| < |wisy|. Let i1,is,... iy
be a sequence in I such that sxwl_l = 84, 8iy - Sip- |5Xw1_1\ = r. Since
sy (scwt)] < |sywpt|, we see from |6, 2.2] that, for some f € [1,7] we
have sy = 8;,8iy ... Siy .. 8iySiy, hence X = s,8i, ... 8i;_, (hi,). Applying (a)
with w replaced by wisy = si,8;,._, ..., we see that wis,(x) € R~ that
is wi(x) € RT. We have thus shown that wi(R}) C R". It follows that
wi(Ry) C R™. Now let u € W) — {1}. We can find x € Ry such that
u(x) € Ry . We then have wiu(x) € R™. By the first part of the proof, wiu

is not of minimal length in wW). Thus |w;| < |wyu|. This proves (e).
Let 0 be a W-orbit in V. For A\, X in o let

NoA] = {z € W; XN = 2(\), 2 = min(zW))}
= {zeW; X =2()\),2(R)) = R},}.

Clearly, [\, \] = [V,A\]7! and for \ € o we have [\, N][N,\] C [\, A
Thus,

(f) the group structure on W makes T' := Uy \eo2 [N, A] into a groupoid.
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In particular, for A\ € o,
MA] = {2z € W;z=min(zW))} = {z € W)/\;Z(R;\_) = R;\r}

is a subgroup of WJ. We show:

(g) For A € V', the group Wy is the semidirect product of [\, \] and W with
Wy normal in WJ.

By (e) we have W} = [\, A]W) and [A\,A\] N Wy = {1}. It remains to
recall that W) is normal in WJ.

1.3. In this subsection we assume that we are in case B. We fix e € Q/Z,
X € V! and a representative z for A in V’ such that € V! where 0 < é < 1.
We write ¢ = p'/q’ where p/, ¢ are integers, ¢ > 1, 0 < p’ < ¢ and p/,¢
have no common prime divisor.

Assume first that e = 0; then € = 0 so that (c,x) = 0. It follows that
Ry ={h+ mdpc;h € Ry,m € Z}.

We write Ry = UyeyRY as in the proof of 1.2(b). Let h%1 ... k%! be the
set of simple coroots of RY with respect to the set of positive coroots RNV
and let h“Y be the coroot in R} such that (h%")’ is minus the highest root
of (RY)'. For j € [0,t,], let 0, ; = ju.;. Note that hJ € Ry for j € [1,t,]
and h*0 + du,0C € R;\r. Let x € Rj. We show that

(a) X € Z N + Z N(h*Y + 8,.0¢).

u€U,FE[1,ty] uel

We have x = h + mdpc where either h € RY,m € Z-sg,u € U or h €
RiNVtm =0ueclU Ifhe RNV m = 0,u € U, then clearly
X € Zje[Ltu} Nh®I. If h € RY,m € Z~o,u € U, then

X = h+dyme = (h — (63/0u0)h*°) + (6/u0)(m — 1)(—h"0)
+(6/8u,0)m (R0 + 8, 0c).

We now use 05/0u0 € N, h — (0,/8u0)h*° € 2 el ta] Nh“J (a standard
property of root systems) and (a) follows. Using (a) and the proof of 1.2(b)
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we see that W), is a Coxeter group on the generators

(b) Spus With u € U, j € [L,ty],  Spuoys, oo With u € U}).

Next we assume that e # 0 (hence 0 < p’ < ¢) and [ = {1}, I =
I U {ig}, so that R = {hy,—h1}, hiyy = —h1 + ¢, h;o = —h}. We have
x = (p/Q)hy /2 + (p'/d' )¢, where p,q are integers, ¢ > 1 and p,q have no

common prime divisor. We have

Ry = {hi+me;m € Zxo,(p/q) + (¢ /d)m € Z}
L{—h1 +me;m € Zso,—(p/q) + (' /d')m € Z}.

If ¢ ¢ gZ (so that p # 0), then the equation +(p/q) + (p'/¢')m € Z has
no integer solution m; hence in this case we have Ry = (). We now assume
that ¢’ € ¢Z. We have {m € Z;(p/q) + (v’ /¢d)m € Z} = m1 + {Z, {m €
Z;—(p/q)+ (' /¢ )m € Z} = ma+q'Z, where my, mo are well defined integers
in [1,¢ — 1] such that p’(m; + m2) € ¢'Z; thus we have mg = ¢’ — my and

RY = {h1 +me;m =my + q'u,u € Z>o}

|_|{—h1 +me;m = q' —mq + q’u,u € Zzo}.

In particular, we have hy +mqc € R;\r, —h1+ (¢ —my)c € R;\r. For u € Zxg

we have

hi + (my + ¢u)e = (u+1)(h +mic) + u(—h1 + (¢ —m1)c),
—h1+ (¢ —mi + du)ec = u(hy +mic) + (u+1)(—h1 + (¢ — m1)c).

Thus RY C N(hy +mic) + N(—h1 + (¢' — mq)c). Using this and the proof
of 1.2(b) we see that W), is a Coxeter group (an infinite dihedral group) on
the generators sp, 1myc; S—hy+(¢—my)e (f @' € ¢Z) and Wy = {1} if ¢’ ¢ ¢Z.

1.4. Until the end of 1.10 we fix a W-orbit o in V.

Let H, be the A-algebra with 1 defined by the generators T,(w € W)
and 1)(\ € o) and relations:

Liy=1yforAe V', 1,1y =0for A\# X in V,



274 G. LUSZTIG [September
TwTy = Ty for w,w’ € W such that |ww'| = |w| + |w'],
Twly = 1w()\)Tw forwe W\ e ‘7/,

T? = Ty + (v = 1) Z Ts1) for s € S,
AE€o0;s€W),

lezh-

A€o

Note that Ty = )y, 1 is the unit element of H,. It will be convenient to
write Ty, = v~ 1*IT,, for any w € W. As in |7, 31.2], we see that

(a) {Twly;w € W, A € o} is an A-basis of H,.

From the definitions we have:

(b)ifse S,y e WA €0 and s ¢ Wy, then TsTylA = T4yly.

We show:

(c) For A€o, z € [\, \,w € W} we have T.Tyly = Towly, WTy1T,-1 =
1ﬂ~q'w71271.

The proof is an extension of the proof of [], 34.7(b)]. The use of the
algebra antiautomorphism Txl y— 1 )\Tw—l shows that each of the two equal-
ities in (c) implies the other equality. Let iy,i2,...,%, be a sequence in [
such that 27! = s;,84,...8i,, |2| = r. Applying 1.2(d) with w replaced
by z~! and noting that X in 1.2(d) is empty in this case, we see that

Sip - Sij415i;Sij41 - - - Sip & Wi for any j € [1,7]. From the relations of H,
we have
Tw_lsiﬁiz'"s’ijﬂTsia‘ 1“"ij+1“""’ir)‘ - Tw_lsilsi?"s’ijflsij 1Sij+1"'sir>‘

for all j € [1,7]. Using these identities we see that

TyrToaly =Ty Ty, T, - T,

and (c) follows.

The following result is a generalization of (c):
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d) For (N, ) € 0%,z € [N, \],w € W! we have TZTwlA = Tzwb\,
A
1)\Tw—1fz—1 = 11Tw—1z—1.

The use of the algebra antiautomorphism 7,1y + 1,7,-1 shows that
each of the two equalities in (d) implies the other equality. We can find
r > 0 and 41,42,...,%, in I such that, setting A\g = A\, A1 = s;4,(A), Ay =
SiySiy (A), A\r = 84, ... SipSi;(N), we have N\g #£ A\p # Ao # - # X\ = N. We
have s;; € [A1, o], 8, € Aoy A1],-.0, 8. € [Ar, A1), hence s;, ... 85,8, €
[Ars Xo] = [N, Al. We define 2 € W by z = s;,....84,8;,2. Then Z € [\, )]
For j € [1,7] we have s;; ¢ Wsz-j_1~~~sz~12(>\) (since A; # A\j—1) hence, using (b)

twice, we have

52121)\ = TSZ‘ .S

i s 2L

ij_1

Tsi]. Tsij_l -8y ZW 1)\ - Tsi]. Sij_y . 8iq ZW 1)\'

Applying this repeatedly, we deduce

si,....sizsilél)\ = TsiT cee TsiQ Tsil Tél)\:
TsiT...si2si1 Zwl)\ = Tsir cee Tsi2 Tsil Tiwl)\-

By (c) we have 1,\Tw_11~}_1 = 1,\Tw_12_1 and T 1y = 15T, 1. We deduce

Tzwl)\ = Tsi,....sizsiléwl)\ = Tsi,. cee TsiQ Siy Ewl)\
=Ty, ... T, T, T, =T, ... T, Ty, T:1\T
= si,....sizsilél)\Tw = Tsz 1)\'

This proves the first equality in (d); the second equality follows also.

We show:
(e) For N\ N, N ino, z€ [N, ),z € [\ N'] we have T, Ty 1y = Topylyn.

As in the proof of (d) we have z = s;, ... 84,5 2,

Tzl)\ = TSiT ...Tsi2Tsi1T51)\, where i1,...1, € I, A = N 75 Al 75 Ao 75 75
A= MNarein V!, A\g = M\, A1 = si,(A), Ao = 54,55, (A), A\ = 54, ... 84,55, (\),
Z € [\, A]l. Hence it is enough to show that

T,

Tsir R Tsi2 Siq T 1 = Tsir...siQSiliz’l)\”-
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It is enough to show that for any j € [0, 7] we have

T, ... T, Tsil L1\ = Tsi]....si2si1 22 Ly

] 9

We argue by induction on j. For j = 0 we must show that 15T, 1 =

T5,:1ym; this follows from (d). Now assume that 7 > 1. Using the induction
hypothesis we see that it is enough to show that

Tsi.Tw-l)\” =Ts; w; 1
g )

where wj = s;,_, ... i,5;22". Using (b) we see that it is enough to show that
si; ¢ WSij,l---SiQSiléz’(A”)’ or that s;; ¢ Wy,. We have s;,(\;) = A\j_1 # Aj so
that s;; ¢ W), as desired. This proves (e).

We show:

(f) Let A\ € o, w e W, o € Wy. Assume that |o|y = 1. We have T,,T,1, =
Twoly + d(v — v_l)TwlA where § € {0,1}. Moreover, if w € Wy then
=0 if jlwo|y > |w|x and § =1 if jwo|y < |w]x.

In case A this follows from [8, 34.7(a)]. The following proof applies in
both cases A,B. We have o = s;,s;, ...s;, for some sequence i1,72,...,% in
I such that r = |o|. From 1.2(d) we see that there is a unique j € [1,r] such
that

Sy« Sijy1Si;Sizyy - - Sip € Wi;

thus for j € [1,7] — {j} we have

Sipoe e Sij’+18ij’ Sij’+1 ce S, ¢ W)\;

moreover from the proof of 1.2(d) we see that s;, ...s;,,, (h;;) is the unique

element y € R} such that o(x) € Ry . It follows that the reflection in W
defined by s;, ...s;;,,(hi;) coincides with the reflection defined by x; thus

we have

o =S, .. .SijJrlSijSijJrl e S

It follows that
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From the relations of H, we have

1

Twsilsiz eSij_g Tsij Sijyq--Sip \)

_ / —1\r
= Twsil Sig--Sij 1Si]»+1~~~3ir \) +0 (U -V )Twsilsi2...sij71 1Si]»+1~~~5ir \)

where &' = 0 if [ws;; 85, ... 5i;| > [wsi; 84, ... 53,_,| and &' = 1 otherwise,

wsi15i2‘”5ij’—1TSij’ 1sij/+1‘“sir(>‘) - Twshsiz'“si- -8ir(N)

S; .
3 Th 4

if 5" € [L,r] = {j},

Tws: s .5 . T 1, .
WSiy SigeeSiy_y Sijyy Sy LSy slj,+1,..sz,.()\)

= Twsil Sigee-Sij_y SijyqSiy 15ij/+1---5i1-()‘)

if 7/ € [j + 1,7]. From these identities we see that

T,T = TuT o, . T, 1y
= TwsilsiQ---sij_lfsij Tsij+1 “ e Tsir 1)\

Ty o T 1y

Jj+1

+6' (v — U_l)Twsz-lsQ...sij

- Twsil Sig--Sij_y i
T, ...T,

j+1 Sir

. Ix

= Twsilsi2...s~ 1)\

ijSijyq-eSir

+6' (v — ”_1)Tw8ilsi2...s-J

i ._18ij+1...5i7.

= ngl)\ + (5,(1) — v_l)Twl)\.

1)

Assume now that w € Wy. We show that § = §’. The condition that § = 0
is equivalent to the condition that w(x) € Ry. The condition that &' = 0
is equivalent to the condition that ws;, s;, ...s;_, (h;) € R™. Tt remains to
note that x = si,8i, ... 5i;_;(hi;). (This follows from x = s;....si;,,(hi;)

SINCe Si,. ... Si; 1 = SiySiy -+ Sij_y, OF equivalently s;, si, - .. Sij_1Sijpq - Sip =
1.)

‘We show:

(g) Let A € 0, w € Wy,w' € Wy. Assume that lww'|y = |w|x + |w'|x. We
have Tipyly = (Twl)) (T ly).
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We argue by induction on |w’|y. If w' = 1 the result is obvious. We now
assume that [w'[y > 1. We can write v’ = wjo where w), o are in W) and
jwilx = [w'[x =1, |o|x = 1. We have [wwi|x = [w|x + [wy|x. From (f) we
have T,y 1y = (T 13)(Z51)). Using this and the induction hypothesis we
have

(T 1) (T 1a) = (T 1) (T 1) (To1n) = (T 1) (T5 1)

It remains to use that (Tww’l L)(T,1y) = Tww’l -1 which follows again from

(f).
The following result is a special case of (f).

(h) Let A\ € 0,0 € Wy be such that |o|x = 1. We have (T,15)% = 1, + (v —
’L)_l)Tgl)\.

1.5. For A\ € o let H), be the A-submodule of H, with basis {wa\; w € Wy}
From 1.4(g),(h), we see that H) is a subalgebra of H, (with a different unit,
namely 1,).

Let = = {(\,2,A); (N, ) € 0%,z € [N, \]}. We show:

(a) Let (N,z,\) € . The assignment w +— zwz"' is a Cozeter group

isomorphism W\SWy,. The assignment Tyyly — Tzwzq Iy (we W)
is an A-algebra isomorphism v, : Hx—H)/.

Recall that z(RY) = RY,. This shows that w + zwz"! defines an iso-
morphism W) — Wy. For any w € W), x — 2(x) defines a bijection
{x1 € Rj;w(x1) € Ry} — {x2 € R;;2wz"t(x2) € Ry, }. It follows that

|zwz"Y v = |w|y for any w € Wy. Thus, w + zwz!

is an isomorphism
of Coxeter groups. We also see that T,,1\ + T.,,—11y defines an isomor-
phism of A-modules ¢, : Hy—Hy. To show that ¢, is compatible with
multiplication it is enough to note that, by 1.4(d),(e), for w € W, we have

Topo-11y = T. T, 15T . This proves (a).

Let R be a commutative ring with 1. Let Algr be the category of asso-
ciative R-algebras with 1. Let ® : I' — Algr be a functor; here the groupoid
I' (in 1.2(f)) is viewed as a category in which all morphisms are isomorphisms.
Now @ consists of a collection {®(\); A € o} of associative R-algebras with
1 together with a collection of algebra isomorphisms ¢, : ®(\)=>®(\') (one
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for each (X, z,\) € E) such that for any (N[, z1,A1), (N}, 22, A2) in E with
X, = A1, the compositions ®(A2)=2B(N,) = ®(A)SB(N,), (N2) B2D(N,)
coincide.

Given ® we define ®* € Algr as follows. As an R-module we have
P* = B(x 2 0)e=P ) Where @3, = ®(A). For any (A}, 21, A1), (A9, 22, A2)
in E and any & € @;\,1’217)\1 =®(\), & € @’,2’227)\2 = ®()\2), we define the
product £1&s € ®°* as 0 if A, # A\ and as LZ_21(£1)£2 € <I>’,1’2122’)\2 = ®(\9)
(product in ®(\g)) if A, = A;. From the definitions we see that this product
is associative with unit element such that its (ID;\,% y-component is 0 unless
A =X, z=1. in which case it is the unit element of ®(\).

1.6. Let H : I' — Alga be the functor defined by H(\) = Hy for A € o
and the isomorphisms ¢, : Hy—Hy in 1.5(a) for (V,z,\) € Z. Then the
associative algebra H® = @y . nezH} .\ where HY,  \ = H)y is defined
as in 1.5. We consider the A-linear map 6 : H* — H, such that for any
(N,2,A) € Eand any £ € H}, , , = Hy we have 0(§) = T.¢ € H,. From
1.2(e) we see that 6 is an isomorphism of A-modules. We show that it
respects the algebra structures. For (A, z1,A1), (A5, 22, A2) in = and for
wy € Wy, wy € W),, we must show that Tzlfwll,\lszTwzlAQ is zero if
A1 # X,, while if A} = X}, it is T2122Tz;1w1ZQTw2 1),. The case where \; # A,
is immediate. The case where \; = X} follows from 1.4(d),(e). We see that

(a) 0 : H®* — H, is an isomorphism of A-algebras.

Now, for A € o, let £ be the Hecke algebra associated to the Coxeter
group Wy. Thus, $), is the A-module with basis {T,;w € W)} with the
associative A-algebra structure defined by the rules

TwTw = ST if w,w’ in Wy satisfy |ww'|y = |w|y + [w']a,

T2 =1+ (v—v1)T, if 0 € W), satisfies |o|) = 1.

Note that %7 is the unit element of $)). We define an A-linear map ¢, :
H\ — Hy, by T, — wa\ for w € Wy. This is clearly an isomorphism
of A-modules; moreover, from 1.4(g), (h), we see that this is an algebra
isomorphism.

Let H : T' — Algy be the functor defined by H'(\) = 9, for A €
o and the isomorphisms ¢, : 929y, Tw = Tou,—1 for w € Wy (here
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(XN, z,A) € 2). Then the associative algebra H'® = EB()\'7Z7)\)EEH/)\’7Z7)\. where
Vot =9 is defined as in 1.5.

We consider the A-linear map ¢ : H'® — H*® such that for any (X, 2, \) €
E and any § € H), _ \* = Hx we have J(§) = VA(§) € HY, .\ = Hy. Clearly,
¥ is an isomorphism of A-modules. Moreover, ¢ is an isomorphism of alge-
bras. (We use that for any (), z,\) € Z, the compositions 53,\19—A>HAL4HX,
ﬁAg.ﬁﬁ)\/@HA/, coincide.)

For s € S we have T, ' = T, 4 (v —v) > reasewy, 1 in Ho. It follows
that Ty, is invertible in H, for any w € W. As in [7, 31.3], there is a unique
ring homomorphism ~: H, — H, such that T_w = TJ_ll for all w € W and
vMm1y = v~ ™1, for all A € 0. The square of : H, — H, is 1.

Now let A € o and let 0 € W)y be such that ||y = 1. From 1.4(h)
we have T, 1, = T,1, + (v=! —v)1y so that ﬁ € H). Using 1.4(g),(h)
and induction on |w|y, we see that for w € W) we have m € H,. Thus,
~: H, — H, restricts to a ring isomorphism ~: H)y — H), whose square is 1.
If (N,2,\) € = then ¢, : Hy — H) is compatible with the bar operators
on Hy, Hy. (It is enough to check that for any o € W), such that |o|y =1
we have 1, (T; 1)) = T;;ll)\/; this is immediate.) It follows that the
group homomorphism™~: H®* — H* whose restriction to any H3, , \ = Hy is
“: Hy — H) is in fact a ring homomorphism with square 1. We show that
0 :H®* — H, is compatible with ~: H* — H*® and ~: H, — H,. It is enough
to show that for (X, z,\) € E, w € Wy, we have T,T,15 = TZTJ_IJ)\; it is
also enough to show that Tzl N = Tzl ) or that TZ__II 1, = Tzl \, which follows
from 1.4(e).

For A € 0, : Hy — H) corresponds under 9, to a ring isomorphism
~: 9\ — 9, such that vmT,, = v_mi;fl for any w € Wy, m € Z. Under the
isomorphism 9 : H'® — H®,”: H* — H* corresponds to a ring isomorphism
T H'* — H'® with square 1; its restriction to H), , ,* = ) coincides with

T HN — Ha

Let A € 0. By [6, 5.12], for any w € W), there is a unique element ¢} € )
such that ¢} = ¢} and ¢} — %, € D yeWsslyla<lwls v 1Zv™1T,. Using ) we
deduce that for any w € W), there is a unique element ¢, x» € H)y such that

— - —1rz[ —11F
Cox = Cy,x and ¢\ — Tyly € Zyewx;\ylﬁ\wlx v Z[vT T,
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If (\V,2,\) € E and w € W), then Tzcm\TZA satisfies the definition

Cowz—1 v € Hy hence we have Ty \T,-1 = ¢ -1 -

Now let w € W, A € 0. We can write uniquely w = zw where w € W),
z € [N, )] for some N € 0. We set ¢, 5 = Thcq . We have Gyx = ¢,y and
Cwx — Tl € zyEWA§|y‘A<|ﬂ)|>\ v_1Z[v_1]T2y1)\. It follows that {c, ;w €
W, X\ € 0} is an A-basis of H,.

1.7. For any A € o we state some properties of the multiplication of ele-
ments of form ¢,y € Hy with w € W). These properties follow from the
known properties of the multiplication of elements of form ¢, € $, via the
isomorphism ). (We use that W) is a Weyl group or an affine Weyl groups,
see 1.2(b).) For any w,w’ in W) we have

",
Cuw ACuw! X = Z Tzﬂl))/\cw’ﬁ)\
w” Wy,
where 7"1“5:;”, € A are zero for all but finitely many w”. Moreover, for any w” €
Wy there is a well defined smallest integer a(w” ) > 0 such that v“(“’")rfu):j;‘ S
Z[v] for all w,w" in W). We have

.3\ _w N — " _ "
e =T o) mod v~ oW HZ[y]

—’Ll)";)\
where T € N.

We now consider the free abelian group HY°® with basis {t,;w € Wy}.

Then HS° is an (associative) ring with multiplication given by

_w's\
Lty = E T o Lo -
b}
w €Wy

It has a unit element of the form 1 =73%" Dy tw where D) is a well defined
finite subset of {w € Wy;w? = 1}. The A-linear map ¥ : Hy - A® H,
given by

TZJA(Cw)\) = Z r:ﬁ:;)\tw”

w"” €Wy, deDy;a(d)=a(w')

is & homomorphism of A-algebras with 1.
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For w,w’ in Wy we have w ~ep w' (resp. w ~yigne w' if and only if
for some u € W), t,s appears with non-zero coefficient in t,t, (resp. in
tutw). For w,w’ in Wy we have w ~ w' if and only if for some u,u’ in W)
we have t,, appears with non-zero coefficient in t,t,t, (or equivalently if
for some w” € Wy we have w ~jep w”, W' ~pigne w”). Recall from 0.2 that
the equivalence classes for ~j.p; (resp. ~yignt, ~) are called the left (resp.
right, two-sided) cells of Wy. For any left (resp. right, two-sided) cell K of
W) the subgroup ), i Zty, is a left (resp. right, two-sided) ideal of HS°.

Note that the definition of left (resp. right, two-sided) cells of W) de-
pends only on the Coxeter group structure of W) hence these are defined
for any Coxeter group W which is a Weyl group or an affine Weyl group; we
shall write Cell()V) for the set of two-sided cells of W.

Let J : I' = Algz be the functor defined by J(\) = HY® for A € o
and the isomorphisms ¢, : HPSHS for (XN,z,A) € = where ¢, maps any
basis element t¢,(w € W) to the basis element ¢,,,-1 of H’. Then the

(associative) ring J* is defined as in 1.5.

1.8. For (wp, \o), (w1, A1) in W x o we write in H,:

_ w2,A2
Cuwo,XoCwi, A1 = § : RU}Oy)\O§w17)\1 Cwg, X2
(w2,A2)EW X0

where RZ)}(QJ:X;M,M € A are zero for all but finitely many (ws, A2). For j =
0,1,2 we can write uniquely w; = z;w; where z; € [N, \j], w; € W,. We

have
Cwo, Ao Cwi, A1 = TZO Cig, Ao T Cop ;-

This is 0 unless Ao = z1(A1). Assume now that A\g = z1(\1). We have
Cwo,xoCwr, 1 = T20T21czf1w021,)\16ﬂ}1,>\1
y7)‘1

= T E T C
#0721 21 Mozt A1301,00 M
yeWy,

— E T‘y7)\1 c A\
27 Mg za, A1, A1 0FLYAL
yeWy,
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We see that R¥2)? = 0 unless the conditions Ay = A1, \g = 21(A1),22 =

wo,A0;W1,A1
zpz1 are satisfied; if these conditions are satisfied, then

wa,A2 251
wo,A0;wAL T 2T gz i
We see that
Ay, N w2,A2
(a) v 2Rwo,>\o;w1,>\1 € Z[U]

where a,, », = aq, is defined in terms of W), and that a, ), is the small-
est integer such that (a) holds for any (wo,Ao), (wi,A1). We now define

RY*2 .\, €Zby

wW0,A0;W1,A1

w2,A2 _ pw2,A2 —a(U)Q,)\Q) —a(ll)2,>\2)+1
Rwo,ko;wl,h = Pyg hosw, A Y mod v Z[v]'

We consider the free abelian group $5° with basis {t,, x;w € W, X € 0}. We

define a ring structure on $3° by

_ E : PW2,A2
two Ao twi A = Rwo,)\o;wl,)\ltw%)\w
(U)Q,)\z)EWXO

or equivalently (for wy € Wy,, w1 € Wy, 20 € [N, Aol, 21 € [N}, M1]):

5 5 _ § : SW23A1 5
(b) tzowo Nobzridn A\ = Tzflmozl,mltzozlw2’>‘1’
QIJQEW)\l

(C> Lzio Mo lzrin, i = 0, if Ao # Zl()‘l)’

This ring is associative. Indeed, this ring has the same multiplication rule
as the ring J°® in 1.7, which is known to be associative from 1.5. Note that

the ring £;° has a unit element, namely >y, > e p, tw -

The A-algebra homomorphisms v : Hy — A ® H{® combine to give
an A-algebra homomorphism ¢ : H* - A® J* or equivalently ¢ : H, —
A ® $H3; it is given by

_ w2,A2
Y(cwar) = E Rw,)\;d7)\1tw2,)\2
(U)Q,)\Q)EWXU,)Q EU,dEDAl ;a(wg,)\g):a(d,)\l)
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that is,
D25\
¢(Cw,,\) = Z ng tzzbg,)\

(1?}2 eWy,deDy ;a(ﬁ)g):a(d)

where w = zw with w € W)y, z € [w(\), A].

1.9. We now describe the left (resp. right) cells of W x o defined in terms
of the basis (t, ) of H. (See 0.2.) Let (w, ), (w', ) in W x 0. We say
that (w,\) = (W', N) (resp. (w,A) =pigne (W', X)) if for some (u, A1) €
W x o, t, » appears with non-zero coeflicient in the product t,, x,t, x (resp.
tw,)\tu,)\l)-

We write w = zw, w' = 2@’ where w € Wy, @' € Wy, z € [w(\), A],
2" e [w'(XN),N]. From 1.8(b),(c) we see that the condition that (w, \) ~eft
(w',X') is that A = X and @ ~jp @' in Wy = Wy; the condition that
(0, A) ~pignt (W', X) is that A = (z712/) (V) and @' ~pigne (' 712)w(2712")
in Wy = W(Z/—lz)()\).

Using the results in 1.7 we deduce that ~.; and ~,.;4; are equivalence
relations on W x o. In particular, ~j.f; is transitive, hence if for (w, ) €
W x o0 we set (w,\) = {(w',N) € W x 0;(w,\) =gt (w',N)}, then the

P

subgroup spanned by {t,s y; (W', \) € (w,\)} is a left ideal of HZ°, so that

(w, \) is a union of left cells. If (w,\) ~yep (w',N'), then clearly any left
ideal of HJ® spanned by a subset of the canonical basis of HJ® and containing
tw, must also contain t,, /. Since ~.p is symmetric we must also have
(W', X') ~epe (w,\) hence any left ideal of Hg° spanned by a subset of
the canonical basis of HJ° and containing ¢,y must also contain t,, x; it
follows that (w, ), (w’,\") are in the same left cell. We now see that any
equivalence class for ~.; is exactly one left cell. We see that the canonical
basis elements indexed by any left cell span a left ideal. The same argument
shows that the equivalence classes for ~,;4n¢ are exactly the right cells and
that the canonical basis elements indexed by any right cell span a right ideal.

We now see that we have a natural bijection
{left cells in W x o} <> {(A,7); A € 0,7 = left cell in W)}

The bijection associates to each (A,7) in the right hand side the left cell
{(zw0, A\);w € 7,z =min(zW))} of W x 0. We also see that the right cells in
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W x o are the images of the left cells under the involution W x 0 — W x o,
(w,\) = (w w(\).

1.10. We now describe the two-sided cells of W x o defined by the basis
(tw) of H®. (See 0.2). Let A\, X in 0; let w,w’ in W.

We say that (w, ) = (w', ') if for some (u1, A1), (u2, A2) in W X0, ty y
appears with non-zero coefficient in the product t,, x,ty rtus; x, OF equiva-
lently, if for some (w”,\”) we have (w,X) =g (w”, N") and (W', N) ~yignt
(w”;\"). (The equivalence uses the positivity of the structure constants of
H*.) We write w = zw, w' = 2'&’ where w € Wy, @' € Wy, z € [w(\), ],
2 e [w'(N),N]. From 1.9 we see that the condition that (w,\) ~ (w', \) is
that for some A" € o, @" € Wyr, 21 € [N, X'] we have A\ = X, @ ~jepy 0" in
Wy = Wan, @ ~pight 2y 021 in Wy = szl () OF equivalently: for some
21 € [N, \] we have @ ~ zl_lzb’zl in Wy = Wzl—l()\,). Using the results in 1.7
we deduce that = is an equivalence relation on W x o.

In particular, ~ is transitive, hence if for (w,\) € W x 0 we set (w: A) =
{(w',N) e W xo0;(w,\) =~ (w',\)}, then the subgroup spanned by {t,
(W', X) € (w,\)} is a two-sided ideal of H®, so that (w,A) is a union of
two-sided cells.

Now assume that (w, \) = (w’, X); let (w”, \”) be such that (w, \) ~jeft
(w”, M) and (w', X) ~pigne (w”,N"). By 1.9, we have (w,A) ~epe (0", \")
and (w', N) ~pigne (w”, "), Hence if T is a two-sided ideal of HJ° spanned
by a subset of the canonical basis then we have t,, » € Z < tyr v € T <
tw y € Z. It follows that (w,\) ~ (w',\). We see that any equivalence
class for ~ is contained in a two-sided cell. As we have seen earlier, any
equivalence class for &~ is a union of two-sided cells, hence it is exactly one
two-sided cell. Also, the canonical basis elements indexed by any equivalence

class for ~ (hence by any two-sided cell) span a two-sided ideal of HS®.

Let Cell(WW x o) be the set of two-sided cells of W x 0. Note that for
any A € o, the group [\, A\] acts by conjugation on W); this action induces
an action of [A\,\] on Cell(W)). If A € Cell(W x o), for any A\ € 0 we set
Ay ={w € Wy;(w, \) € A}; this is a union of the two-sided cells of W) in a
fixed [\, A]-orbit. Moreover, if A\, \" are elements of o then zA,z~! = D)/ for
any z € [N, A]. We now see that for each A\ € 0 we have a bijection A — Ay
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between Cell(W x o) and the set of orbits of the conjugation of [A, A] on
Cell(Wy).

From the results in 1.8 we see that if A, A are as above, then the function
(w,\) — a(w,\) on A is constant with value equal to the value of the a-
function on any of the two-sided cells of W) contained in Aj.

1.11. Let H = ®,H, (resp. H>* = ©,H°) where o runs over all W-orbits
in Vj. We view H (resp. H*) as an A-algebra (resp. ring) without 1 in
general) in which H, (resp. H{®) is a subalgebra (resp. subring) for any o and
H,Hy =0 (resp. H°HY® = 0) for 0 # o’. Note that {c,;w € W, A € Vj}
is an A-basis of H and that {t, \;w € W, A € V{} is a Z-basis of H*®. The
left (resp. right, two-sided) cells of W x V{ are defined in terms of the basis
(twx) of H* as in 0.2. Using 1.9 we have a natural bijection

{left cells in W x V§} < {(A\,7); X € Vg, v = left cell in Wy}

The bijection associates to each (A,7) in the right hand side the left cell
{(z0,\); % € 7,2 = min(zWy)} of W x VJ. The right cells in W x Vj
are the images of the left cells under the involution W x Vj — W x Vj,
(w,\) = (w™w(N)). Let Cell(W x Vj) be the set of two-sided cells of
W x VJ. We have Cell(W x V{§) = U,Cell(W x o) where o runs over all
W-orbits in V] and Cell(W x o) is described in 1.10.

Let (w”,\") € W xV{. There is a well defined smallest integer a(w, \) >
0 such that for any (w, A), (w',X') in W x Vj, the coefficient of ¢, y» in the
product ¢, zc,r » belongs to v_“(w”’)‘”)Z[v]. From 1.10 we see that for any
A € Cell(W x V{) the function A — N, (w”,\") = a(w”,\") is constant
on A.

2. Conjugacy Classes

2.1. Let W be an affine Weyl group. Let T be the set of translations in
W, that is the set of the elements of W whose W-conjugacy class is finite.
Note that 7 is a subgroup of finite index in W. Let S be the set of simple
reflections of W. Let A(WW) be the group of automorphisms ¢ : W — W
such that o(S) = S; note that o € A(W) is uniquely determined by its
restriction to S.
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We now assume that the affine Weyl group W is irreducible. Let Sy be
the set of all s € S such that S — {s} together with 7 generates WW. We have
So # (. If 0 € A(W) then o restricts to a permutation of Sy. Let Ag(W) be
the set of all o € A(W) such that o : Sy — Sy is either fixed point free or
the identity. Note that Ap(WV) is a normal subgroup of A(W); it acts simply
transitively on Sp. For any s € Sp let A*(W) be the set of all 0 € A(W)
such that o(s) = s (a subgroup of A(W)); we have A(W) = Ay(W)A*(W),
Ao(W) N A%(W) = {1}.

2.2. The results in this subsection can be deduced from those in 2.1. Let
W be an affine Weyl group with set of simple reflections §. We can write
W = TlueuW", S = UucuS" where W*(u € U) is a finite collection of
irreducible affine Weyl groups and S“ is the set of simple reflections of W.
We set Sp = UyenS§ where S§ € S* is as in 2.1 (with W, S replaced by
W, S8*%). We define A(W) as in 2.1. Let Ag(W) be the set of all 0 € A(W)
such that for any u € U, we have o(W") = W" and oy € Ag(W"). Let s
be a subset of Sy such that for any u € U, s contains exactly one element of
Sy (Note that Ag(W) acts simply transitively on the set of all such s.) Let
AS(W) be the set of all ¢ € A(W) such that o(s) = s (a subgroup of A(W));
we have AOW) = Ag(W)AS(W), Ag(W) N AS(W) = {1}.

2.3. In the setup of 2.2 let 0 € A(W). Let T be as in 2.1. The following
property (which is checked case by case) has been stated in [2]:

(a) we have o € Ag(W) if and only if there exists w € W such that o(t) =
wtw™! for allw € W.

Note that the image of w in W/T is uniquely determined by o. In
particular, o — w7 is a well defined (injective) homomorphism Ay(W) —
W/T. We show:

(b) If o € Ag(W) and c € Cell(W), then o(c) = c.

This is proved in [4, 4.9(b)] using the property (a) of o.

2.4. In this subsection we assume that we are in case B. Let A € V.
Recall that Ry, = {h € R;(h,\) =0 € Q/Z}, Ry = {h + mdpc € R;h €
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Ry,m € Z}. Let RY(u € U) be the irreducible components of Ry. Note that
R} = RNV is aset of positive (co)roots for R, with set of simple (co)roots
O, = {h"J;u € U,j € [1,t,]} C Ry (notation of 1.3). Let 'II, = {h*%u €
U} C Ry (notation of 1.3), Iy = {h*" + §juoc;u € U} C RY, I, =
I, U'Il, C Ry, I, =11, U'ITy C R;\r. Note that we have a unique bijection
H>\1>f[)\, X — X, such that for x € I, we have ¥ € x + Zc. Recall from 1.3
that W)y is an affine Weyl group with Coxeter generators Sy = {sy; x € II\}.
The results of 2.2, 2.3 are applicable with (W,S,T) = (W),S), Q). Let
W, be the subgroup of W generated by {s,;x € R,} (a subgroup of W).
Note that W, is a Weyl group with Coxeter generators {sp;h € II,}. Let
Wh =W nW{ ={w e W;w(\) = A}. We have W, C W). We write Q)
instead of

A= {z € Wi2(RY) = R{} = {2z € W} 2(IIy) =TI},
Let

Oy ={z e Wi;2(RY) = Ry} = {z € W); 2(IT)) = I, }.
We have W' = Q,W, and Q, N W, = {1}. We show:
(a) 2y C Q.

Let z € Q,. Let u € U. For some u' € U, h — z(h) defines an
isomorphism Ry RY which takes simple roots of RY to simple roots of RY ;
hence it takes h%? to h%'° and we must have Opu0 = Opur0. We have also
z(¢) = ¢, since z € W. Thus we have z(h*0 + §pu0c) = h*0 + Opuroc. We
see that z('IIy) C 'IIy, hence z('ILy) = 'II,. We see that z(IIy) = II, so that
z € Q). This proves (a).

Let 24y be the group of permutations p : II, — II, with the follow-
ing property: there exists (a necessarily unique) o = o, € A(W)) such
that o(sy) = s, for any x € II). Note that p — o0, is an isomor-
phism A, A(W)). Each p € 2, defines a permutation p : I, — II, by
p(x) = p/(\x) for any x € II,. Now p — p defines an isomorphism of 2, onto
a subgroup 2, of the group of permutations of II,. Let €, be the set of
all z € W) such that z(f[)\) = II, and the permutation of II, defined by
h — z(h) belongs to Ay.
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Note that any element w € W can be written uniquely in the form
w = tw where w € W, t € Q; moreover w — w is a homomorphism
k:W — W with kernel Q. We show:

(b) we have k() C Qy hence k defines a homomorphism k : Qy — Q\ with
kernel contained in Q.

Let w € Q). We write w = tw with w € W, t € Q. Since A € VO’, we
have t(A) = A. Thus w(\) =t tw(X) = t71(\) = A, so that w € W). Now
let y € II so that ¥ € Iy and w(x) € IIy. We show that w(R) = w/(x\) Now
w(x) € Rand h = @ is the unique element in R such that w(x)—h € Zec.
Thus it is enough to show that w(x) — w(x) € Zec. We have xy = x + mc
with m € Z hence it is enough to show that w(x + mc) — w(x) € Zc. Since
w(c) = ¢ and w = tw, it is enough to show that tw(x) — w(x) € Zc or,
setting b’ = w(x) € R, that ¢(h') — h’ € Zc. The last identity holds for any
t € Q,h' € R, as we can see using the definitions. This proves (b).

We shall need the following property:

(c) Let p € Ay be such that o, € Ag(W); let p be the corresponding element
of An. Then there is a unique w € W, such that w(h) = p(h) for any
h e ]j)\.

Let w € W be such that o,(t) = wtw™! for all t € Q. (We use 2.3(a).)
A case by case check shows that w satisfies the requirement of (c). The

uniqueness of w is obvious.

We define a homomorphism « : Q\ — fAy) by z — p where p(x) = 2(x)
for any x € II,. We define a homomorphism «a : 2, — 2 as the composition
Q) — U 52Ay (the first map is the inclusion (a)). It follows that

(d) image(a) C image(a).

We define a homomorphism & : ), — 2, as the composition ) —
2y — Ay where the first homomorphism is z — p’ where p/(h) = z(h) for
any h € II, and the second homomorphism is p — p for p € Ay. We show
that a = &k with k as in (b). Let w € Q). We write w = tw where w € W,
t € Q. We must show that for x € I we have 27(;) = w(x). This has been
verified in the course of proving (b). From a = ak it follows that
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(e) image(a) C image(&).

We define o : Ag(W)) — 2, as the composition Ag(Wy) — A(W)) —
2y where the first map is the obvious imbedding and the second map is the
inverse of the bijection p + 0,. We show:

(f) We have image(&) C image(o’)image(a).

Let z € Qy. Let p = a(z) € Ay so that p(h) = z(h) for any h € IIj.
Let 0 = 0, € A(W)). By 2.2 we can write 0 = ¢’0” where ¢/ € Ag(W))
and ¢” € A(Wy) maps {sy;x € I, — II,} into itself. Let p',p"” in Ay be
such that o/ = 0,,0"” = o,7. Then p = p'p"” and p” maps II, — II, into
itself and IT, into itself. We have p = §'p” and p” maps II, into itself (recall
that for x € II, we have x = x). By (c), we can find w € W, such that
w(h) = p'(h) for any h € II. For any h € IIy we have /5" (h) = z(h) hence
w(p"(h)) = z(h), that is w™tz(h) = p”(h). Since p”(IL,) = II,, we deduce
that w™1z(I,) = I0,. Since z € W), w € W,, we have w™1z € W). We see
that w1z € Q,, so that z = wxr where z € Q,. We have w € Q\,z € Qy
hence p = a(z) = a(w)a(z). We have a(w) € image(’), a(x) € image(a).
This proves (f).

We show:

(g) Let ¢ € Cell(Wy). The collection of two-sided cells {zcz71;2 € Qp}
coincides with the collection of two-sided cells {zcz™ 12z € Q,}.

From (e), (f) we deduce that image(a) C image(a/)image(a). Hence,
if z € Q) then the automorphism w — zwz~' of W) is a product ¢’c”
where ¢’ € Ag(W)) and ¢” is conjugation by an element 2z’ € Q,. Thus,
we have zcz~! = o/(2'cz’~1). By 2.3(b) we have o/(2'cz’~1) = 2/c2’~! hence
zcz~l = 2'c2’71. We see that the first collection in (g) is contained in the

second collection. The reverse containment follows from (a). This proves

(8)-

2.5. In the remainder of this section we assume that k' has characteristic
zero. Let T’ (resp. k’*) be the set of elements of finite order in T’ (resp.
k’*). We have canonically T/ = L' @ k'*, T) = Lok - Recall that in case B
we have Vj = V'/L’, see 1.3, and that in case A we write Vj = V’. We have
canonically Vj = L'®(Q/Z). Note that W can be viewed as the Weyl group
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of G and that of G’; it acts naturally on T and T’. We choose an isomorphism
Q/Z%k}*. Via this isomorphism we have T’f = L' ® Q/Z = V. This is
compatible with the W-actions on T and Vjj. Now let 0 be a W-orbit on V'
which is contained in Vj. Note that o is in fact a W-orbit. In case A this is
because W = w; in case B this is because the subgroup Q (see the proof of
1.1(a)) of W acts trivially on V. Under the identification T, = V{j, o can
be viewed as a W-orbit on Ty. Let A € 0. Let Z(\) be the centralizer of
A€ T in G’ and let Z(\)° be the identity component of Z()). Since A is

0'is a reductive group and T’ is a maximal torus of

semisimple in G, Z(\)
it. Let h € R. We have h € L so that h can be viewed as a homomorphism
T’ — K*. The condition that h is a root of Z(\)° with respect to T’ is that
h(X\) = 1. An equivalent condition (with A is viewed as an element of V()
is that (h,A\) = 0 or that h € R,. We see that the set of roots of Z(\)? is
R, and the corresponding set of coroots is Ry C R’ (as in 1.2). Using this
and 1.3(b), we see that we have Wy = W(Z(A)?) where W(Z()\)?) is the
Weyl group (in case A) or the affine Weyl group (in case B) associated to
the dual of the reductive group of Z(\)?, in the same way as W is the Weyl
group (in case A) or the affine Weyl group (in case B) associated to G, the
dual of G’. Let £(Z(A\)?) be the set of unipotent conjugacy classes of Z(\);
let 865, (Z(A)?) be the set of special unipotent conjugacy classes of Z(A)° (a
subset of U(Z(\)?)). By [4, 4.8(b)] in case B we have a canonical bijection

(a) W(Z(N)?) <> CellW(Z(N)?)) = Cell(Wy);

this restricts to a bijection $6s,(Z(N)°) «» Cell(W,) (each two-sided cell
of W, is contained in a two-sided cell of W) and this gives an imbedding
Cell(W;) C Cell(Wy). The last bijection can be viewed as a bijection

(b) ilsp(Z()\)O) — Cell(Wy)
in case A.

Now let 4(Z (X)) be the set of unipotent elements of Z(\)? up to Z(\)-
conjugacy; let $6s,(Z(\)) be the set of special unipotent elements of Z(\)°
up to Z(\)-conjugacy. Let N(T’) be the normalizer of T/ in G'. If w € W)
and n € N(T’) is a representative of w viewed as an element of N(T’)/T’
then n € Z(\) and u + nun~! defines bijections U(Z(\)°) — U(Z(N\)?),
Usp(Z(N)) = Usp(Z(N)?) which depend only on w not on n (since T/ C
Z(A\)?). This gives an action of W) on $4(Z (X)) leaving stable $ls,(Z(A)?).
(In this action the subgroup W, acts trivially.) It is easy to see that two
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unipotent Z(\)°-conjugacy classes of Z(\)? are in the same W)-orbit if and
only if they are contained in the same Z(\)-conjugacy class. Let Q, be
as in 2.4 (in case B) and let 2, = [\, )] in case A. Since W) = Q, W, it
follows that two unipotent Z(\)°-conjugacy classes of Z(A)? are in the same
Q,-orbit if and only if they are contained in the same Z(\)-conjugacy class.
Thus we can identify U(Z(N)) = Q,\UMZ(N)?), Usp(Z(N)) = 2, \Usp(Z(N)?).
From the definitions we see that the bijections (a),(b) are compatible with
the natural actions of W on the two sides of (a),(b). Taking orbits of these
actions we deduce bijections

(c) MZ(N)) + Q,\Cell(Wy) (in case B);
(d) Yep(Z(N)) < [N, A\Cell(W)y) (in case A).

Now in case B the natural action of 2, on Cell(W)) extends to an action
of [\, \] on Cell(W)) with the same orbit space (see 2.4(g)). Thus (c) can
be viewed as a bijection

(e) Z(N)) <> [\, A\Cell(W)) (in case B).
By 1.10 we have a canonical bijection Cell(W x o) < [\, A]\Cell(W)) (in
both cases A,B). Combining with (d),(e) we obtain bijections

Cell(W x 0) < (Z(N)) in case B;

Cell(W x 0) < Usp(Z(N)) in case A.

Using this and the equality Cell(W x V{) = U,Cell(W x o) in 1.11 we see
that Cell(W x VJ) is in natural bijection with L)4(Z()\)) (in case B) and
with Uyt (Z(X)) (in case A) where A runs though a set of representatives
for the W-orbits in Vj = T'. Let Conj(G’) be the set of conjugacy classes of
elements in G’ with semisimple part of finite order. Let Conjs,(G’') be the
set of conjugacy classes of elements in G’ with semisimple part of finite order
and such that the unipotent part is special in the connected centralizer of
the semisimple part. Note that we have canonically LI)${(Z(\)) = Conj(G"),
Uilsp(Z(N)) = Conjsp(G'). For any g € G’ let B be the variety of Borel
subgroups of G’ containing g. We have the following result.

Theorem 2.6

(a) We have canonical bijections Cell(W x VJ) <+ Conjs,(G') (in case A)
and Cell(W x V{) <> Conj(G’') (in case B).
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b) If A € Cell(W x V{) and c is the conjugacy class in G’ corresponding to
0

A under (a), then the value of the a-function (see 1.11) on A is equal
to dim By, for g € c.

Now (a) is obtained by combining several statements above; (b) follows

from 1.10, 1.11, using |4, 4.8(c)].

10.
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