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Abstract

Let G′ be a connected reductive group over the complex numbers. We show that the

set of conjugacy classes of elements of G′ with semisimple part of finite order is in natural

bijection with the set of two-sided cells associated to a certain algebra.

0. Introduction

0.1. Let G′ be a connected reductive group over C. In [4] it was shown that

the set of unipotent conjugacy classes of G′ is in natural bijection with the

set of two-sided cells coming from an affine Hecke algebra associated to G,

a reductive group of type dual to that of G′. In this paper we extend this

to a bijection between the set of all conjugacy classes of elements of G′ with

semisimple part of finite order and the set of two-sided cells associated to a

certain algebra H containing the affine Hecke algebra, see Theorem 2.6. The

algebra H is an affine analogue of an algebra considered in [7, §31] which,

on the one hand, is a modified form of an algebra considered by Mars and

Springer [9] in their approach to the theory of character sheaves and, on the

other hand, as shown in [8, §34], is closely related to the algebra studied by

Yokonuma in [10]. Most of the paper is concerned with showing that the

notion of two-sided cell can be defined for H.
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0.2. Notation. Let R be a commutative ring with 1 and let A be an

associative R-algebra with a given R-basis {bi; i ∈ I} where I 6= ∅. For

K ⊂ I we write [K] =
∑

i∈K Rbi ⊂ A. For i, i′ ∈ I we write i′ ∼left i if

for any K ⊂ I such that [K] is a left ideal of A we have i ∈ K if and only

if i′ ∈ K. This is an equivalence relation on I; the equivalence classes are

called the left cells of I. Replacing “left” by “right” we obtain an equivalence

relation ∼right on I; the equivalence classes are called the right cells of I.

Replacing “left” by “two-sided” we obtain an equivalence relation ∼ on I;

the equivalence classes are called the two-sided cells of I.

By an affine Weyl group we mean a finite product of irreducible affine

Weyl groups. In particular, the group with one element is an affine Weyl

group.

Let A = Z[v, v−1] where v is an indeterminate.

1. Two-sided Cells

1.1. Let k, k′ be algebraically closed fields. Let G be a connected reductive

group over k with a fixed Borel subgroup B and a fixed maximal torus

T ⊂ B. Let ρ = dimT, ν = dimG/B.

Let G′ be a connected reductive group over k′ of type dual to that of G

with a fixed Borel subgroup B′ and a fixed maximal torus T′ ⊂ B′.

Let L (resp. L′) be the lattice of one parameter subgroups k∗ → T (resp.

k′∗ → T′). We assume that L is also the group of characters T′ → k′∗ and

that L′ is also the group of characters T → k∗. We assume that the obvious

nondegenerate pairing 〈, 〉 : L × L′ → Z defined in terms of T is the same

as that defined in terms of T′. Let R ⊂ L (resp. R′ ⊂ L′) be the set of

coroots of G (resp. G′) with respect to T (resp. T′); we assume that R

(resp. R′) is also the set of roots of G′ (resp. of G) with respect to T′ (resp.

T). We also assume that the canonical bijection R↔ R′ defined in terms of

G is the same as that defined in terms of G′; we denote it by h ↔ h′. Let

{hi; i ∈ I} ⊂ R be the set of simple roots of G′ determined by B′; we assume

that {h′i; i ∈ I} ⊂ R′ is the set of simple roots of G determined by B.

Let V = Q⊗L, V ′ = Q⊗L′; now 〈, 〉 extends to a nondegenerate bilinear

pairing 〈, 〉 : V × V ′ → Q. Let V (resp. V ′) be a Q-vector space containing
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V (resp. V ′) as a subspace and let 〈, 〉 : V × V ′ → Q be a nondegenerate

bilinear pairing extending 〈, 〉 : V × V ′ → Q.

We shall consider two cases (we will refer to them as case A and case

B).

(A) We have V = V , V ′ = V ′. We set L = L,L′ = L′.

(B) We have V = V ⊕Qc, V ′ = V ′ ⊕Qc′ where c, c′ are vectors such that

〈c, c′〉 = 1, 〈c, V ′〉 = 0, 〈V , c′〉 = 0. We set L = L⊕ Zc, L′ = L′ ⊕ Zc′.

In case (A) we set I = I.

In case (B) we write R = ⊔e∈ERe, R
′ = ⊔e∈ER

′
e where (Re, R

′
e) are

irreducible root systems and E is an indexing set; we have a corresponding

partition I = ⊔e∈EIe where Ie indexes the simple roots/coroots in Re, R
′
e.

For each e ∈ E let βe ∈ Re be such that −β′e is the highest root of R′
e. We

set I = I ⊔ E. There is a unique function δ : R→ Z>0 such that δβe
= 1 for

any e ∈ E and for any h, h̃ in R we have 〈h, h̃′〉δh̃ = 〈h̃, h′〉δh. For any h ∈ R

we have δh ∈ {1, 2, 3}. For e ∈ E we set he = βe + c ∈ L, h′e = β′e ∈ L′.

In both cases, for i ∈ I we define a reflection si : V → V by si(y) =

y−〈y, h′i〉hi and a reflection si : V
′ → V ′ by si(x) = x−〈hi, x〉h

′
i (this is the

contragredient of si : V → V ). Let W (resp. W ) be the subgroup of GL(V )

generated by {si; i ∈ I} (resp. by {si; i ∈ I}); taking contragredients we

identify W (resp. W ) with the subgroup of GL(V ′) generated by {si; i ∈ I}

(resp. by {si; i ∈ I}). It is well known that W (resp W ) is a Coxeter group

on the set of generators {si; i ∈ I} (resp. {si; i ∈ I}). In any case W is a

(finite) Weyl group. In case A we have W = W ; in case B, W is an affine

Weyl group (said to be the affine Weyl group associated to G).

Let w 7→ |w| be the length function W → N; we set S := {si; i ∈ I} =

{w ∈ W ; |w| = 1}. For w ∈ W we have w(L) ⊂ L, w(L′) ⊂ L′. Hence the

W -action on V ′ induces a W -action on V̄ ′ := V ′/L′. For y ∈ L, λ ∈ V̄ ′ we

define (y, λ) ∈ Q/Z by (y, λ) = 〈y, x〉 where x ∈ V ′ is a representative of λ.

In case B we have V ′ = ⊔ẽ∈QV
′
ẽ where V ′

ẽ = {x ∈ V ′; 〈c, x〉 = ẽ}. The

image of V ′
ẽ under V ′ → V̄ ′ = V ′/L′ depends only on the image e of ẽ under

the obvious map Q → Q/Z; we denote it by V̄ ′
e . We have V̄ ′ = ⊔e∈Q/ZV̄

′
e .

In case A we sometimes write V̄ ′
0 instead of V̄ ′. We show:

(a) Any W -orbit on V̄ ′ is finite.

In case A this is trivial since W is finite. Assume now that we are in case
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B. Let λ ∈ V̄ ′ and let x ∈ V ′ be a representative of λ. We can find an

integer q ≥ 1 such that qx ∈ L′. Let Q be the subgroup of V ′ generated by

{δhh
′;h ∈ R}; this is the free abelian group with basis {δhi

h′i; i ∈ I}. For

z ∈ Q let θz : V
′ → V ′ be the linear map x 7→ x+ 〈c, x〉z; its contragredient

is the linear map y 7→ y − 〈y, z〉c, V → V . We have θz ∈ W (compare [5,

1.5]) and z 7→ θz identifies Q with a normal subgroup Q′ of W such that

W = Q′W (semidirect product).

If z ∈ Q then θqz(x) − x = 〈c, qx〉z ∈ Q ⊂ L′. Thus the stabilizer of

λ in W contains Q′q. Thus the W -orbit of λ contains at most ♯(W/(Q′q))

elements. Since ♯(W/Q′) < ∞ and ♯(Q′/Q′q) < ∞, we have ♯(W/(Q′q)) <

∞. This proves (a).

1.2. In case A we set R = R. In case B we set

R = {χ ∈ V ;χ = w(hi) for some i ∈ I and some w ∈W};

we have R = {h + δhmc;h ∈ R,m ∈ Z}. In this case for χ ∈ R we set

χ′ = h′ ∈ R′ where χ = h + δhmc with h ∈ R,m ∈ Z. The map R → R′,

χ 7→ χ′ extends the map R → R′, h 7→ h′ considered earlier and it is

compatible with the notation h′e considered earlier.

In both cases, for χ ∈ R, the reflection σχ : V → V , y 7→ y − 〈y, χ′〉χ

and its contragredient σχ : V ′ → V ′, x 7→ x−〈χ, x〉χ′ are defined and belong

to W . Let V + =
∑

i∈I Q≥0hi ⊂ V . We set R+ = R ∩ V +, R− = −R+.

Let i1, i2, . . . , ir be a sequence in I such that w := si1si2 . . . sir satisfies

|w| = r. A standard argument shows that

(a) {χ ∈ R+;w(χ) ∈ R−} consists of exactly r elements, namely

sirsir−1
. . . sij+1

(hij ) for j = 1, . . . , r.

For λ ∈ V̄ ′ we set Rλ = {χ ∈ R; (χ, λ) = 0 ∈ Q/Z}, R+
λ = Rλ ∩ R+,

R−
λ = Rλ ∩ R−; let W ′

λ = {w ∈ W ;w(λ) = λ}, a subgroup of W . Let Wλ

be the subgroup of W generated by {sχ;χ ∈ Rλ}. We have Wλ ⊂ W ′
λ. If

w′ ∈ W ′
λ and χ ∈ Rλ, then w′(χ) ∈ Rλ; we have w′sχw

′−1 = sw′(χ) hence

w′Wλw
′−1 =Wλ, so that Wλ is a normal subgroup of W ′

λ.

In case A we set Rλ = Rλ. In case B we set Rλ = {h ∈ R;h +

mδhc ∈ Rλ for some m ∈ Z}; in the case where λ ∈ V̄ ′
0 we have Rλ =
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{h ∈ R; (h, λ) = 0 ∈ Q/Z}. In both cases we set R′
λ = {h′;h ∈ Rλ} ⊂ R′.

We show that for h, h̃ ∈ Rλ we have 1h := sh̃(h) ∈ Rλ.

Assume first that we are in case B. We have (h + mδhc, λ) = 0, (h̃ +

m̃δh̃c, λ) = 0 for some m, m̃ in Z. We have 1h = h− 〈h, h̃′〉h̃ ∈ R, δ1h = δh.

Let 1m = m− 〈h̃, h′〉m̃ ∈ Z. We have

(1h+ 1mδ1hc, λ) = (h− 〈h, h̃′〉h̃+ 1mδhc, λ)

= −mδh(c, λ)− 〈h, h̃′〉(h̃, λ) + 1mδh(c, λ)

= −mδh(c, λ) + 〈h, h̃′〉m̃δh̃(c, λ) +
1mδh(c, λ)

= −mδh(c, λ) + 〈h̃, h′〉δh(c, λ) +
1mδh(c, λ) = 0.

Thus (1h+ 1mδ1hc, λ) = 0 so that 1h ∈ Rλ. The proof in case A is the same

(we formally set m = m̃ = 1m = 0 in the computation above.) We see that

(Rλ, Rλ) is a root system.

We show:

(b) For λ ∈ V̄ ′, Wλ is a Coxeter group with length function w 7→ |w|λ =

♯(χ ∈ R+
λ ;w(χ) ∈ R−

λ ). Moreover, in case A, Wλ is a Weyl group; in

case B, Wλ is an affine Weyl group. If s ∈ Wλ, |s|λ = 1, then s = sχ
where χ is the unique element of R+

λ such that s(χ) ∈ R−
λ .

In case A, Wλ is the Weyl group of (Rλ, R
′
λ) and (b) follows. We now

assume that we are in case B. For any χ ∈ Rλ let Hχ = {x ∈ V ′
1 ; 〈χ, x〉 = 0},

a hyperplane in the affine space V ′
1 . For w ∈ Wλ, χ ∈ Rλ we have w(Hχ) =

Hw−1(χ). For x, x
′ in V ′

1−∪χ∈Rλ
Hχ we say that x ∼ x′ if 〈χ, x〉〈χ, x′〉 > 0 for

any χ ∈ Rλ; this is an equivalence relation on V ′
1−∪χ∈Rλ

Hχ; the equivalence

classes are called λ-alcoves. There is a unique λ-alcove Cλ that contains

{x ∈ V ′
1 ; 〈hi, x〉 > 0∀i ∈ I}. Let Pλ be the set of all χ ∈ R+

λ such that Hχ is

a wall of Cλ (that is, the closure of Cλ intersected with Hχ is not contained

in any affine subspace of Hχ other than Hχ). We can apply the results in

[1, Ch.V, §3], especially Theorem 1; we see that Wλ is a Coxeter group on

the generators {sχ;χ ∈ Pλ} and with the length function as in (b). To prove

the remaining statements of (b) we denote by Ru
λ(u ∈ U) the irreducible

components of Rλ. Note that if u 6= u′ in U , we have 〈h, h̃′〉 = 0 for h ∈

Ru
λ, h̃ ∈ Ru′

λ . For u ∈ U let Eu be the affine subspace c′ +
∑

h∈Ru
λ
Qh′ of V ′

1 ;

let Ru
λ = {h +mδhc ∈ Rλ;h ∈ Ru

λ,m ∈ Z} and let W u
λ be the subgroup of

Wλ generated by {sχ;χ ∈ Ru
λ}. Now for χ ∈ Ru

λ, the affine space Eu is stable
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under sχ : V ′ → V ′; hence Eu is stable underW u
λ . We haveWλ =

∏
u∈U W

u
λ .

It is enough to show that for any u ∈ U , W u
λ is an affine Weyl group. For

any χ ∈ Ru
λ let Hχ,u = {x ∈ Eu; 〈χ, x〉 = 0} = Hχ ∩Eu, a hyperplane in Eu.

For x, x′ in Eu − ∪χ∈Ru
λ
Hχ,u we say that x ∼ x′ if 〈χ, x〉〈χ, x′〉 > 0 for any

χ ∈ Rλ,u; this is an equivalence relation on Eu−∪χ∈Ru
λ
Hχ,u; the equivalence

classes are called the alcoves of Eu. Using again the results in [1, Ch.V, §3],

we see that it is enough to show that some (or equivalently any) alcove in

Eu is bounded. Let hj, j = 1 . . . , t be the simple coroots in Ru
λ with respect

to the set of positive coroots Ru
λ ∩ V +. Let h0 be a coroot in Ru

λ of the

form
∑

j∈[1,t] njh
j where nj ∈ Z>0 for all j. For each j ∈ [1, t] we can find

mj ∈ Z≥0 such that χj := hj +mjδjc ∈ Ru
λ (here δj = δhj ). We can find

m0 ∈ Z>0 such that χ0 := −h0 +m0δ0c ∈ Ru
λ (here δ0 = δh0). Let

X = {x ∈ Eu; 〈χ
j , x〉 > 0∀j ∈ [0, t]}

= {x ∈ Eu; 〈h
j , x〉 > −mjδj∀j ∈ [1, t],

∑

j∈[1,t]

nj〈h
j , x〉 < m0δ0}.

Note that X contains at least one alcove and is bounded. (If x ∈ Eu, then

−mjδj < 〈hj , x〉 < m0δ0/nj for all j ∈ [1, t].) It follows that some alcove in

Eu is bounded. This completes the proof of (b).

We show:

(c) Let λ ∈ V̄ ′. If i ∈ I is such that si ∈Wλ then hi ∈ Rλ.

We have |si|λ = ♯(χ ∈ R+
λ ; si(χ) ∈ R−

λ ) ≤ ♯(χ ∈ R+; si(χ) ∈ R−) = 1.

Thus |si|λ ≤ 1. Since si is an element of Wλ other than 1 we have |si|λ ≥ 1

hence |si|λ = 1. By (b) we have si = sχ for a unique χ ∈ R+
λ , hence χ = hi.

This proves (c).

Let λ∈ V̄ ′. Let i1, i2, . . . , ir be a sequence in I such that w :=si1si2 . . . sir
∈ W ′

λ, |w| = r. Define I = {j ∈ [1, r]; sir . . . sij+1
sijsij+1

. . . sir ∈ Wλ,

X = {χ ∈ R+
λ ;w(χ) ∈ R−

λ }. We show:

(d) ♯(I) = ♯(X).

Let j ∈ I. Then sij ∈ Wsij+1
...sir (λ)

hence by (c) we have hij ∈

Rsij+1
...sir (λ)

so that sir . . . sij+1
(hij ) ∈ Rλ. By (a), sir . . . sij+1

(hij ) (j ∈ I)

are distinct in {χ ∈ R+;w(χ) ∈ R−}. Thus, j 7→ sir . . . sij+1
(hij ) is an

injective map φ : I → X.
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Now let χ ∈ X. From (a) we see that for some j ∈ [1, r] we have

χ = sir . . . sij+1
(hij ). Since χ ∈ Rλ we have

hij ∈ Rsij+1
...sir (λ)

so that

sij ∈ Wsij+1
...sir (λ)

and therefore j ∈ I. We see that φ is surjective hence a bijection. This

proves (d).

We show:

(e) Any right coset wWλ ⊂W (w ∈W ) contains a unique element w1 such

that w1(R
+
λ ) ⊂ R+. We have |w1| < |w1z| for any z ∈ Wλ − {1}. We

write w1 = min(wWλ).

In case A this is proved in [3, 1.9]. The following proof applies in both

cases A,B. We can find w1 ∈ wWλ such that |w1| ≤ |w1z| for any z ∈ Wλ.

For any χ ∈ R+
λ we have |w1sχ| 6= |w1| hence |w1| < |w1sχ|. Let i1, i2, . . . , ir

be a sequence in I such that sχw
−1
1 = si1si2 . . . sir . |sχw

−1
1 | = r. Since

|sχ(scw
−1
1 )| < |sχw

−1
1 |, we see from [6, 2.2] that, for some f ∈ [1, r] we

have sχ = si1si2 . . . sif . . . si2si1 , hence χ = si1si2 . . . sif−1
(hif ). Applying (a)

with w replaced by w1sχ = sirsir−1
. . . si1 , we see that w1sχ(χ) ∈ R− that

is w1(χ) ∈ R+. We have thus shown that w1(R
+
λ ) ⊂ R+. It follows that

w1(R
−
λ ) ⊂ R−. Now let u ∈ Wλ − {1}. We can find χ ∈ R+

λ such that

u(χ) ∈ R−
λ . We then have w1u(χ) ∈ R

−. By the first part of the proof, w1u

is not of minimal length in wWλ. Thus |w1| < |w1u|. This proves (e).

Let o be a W -orbit in V̄ ′. For λ, λ′ in o let

[λ′, λ] = {z ∈W ;λ′ = z(λ), z = min(zWλ)}

= {z ∈W ;λ′ = z(λ), z(R+
λ ) = R+

λ′}.

Clearly, [λ, λ′] = [λ′, λ]−1 and for λ′′ ∈ o we have [λ′′, λ′][λ′, λ] ⊂ [λ′′, λ].

Thus,

(f) the group structure on W makes Γ := ⊔(λ′,λ)∈o2 [λ
′, λ] into a groupoid.
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In particular, for λ ∈ o,

[λ, λ] = {z ∈W ′
λ; z = min(zWλ)} = {z ∈W ′

λ; z(R
+
λ ) = R+

λ }

is a subgroup of W ′
λ. We show:

(g) For λ ∈ V̄ ′, the group W ′
λ is the semidirect product of [λ, λ] and Wλ with

Wλ normal in W ′
λ.

By (e) we have W ′
λ = [λ, λ]Wλ and [λ, λ] ∩Wλ = {1}. It remains to

recall that Wλ is normal in W ′
λ.

1.3. In this subsection we assume that we are in case B. We fix e ∈ Q/Z,

λ ∈ V̄ ′
e and a representative x for λ in V ′ such that x ∈ V ′

ẽ where 0 ≤ ẽ < 1.

We write ẽ = p′/q′ where p′, q′ are integers, q′ ≥ 1, 0 ≤ p′ < q′ and p′, q′

have no common prime divisor.

Assume first that e = 0; then ẽ = 0 so that 〈c, x〉 = 0. It follows that

Rλ = {h+mδhc;h ∈ Rλ,m ∈ Z}.

We write Rλ = ⊔u∈UR
u
λ as in the proof of 1.2(b). Let hu,1, . . . , hu,tu be the

set of simple coroots of Ru
λ with respect to the set of positive coroots Ru

λ∩V
+

and let hu,0 be the coroot in Ru
λ such that (hu,0)′ is minus the highest root

of (Ru
λ)

′. For j ∈ [0, tu], let δu,j = δhu,j . Note that hu,j ∈ R+
λ for j ∈ [1, tu]

and hu,0 + δu,0c ∈ R+
λ . Let χ ∈ R+

λ . We show that

(a) χ ∈
∑

u∈U ,j∈[1,tu]

Nhu,j +
∑

u∈U

N(hu,0 + δu,0c).

We have χ = h + mδhc where either h ∈ Ru
λ,m ∈ Z>0, u ∈ U or h ∈

Ru
λ ∩ V +,m = 0, u ∈ U . If h ∈ Ru

λ ∩ V +,m = 0, u ∈ U , then clearly

χ ∈
∑

j∈[1,tu]
Nhu,j. If h ∈ Ru

λ,m ∈ Z>0, u ∈ U , then

χ = h+ δhmc = (h− (δh/δu,0)h
u,0) + (δh/δu,0)(m− 1)(−hu,0)

+(δh/δu,0)m(hu,0 + δu,0c).

We now use δh/δu,0 ∈ N, h − (δh/δu,0)h
u,0 ∈

∑
j∈[1,tu]

Nhu,j (a standard

property of root systems) and (a) follows. Using (a) and the proof of 1.2(b)
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we see that Wλ is a Coxeter group on the generators

(b) shu,j with u ∈ U , j ∈ [1, tu], shu,0+δu,0c with u ∈ U}).

Next we assume that e 6= 0 (hence 0 < p′ < q′) and I = {1}, I =

I ⊔ {i0}, so that R = {h1,−h1}, hi0 = −h1 + c, h′i0 = −h′1. We have

x = (p/q)h′1/2 + (p′/q′)c′, where p, q are integers, q ≥ 1 and p, q have no

common prime divisor. We have

R+
λ = {h1 +mc;m ∈ Z≥0, (p/q) + (p′/q′)m ∈ Z}

⊔{−h1 +mc;m ∈ Z>0,−(p/q) + (p′/q′)m ∈ Z}.

If q′ /∈ qZ (so that p 6= 0), then the equation ±(p/q) + (p′/q′)m ∈ Z has

no integer solution m; hence in this case we have Rλ = ∅. We now assume

that q′ ∈ qZ. We have {m ∈ Z; (p/q) + (p′/q′)m ∈ Z} = m1 + q′Z, {m ∈

Z;−(p/q)+(p′/q′)m ∈ Z} = m2+q
′Z, wherem1,m2 are well defined integers

in [1, q′ − 1] such that p′(m1 +m2) ∈ q
′Z; thus we have m2 = q′ −m1 and

R+
λ = {h1 +mc;m = m1 + q′u, u ∈ Z≥0}

⊔{−h1 +mc;m = q′ −m1 + q′u, u ∈ Z≥0}.

In particular, we have h1 +m1c ∈ R+
λ ,−h1 + (q′ −m1)c ∈ R+

λ . For u ∈ Z≥0

we have

h1 + (m1 + q′u)c = (u+ 1)(h1 +m1c) + u(−h1 + (q′ −m1)c),

−h1 + (q′ −m1 + q′u)c = u(h1 +m1c) + (u+ 1)(−h1 + (q′ −m1)c).

Thus R+
λ ⊂ N(h1 +m1c) +N(−h1 + (q′ −m1)c). Using this and the proof

of 1.2(b) we see that Wλ is a Coxeter group (an infinite dihedral group) on

the generators sh1+m1c, s−h1+(q′−m1)c (if q
′ ∈ qZ) and Wλ = {1} if q′ /∈ qZ.

1.4. Until the end of 1.10 we fix a W -orbit o in V̄ ′.

Let Ho be the A-algebra with 1 defined by the generators Tw(w ∈ W )

and 1λ(λ ∈ o) and relations:

1λ1λ = 1λ for λ ∈ V̄ ′, 1λ1λ′ = 0 for λ 6= λ′ in V̄ ′,
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TwTw′ = Tww′ for w,w′ ∈W such that |ww′| = |w|+ |w′|,

Tw1λ = 1w(λ)Tw for w ∈W,λ ∈ V̄ ′,

T 2
s = v2T1 + (v2 − 1)

∑

λ∈o;s∈Wλ

Ts1λ for s ∈ S,

T1 =
∑

λ∈o

1λ.

Note that T1 =
∑

λ∈o 1λ is the unit element of Ho. It will be convenient to

write T̃w = v−|w|Tw for any w ∈W . As in [7, 31.2], we see that

(a) {T̃w1λ;w ∈W,λ ∈ o} is an A-basis of Ho.

From the definitions we have:

(b) if s ∈ S, y ∈W,λ ∈ o and s /∈Wy(λ), then T̃sT̃y1λ = T̃sy1λ.

We show:

(c) For λ ∈ o, z ∈ [λ, λ], w ∈ W ′
λ we have T̃zT̃w1λ = T̃zw1λ, 1λT̃w−1 T̃z−1 =

1lT̃w−1z−1 .

The proof is an extension of the proof of [8, 34.7(b)]. The use of the

algebra antiautomorphism T̃x1λ 7→ 1λT̃x−1 shows that each of the two equal-

ities in (c) implies the other equality. Let i1, i2, . . . , ir be a sequence in I

such that z−1 = si1si2 . . . sir , |z| = r. Applying 1.2(d) with w replaced

by z−1 and noting that X in 1.2(d) is empty in this case, we see that

sir . . . sij+1
sijsij+1

. . . sir /∈ Wλ for any j ∈ [1, r]. From the relations of Ho

we have

T̃w−1si1si2 ...sij−1
T̃sij 1sij+1

...sirλ = T̃w−1si1si2 ...sij−1
sij

1sij+1
...sirλ

for all j ∈ [1, r]. Using these identities we see that

T̃w−1 T̃z−11λ = T̃w−1T̃si1 T̃si2 . . . T̃sir 1λ = T̃w−1si1si2 ...sir
1λ,

and (c) follows.

The following result is a generalization of (c):
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(d) For (λ′, λ) ∈ o2, z ∈ [λ′, λ], w ∈W ′
λ we have T̃zT̃w1λ = T̃zw1λ,

1λT̃w−1T̃z−1 = 1lT̃w−1z−1 .

The use of the algebra antiautomorphism T̃x1λ 7→ 1λT̃x−1 shows that

each of the two equalities in (d) implies the other equality. We can find

r ≥ 0 and i1, i2, . . . , ir in I such that, setting λ0 = λ, λ1 = si1(λ), λ2 =

si2si1(λ), λr = sir . . . si2si1(λ), we have λ0 6= λ1 6= λ2 6= · · · 6= λr = λ′. We

have si1 ∈ [λ1, λ0], si2 ∈ [λ2, λ1], . . . , sir ∈ [λr, λr−1], hence sir . . . si2si1 ∈

[λr, λ0] = [λ′, λ]. We define z̃ ∈ W by z = sir . . . si2si1 z̃. Then z̃ ∈ [λ, λ].

For j ∈ [1, r] we have sij /∈Wsij−1
...si1 z̃(λ)

(since λi 6= λi−1) hence, using (b)

twice, we have

T̃sij T̃sij−1
...si1 z̃

1λ = T̃sij sij−1
...si1 z̃

1λ,

T̃sij T̃sij−1
...si1 z̃w

1λ = T̃sij sij−1
...si1 z̃w

1λ.

Applying this repeatedly, we deduce

T̃sir ...si2si1 z̃1λ = T̃sir . . . T̃si2 T̃si1 T̃z̃1λ,

T̃sir ...si2si1 z̃w1λ = T̃sir . . . T̃si2 T̃si1 T̃z̃w1λ.

By (c) we have 1λT̃w−1T̃z̃−1 = 1λT̃w−1z̃−1 and T̃z̃w1λ = T̃z̃T̃w1λ. We deduce

T̃zw1λ = T̃sir ...si2si1 z̃w1λ = T̃sir . . . T̃si2 T̃si1 T̃z̃w1λ

= T̃sir . . . T̃si2 T̃si1 T̃z̃T̃w1λ = T̃sir . . . T̃si2 T̃si1 T̃z̃1λT̃w

= T̃sir ...si2si1 z̃1λT̃w = T̃zT̃w1λ.

This proves the first equality in (d); the second equality follows also.

We show:

(e) For λ, λ′, λ′′ in o, z ∈ [λ′, λ], z′ ∈ [λ, λ′′] we have T̃zT̃z′1λ′′ = T̃zz′1λ′′ .

As in the proof of (d) we have z = sir . . . si2si1 z̃,

T̃z1λ = T̃sir . . . T̃si2 T̃si1 T̃z̃1λ, where i1, . . . ir ∈ I, λ = λ0 6= λ1 6= λ2 6= · · · 6=

λr = λ′ are in V̄ ′, λ0 = λ, λ1 = si1(λ), λ2 = si2si1(λ), λr = sir . . . si2si1(λ),

z̃ ∈ [λ, λ]. Hence it is enough to show that

T̃sir . . . T̃si2 T̃si1 T̃z̃T̃z′1λ′′ = T̃sir ...si2si1 z̃z′1λ′′ .
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It is enough to show that for any j ∈ [0, r] we have

T̃sij . . . T̃si2 T̃si1 T̃z̃T̃z′1λ′′ = T̃sij ...si2si1 z̃z′1λ′′ .

We argue by induction on j. For j = 0 we must show that T̃z̃T̃z′1λ′′ =

T̃z̃z′1λ′′ ; this follows from (d). Now assume that j ≥ 1. Using the induction

hypothesis we see that it is enough to show that

T̃sij T̃wj
1λ′′ = T̃sijwj

1λ′′

where wj = sij−1
. . . si2si1 z̃z

′. Using (b) we see that it is enough to show that

sij /∈Wsij−1
...si2si1 z̃z

′(λ′′), or that sij /∈Wλj
. We have sij(λj) = λj−1 6= λj so

that sij /∈Wλj
as desired. This proves (e).

We show:

(f) Let λ ∈ o, w ∈ W , σ ∈ Wλ. Assume that |σ|λ = 1. We have T̃wT̃σ1λ =

T̃wσ1λ + δ(v − v−1)T̃w1λ where δ ∈ {0, 1}. Moreover, if w ∈ Wλ then

δ = 0 if |wσ|λ > |w|λ and δ = 1 if |wσ|λ < |w|λ.

In case A this follows from [8, 34.7(a)]. The following proof applies in

both cases A,B. We have σ = si1si2 . . . sir for some sequence i1, i2, . . . , ir in

I such that r = |σ|. From 1.2(d) we see that there is a unique j ∈ [1, r] such

that

sir . . . sij+1
sijsij+1

. . . sir ∈Wλ;

thus for j′ ∈ [1, r]− {j} we have

sir . . . sij′+1
sij′ sij′+1

. . . sir /∈Wλ;

moreover from the proof of 1.2(d) we see that sir . . . sij+1
(hij ) is the unique

element χ ∈ R+
λ such that σ(χ) ∈ R−

λ . It follows that the reflection in W

defined by sir . . . sij+1
(hij ) coincides with the reflection defined by χ; thus

we have

σ = sir . . . sij+1
sijsij+1

. . . sir .

It follows that

si1si2 . . . sij−1
sij+1

. . . sir = 1.
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From the relations of Ho we have

T̃wsi1si2 ...sij−1
T̃sij 1sij+1

...sir (λ)

= T̃wsi1si2 ...sij
1sij+1

...sir (λ)
+ δ′(v − v−1)T̃wsi1si2 ...sij−1

1sij+1
...sir (λ)

where δ′ = 0 if |wsi1si2 . . . sij | > |wsi1si2 . . . sij−1
| and δ′ = 1 otherwise,

T̃wsi1si2 ...sij′−1
T̃si

j′
1si

j′+1
...sir (λ)

= T̃wsi1si2 ...sij′
1si

j′+1
...sir (λ)

if j′ ∈ [1, r]− {j},

T̃wsi1si2 ...sij−1
sij+1

...si
j′−1

T̃si
j′
1si

j′+1
...sir (λ)

= T̃wsi1si2 ...sij−1
sij+1

...si
j′
1si

j′+1
...sir (λ)

if j′ ∈ [j + 1, r]. From these identities we see that

T̃wT̃σ1λ = T̃wT̃si1 T̃si2 . . . T̃sir 1λ

= T̃wsi1si2 ...sij−1
T̃sij T̃sij+1

. . . T̃sir 1λ

= T̃wsi1si2 ...sij−1
sij
T̃sij+1

. . . T̃sir 1λ

+δ′(v − v−1)T̃wsi1si2 ...sij−1
T̃sij+1

. . . T̃sir 1λ

= T̃wsi1si2 ...sij sij+1
...sir 1λ

+δ′(v − v−1)T̃wsi1si2 ...sij−1
sij+1

...sir 1λ

= T̃wσ1λ + δ′(v − v−1)T̃w1λ.

Assume now that w ∈ Wλ. We show that δ = δ′. The condition that δ = 0

is equivalent to the condition that w(χ) ∈ R+
λ . The condition that δ′ = 0

is equivalent to the condition that wsi1si2 . . . sij−1
(hij ) ∈ R+. It remains to

note that χ = si1si2 . . . sij−1
(hij ). (This follows from χ = sir . . . sij+1

(hij )

since sir . . . sij+1
= si1si2 . . . sij−1

, or equivalently si1si2 . . . sij−1
sij+1

. . . sir =

1.)

We show:

(g) Let λ ∈ o, w ∈ Wλ, w
′ ∈ Wλ. Assume that |ww′|λ = |w|λ + |w′|λ. We

have T̃ww′1λ = (T̃w1λ)(T̃w′1λ).
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We argue by induction on |w′|λ. If w
′ = 1 the result is obvious. We now

assume that |w′|λ ≥ 1. We can write w′ = w′
1σ where w′

1, σ are in Wλ and

|w′
1|λ = |w′|λ − 1, |σ|λ = 1. We have |ww′

1|λ = |w|λ + |w′
1|λ. From (f) we

have T̃w′1λ = (T̃w′

1
1λ)(T̃σ1λ). Using this and the induction hypothesis we

have

(T̃w1λ)(T̃w′1λ) = (T̃w1λ)(T̃w′

1
1λ)(T̃σ1λ) = (T̃ww′

1
1λ)(T̃σ1λ).

It remains to use that (T̃ww′

1
1λ)(T̃σ1λ) = T̃ww′

1
σ1λ which follows again from

(f).

The following result is a special case of (f).

(h) Let λ ∈ o, σ ∈ Wλ be such that |σ|λ = 1. We have (T̃σ1λ)
2 = 1λ + (v −

v−1)T̃σ1λ.

1.5. For λ ∈ o let Hλ be the A-submodule of Ho with basis {T̃w1λ;w ∈Wλ}.

From 1.4(g),(h), we see that Hλ is a subalgebra of Ho (with a different unit,

namely 1λ).

Let Ξ = {(λ′, z, λ); (λ′, λ) ∈ o2, z ∈ [λ′, λ]}. We show:

(a) Let (λ′, z, λ) ∈ Ξ. The assignment w 7→ zwz−1 is a Coxeter group

isomorphism Wλ
∼
→Wλ′ . The assignment T̃w1λ 7→ T̃zwz−11λ′ (w ∈ Wλ)

is an A-algebra isomorphism ιz : Hλ
∼
→Hλ′.

Recall that z(R+
λ ) = R+

λ′ . This shows that w 7→ zwz−1 defines an iso-

morphism Wλ → Wλ′ . For any w ∈ Wλ, χ 7→ z(χ) defines a bijection

{χ1 ∈ R+
λ ;w(χ1) ∈ R−

λ } → {χ2 ∈ R+
λ′ ; zwz−1(χ2) ∈ R−

λ′}. It follows that

|zwz−1|λ′ = |w|λ for any w ∈ Wλ. Thus, w 7→ zwz−1 is an isomorphism

of Coxeter groups. We also see that T̃w1λ 7→ T̃zwz−11λ′ defines an isomor-

phism of A-modules ιz : Hλ
∼
→Hλ′ . To show that ιz is compatible with

multiplication it is enough to note that, by 1.4(d),(e), for w ∈ Wλ we have

T̃zwz−11λ′ = T̃zT̃w1λT̃
−1
z . This proves (a).

Let R be a commutative ring with 1. Let AlgR be the category of asso-

ciative R-algebras with 1. Let Φ : Γ → AlgR be a functor; here the groupoid

Γ (in 1.2(f)) is viewed as a category in which all morphisms are isomorphisms.

Now Φ consists of a collection {Φ(λ);λ ∈ o} of associative R-algebras with

1 together with a collection of algebra isomorphisms ιz : Φ(λ)
∼
→Φ(λ′) (one
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for each (λ′, z, λ) ∈ Ξ) such that for any (λ′1, z1, λ1), (λ
′
2, z2, λ2) in Ξ with

λ′2 = λ1, the compositions Φ(λ2)
ιz2→Φ(λ′2) = Φ(λ1)

ιz1→Φ(λ′1), Φ(λ2)
ιz1z2→ Φ(λ′1)

coincide.

Given Φ we define Φ• ∈ AlgR as follows. As an R-module we have

Φ• = ⊕(λ′,z,λ)∈ΞΦ
•
λ′,z,λ where Φ•

λ′,z,λ = Φ(λ). For any (λ′1, z1, λ1), (λ
′
2, z2, λ2)

in Ξ and any ξ1 ∈ Φ•
λ′

1
,z1,λ1

= Φ(λ1), ξ2 ∈ Φ•
λ′

2
,z2,λ2

= Φ(λ2), we define the

product ξ1ξ2 ∈ Φ• as 0 if λ′2 6= λ1 and as ι−1
z2 (ξ1)ξ2 ∈ Φ•

λ′

1
,z1z2,λ2

= Φ(λ2)

(product in Φ(λ2)) if λ
′
2 = λ1. From the definitions we see that this product

is associative with unit element such that its Φ•
λ′,z,λ-component is 0 unless

λ = λ′, z = 1. in which case it is the unit element of Φ(λ).

1.6. Let H : Γ → AlgA be the functor defined by H(λ) = Hλ for λ ∈ o

and the isomorphisms ιz : Hλ
∼
→Hλ′ in 1.5(a) for (λ′, z, λ) ∈ Ξ. Then the

associative algebra H• = ⊕(λ′,z,λ)∈ΞH
•
λ′,z,λ where H•

λ′,z,λ = Hλ is defined

as in 1.5. We consider the A-linear map θ : H• → Ho such that for any

(λ′, z, λ) ∈ Ξ and any ξ ∈ H•
λ′,z,λ = Hλ we have θ(ξ) = T̃zξ ∈ Ho. From

1.2(e) we see that θ is an isomorphism of A-modules. We show that it

respects the algebra structures. For (λ′1, z1, λ1), (λ
′
2, z2, λ2) in Ξ and for

w1 ∈ Wλ1
, w2 ∈ Wλ2

, we must show that T̃z1T̃w1
1λ1

T̃z2 T̃w2
1λ2

is zero if

λ1 6= λ′2, while if λ1 = λ′2, it is T̃z1z2T̃z−1

2
w1z2

T̃w2
1λ2

. The case where λ1 6= λ′2
is immediate. The case where λ1 = λ′2 follows from 1.4(d),(e). We see that

(a) θ : H• → Ho is an isomorphism of A-algebras.

Now, for λ ∈ o, let Hλ be the Hecke algebra associated to the Coxeter

group Wλ. Thus, Hλ is the A-module with basis {Tw;w ∈ Wλ} with the

associative A-algebra structure defined by the rules

TwTw′ = Tww′ if w,w′ in Wλ satisfy |ww′|λ = |w|λ + |w′|λ,

T2
σ = 1 + (v − v−1)Tσ if σ ∈Wλ satisfies |σ|λ = 1.

Note that T1 is the unit element of Hλ. We define an A-linear map ϑλ :

Hλ → Hλ by Tw 7→ T̃w1λ for w ∈ Wλ. This is clearly an isomorphism

of A-modules; moreover, from 1.4(g), (h), we see that this is an algebra

isomorphism.

Let H′ : Γ → AlgA be the functor defined by H′(λ) = Hλ for λ ∈

o and the isomorphisms ιz : Hλ
∼
→Hλ′ , Tw 7→ Tzwz−1 for w ∈ Wλ (here
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(λ′, z, λ) ∈ Ξ). Then the associative algebra H′• = ⊕(λ′,z,λ)∈ΞH
′
λ′,z,λ

• where

H′
λ′,z,λ

• = Hλ is defined as in 1.5.

We consider the A-linear map ϑ : H′• → H• such that for any (λ′, z, λ) ∈

Ξ and any ξ ∈ H′
λ′,z,λ

• = Hλ we have ϑ(ξ) = ϑλ(ξ) ∈ H•
λ′,z,λ = Hλ. Clearly,

ϑ is an isomorphism of A-modules. Moreover, ϑ is an isomorphism of alge-

bras. (We use that for any (λ′, z, λ) ∈ Ξ, the compositions Hλ
ϑλ→Hλ

ιz→Hλ′ ,

Hλ
ιz→Hλ′

ϑλ′→Hλ′ , coincide.)

For s ∈ S we have T̃−1
s = T̃s + (v−1 − v)

∑
λ∈o;s∈Wλ

1λ in Ho. It follows

that T̃w is invertible in Ho for any w ∈W . As in [7, 31.3], there is a unique

ring homomorphism¯ : Ho → Ho such that T̃w = T̃−1
w−1 for all w ∈ W and

vm1λ = v−m1λ for all λ ∈ o. The square of¯: Ho → Ho is 1.

Now let λ ∈ o and let σ ∈ Wλ be such that |σ|λ = 1. From 1.4(h)

we have T̃−1
σ 1λ = T̃σ1λ + (v−1 − v)1λ so that T̃σ1λ ∈ Hλ. Using 1.4(g),(h)

and induction on |w|λ, we see that for w ∈ Wλ we have T̃w1λ ∈ Hλ. Thus,

¯: Ho → Ho restricts to a ring isomorphism¯: Hλ → Hλ whose square is 1.

If (λ′, z, λ) ∈ Ξ then ιz : Hλ → Hλ′ is compatible with the bar operators

on Hλ, Hλ′ . (It is enough to check that for any σ ∈ Wλ such that |σ|λ = 1

we have ιz(T̃
−1
σ 1λ) = T̃−1

zσz−11λ′ ; this is immediate.) It follows that the

group homomorphism¯: H• → H• whose restriction to any H•
λ′,z,λ = Hλ is

¯: Hλ → Hλ is in fact a ring homomorphism with square 1. We show that

θ : H• → Ho is compatible with¯: H• → H• and¯: Ho → Ho. It is enough

to show that for (λ′, z, λ) ∈ Ξ, w ∈ Wλ, we have T̃zT̃w1λ = T̃zT̃
−1
w−11λ; it is

also enough to show that T̃z1λ = T̃z1λ or that T̃−1
z−11λ = T̃z1λ, which follows

from 1.4(e).

For λ ∈ o, ¯ : Hλ → Hλ corresponds under ϑλ to a ring isomorphism

¯: Hλ → Hλ such that vmTw = v−mT
−1
w−1 for any w ∈Wλ, m ∈ Z. Under the

isomorphism ϑ : H′• → H•,¯: H• → H• corresponds to a ring isomorphism

¯: H′• → H′• with square 1; its restriction to H′
λ′,z,λ

• = Hλ coincides with

¯: Hλ → Hλ.

Let λ ∈ o. By [6, 5.12], for any w ∈Wλ there is a unique element cλw ∈ Hλ

such that cλw = cλw and cλw−Tw ∈
∑

y∈Wλ;|y|λ<|w|λ
v−1Z[v−1]Ty. Using ϑλ we

deduce that for any w ∈ Wλ there is a unique element cw,λ ∈ Hλ such that

cw,λ = cw,λ and cw,λ − T̃w1λ ∈
∑

y∈Wλ;|y|λ<|w|λ
v−1Z[v−1]T̃y1λ.
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If (λ′, z, λ) ∈ Ξ and w ∈ Wλ then T̃zcw,λT̃z−1 satisfies the definition

czwz−1,λ′ ∈ Hλ′ hence we have T̃zcw,λT̃z−1 = czwz−1,λ′ .

Now let w ∈ W,λ ∈ o. We can write uniquely w = zw̃ where w̃ ∈ Wλ,

z ∈ [λ′, λ] for some λ′ ∈ o. We set cw,λ = T̃zcw̃,λ. We have cw,λ = cw,λ and

cw,λ − T̃w1λ ∈
∑

y∈Wλ;|y|λ<|w̃|λ
v−1Z[v−1]T̃zy1λ. It follows that {cw,λ;w ∈

W,λ ∈ o} is an A-basis of Ho.

1.7. For any λ ∈ o we state some properties of the multiplication of ele-

ments of form cw,λ ∈ Hλ with w ∈ Wλ. These properties follow from the

known properties of the multiplication of elements of form cλw ∈ Hλ via the

isomorphism ϑλ. (We use thatWλ is a Weyl group or an affine Weyl groups,

see 1.2(b).) For any w,w′ in Wλ we have

cw,λcw′,λ =
∑

w′′∈Wλ

rw
′′;λ

w,w′ cw′′,λ

where rw
′′

w,w′ ∈ A are zero for all but finitely many w′′. Moreover, for any w′′ ∈

Wλ there is a well defined smallest integer a(w′′) ≥ 0 such that va(w
′′)rw

′′;λ
w;w′ ∈

Z[v] for all w,w′ in Wλ. We have

rw
′′;λ

w,w′ = r̄w
′′;λ

w;w′ v
−a(w′′)mod v−a(w′′)+1Z[v]

where r̄w
′′;λ

w,w′ ∈ N.

We now consider the free abelian group H∞
λ with basis {tw;w ∈ Wλ}.

Then H∞
λ is an (associative) ring with multiplication given by

twtw′ =
∑

w′′∈Wλ

r̄w
′′;λ

w,w′ tw′′ .

It has a unit element of the form 1 =
∑

w∈Dλ
tw where Dλ is a well defined

finite subset of {w ∈ Wλ;w
2 = 1}. The A-linear map ψλ : Hλ → A⊗H∞

λ ,

given by

ψλ(cw,λ) =
∑

w′′∈Wλ,d∈Dλ;a(d)=a(w′′)

rw
′′;λ

w,d tw′′

is a homomorphism of A-algebras with 1.
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For w,w′ in Wλ we have w ∼left w
′ (resp. w ∼right w

′ if and only if

for some u ∈ Wλ, tw′ appears with non-zero coefficient in tutw (resp. in

tutw). For w,w′ in Wλ we have w ∼ w′ if and only if for some u, u′ in Wλ

we have tw′ appears with non-zero coefficient in tutwtu′ (or equivalently if

for some w′′ ∈ Wλ we have w ∼left w
′′, w′ ∼right w

′′). Recall from 0.2 that

the equivalence classes for ∼left (resp. ∼right, ∼) are called the left (resp.

right, two-sided) cells of Wλ. For any left (resp. right, two-sided) cell K of

Wλ the subgroup
∑

w∈K Ztw is a left (resp. right, two-sided) ideal of H∞
λ .

Note that the definition of left (resp. right, two-sided) cells of Wλ de-

pends only on the Coxeter group structure of Wλ hence these are defined

for any Coxeter group W which is a Weyl group or an affine Weyl group; we

shall write Cell(W) for the set of two-sided cells of W.

Let J : Γ → AlgZ be the functor defined by J (λ) = H∞
λ for λ ∈ o

and the isomorphisms ιz : H∞
λ

∼
→H∞

λ′ for (λ′, z, λ) ∈ Ξ where ιz maps any

basis element tw(w ∈ Wλ) to the basis element tzwz−1 of H∞
λ′ . Then the

(associative) ring J • is defined as in 1.5.

1.8. For (w0, λ0), (w1, λ1) in W × o we write in Ho:

cw0,λ0
cw1,λ1

=
∑

(w2,λ2)∈W×o

Rw2,λ2

w0,λ0;w1,λ1
cw2,λ2

where Rw2,λ2

w0,λ0;w1,λ1
∈ A are zero for all but finitely many (w2, λ2). For j =

0, 1, 2 we can write uniquely wj = zjw̃j where zj ∈ [λ′j, λj ], w̃j ∈ Wλj
. We

have

cw0,λ0
cw1,λ1

= T̃z0cw̃0,λ0
T̃z1cw̃1,λ1

.

This is 0 unless λ0 = z1(λ1). Assume now that λ0 = z1(λ1). We have

cw0,λ0
cw1,λ1

= T̃z0T̃z1cz−1

1
w̃0z1,λ1

cw̃1,λ1

= T̃z0z1
∑

y∈Wλ1

ry,λ1

z−1

1
w̃0z1,λ1;w̃1,λ1

cy,λ1

=
∑

y∈Wλ1

ry,λ1

z−1

1
w̃0z1,λ1;w̃1,λ1

cz0z1y,λ1
.
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We see that Rw2,λ2

w0,λ0;w1,λ1
= 0 unless the conditions λ2 = λ1, λ0 = z1(λ1), z2 =

z0z1 are satisfied; if these conditions are satisfied, then

Rw2,λ2

w0,λ0;w1,λ1
= rw̃2;λ1

z−1

1
w̃0z1,w̃1

.

We see that

(a) vaw2,λ2Rw2,λ2

w0,λ0;w1,λ1
∈ Z[v]

where aw2,λ2
= aw̃2

is defined in terms of Wλ2
and that aw2,λ2

is the small-

est integer such that (a) holds for any (w0, λ0), (w1, λ1). We now define

R̄w2,λ2

w0,λ0;w1,λ1
∈ Z by

Rw2,λ2

w0,λ0;w1,λ1
= R̄w2,λ2

w0,λ0;w1,λ1
v−a(w2,λ2)mod v−a(w2,λ2)+1Z[v].

We consider the free abelian group H∞
o with basis {tw,λ;w ∈W,λ ∈ o}. We

define a ring structure on H∞
o by

tw0,λ0
tw1,λ1

=
∑

(w2,λ2)∈W×o

R̄w2,λ2

w0,λ0;w1,λ1
tw2,λ2

,

or equivalently (for w̃0 ∈Wλ0
, w̃1 ∈Wλ1

, z0 ∈ [λ′0, λ0], z1 ∈ [λ′1, λ1]):

(b) tz0w̃0,λ0
tz1w̃1,λ1

=
∑

w̃2∈Wλ1

r̄w̃2;λ1

z−1

1
w̃0z1,w̃1

tz0z1w̃2,λ1
,

if λ0 = z1(λ1),

(c) tz0w̃0,λ0
tz1w̃1,λ1

= 0, if λ0 6= z1(λ1).

This ring is associative. Indeed, this ring has the same multiplication rule

as the ring J • in 1.7, which is known to be associative from 1.5. Note that

the ring H∞
o has a unit element, namely

∑
λ∈o

∑
w∈Dλ

tw,λ.

The A-algebra homomorphisms ψλ : Hλ → A ⊗ H∞
λ combine to give

an A-algebra homomorphism ψ : H• → A ⊗ J • or equivalently ψ : Ho →

A⊗ H∞
o ; it is given by

ψ(cw,λ) =
∑

(w2,λ2)∈W×o,λ1∈o,d∈Dλ1
;a(w2,λ2)=a(d,λ1)

Rw2,λ2

w,λ;d,λ1
tw2,λ2
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that is,

ψ(cw,λ) =
∑

(w̃2∈Wλ,d∈Dλ;a(w̃2)=a(d)

rw̃2;λ
w̃,d tzw̃2,λ

where w = zw̃ with w̃ ∈Wλ, z ∈ [w(λ), λ].

1.9. We now describe the left (resp. right) cells of W × o defined in terms

of the basis (tw,λ) of H∞
o . (See 0.2.) Let (w, λ), (w′, λ′) in W × o. We say

that (w, λ) ≈left (w
′, λ′) (resp. (w, λ) ≈right (w

′, λ′)) if for some (u, λ1) ∈

W × o, tw′,λ′ appears with non-zero coefficient in the product tu,λ1
tw,λ (resp.

tw,λtu,λ1
).

We write w = zw̃, w′ = z′w̃′ where w̃ ∈ Wλ, w̃
′ ∈ Wλ′ , z ∈ [w(λ), λ],

z′ ∈ [w′(λ′), λ′]. From 1.8(b),(c) we see that the condition that (w, λ) ≈left

(w′, λ′) is that λ = λ′ and w̃ ∼left w̃
′ in Wλ = Wλ′ ; the condition that

(w, λ) ≈right (w
′, λ′) is that λ = (z−1z′)(λ′) and w̃′ ∼right (z

′−1z)w̃(z−1z′)

in Wλ′ =W(z′−1z)(λ).

Using the results in 1.7 we deduce that ≈left and ≈right are equivalence

relations on W × o. In particular, ≈left is transitive, hence if for (w, λ) ∈

W × o we set (̃w, λ) = {(w′, λ′) ∈ W × o; (w, λ) ≈left (w′, λ′)}, then the

subgroup spanned by {tw′,λ′ ; (w′, λ′) ∈ (̃w, λ)} is a left ideal of H∞
o , so that

(̃w, λ) is a union of left cells. If (w, λ) ≈left (w′, λ′), then clearly any left

ideal of H∞
o spanned by a subset of the canonical basis of H∞

o and containing

tw,λ must also contain tw′,λ′ . Since ≈left is symmetric we must also have

(w′, λ′) ≈left (w, λ) hence any left ideal of H∞
o spanned by a subset of

the canonical basis of H∞
o and containing tw′,λ′ must also contain tw,λ; it

follows that (w, λ), (w′, λ′) are in the same left cell. We now see that any

equivalence class for ≈left is exactly one left cell. We see that the canonical

basis elements indexed by any left cell span a left ideal. The same argument

shows that the equivalence classes for ≈right are exactly the right cells and

that the canonical basis elements indexed by any right cell span a right ideal.

We now see that we have a natural bijection

{left cells in W × o} ↔ {(λ, γ);λ ∈ o, γ = left cell in Wλ}

The bijection associates to each (λ, γ) in the right hand side the left cell

{(zw̃, λ); w̃ ∈ γ, z = min(zWλ)} of W × o. We also see that the right cells in
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W × o are the images of the left cells under the involution W × o →W × o,

(w, λ) 7→ (w−1, w(λ)).

1.10. We now describe the two-sided cells of W × o defined by the basis

(tw,λ) of H
∞
o . (See 0.2). Let λ, λ′ in o; let w,w′ in W .

We say that (w, λ) ≈ (w′, λ′) if for some (u1, λ1), (u2, λ2) in W ×o, tw′,λ′

appears with non-zero coefficient in the product tu1,λ1
tw,λtu2,λ2

or equiva-

lently, if for some (w′′, λ′′) we have (w, λ) ≈left (w
′′, λ′′) and (w′, λ′) ≈right

(w′′, λ′′). (The equivalence uses the positivity of the structure constants of

H∞
o .) We write w = zw̃, w′ = z′w̃′ where w̃ ∈ Wλ, w̃

′ ∈ Wλ′ , z ∈ [w(λ), λ],

z′ ∈ [w′(λ′), λ′]. From 1.9 we see that the condition that (w, λ) ≈ (w′, λ′) is

that for some λ′′ ∈ o, w̃′′ ∈Wλ′′ , z1 ∈ [λ′, λ′′] we have λ = λ′′, w̃ ∼left w̃
′′ in

Wλ = Wλ′′ , w̃′′ ∼right z
−1
1 w̃′z1 in Wλ′′ = Wz−1

1
(λ′) or equivalently: for some

z1 ∈ [λ′, λ] we have w̃ ∼ z−1
1 w̃′z1 in Wλ = Wz−1

1
(λ′). Using the results in 1.7

we deduce that ≈ is an equivalence relation on W × o.

In particular, ≈ is transitive, hence if for (w, λ) ∈W × o we set ˆ(w, λ) =

{(w′, λ′) ∈ W × o; (w, λ) ≈ (w′, λ′)}, then the subgroup spanned by {tw′,λ′ ;

(w′, λ′) ∈ ˆ(w, λ)} is a two-sided ideal of H∞
o , so that ˆ(w, λ) is a union of

two-sided cells.

Now assume that (w, λ) ≈ (w′, λ′); let (w′′, λ′′) be such that (w, λ) ≈left

(w′′, λ′′) and (w′, λ′) ≈right (w
′′, λ′′). By 1.9, we have (w, λ) ∼left (w

′′, λ′′)

and (w′, λ′) ∼right (w
′′, λ′′). Hence if I is a two-sided ideal of H∞

o spanned

by a subset of the canonical basis then we have tw,λ ∈ I ↔ tw′′,λ′′ ∈ I ↔

tw′,λ′ ∈ I. It follows that (w, λ) ∼ (w′, λ′). We see that any equivalence

class for ≈ is contained in a two-sided cell. As we have seen earlier, any

equivalence class for ≈ is a union of two-sided cells, hence it is exactly one

two-sided cell. Also, the canonical basis elements indexed by any equivalence

class for ≈ (hence by any two-sided cell) span a two-sided ideal of H∞
o .

Let Cell(W × o) be the set of two-sided cells of W × o. Note that for

any λ ∈ o, the group [λ, λ] acts by conjugation on Wλ; this action induces

an action of [λ, λ] on Cell(Wλ). If ∆ ∈ Cell(W × o), for any λ ∈ o we set

∆λ = {w̃ ∈Wλ; (w̃, λ) ∈ ∆}; this is a union of the two-sided cells of Wλ in a

fixed [λ, λ]-orbit. Moreover, if λ, λ′ are elements of o then z∆λz
−1 = Dλ′ for

any z ∈ [λ′, λ]. We now see that for each λ ∈ o we have a bijection ∆ 7→ ∆λ
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between Cell(W × o) and the set of orbits of the conjugation of [λ, λ] on

Cell(Wλ).

From the results in 1.8 we see that if ∆, λ are as above, then the function

(w, λ) 7→ a(w, λ) on ∆ is constant with value equal to the value of the a-

function on any of the two-sided cells of Wλ contained in ∆λ.

1.11. Let H = ⊕oHo (resp. H∞ = ⊕oH
∞
o ) where o runs over all W -orbits

in V̄ ′
0 . We view H (resp. H∞) as an A-algebra (resp. ring) without 1 in

general) in whichHo (resp. H
∞
o ) is a subalgebra (resp. subring) for any o and

HoHo′ = 0 (resp. H∞
o H

∞
o′

= 0) for o 6= o′. Note that {cw,λ;w ∈ W,λ ∈ V̄ ′
0}

is an A-basis of H and that {tw,λ;w ∈ W,λ ∈ V̄ ′
0} is a Z-basis of H∞. The

left (resp. right, two-sided) cells of W × V̄ ′
0 are defined in terms of the basis

(tw,λ) of H
∞ as in 0.2. Using 1.9 we have a natural bijection

{left cells in W × V̄ ′
0} ↔ {(λ, γ);λ ∈ V̄ ′

0 , γ = left cell in Wλ}

The bijection associates to each (λ, γ) in the right hand side the left cell

{(zw̃, λ); w̃ ∈ γ, z = min(zWλ)} of W × V̄ ′
0 . The right cells in W × V̄ ′

0

are the images of the left cells under the involution W × V̄ ′
0 → W × V̄ ′

0 ,

(w, λ) 7→ (w−1, w(λ)). Let Cell(W × V̄ ′
0) be the set of two-sided cells of

W × V̄ ′
0 . We have Cell(W × V̄ ′

0) = ⊔oCell(W × o) where o runs over all

W -orbits in V̄ ′
0 and Cell(W × o) is described in 1.10.

Let (w′′, λ′′) ∈W×V̄ ′
0 . There is a well defined smallest integer a(w, λ) ≥

0 such that for any (w, λ), (w′, λ′) in W × V̄ ′
0 , the coefficient of cw′′,λ′′ in the

product cw,λcw′,λ′ belongs to v−a(w′′,λ′′)Z[v]. From 1.10 we see that for any

∆ ∈ Cell(W × V̄ ′
0) the function ∆ → N, (w′′, λ′′) 7→ a(w′′, λ′′) is constant

on ∆.

2. Conjugacy Classes

2.1. Let W be an affine Weyl group. Let T be the set of translations in

W, that is the set of the elements of W whose W-conjugacy class is finite.

Note that T is a subgroup of finite index in W. Let S be the set of simple

reflections of W. Let A(W) be the group of automorphisms σ : W → W

such that σ(S) = S; note that σ ∈ A(W) is uniquely determined by its

restriction to S.
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We now assume that the affine Weyl group W is irreducible. Let S0 be

the set of all s ∈ S such that S−{s} together with T generates W. We have

S0 6= ∅. If σ ∈ A(W) then σ restricts to a permutation of S0. Let A0(W) be

the set of all σ ∈ A(W) such that σ : S0 → S0 is either fixed point free or

the identity. Note that A0(W) is a normal subgroup of A(W); it acts simply

transitively on S0. For any s ∈ S0 let As(W) be the set of all σ ∈ A(W)

such that σ(s) = s (a subgroup of A(W)); we have A(W) = A0(W)As(W),

A0(W) ∩As(W) = {1}.

2.2. The results in this subsection can be deduced from those in 2.1. Let

W be an affine Weyl group with set of simple reflections S. We can write

W =
∏

u∈U Wu, S = ⊔u∈US
u where Wu(u ∈ U) is a finite collection of

irreducible affine Weyl groups and Su is the set of simple reflections of Wu.

We set S0 = ⊔u∈US
u
0 where Su

0 ⊂ Su is as in 2.1 (with W,S replaced by

Wu,Su). We define A(W) as in 2.1. Let A0(W) be the set of all σ ∈ A(W)

such that for any u ∈ U , we have σ(Wu) = Wu and σ|Wu ∈ A0(W
u). Let s

be a subset of S0 such that for any u ∈ U , s contains exactly one element of

Su
0 . (Note that A0(W) acts simply transitively on the set of all such s.) Let

As(W) be the set of all σ ∈ A(W) such that σ(s) = s (a subgroup of A(W));

we have A(W) = A0(W)As(W), A0(W) ∩As(W) = {1}.

2.3. In the setup of 2.2 let σ ∈ A(W). Let T be as in 2.1. The following

property (which is checked case by case) has been stated in [2]:

(a) we have σ ∈ A0(W) if and only if there exists w ∈ W such that σ(t) =

wtw−1 for all w ∈W .

Note that the image of w in W/T is uniquely determined by σ. In

particular, σ 7→ wT is a well defined (injective) homomorphism A0(W) →

W/T . We show:

(b) If σ ∈ A0(W) and c ∈ Cell(W), then σ(c) = c.

This is proved in [4, 4.9(b)] using the property (a) of σ.

2.4. In this subsection we assume that we are in case B. Let λ ∈ V̄ ′
0 .

Recall that Rλ = {h ∈ R; (h, λ) = 0 ∈ Q/Z}, Rλ = {h + mδhc ∈ R;h ∈
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Rλ,m ∈ Z}. Let Ru
λ(u ∈ U) be the irreducible components of Rλ. Note that

R+
λ = Rλ∩V

+ is a set of positive (co)roots for Rλ with set of simple (co)roots

Πλ = {hu,j ;u ∈ U , j ∈ [1, tu]} ⊂ R+
λ (notation of 1.3). Let ′Πλ = {hu,0;u ∈

U} ⊂ Rλ (notation of 1.3), ′Πλ = {hu,0 + δhu,0c;u ∈ U} ⊂ R+
λ , Π̂λ =

Πλ ⊔
′Πλ ⊂ Rλ, Πλ = Πλ ⊔

′Πλ ⊂ R+
λ . Note that we have a unique bijection

Πλ
∼
→Π̂λ, χ 7→ χ̂, such that for χ ∈ Πλ we have χ̂ ∈ χ+ Zc. Recall from 1.3

thatWλ is an affine Weyl group with Coxeter generators Sλ = {sχ;χ ∈ Πλ}.

The results of 2.2, 2.3 are applicable with (W,S,T ) = (Wλ,Sλ,Q). Let

Wλ be the subgroup of W generated by {sχ;χ ∈ Rλ} (a subgroup of Wλ.

Note that W λ is a Weyl group with Coxeter generators {sh;h ∈ Πλ}. Let

W ′
λ = W ∩W ′

λ = {w ∈ W ;w(λ) = λ}. We have W λ ⊂ W ′
λ. We write Ωλ

instead of

[λ, λ] = {z ∈W ′
λ; z(R

+
λ ) = R+

λ } = {z ∈W ′
λ; z(Πλ) = Πλ}.

Let

Ωλ = {z ∈W ′
λ; z(R

+
λ ) = R+

λ } = {z ∈W ′
λ; z(Πλ) = Πλ}.

We have W ′
λ = ΩλWλ and Ωλ ∩Wλ = {1}. We show:

(a) Ωλ ⊂ Ωλ.

Let z ∈ Ωλ. Let u ∈ U . For some u′ ∈ U , h 7→ z(h) defines an

isomorphism Ru
λ
∼
→Ru′

λ which takes simple roots of Ru
λ to simple roots of Ru′

λ ;

hence it takes hu,0 to hu
′,0 and we must have δhu,0 = δhu′,0 . We have also

z(c) = c, since z ∈ W . Thus we have z(hu,0 + δhu,0c) = hu
′,0 + δhu′,0c. We

see that z(′Πλ) ⊂
′Πλ, hence z(

′Πλ) =
′Πλ. We see that z(Πλ) = Πλ so that

z ∈ Ωλ. This proves (a).

Let Aλ be the group of permutations ρ : Πλ → Πλ with the follow-

ing property: there exists (a necessarily unique) σ = σρ ∈ A(Wλ) such

that σ(sχ) = sρ(χ) for any χ ∈ Πλ. Note that ρ 7→ σρ is an isomor-

phism Aλ
∼
→A(Wλ). Each ρ ∈ Aλ defines a permutation ρ̂ : Π̂λ → Π̂λ by

ρ̂(χ̂) = ρ̂(χ) for any χ ∈ Πλ. Now ρ 7→ ρ̂ defines an isomorphism of Aλ onto

a subgroup Âλ of the group of permutations of Π̂λ. Let Ω̃λ be the set of

all z ∈ W ′
λ such that z(Π̂λ) = Π̂λ and the permutation of Π̂λ defined by

h 7→ z(h) belongs to Âλ.
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Note that any element w ∈ W can be written uniquely in the form

w = tw where w ∈ W , t ∈ Q; moreover w 7→ w is a homomorphism

k̃ :W →W with kernel Q. We show:

(b) we have k̃(Ωλ) ⊂ Ω̃λ hence k̃ defines a homomorphism k : Ωλ → Ω̃λ with

kernel contained in Q.

Let w ∈ Ωλ. We write w = tw with w ∈ W , t ∈ Q. Since λ ∈ V̄ ′
0 , we

have t(λ) = λ. Thus w(λ) = t−1w(λ) = t−1(λ) = λ, so that w ∈ W ′
λ. Now

let χ ∈ Πλ so that χ̂ ∈ Π̂λ and w(χ) ∈ Πλ. We show that w(χ̂) = ŵ(χ). Now

w(χ̂) ∈ R and h = ŵ(χ) is the unique element in R such that w(χ)−h ∈ Zc.

Thus it is enough to show that w(χ) − w(χ̂) ∈ Zc. We have χ = χ̂ + mc

with m ∈ Z hence it is enough to show that w(χ̂+mc)− w(χ̂) ∈ Zc. Since

w(c) = c and w = tw, it is enough to show that tw(χ̂) − w(χ̂) ∈ Zc or,

setting h′ = w(χ̂) ∈ R, that t(h′)− h′ ∈ Zc. The last identity holds for any

t ∈ Q, h′ ∈ R, as we can see using the definitions. This proves (b).

We shall need the following property:

(c) Let ρ ∈ Aλ be such that σρ ∈ A0(Wλ); let ρ̂ be the corresponding element

of Âλ. Then there is a unique w ∈ W λ such that w(h) = ρ̂(h) for any

h ∈ Π̂λ.

Let w ∈ W be such that σρ(t) = wtw−1 for all t ∈ Q. (We use 2.3(a).)

A case by case check shows that w satisfies the requirement of (c). The

uniqueness of w is obvious.

We define a homomorphism α : Ωλ → fAλ by z 7→ ρ where ρ(χ) = z(χ)

for any χ ∈ Πλ. We define a homomorphism α : Ωλ → Aλ as the composition

Ωλ → Ωλ
α
→Aλ (the first map is the inclusion (a)). It follows that

(d) image(α) ⊂ image(α).

We define a homomorphism α̃ : Ω̃λ → Aλ as the composition Ω̃λ →

Âλ → Aλ where the first homomorphism is z 7→ ρ′ where ρ′(h) = z(h) for

any h ∈ Π̂λ and the second homomorphism is ρ̂ → ρ for ρ ∈ Aλ. We show

that α = α̃k with k as in (b). Let w ∈ Ωλ. We write w = tw where w ∈W ,

t ∈ Q. We must show that for χ ∈ Πλ we have ŵ(χ) = w(χ̂). This has been

verified in the course of proving (b). From α = α̃k it follows that
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(e) image(α) ⊂ image(α̃).

We define α′ : A0(Wλ) → Aλ as the composition A0(Wλ) → A(Wλ) →

Aλ where the first map is the obvious imbedding and the second map is the

inverse of the bijection ρ 7→ σρ. We show:

(f) We have image(α̃) ⊂ image(α′)image(α).

Let z ∈ Ω̃λ. Let ρ = α̃(z) ∈ Aλ so that ρ̂(h) = z(h) for any h ∈ Π̂λ.

Let σ = σρ ∈ A(Wλ). By 2.2 we can write σ = σ′σ′′ where σ′ ∈ A0(Wλ)

and σ′′ ∈ A(Wλ) maps {sχ;χ ∈ Πλ − Πλ} into itself. Let ρ′, ρ′′ in Aλ be

such that σ′ = σρ′ , σ
′′ = σρ′′ . Then ρ = ρ′ρ′′ and ρ′′ maps Πλ − Πλ into

itself and Πλ into itself. We have ρ̂ = ρ̂′ρ̂′′ and ρ̂′′ maps Πλ into itself (recall

that for χ ∈ Πλ we have χ̂ = χ). By (c), we can find w ∈ W λ such that

w(h) = ρ̂′(h) for any h ∈ Π̂λ. For any h ∈ Π̂λ we have ρ̂′ρ̂′′(h) = z(h) hence

w(ρ̂′′(h)) = z(h), that is w−1z(h) = ρ̂′′(h). Since ρ̂′′(Πλ) = Πλ, we deduce

that w−1z(Πλ) = Πλ. Since z ∈W ′
λ, w ∈Wλ, we have w−1z ∈W ′

λ. We see

that w−1z ∈ Ωλ, so that z = wx where x ∈ Ωλ. We have w ∈ Ω̃λ, x ∈ Ω̃λ

hence ρ = α̃(z) = α̃(w)α̃(x). We have α̃(w) ∈ image(α′), α̃(x) ∈ image(α).

This proves (f).

We show:

(g) Let c ∈ Cell(Wλ). The collection of two-sided cells {zcz−1; z ∈ Ωλ}

coincides with the collection of two-sided cells {zcz−1; z ∈ Ωλ}.

From (e), (f) we deduce that image(α) ⊂ image(α′)image(α). Hence,

if z ∈ Ωλ then the automorphism ω 7→ zωz−1 of Wλ is a product σ′σ′′

where σ′ ∈ A0(Wλ) and σ′′ is conjugation by an element z′ ∈ Ωλ. Thus,

we have zcz−1 = σ′(z′cz′−1). By 2.3(b) we have σ′(z′cz′−1) = z′cz′−1 hence

zcz−1 = z′cz′−1. We see that the first collection in (g) is contained in the

second collection. The reverse containment follows from (a). This proves

(g).

2.5. In the remainder of this section we assume that k′ has characteristic

zero. Let T′
f (resp. k′

f
∗) be the set of elements of finite order in T′ (resp.

k′∗). We have canonically T′ = L′⊗k′∗, T′
f = L′⊗k′∗

f . Recall that in case B

we have V̄ ′
0 = V ′/L′, see 1.3, and that in case A we write V̄ ′

0 = V̄ ′. We have

canonically V̄ ′
0 = L′⊗(Q/Z). Note thatW can be viewed as the Weyl group
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ofG and that ofG′; it acts naturally onT andT′. We choose an isomorphism

Q/Z
∼
→k′

f
∗. Via this isomorphism we have T′

f = L′ ⊗ Q/Z = V̄ ′
0 . This is

compatible with the W -actions on T′ and V̄ ′
0 . Now let o be a W -orbit on V̄ ′

which is contained in V̄ ′
0 . Note that o is in fact a W -orbit. In case A this is

because W = w; in case B this is because the subgroup Q (see the proof of

1.1(a)) of W acts trivially on V̄ ′
0 . Under the identification T′

f = V̄ ′
0 , o can

be viewed as a W -orbit on Tf . Let λ ∈ o. Let Z(λ) be the centralizer of

λ ∈ T′ in G′ and let Z(λ)0 be the identity component of Z(λ). Since λ is

semisimple in G′, Z(λ)0 is a reductive group and T′ is a maximal torus of

it. Let h ∈ R. We have h ∈ L so that h can be viewed as a homomorphism

T′ → K∗. The condition that h is a root of Z(λ)0 with respect to T′ is that

h(λ) = 1. An equivalent condition (with λ is viewed as an element of V̄ ′
0)

is that (h, λ) = 0 or that h ∈ Rλ. We see that the set of roots of Z(λ)0 is

Rλ and the corresponding set of coroots is R′
λ ⊂ R′ (as in 1.2). Using this

and 1.3(b), we see that we have Wλ = W(Z(λ)0) where W(Z(λ)0) is the

Weyl group (in case A) or the affine Weyl group (in case B) associated to

the dual of the reductive group of Z(λ)0, in the same way as W is the Weyl

group (in case A) or the affine Weyl group (in case B) associated to G, the

dual of G′. Let U(Z(λ)0) be the set of unipotent conjugacy classes of Z(λ)0;

let Usp(Z(λ)
0) be the set of special unipotent conjugacy classes of Z(λ)0 (a

subset of U(Z(λ)0)). By [4, 4.8(b)] in case B we have a canonical bijection

(a) U(Z(λ)0) ↔ Cell(W(Z(λ)0)) = Cell(Wλ);

this restricts to a bijection Usp(Z(λ)
0) ↔ Cell(W λ) (each two-sided cell

of W λ is contained in a two-sided cell of Wλ and this gives an imbedding

Cell(W l) ⊂ Cell(Wλ). The last bijection can be viewed as a bijection

(b) Usp(Z(λ)
0) ↔ Cell(Wλ)

in case A.

Now let U(Z(λ)) be the set of unipotent elements of Z(λ)0 up to Z(λ)-

conjugacy; let Usp(Z(λ)) be the set of special unipotent elements of Z(λ)0

up to Z(λ)-conjugacy. Let N(T′) be the normalizer of T′ in G′. If w ∈W ′
λ

and n ∈ N(T′) is a representative of w viewed as an element of N(T′)/T′

then n ∈ Z(λ) and u 7→ nun−1 defines bijections U(Z(λ)0) → U(Z(λ)0),

Usp(Z(λ)
0) → Usp(Z(λ)

0) which depend only on w not on n (since T′ ⊂

Z(λ)0). This gives an action of W ′
λ on U(Z(λ)0) leaving stable Usp(Z(λ)

0).

(In this action the subgroup W λ acts trivially.) It is easy to see that two
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unipotent Z(λ)0-conjugacy classes of Z(λ)0 are in the same W ′
λ-orbit if and

only if they are contained in the same Z(λ)-conjugacy class. Let Ωλ be

as in 2.4 (in case B) and let Ωλ = [λ, λ] in case A. Since W ′
λ = ΩλW λ it

follows that two unipotent Z(λ)0-conjugacy classes of Z(λ)0 are in the same

Ωλ-orbit if and only if they are contained in the same Z(λ)-conjugacy class.

Thus we can identify U(Z(λ)) = Ωλ\U(Z(λ)
0), Usp(Z(λ)) = Ωλ\Usp(Z(λ)

0).

From the definitions we see that the bijections (a),(b) are compatible with

the natural actions of W ′
λ on the two sides of (a),(b). Taking orbits of these

actions we deduce bijections

(c) U(Z(λ)) ↔ Ωλ\Cell(Wλ) (in case B);

(d) Usp(Z(λ)) ↔ [λ, λ]\Cell(Wλ) (in case A).

Now in case B the natural action of Ωλ on Cell(Wλ) extends to an action

of [λ, λ] on Cell(Wλ) with the same orbit space (see 2.4(g)). Thus (c) can

be viewed as a bijection

(e) U(Z(λ)) ↔ [λ, λ]\Cell(Wλ) (in case B).

By 1.10 we have a canonical bijection Cell(W × o) ↔ [λ, λ]\Cell(Wλ) (in

both cases A,B). Combining with (d),(e) we obtain bijections

Cell(W × o) ↔ U(Z(λ)) in case B;

Cell(W × o) ↔ Usp(Z(λ)) in case A.

Using this and the equality Cell(W × V̄ ′
0) = ⊔oCell(W × o) in 1.11 we see

that Cell(W × V̄ ′
0) is in natural bijection with ⊔λU(Z(λ)) (in case B) and

with ⊔λUsp(Z(λ)) (in case A) where λ runs though a set of representatives

for theW -orbits in V̄ ′
0 = T′. Let Conj(G′) be the set of conjugacy classes of

elements in G′ with semisimple part of finite order. Let Conjsp(G
′) be the

set of conjugacy classes of elements in G′ with semisimple part of finite order

and such that the unipotent part is special in the connected centralizer of

the semisimple part. Note that we have canonically ⊔λU(Z(λ)) = Conj(G′),

⊔λUsp(Z(λ)) = Conjsp(G
′). For any g ∈ G′ let B′

g be the variety of Borel

subgroups of G′ containing g. We have the following result.

Theorem 2.6

(a) We have canonical bijections Cell(W × V̄ ′
0) ↔ Conjsp(G

′) (in case A)

and Cell(W × V̄ ′
0) ↔ Conj(G′) (in case B).
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(b) If ∆ ∈ Cell(W × V̄ ′
0) and c is the conjugacy class in G′ corresponding to

∆ under (a), then the value of the a-function (see 1.11) on ∆ is equal

to dimB′
g for g ∈ c.

Now (a) is obtained by combining several statements above; (b) follows

from 1.10, 1.11, using [4, 4.8(c)].
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1. N. Bourbaki, Groupes et algèbres de Lie, Ch.4,5 et 6, Hermann, Paris, 1968.

2. G. Lusztig, Some examples of square integrable representations of semisimple p-adic
groups, Trans. Amer. Math. Soc., 227 (1983), 623-653.

3. G. Lusztig, Characters of reductive groups over a finite field, info Ann. Math. Studies,
107 Princeton U. Press, 1984p.

4. G. Lusztig, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo, 36 (1989),
297-328.

5. G. Lusztig, Monodromic systems on affine flag manifolds, Proc. Royal Soc., 445 (1994),
231-246.

6. G. Lusztig, Hecke algebra with unequal parameters, CRM Monograph Ser. 18, Amer.

Math. Soc., 2003.

7. G. Lusztig, Character sheaves on disconnected groups, VI, Represent. Th., 8 (2004),
377-413.

8. G.Lusztig, Character sheaves on disconnected groups,VII, Represent. Th., 9 (2005),
209-266.

9. J. G. M. Mars and T. A. Springer, Character sheaves, Astérisque, 173-174 (1989),
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