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Abstract

In this article, we give a survey on the recent progress towards the classification of

strongly regular holomorphic vertex operator algebras of central charge 24. In particular,

we review the construction of the holomorphic vertex operator algebras that realize the

71 Lie algebras in Schellekens’ list. In addition, we discuss an open question if the Lie

algebra structure of the weight one subspace will determine the isomorphism class of a

holomorphic vertex operator algebra of central charge 24 uniquely.

1. Introduction

The classification of strongly regular holomorphic vertex operator al-

gebras (VOAs) of central charge 24 is one of the fundamental problems in

vertex operator algebras and conformal field theory. Here, strongly regular

is defined to be rational, C2-cofinite, self-contragredient, and of CFT-type.
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In general, the weight one subspace of a VOA of CFT-type has a Lie alge-

bra structure via the 0-th mode [2], which we often call the weight one Lie

algebra. Let V be a strongly regular holomorphic VOA of central charge 24.

Then the weight one Lie algebra V1 is zero, abelian of rank 24 or semisimple

([15]); if V1 is abelian of rank 24, then V is isomorphic to the Leech lattice

VOA ([16]); if V1 is zero, then it is conjecturally isomorphic to the moonshine

VOA ([25]).

We now assume that V1 is semisimple. Then for each simple ideal of V1,

there is an equation that relates the dual Coxeter number, the level of its

affinization and the dimension of V1 ([53, 15]). It turns out that there are

exactly 221 solutions for these equations. Here, the level must be a positive

integer since V is C2-cofinite ([15]). Schellekens [53] (see also [22]) found

additional constraints and gave a list of possible 69 semisimple Lie algebra

structures for V1, which is called Schellekens’ list. Let U be the subVOA

generated by V1. Then U is the tensor product of simple affine VOAs at

positive integral levels ([17]) and it is full ([15]), i.e., its conformal vector

coincides with that of V . Hence V is a direct sum of U and finitely many

irreducible U -submodules with integral conformal weight at least 2. By the

classification of irreducible modules for simple affine VOAs ([26]), it seems

that there are a few possibilities of U -module structures of V and the VOA

structure of V would be determined uniquely by the structure of the weight

one Lie algebra.

For us, such a situation may also be viewed as a VOA analogue of the

classification of (positive-definite) even unimodular lattices of rank 24. It is

a famous theorem by Niemeier [51] (cf. [55]) that there are exactly 24 even

unimodular lattices of rank 24 and their isometry types are determined by

their root systems, a combinatorial structure of norm 2 vectors. It seems

that the weight one Lie algebra of a holomorphic VOA of central charge 24

play a similar role as the root system of the even unimodular lattices of rank

24. In particular, there exists a unique even unimodular lattice of rank 24

which has no vectors of norm 2 and it is isometric to the Leech lattice [5].

Hence the characterization of the moonshine VOA mentioned above would

be a VOA analogue of that of the Leech lattice.
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When Schellekens [53] obtained his list, not all 71 cases were known

explicitly at that time. Besides, it is still an open question if the Lie al-

gebra structure of the weight one subspace will determine the VOA struc-

ture uniquely when the central charge is 24. In the recent years, there is

much progress towards the classification. Schellekens’ list has been verified

mathematically by van Ekeren, Möller and Scheithauer [22, 49]. Moreover,

holomorphic VOAs associated with all 71 Lie algebras in the list have been

constructed. We list the constructions in chronological order as follows:

• 24 Niemeier lattice VOAs VN [2, 25, 8];

• 15 obtained by Z2-orbifold constructions associated with VN and the

−1-isometry [25, 7];

• 17 framed holomorphic VOAs [31, 33];

• 3 obtained by Z3-orbifold constructions associated with VN and order

3 isometries [46, 52];

• 5 obtained by Zn-orbifold constructions associated with VN and some

isometries of order n ≥ 4 [22, 49];

• 5 obtained by Z2-orbifold constructions associated with inner automor-

phisms [35];

• 1 obtained by Z7-orbifold construction associated with the Leech lattice

VOA; the corresponding order 7 automorphism is the product of an

inner automorphism and a standard lift of order 7 isometry of the

Leech lattice [36];

• 1 obtained by Mirror extension and Z2-orbifold construction [32].

Therefore, the following theorem was established:

Theorem 1.1. Let g be one of the 71 Lie algebras in Schellekens’ list. Then

there exists a strongly regular holomorphic VOA of central charge 24 whose

weight one Lie algebra is isomorphic to g.
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The uniqueness of several holomorphic VOAs of central charge 24 have

also been established [16, 34, 30, 37] (see also Remark 6.10 for the results

after submission of this article).

In this article, we will give a survey on the recent progress towards the

classification of strongly regular holomorphic VOAs of central charge 24.

In particular, we will review constructions of the holomorphic VOAs that

realize the Lie algebras in Schellekens’ list. Several main techniques will

also be discussed. In addition, we will discuss the uniqueness conjecture and

review some of the known results.

The organization of the article is as follows. In Section 2, we review some

basic notions about VOAs and their weight one Lie algebras. In Section 3,

we describe a strategy for the classification of holomorphic VOAs of central

charge 24 based on Schellekens’ list [53]. In Section 4, we review several

main techniques for the construction of holomorphic VOAs of central charge

24, which include the Zn-orbifold construction [22, 49], Li’s Δ-operator [43]

and certain dimension formulas on the weight one Lie algebras [50, 49].

In Section 5, we review the constructions of 71 holomorphic VOAs that

realize the Lie algebras in Schellekens’ list. We also discuss how to use the

techniques in Section 4 for the constructions. In Section 6, we review some

known results about the uniqueness problem and discuss a technique which

we call “reverse orbifold construction” [37]. We also discuss its application

towards the uniqueness problem.

2. Preliminary

Throughout this article, all VOAs are defined over the field C of complex

numbers. We recall the notion of vertex operator algebras (VOAs) and

(twisted) modules from [2, 25, 24, 13].

A vertex operator algebra (VOA) (V, Y,1, ω) is a Z-graded vector space

V =
⊕

m∈Z Vm equipped with a linear map

Y (a, z) =
∑
i∈Z

a(i)z
−i−1 ∈ (End(V ))[[z, z−1]], a ∈ V,

the vacuum vector 1 and the conformal vector ω satisfying a number of

conditions ([2, 25]). We often denote it by V . For a ∈ V and n ∈ Z, we
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often call a(n) the n-th mode of a. Note that L(n) = ω(n+1) satisfy the

Virasoro relation:

[L(m), L(n)] = (m− n)L(m+n) +
1

12
(m3 −m)δm+n,0c idV ,

where c is a complex number, called the central charge of V .

A linear automorphism g of V is called a (VOA) automorphism of V if

gω = ω and gY (v, z) = Y (gv, z)g for all v ∈ V.

A vertex operator subalgebra (or a subVOA) is a graded subspace of V which

has a structure of a VOA such that the operations and its grading agree

with the restriction of those of V and that they share the vacuum vector.

When they also share the conformal vector, we will call it a full subVOA.

For an automorphism g of a VOA V , let V g denote the set of fixed-points

of g. Note that V g is a full subVOA of V .

A VOA is said to be rational if its admissible module category is semisim-

ple, and a rational VOA is said to be holomorphic if it itself is the only

irreducible module up to isomorphism. A VOA is said to be of CFT-type if

V0 = C1 (note that Vn = 0 for all n < 0 if V0 = C1 [18, Lemma 5.2]), and

is said to be C2-cofinite if the codimension in V of the subspace spanned by

the vectors of form u(−2)v, u, v ∈ V , is finite. A module is said to be self-

contragredient if its contragredient module is isomorphic to itself. A VOA

is said to be strongly regular if it is rational, C2-cofinite, self-contragredient

and of CFT-type. Note that a strongly regular VOA is simple.

Let g be an automorphism of a VOA V of order n ∈ Z>0 and let M be

an irreducible g-twisted V -module. Note that if g = 1, then M is just an

irreducible V -module. Then the twisted module M can be decomposed as

M =
⊕

i∈(1/n)Z≥0
Mi+w, where w ∈ C, Mw �= 0 and Ms = {v ∈ M | L(0)v =

sv}. The number w is called the conformal weight of M . For the definition

of (twisted) modules, see [24, 13].

Let V be a VOA of CFT-type. Then, the weight one space V1 has a

Lie algebra structure via the 0-th mode ([2, 25]), which we often call the

weight one Lie algebra of V . Moreover, the n-th modes v(n), v ∈ V1, n ∈ Z,

define an affine representation of the Lie algebra V1 on V . For a simple Lie

subalgebra a of V1, the level of a is defined to be the scalar by which the
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canonical central element acts on V as the affine representation. When the

type of the root system of a is Xn and the level of a is k, we denote the

type of a by Xn,k. The following proposition allows us to study a strongly

regular VOA via the representation theory of simple affine VOAs at positive

integral level. For the explicit construction of affine VOAs, we will refer to

[26] for details.

Proposition 2.1 ([17, Theorem 1.1, Corollary 4.3]). Let V be a strongly

regular VOA. Then V1 is reductive. Let s be a simple Lie subalgebra of V1.

Then V is an integrable module for the affine representation of s on V , and

the subVOA generated by s is isomorphic to the simple affine VOA associated

with s at positive integral level.

Now, we assume that V is strongly regular and V1 is semisimple. We also

assume that the subVOA L(V1) generated V1 is full. Then by the proposition

above, L(V1) is the tensor product of simple affine VOAs and hence it is

rational. Since L(V1) is full, V is the direct sum of finitely many irreducible

L(V1)-modules. In fact, if the weight one Lie algebra of a (strongly regular)

holomorphic VOA of central charge 24 is neither zero nor abelian of rank

24, then the VOA satisfies these assumptions by the following proposition:

Proposition 2.2 ([15, (1.1), Theorem 3 and Proposition 4.1]). Let V be a

strongly regular holomorphic VOA of c = 24. If the Lie algebra V1 is neither

{0} nor abelian of rank 24, then V1 is semisimple, and the subVOA generated

by V1 is full, i.e., its conformal vector coincides with that of V . In addition,

for any simple ideal of V1 at level k, the identity

h∨

k
=

dimV1 − 24

24

holds, where h∨ is the dual Coxeter number of the simple ideal.

This proposition restricts the structure of the semisimple weight one Lie

algebra of a holomorphic VOA of central charge 24; indeed, there are only

221 possibilities for them ([53, 22]).
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3. Towards the Classification of Holomorphic VOAs

of Central Charge 24

In this section, we describe a strategy for the classification of holomor-

phic VOAs of c = 24. Let V be a (strongly regular) holomorphic VOA. By

the modular invariance on the space generated by the character of irreducible

modules ([57]), the character of V belongs to C[j1/3] (cf. [27]), where j is

the famous j-function. This implies that the central charge c of V must be a

multiple of 8. In [16, Theorems 1 and 2], it was proved that any holomorphic

VOA of c = 8 (resp. c = 16) is isomorphic to the lattice VOA VE8 (resp.

the lattice VOAs VE8⊕E8 or VD+
16
). For the case c = 24, Schellekens gave a

list of possible 71 weight one Lie algebra structures of holomorphic VOAs of

c = 24 ([53]); see Appendix for the list. Note that in [22, 49], this list was

reproved mathematically. By Schellekens’ list, the classification problem of

c = 24 can be divided into the following two steps:

(1) For every Lie algebra g in the list, construct a (strongly regular) holo-

morphic VOA of c = 24 whose weight one Lie algebra is isomorphic to

g.

(2) Show that the isomorphism class of a holomorphic VOA of c = 24 is

uniquely determined by the Lie algebra structure of the weight one space.

Step (1) has been completed recently; see Sections 4 and 5 for detail. Step

(2) is in progress; see Section 6 for the current situation.

Remark 3.1. When c ≥ 32, it seems that the classification of holomorphic

VOAs is impossible; for example, there are at least 8× 107 (non-isometric)

positive-definite even unimodular lattices of rank 32 (cf. [6]), and hence there

are at least 8× 107 (non-isomorphic) holomorphic lattice VOAs of c = 32.

4. Orbifold Construction, Li’s Δ-operator and Dimension Formulas

In this section, we will review several main techniques for constructions

of holomorphic VOAs of c = 24. These techniques include the orbifold

construction, Li’s Δ-operator and certain dimension formulas on the weight

one Lie algebras.

4.1. Zn-orbifold construction

In this subsection, we will review the Zn-orbifold construction associated
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with a holomorphic VOA and an automorphism of arbitrary finite order

from [22, 49], which was inspired by Miyamoto’s work [46] on the Z3-orbifold

construction.

Let V be a strongly regular holomorphic VOA. Let g be a (finite) order

n automorphism of V . For 0 ≤ i ≤ n − 1, let V [gi] be the irreducible gi-

twisted V -module. Such a module exists and is unique by [13, Theorem 1.2].

Note that V [g0] = V . Moreover, it is known that the group 〈g〉 acts on the

twisted module V [gj ] for each 1 ≤ j ≤ n − 1. More precisely, there exists

φj : 〈g〉 → Aut C(V [gj ]) such that for all v ∈ V and i ∈ Z,

φj(g
i)YV [gj ](v, z)φj(g

i)−1 = YV [gj ](g
iv, z).

Note that such an action is unique up to a multiplication of an n-th root of

unity. Set φ0(g) = g ∈ Aut (V ). For 0 ≤ j, k ≤ n− 1, we denote

W (j,k) = {w ∈ V [gj ] | φj(g)w = e(2πk
√−1)/nw}.

Let V g be the fixed-point subspace of g, which is a full subVOA of V .

Note that W (0,0) = V g and all W (j,k)’s are irreducible V g-modules ([48,

Theorem 2]). It was also shown recently by [3, 47] that V g is strongly

regular. Moreover, any irreducible V g-module is a submodule of V [gi] for

some i, and there exist exactly n2 non-isomorphic irreducible V g-modules

([21]), which are represented by {W (j,k) | 0 ≤ j, k ≤ n − 1}. By calculating

the S-matrix of V g ([57, 13]), it was proved in [22, 49] that all irreducible

V g-modules W (j,k) are simple current modules. It implies that the set of

isomorphism classes of irreducible V g-modules, denoted by R(V g), forms an

abelian group of order n2 under the fusion product. We often identify an

element in R(V g) with its representative irreducible V g-module. Note that

R(V g) = {W (j,k) | 0 ≤ j, k ≤ n− 1}.
Remark 4.1. Explicit constructions of irreducible twisted modules have

not been established yet for general automorphisms. However, the following

cases are known:

• For a lattice VOA, irreducible twisted modules associated with a (stan-

dard) lift of an isometry of the lattice are constructed in [41, 11] (see

Section 5.2).

• For a framed VOA, irreducible twisted modules associated with a product

of τ -involutions are constructed in [40] by using the fusion product.
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• For arbitrary VOAs, irreducible twisted modules associated with an inner

automorphism are constructed by Li’s Δ-operator in [43] (see Section

4.2).

Now we assume the following:

(I) For 1 ≤ i ≤ n− 1, the conformal weight of V [gi] is positive.

(II) The conformal weight of V [g] belongs to (1/n)Z>0.

Then by [22, 49], the abelian group R(V g) is isomorphic to Zn ×Zn and for

any M ∈ R(V g), the conformal weight qΔ(M) of M belongs to (1/n)Z. Let

q : R(V g) → Zn be the map defined by

q(M) = n · qΔ(M) (mod n).

It was proved in [22, 49] that q is a non-singular quadratic form on R(V g).

In fact, the following theorem holds.

Theorem 4.2 ([22, 49]). Let H be a totally isotropic subgroup of R(V g),

i.e., q(M) = 0 for all M ∈ H. Then, the V g-module
⊕

M∈H M has a

strongly regular VOA structure as an H-graded simple current extension of

V g. Moreover, if H is maximal, then
⊕

M∈H M is holomorphic.

Under the assumptions (I) and (II), it is proved in [22] that one can

choose the φi’s such that

• W (i,j)
�V g W (k,�) ∼= W (i+k,j+�), where �V g is the fusion product of V g-

modules;

• W (i,j) has the conformal weight qΔ(W
(i,j)) = ji/nmodZ.

Then I = {W (i,0) | 0 ≤ i ≤ n−1} forms a maximal totally isotropic subgroup

of R(V g) and by Theorem 4.2, the V g-module

Ṽg =
⊕
M∈I

M

is a strongly regular holomorphic VOA. Since I is isomorphic to Zn, Ṽg

is a Zn-graded simple current extension of V g. The construction of Ṽg is

often called the Zn-orbifold construction associated with V and g. Note

that W (1,0) is the unique irreducible V g-submodule of V [g] with integral
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weights and that I is the subgroup of R(V g) generated by W (1,0). Hence Ṽg

is uniquely determined by V and g, up to isomorphism.

Remark 4.3.

(1) Assume that n is prime. Then for 1 ≤ i ≤ n − 1, the subspace of V [gi]

with integral weights is an irreducible V g-module. Such modules and V g

form the maximal totally isotropic subgroup I of R(V g).

(2) Let g′ be an automorphism of V which is conjugate to g. Then g′ also
satisfies the conditions (I) and (II), and Ṽg′ is isomorphic to Ṽg as a VOA.

4.2. Li’s Δ-operator and associated twisted modules

In this subsection, we review Li’s Δ-operator from [43], which gives an

explicit construction of the irreducible twisted modules for inner automor-

phisms.

Let V be a self-contragredient VOA of CFT-type. Let 〈·|·〉 be the in-

variant bilinear form on V such that 〈1|1〉 = −1 ([42]). Let u ∈ V1 such

that u(0) acts semisimply on V . Let σu = exp(−2π
√−1u(0)) be the (inner)

automorphism of V associated with u. We assume that there exists a posi-

tive integer n such that the spectrum of u(0) on V belongs to (1/n)Z. Then

we have σn
u = 1 on V . Conversely, if σn

u = 1, then the spectrum of u(0) on

V belongs to (1/n)Z. Let Δ(u, z) be Li’s Δ-operator defined in [43], i.e.,

Δ(u, z) = zu(0) exp

( ∞∑
i=1

u(i)

−i
(−z)−i

)
.

Proposition 4.4 ([43, Proposition 5.4]). Let σ be a finite order automor-

phism of V and let u ∈ V1 be as above such that σ(u) = u. Let (M,YM ) be

a σ-twisted V -module and define (M (u), YM (u)(·, z)) as follows:

M (u) = M as a vector space;

YM (u)(a, z) = YM (Δ(u, z)a, z) for any a ∈ V.

Then (M (u), YM (u)(·, z)) is a σuσ-twisted V -module. Furthermore, if M is

irreducible, then so is M (u).

Later, we will discuss the orbifold construction associated with inner

automorphisms. For this purpose, we will discuss the conditions (I) and (II)
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in the previous subsection. By the definition of the Δ-operator, the weight

operator acts on V (u) by

ω(1) + u(0) +
〈u|u〉
2

id.

Since the spectrum of u(0) belongs to (1/n)Z, we obtain the following:

Lemma 4.5. If 〈u|u〉 ∈ (2/n)Z, then the weights of V (u) belong to (1/n)Z.

Next, we consider the conformal weight of V (u). We now assume the

following:

• V is strongly regular;

• V1 is semisimple; let V1 =
⊕t

i=1
gi be the decomposition of V1 into the

direct sum of simple ideals;

• the subVOA U generated by V1 is full, i.e., its conformal vector coincides

with ω ∈ V .

Note that the latter two assumptions hold for any (strongly regular) holo-

morphic VOA of c = 24 if V1 is neither {0} nor abelian of rank 24 (see

Proposition 2.2). By Proposition 2.1, U is the tensor products of the simple

affine VOAs Lgi(ki, 0) associated with gi at positive level ki. Then any ir-

reducible U -module M is isomorphic to
⊗t

i=1
Lgi(ki, λi), where Lgi(ki, λi)’s

are irreducible Lgi(ki, 0)-modules with dominant integral weights λi of gi at

level ki. Computing the conformal weight of the irreducible twisted module

M (u), we obtain the following:

Lemma 4.6 (cf. [35]). If u does not belong to the weight lattice of V1, then

the conformal weight of V (u) is positive.

Even if u belongs to the weight lattice of V1, we can also obtain a lower

bound of the conformal weight of V (u) as follows:

(Step 1) Find all irreducible U -modules M whose conformal weight is in

Z≥2 ∪ {0}.
(Step 2) Calculate the conformal weight of M (u) for all M in (Step 1).

Then the minimum of the conformal weights in (Step 2) gives a lower bound.

By using this argument, we have confirmed in [35, 37] that the conformal

weight of V (u) is at least 1 for some cases.
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4.3. Dimension formulas and weight one Lie algebras

In this subsection, we review certain dimension formulas for the weight

one Lie algebras from [49], which was mentioned in [50]. This is useful for

determining the weight one Lie algebra structure of a holomorphic VOA of

c = 24.

The following theorem is a variant of the dimension formula mentioned

in [50]:

Theorem 4.7 ([49, (4.10)]). Let V be a strongly regular holomorphic VOA

of c = 24. Let g be an automorphism of order n satisfying the conditions

(I) and (II) in Section 4.1. Assume that n ∈ {2, 3, 5, 7, 13} and that the

conformal weight of V [gi] is at least 1 for all 1 ≤ i ≤ n − 1. Then the

following equation holds:

dimV1 + dim(Ṽg)1 = (n+ 1) dimV g
1
+ 24.

Remark 4.8.

(1) More general formula is described in [50, 49, 23].

(2) For n = 2, 3, this theorem was also proved in [35, 37].

The key of the proof is that the character of V g is a modular function

for the congruence group Γ0(n) [49, Proposition 4.8.2]. Hence, it can be

described as a Laurent polynomial of a Hauptmodul of Γ0(n). By using

the S-transformation, we obtain equations about the characters and trace

functions of irreducible V g-modules. Comparing some coefficients of the

equations and using the assumption about the conformal weights of the

irreducible twisted V -modules, we obtain this formula.

Let V be a (strongly regular) holomorphic VOA of c = 24 and g an order

n automorphism of V satisfying the conditions (I) and (II). Let Ṽg be the

resulting holomorphic VOA obtained by the orbifold construction associated

with V and g. The following is a basic strategy in [35] to determine the

weight one Lie algebra structure of Ṽg:

(1) Determine d = dim(Ṽg)1 by using the dimension formula.

(2) List possible d-dimensional semisimple Lie algebra structures satisfying

the equation in Proposition 2.2 with positive integral levels.
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There are only few possibilities by the argument above. Considering the

embedding of Lie algebras and levels, we have only one possibility for the

cases in [35]. Here, we also use the following fact:

• Ṽg has an automorphism z of order n such that (Ṽg)
z
1
= (V g)1.

This is related to the reverse orbifold construction, which will be discussed

in Section 6.

5. Constructions of 71 Holomorphic VOAs of Central Charge 24

In this and the next sections, we will give a brief review on the recent

progress towards the classification of strongly regular holomorphic VOAs

of central charge 24 based on the strategy described in Section 3. In this

section, we will discuss constructions of holomorphic VOAs that realize the

Lie algebras in Schellekens’ list. The main idea is to try to construct a new

VOA from a known VOA by using the “Orbifold construction”.

5.1. Lattice vertex operator algebras

We first recall the notion of lattice VOAs and review some of their

properties. We use the standard notation for the lattice vertex operator

algebra

VL = M(1)⊗ C{L}

associated with a positive-definite even lattice L of rank d [25]. Let h =

C⊗Z L be an abelian Lie algebra. We extend the bilinear form (·|·) to h by

C-linearity. Let ĥ = h ⊗ C[t, t−1]⊕ Ck be the corresponding affine algebra,

whereCk is the 1-dimensional center of ĥ. The subspaceM(1) = C[αi(n)|1 ≤
i ≤ d, n < 0] for a basis {α1, . . . , αd} of h, where α(n) = α⊗ tn, is the unique

irreducible ĥ-module such that α(n) · 1 = 0 for all α ∈ h and n nonnegative,

and k acts as the scalar 1. Also, C{L} = Span{eβ | β ∈ L} is the twisted

group algebra of the additive group L such that eβeα = (−1)(α|β)eαeβ for

any α, β ∈ L. The vacuum vector 1 of VL is 1⊗ e0 and the conformal vector

ω is 1

2

∑d
i=1

βi(−1)2 ·1, where {β1, . . . , βd} is an orthonormal basis of h. For

the explicit definition of the corresponding vertex operators, we will refer
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to [25] for details. We also note that VL is strongly regular and the central

charge of VL is equal to d, the rank of L.

Let L∗ = {v ∈ R ⊗Z L | (v|L) ⊂ Z} be the dual lattice of L. For

α + L ∈ L∗/L, denote Vα+L = M(1) ⊗ C{α + L}, where C{α + L} =

Span{eβ | β ∈ α + L} ⊂ C{L∗}. Then Vα+L is an irreducible VL-module

[25]. It was proved in [8] that any irreducible VL-module is isomorphic to

Vα+L for some α+ L ∈ L∗/L. In particular, we have the following result.

Theorem 5.1. Let L be an even lattice of rank d. If L is unimodular, i.e.,

L∗ = L, then VL is a strongly regular holomorphic VOA of central charge d.

Even unimodular lattices of rank 24 were classified by Niemeier ([51]);

there are exactly 24 such lattices and their isometry types are determined

by the structures of their norm 2 vectors, which are also known as the root

systems in the literature.

Proposition 5.2. There exist holomorphic VOAs of central charge 24 whose

weight one Lie algebras have the following 24 types:

A24

1,1, A12

2,1, A8

3,1, A6

4,1, A4

5,1D4,1, D6

4,1, A4

6,1, A2

7,1D
2

5,1,

A3

8,1, A2

9,1D6,1, D4

6,1, E4

6,1, A11,1D7,1E6,1, A2

12,1, D3

8,1, A15,1D9,1,

A17,1E7,1, D10,1E
2

7,1, D2

12,1, A24,1, D16,1E8,1, E3

8,1, D24,1, U(1)24,

where U(1) is a 1-dimensional abelian Lie algebra.

Remark 5.3. For even lattices L and M , the VOAs VL and VM are iso-

morphic if and only if the lattices L and M are isometric. Hence there exist

exactly 24 holomorphic lattice VOAs of central charge 24.

5.2. Irreducible twisted modules for lattice VOAs

In this subsection, we review a construction of irreducible twisted VL-

modules, which will be used to apply the Zn-orbifold construction to VL.

Let L be an even unimodular lattice and O(L) the isometry group of L.

For g ∈ O(L), set Lg = {v ∈ L | g(v) = v} and let P g
0
be the orthogonal

projection from Q ⊗Z L to Q ⊗Z Lg. Let L̂ = {±eα | α ∈ L} be a central

extension of L by 〈−1〉 with the commutator relation eβeα = (−1)(α|β)eαeβ.
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Let Aut (L̂) be the set of all group automorphisms of L̂. For ϕ ∈ Aut (L̂),

we define the group automorphism ϕ̄ of L by ϕ(eα) ∈ {±eϕ̄(α)}, α ∈ L. Set

O(L̂) = {ϕ ∈ Aut (L̂) | ϕ̄ ∈ O(L)}.

Then O(L̂) acts on VL as an automorphism group ([25]).

Let g ∈ O(L) be of order n. We call ϕ ∈ O(L̂) a lift of g if ϕ̄ = g.

A lift φg ∈ O(L̂) of g is called standard if φg(e
α) = eα for α ∈ Lg. Note

that a standard lift φg always exists ([41]) and its order is n or 2n (see

[22, 49] for detail). Then VL has a unique irreducible φg-twisted VL-module,

up to isomorphism ([13]). Such a module VL[φg] was constructed in [41, 11]

explicitly; as a vector space,

VL[φg] ∼= M(1)[g] ⊗ C[P g
0
(L)]⊗ T,

where M(1)[g] is the “g-twisted” free bosonic space, C[P g
0
(L)] is the group

algebra of P g
0
(L) and T is an irreducible module for a certain “g-twisted”

central extension of L. (see [41, Propositions 6.1 and 6.2] and [11, Remark

4.2] for detail). Recall that

dimT = |Lg/(1− g)L|1/2

and that the weight ρg of T is given by

ρg :=
1

4n2

n−1∑
j=1

j(n − j) dim h(j), (5.1)

where Lg = {v ∈ L | (v|Lg) = 0} and h(j) = {v ∈ h | g(v) = e(2jπ
√−1)/nv}.

The weight of an element v1(−n1) . . . vs(−ns)⊗ eα ⊗ t ∈ VL[φg] is given by

s∑
i=1

ni +
(α|α)
2

+ ρg, (5.2)

where v1(−n1) . . . vs(−ns) ∈ M(1)[g], eα ∈ C[P g
0
(L)] and t ∈ T . Note that

ni ∈ (1/n)Z>0 and that the conformal weight of VL[φg] is ρg.



102 CHING HUNG LAM AND HIROKI SHIMAKURA [March

5.3. Z2-orbifold construction associated with a lift of

the −1-isometry

The original construction of the moonshine VOA V � is done by applying

the Z2-orbifold construction to the Leech lattice VOA and an order 2 lift

of the −1-isometry [25]. This construction was later generalized to other

Niemeier lattice VOAs by [7]. Now let us recall the construction.

Let N be a Niemeier lattice, a positive-definite even unimodular lattice

of rank 24, and VN the lattice VOA associated with N . Let θ be an order 2

automorphism of VN such that θ(eα) = λαe
−α, λα ∈ {±1} for all α ∈ N , i.e.,

θ is a lift of the −1-isometry of N . Let VN [θ] be the irreducible θ-twisted

VL-module. Then, by (5.1), the conformal weight of VN [θ] is 3/2. Hence

VN [θ] satisfies the conditions (I) and (II) for the orbifold construction in

Section 4.1. Applying the Z2-orbifold construction to VN and θ, we obtain

a strongly regular holomorphic VOA (ṼN )θ of central charge 24.

Since the conformal weight of VN [θ] is 3/2, we have ((ṼN )θ)1 = {v ∈
(VN )1 | θ(v) = v}. The weight one Lie algebra of (ṼN )θ is determined

in [25, 7], and there are 9 cases that the holomorphic VOA (ṼN )θ is again

isomorphic to a Niemeier lattice VOA. The remaining 15 holomorphic VOAs

are non-isomorphic to each other since their weight one Lie algebras are non-

isomorphic.

Proposition 5.4 ([25, 7]). There exist holomorphic VOAs of central charge

24 whose weight one Lie algebras have the following 15 types:

A12

1,4, A16

1,2, C6

2,2, A4

3,2A
4

1,1, B4

3,2, D2

4,2C
4

2,1, B3

4,2, D2

5,2A
2

3,1,

C4

4,1, D6,2C4,1B
2

3,1, B2

6,2, D8,2B
2

4,1, D9,2A7,1, B12,2, 0.

Remark 5.5. Let C be a doubly even self-dual binary code of length 24.

Define

A(C) = 1√
2
{(x1, . . . , x24) ∈ Z

24 | (xi (mod 2)) ∈ C},

C(C) = {v ∈ A(C) | (v|(1, 1, . . . , 1)) ∈
√
2Z} ⊕ Z

1

2
√
2
(−3, 1, 1 . . . , 1).

Then A(C) and C(C) are even unimodular [6] and their rank are 24. It was

shown in [7, Proposition 7.3] that VC(C) ∼= (ṼA(C))θ. Note that there exist

exactly 9 doubly even self-dual binary codes of length 24, up to equivalence.
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5.4. Framed vertex operator algebras

Next we discuss constructions for 17 holomorphic VOAs of central charge

24 as framed VOAs from [31, 33]. For the fundamental results about framed

VOAs, see [9, 45, 40].

Let L(1/2, 0) be the simple Virasoro VOA of central charge 1/2 and let

L(1/2, h), h ∈ {1/2,1/16}, be the irreducible L(1/2, 0)-module with conformal

weight h. For the explicit construction of Virasoro VOAs and their modules,

we refer to [26] for details. It is well-known that L(1/2, 0) is strongly regular

and has exactly three irreducible modules, namely, L(1/2, 0), L(1/2,1/2), and

L(1/2,1/16). Moreover, the fusion products are known [19]:

L(1/2,1/2)� L(1/2,1/2) = L(1/2, 0),

L(1/2,1/2)� L(1/2,1/16) = L(1/2,1/16),

L(1/2,1/16)� L(1/2,1/16) = L(1/2, 0) ⊕ L(1/2,1/2).

(5.3)

Definition 5.6 ([9]). A simple VOA V of central charge n ∈ Z/2 is said

to be framed if it contains a full subVOA isomorphic to the tensor product

VOA L(1/2, 0)⊗2n. Such a full subVOA is called a Virasoro frame of V .

Given a framed VOA V of central charge n/2 with a Virasoro frame F ,

one can associate two binary codes C and D of length n with V and F by

the following way:

Since F (∼= L(1/2, 0)⊗n) is rational, V is completely reducible as an F -

module. That is,

V ∼=
⊕

hi∈{0,1/2,1/16}
mh1,...,hn

L(1/2, h1)⊗ · · · ⊗ L(1/2, hn),

where the nonnegative integer mh1,...,hn
is the multiplicity of L(1/2, h1)⊗· · ·⊗

L(1/2, hn) in V and all mh1,...,hn
’s are finite.

Definition 5.7. Let M ∼= L(1/2, h1) ⊗ · · · ⊗ L(1/2, hn) be an irreducible F -

module. We define τ(M) of M as the binary word β = (β1, . . . , βn) ∈ Z
n
2

such that

βi =

{
0 if hi = 0 or 1/2,

1 if hi = 1/16.
(5.4)
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For any β ∈ Z
n
2
, let V β be the sum of all irreducible F -submodules M

of V such that τ(M) = β.

Definition 5.8. Let D := {β ∈ Z
n
2
| V β �= 0}. Then D is a linear subcode

of Zn
2
, and it is called the 1/16-code of V with respect to F .

Now we identify the set {0, 1} with Z2. For α = (α1, . . . , αn) ∈ Z
n
2
,

define

mα = mα1/2,...,αn/2 and Mα = L(1/2, α1/2) ⊗ · · · ⊗ L(1/2, αn/2).

Then V 0 is given by

V 0 =
⊕
α∈Zn

2

mαMα.

It is proved in [19] that mh1,...,hn
is at most 1 if all hi are different from 1/16.

Definition 5.9. Let C := {α ∈ Z
n
2
| mα �= 0}. Then C is also a linear code

and is called the 1/2-code of V with respect to F .

Summarizing, there exists a pair of binary codes (C,D) of length n such

that

V =
⊕
β∈D

V β and V 0 =
⊕
α∈C

Mα.

The codes (C,D) are called the structure codes of a framed VOA V associ-

ated with the frame F . Note that the structure codes depend on the choice

of a Virasoro frame.

The next lemma follows from the integral condition on the weights of

V :

Lemma 5.10. The 1/16-code D is triply even, i.e., wt(α) ≡ 0mod 8 for all

α ∈ D and the 1/2-code C is even. Moreover, D < C⊥ = {β ∈ Z
n
2
| (α, β) =

0 for all α ∈ C}, where (·, ·) is the standard inner product of Zn
2
.

The following theorems are also well-known:

Theorem 5.11 ([9, Theorem 2.9] and [45, Theorem 6.1]). Let V be a framed

VOA with the structure codes (C,D). Then, V is holomorphic if and only if

C = D⊥.
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Theorem 5.12 ([40, Theorem 10]). Let D be a linear binary code of length

16k, k ∈ Z>0. Assume that D is triply even and contains the all-one vector.

Then there exists a holomorphic framed VOA of central charge 8k with the

structure codes (D⊥,D).

Remark 5.13. In the proof of Theorem 5.12, the Z2-orbifold constructions

associated with holomorphic framed VOAs and certain order 2 automor-

phisms, often called Miyamoto involutions [44], play important roles. It

turns out that any holomorphic framed VOA can be obtained by several

consecutive Z2-orbifold constructions from a holomorphic lattice VOA.

Theorem 5.12 also suggests a method for classifying all holomorphic

framed VOAs of central charge 24 as follows:

(i) Classify all triply even codes of length 48 containing the all-one vector.

(ii) For each code D in (i), classify all possible holomorphic framed VOA

structures with structure codes (D⊥,D).

A classification of all triply even codes of length 48 has been obtained

in [1]. By the results in [1], all possible Lie algebra structures for the weight

one Lie algebras of holomorphic framed VOAs of central charge 24 were

determined in [31, 33]. In particular, we have the following theorem.

Theorem 5.14 ([31, 33]). There exist holomorphic framed VOAs of central

charge 24 whose weight one Lie algebras have the following 17 types:

A3

3,4A1,2, D5,8A1,2, D4,4A
4

2,2, A7,4A
3

1,1, D5,4C3,2A
2

1,1,C4,2A
2

4,2,

A2

5,2C2,1A
2

2,1,A7,2C
2

3,1A3,1,C7,2A3,1, A8,2F4,2, A9,2A4,1B3,1, E6,2C5,1A5,1,

C6,1B4,1, C8,1F
2

4,1, E7,2B5,1F4,1,C10,1B6,1,E8,2B8,2.

Remark 5.15. Any Niemeier lattice N contains an orthogonal basis con-

sisting of norm 4 vectors. Such an orthogonal basis defines a Virasoro frame

F of the Niemeier lattice VOA VN (cf. [9, (3.1)]), and hence VN is framed.

Since F is fixed by θ, the holomorphic VOA (ṼN )θ contains F , which shows

that (ṼN )θ is also framed. Thus the 39 holomorphic VOAs in Propositions

5.2 and 5.4 are also framed.

Remark 5.16. Other constructions of holomorphic framed VOAs are stud-

ied independently. In [28], holomorphic VOAs of central charge 24 whose

weight one Lie algebra has type A8,2F4,2, C4,2A
2

4,2 and D4,4A
4

2,2 were con-

structed as simple current extensions of V√
2E8⊕

√
2D4

⊗ V +√
2D+

12

. In [10], a
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holomorphic VOA of central charge 24 whose weight one Lie algebra has

type A9,2A4,1B3,1 was constructed by using mirror extension.

A complete answer to (ii) was also established in [34] as follows:

Theorem 5.17 ([34]). The isomorphism class of a holomorphic framed VOA

of central charge 24 is uniquely determined by the Lie algebra structure of

its weight one subspace. In particular, there exist exactly 56 holomorphic

framed VOAs of central charge 24, up to isomorphism.

Remark 5.18. For any holomorphic framed VOA of central charge 24, the

levels of simple ideals of its weight one Lie algebra are power of two. Con-

versely, by comparing with the list of Lie algebras in [53], we see that except

for one case E6,4C2,1A2,1, all other Lie algebras in [53] can be obtained from

holomorphic framed VOAs if the levels are powers of two. This exceptional

case has recently obtained by a Z4-orbifold construction from a lattice VOA

in [22, 49].

5.5. Zn-orbifold constructions associated with the Niemeier lattice

VOAs

In this subsection, we review Zn-orbifold constructions associated with

the Niemeier lattice VOAs, which provides explicit construction of many

holomorphic VOAs of central charge 24. See Section 4 for Zn-orbifold con-

structions.

5.5.1. Z3-orbifold construction

Let N be a Niemeier lattice. Let g be an order 3 isometry of N such

that the rank of Ng is a multiple of 6. Since the order of g is odd, a standard

lift φg has order 3 ([22, Proposition 7.3]). The assumption on the rank of Ng

guarantees that the conformal weight ρg ∈ (1/3)Z>0 (see (5.1)). In [46], the

Z3-orbifold construction associated with VN and φg was established, and as

an application, a holomorphic VOA of central charge 24 whose weight one

Lie algebra has type E6,3G
3

2,1 was constructed. By considering all Niemeier

lattices and suitable order 3 isometries of the Niemeier lattices, two more

holomorphic VOAs of central charge 24 were constructed in [52] (cf. [29]);

their weight one Lie algebras have the type A6

2,3 and A5,3D4,3A
3

1,1.
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Theorem 5.19 ([46, 52]). There exist holomorphic VOAs of central charge

24 whose weight one Lie algebras have the following 3 types: A6

2,3, A5,3D4,3A
3

1,1

and E6,3G
3

2,1.

Remark 5.20. In [46], a holomorphic VOA of central charge 24 with trivial

weight 1 space was constructed by applying the Z3-orbifold construction to

the Leech lattice VOA and a fixed-point free isometry of order 3. It was first

announced in [14] that it is isomorphic to V �, which was recently verified in

[4].

5.5.2. Zn-orbifold construction for n ≥ 4

Inspired by Miyamoto’s Z3-orbifold construction, a Zn-orbifold construc-

tion was established in [22, 49] (see Section 4.1). Applying the Zn-orbifold

construction to Niemeier lattice VOAs and some finite order isometries of

the Niemeier lattices, they obtained the following result.

Theorem 5.21 ([22, 49]). There exist holomorphic VOAs of central charge

24 whose weight one Lie algebras have the following 5 types: A2,1B2,1E6,4,

A2

4,5, A2,6D4,12, A1,1C5,3G2,2 and C4,10.

Remark 5.22. Many holomorphic framed VOAs in Theorem 5.14 can be

constructed by Z2, Z4 or Z8-orbifold construction associated with the Niemeier

lattice VOAs, also.

5.6. Orbifold construction associated with inner automorphisms

In [35], the orbifold construction associated with inner automorphisms

was studied. In particular, five holomorphic VOAs of central charge 24 were

constructed. In this subsection, we review the constructions.

In [35], the orbifold construction associated with an inner automorphism

σu was studied based on the analysis in [43] and [12]. An advantage for using

an inner automorphism is that σu is defined globally on the whole VOA V .

Moreover, an explicit construction of the irreducible σu-twisted module was

obtained in [43] by using the Δ-operator (see Section 4.2). Therefore, we

can apply the orbifold construction to non-lattice type VOA, also. By the

definition of the twisted modules, it is relatively easy to obtain a necessary
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and sufficient condition on u so that the conformal weights of the irreducible

twisted σi
u-module belong to (1/n)Z>0 (see Lemmas 4.5 and 4.6).

By choosing the holomorphic VOA V and its inner automorphism σu
of order 2 carefully, several new holomorphic VOAs of central charge 24

were constructed in [35] by applying the Z2-orbifold construction to V and

σu. The Lie algebra structures of V1, (V
σu)1 and Ṽ1 were summarized in

Table 1, where Ṽ denotes the resulting VOA Ṽσu obtained by the orbifold

construction and V σu is the set of fixed-points of σu.

Table 1: Lie algebra structures of V1, (V
σu)1 and Ṽ1.

(Original) Lie algebra V1 (Fixed point) Lie subalgebra (V σu)1 (New) Lie algebra Ṽ1

E6,3G
3
2,1 D5,3A

2
1,1A

2
1,3G2,1U(1) D7,3A3,1G2,1

D7,3A3,1G2,1 D6,3A3,1A1,1A1,3U(1) E7,3A5,1

E7,3A5,1 A7,3A
2
2,1U(1) A8,3A

2
2,1

C5,3G2,2A1,1 A4,6A1,6A1,2U(1)2 A5,6C2,3A1,2

A2
4,5 A2

3,5U(1)2 D6,5A
2
1,1

Theorem 5.23 ([35]). There exist holomorphic VOAs of central charge 24

whose weight one Lie algebras have the following 5 types: D7,3A3,1G2,1,

E7,3A5,1, A8,3A
2

2,1, D6,5A
2

1,1 and A5,6C2,3A1,2.

In the determination of the Lie algebra structure of the resulting VOA,

we use the argument as described in Section 4.3. In particular, the dimension

formula in Theorem 4.7 plays a crucial role in our calculation.

5.7. Orbifold construction associated with non-standard lifts

In this subsection, we discuss a construction of a holomorphic VOA of

central charge 24 whose weight one Lie algebra has the type A6,7 from [36].

Since the level of A6,7 is 7, it is expected that such a VOA can be con-

structed by a Z7-orbifold construction. It is indeed correct; however, the

choice of the automorphism is tricky. It was shown in [36] that a holomor-

phic VOA V of central charge 24 with V1 = A6,7 can be constructed by

applying the Z7-orbifold construction to the Leech lattice VOA VΛ and an
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order 7 automorphism of VΛ but the desired automorphism is the product

of a standard lift of an order 7 isometry of Λ and an order 7 inner automor-

phism of VΛ. An explicit construction of the irreducible twisted VΛ-module

is also obtained in [36] by combining the explicit construction of the twisted

VΛ-modules for an isometry of Λ (see Section 5.2) and the modification by

Li’s Δ-operator (see Section 4.2). Moreover, it was proved that the weight

one subspace of the resulting orbifold VOA has dimension 48 and it is a

simple Lie algebra of type A6.

Theorem 5.24 ([36]). There exists a holomorphic VOA of central charge

24 whose weight one Lie algebra has the type A6,7.

5.8. A holomorphic VOA V with V1 = F4,6A2,2

Finally, we discuss a construction of a strongly regular holomorphic

VOA of central charge 24 whose weight one Lie algebra has the type F4,6A2,2.

Such a VOA is constructed in [32] by applying a Z2-orbifold construction to a

holomorphic VOA U with the weight one Lie algebra A8,3A
2

2,1 and a suitable

automorphism g of order 2. Although it is also an orbifold construction,

there are some fundamental differences between this case and the previous

constructions for the other cases. In this construction, the fixed points of

the automorphism g on U1 = A8,3A
2

2,1 have the type B4,6A2,2. Therefore,

g|U1 is an outer automorphism of the Lie algebra U1. In general, it is very

difficult to determine if an outer automorphism of Lie algebra U1 can be

extended to an automorphism of the whole VOA. An explicit construction of

the corresponding twisted module is also missing for such an automorphism.

As we mentioned in Section 5.6, a construction of a holomorphic VOA

U of central charge 24 with U1 = A8,3A
2

2,1 is obtained in [35] by using

orbifold construction. On the other hand, there is an alternative construction

based on mirror extensions of VOAs [56, 10]. This alternative construction

is first obtained by Xu [56] in terms of conformal nets and is proposed in

[10] in VOA setting. Using mirror extensions and the theory of modular

invariants, it was shown in [32] that the VOA structure of a holomorphic

VOA U of central charge 24 with U1 = A8,3A
2

2,1 is unique, up to isomorphism.

Moreover, by generalizing a result of [54], a sufficient condition for extending

an automorphism of a subVOA to the whole VOA is obtained. By these two

facts, it was shown that if U is a strongly regular holomorphic VOA of
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central charge 24 such that U1 = A8,3A
2

2,1, then there exists an involution

g ∈ Aut (U) such that Ug
1
is a Lie algebra of type B4,6A2,2 [32, Corollary

4.20]. The conformal weight of the unique irreducible g-twisted U -module

U [g] is also determined using the explicit action of g on U1. As a consequence,

the following result is proved in [32].

Theorem 5.25 ([32]). There exists a holomorphic VOA of central charge

24 whose weight one Lie algebra has the type F4,6A2,2.

By the results in Sections 5, it is known that all 71 Lie algebras in

Schellekens’ list can be realized as the weight one Lie algebra of some holo-

morphic VOA of central charge 24.

6. Uniqueness of Holomorphic VOAs of Central Charge 24

In Section 5, we have seen the constructions of 71 holomorphic VOAs

of central charge 24. In order to complete the classification, we have to

deal with the uniqueness problem, which is the main topic of this section.

In particular, we will review a technique which we call “reverse orbifold

construction” and discuss its application towards the uniqueness problem.

6.1. Known uniqueness results

In this subsection, we review the known results on the uniqueness of

holomorphic VOAs of central charge 24. First, we recall a characterization

of Niemeier lattice VOAs.

Theorem 6.1 ([16, Corollary 1.4]). Let V be a strongly regular holomorphic

VOA of central charge 24. If the Lie rank of V1 is 24, then V is isomorphic

to a Niemeier lattice VOA.

By this theorem, the uniqueness of holomorphic VOAs are established

for the 24 types of Lie algebras in Theorem 5.2.

It is also well-known that the simple affine VOAs of type A1,2, B8,1 and

E8,2 are framed (cf. [31]). Hence, as a corollary of Theorem 5.17, we obtain

the following:
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Corollary 6.2. Let V be a strongly regular holomorphic VOA of central

charge 24. Assume that the weight one Lie algebra V1 has type A16

1,2 or

B8,1E8,2. Then V is framed. In particular, the VOA structure of V is

unique up to isomorphism.

As we discussed in Section 5.8, there is also a uniqueness result for Lie

algebra of the type A8,3A
2

2,1:

Proposition 6.3. A strongly regular holomorphic VOA structure of central

charge 24 is unique if the weight one Lie algebra has the type A8,3A
2

2,1.

6.2. Reverse orbifold construction and its application

In this subsection, we review the reverse orbifold construction from [37]

(cf. [22, 49]) and its application.

Let V be a holomorphic VOA and let g be an order n automorphism of

V satisfying the conditions (I) and (II) in Section 4.1. Let W = Ṽg be the

resulting holomorphic VOA by applying Zn-orbifold construction to V and

g. Let h be an order n automorphism of W associated with the Zn-grading

of W . Then W h = V g and, for 1 ≤ i ≤ n − 1, the irreducible hi-twisted

W -module is a direct sum of irreducible V g-modules. Hence h also satisfies

(I) and (II). By the uniqueness of the resulting holomorphic VOA by the

orbifold construction, we obtain the following:

Corollary 6.4 ([37], see also [22, 49]). The VOA W̃h is isomorphic to V .

We call this procedure the reverse orbifold construction, which is called

the inverse orbifold in [22, 49]. By using this corollary, we can prove the

following theorem about the uniqueness of holomorphic VOAs.

Theorem 6.5. Let g be a Lie algebra and p a subalgebra of g. Let n ∈
Z>0 and let W be a strongly regular holomorphic VOA of central charge c.

Assume that for any strongly regular holomorphic VOA V of central charge

c whose weight one Lie algebra is g, there exists g ∈ Aut (V ) of order n

satisfying the conditions (I) and (II) such that the following conditions hold:

(a) gg ∼= p;

(b) Ṽg is isomorphic to W .
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In addition, we assume that any automorphism ϕ ∈ Aut (W ) of order n

satisfying (I) and (II) and the conditions (A) and (B) below belongs to a

unique conjugacy class in Aut (W ):

(A) (Wϕ)1 is isomorphic to p;

(B) (W̃ϕ)1 is isomorphic to g.

Then any strongly regular holomorphic VOA of central charge c with weight

one Lie algebra g is isomorphic to W̃ϕ. In particular, such a holomorphic

VOA is unique up to isomorphism.

Proof. Let V be a strongly regular holomorphic VOA of central charge c

such that V1
∼= g. By (b), Ṽg

∼= W ; we identify Ṽg with W . Let h be an

order n automorphism of W associated with the Zn-grading of W as the

extension of V g. Then (W h)1 ∼= V g
1
∼= p by (a). By Corollary 6.4, W̃h

∼= V .

Hence (W̃h)1 ∼= V1 = g. Since h satisfies (A) and (B), it is conjugate to ϕ.

By Remark 4.3 (2), V ∼= W̃h
∼= W̃ϕ. ���

Remark 6.6. In Theorem 6.5, the restriction of g to V1 may have order less

than n. Indeed, the case p = g and n = 2 was considered in [30], and clearly,

g = id on V1.

We will apply the theorem above to a holomorphic VOA U of central

charge 24 such that

• U ∼= (ṼN )g for some Niemeier lattice N and an order n automorphism g

of VN ;

• an order n automorphism of U associated with the Zn-grading of U as a

simple current extension of (VN )g is inner.

We need to confirm the assumptions of Theorem 6.5 for g = U1, p =

(VN )g
1
, and W = VN . Let V be an arbitrary holomorphic VOA of central

charge 24 such that V1 = g. Let u be a semisimple element of g such that

gσu = p. First, by using the representation theory of simple affine VOAs at

positive levels (cf. Section 4.2), we try to prove the following:

• The order of σu is n on V .

• σu satisfies the conditions (I) and (II) for the orbifold construction.

Next, by using the arguments as in Section 4.3, including the dimension

formula (Theorem 4.7), we try to prove that
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• Ṽσu is isomorphic to VN .

Finally, let ϕ be an order n automorphism of VN associated with the

simple current extension of V σu . We also need to prove the following:

• The conjugacy class ϕ is uniquely determined by the conditions (A) and

(B).

Remark 6.7. Note that the automorphism group of VN is determined in

[20]. In fact, the automorphism group of a holomorphic VOA of central

charge 24 has been determined only for the Niemeier lattice VOA VN and

the Moonshine VOA V �.

Up to now, the uniqueness of the following 17 holomorphic VOAs of

c = 24 has been proved in [30, 37] by using the reverse orbifold construction

and the argument above.

Theorem 6.8. A strongly regular holomorphic VOA of central charge 24 is

unique up to isomorphism if the weight one Lie algebra is one of the 17 types

in Proposition 5.4 and Theorem 5.19 except for the trivial Lie algebra 0.

Note that the case A16

1,2 was already established in Corollary 6.2.

Remark 6.9. The technique of “reverse orbifold” can actually be applied

to many more cases, for example, a holomorphic VOA with the weight one

Lie algebra A2

4,5 or A6,7. The difficult part is to show that the conjugacy

class of the automorphism ϕ ∈ Aut (VN ) associated with the simple current

extension of V g is uniquely determined by the conditions (A) and (B), which

usually requires some non-trivial calculations.

Remark 6.10. After submission of this article, by using the similar tech-

niques as in Theorem 6.5, the uniqueness of holomorphic VOAs of central

charge 24 has been proved for 13, 5, 3, and 6 cases in [23], [38], [32], and

[39], respectively. Therefore, the uniqueness for 70 of the 71 cases have been

established. The remaining task is to prove that a holomorphic VOA of cen-

tral charge 24 with trivial weight one space is isomorphic to the moonshine

VOA, which is a famous conjecture [25].
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Appendix. Table of 71 holomorphic VOAs of central charge 24

In this appendix, we give a list of 71 holomorphic VOAs of central

charge 24.

Table 2: 71 holomorphic VOAs of central charge 24

dim(V1) Lie algebra rank Existence dim(V1) Lie algebra rank Existence

0 0 0 [25] 24 U(1)24 24 [25]
36 C4,10 4 [22] 36 A2,6D4,12 6 [22]

36 A1,4
12 12 [7] 48 A6,7 6 [36]

48 A4,5
2 8 [22] 48 A2,3

6 12 [52]
48 A1,2D5,8 6 [31] 48 A1,2A5,6C2,3 8 [35]

48 A1,2A3,4
3 10 [31] 48 A1,2

16 16 [7]

60 C2,2
6 12 [7] 60 A2,2F4,6 6 [32]

60 A2,2
4D4,4 12 [33] 72 A1,1C5,3G2,2 8 [22]

72 A1,1
2D6,5 8 [35] 72 A1,1

2C3,2D5,4 10 [31]

72 A1,1
3A7,4 10 [31] 72 A1,1

3A5,3D4,3 12 [52]

72 A1,1
4A3,2

4 16 [7] 72 A1,1
24 24 [25]

84 B3,2
4 12 [7] 84 A4,2

2C4,2 12 [33]

96 C2,1
4D4,2

2 16 [7] 96 A2,1C2,1E6,4 10 [22]

96 A2,1
2A8,3 12 [35] 96 A2,1

2A5,2
2C2,1 16 [31]

96 A2,1
12 24 [25] 108 B4,2

3 12 [7]

120 E6,3G2,1
3 12 [46] 120 A3,1D7,3G2,1 12 [35]

120 A3,1C7,2 10 [31] 120 A3,1A7,2C3,1
2 16 [31]

120 A3,1
2D5,2

2 16 [7] 120 A3,1
8 24 [25]

132 A8,2F4,2 12 [33] 144 C4,1
4 16 [7]

144 B3,1
2C4,1D6,2 16 [7] 144 A4,1A9,2B3,1 16 [33]

144 A4,1
6 24 [25] 156 B6,2

2 12 [7]

168 D4,1
6 24 [25] 168 A5,1E7,3 12 [35]

168 A5,1C5,1E6,2 16 [33] 168 A5,1
4D4,1 24 [25]

192 B4,1C6,1
2 16 [31] 192 B4,1

2D8,2 16 [7]

192 A6,1
4 24 [25] 216 A7,1D9,2 16 [7]

216 A7,1
2D5,1

2 24 [25] 240 C8,1F4,1
2 16 [33]

240 B5,1E7,2F4,1 16 [33] 240 A8,1
3 24 [25]

264 D6,1
4 24 [25] 264 A9,1

2D6,1 24 [25]
288 B6,1C10,1 16 [33] 300 B12,2 12 [7]

312 E6,1
4 24 [25] 312 A11,1D7,1E6,1 24 [25]

336 A12,1
2 24 [25] 360 D8,1

3 24 [25]
384 B8,1E8,2 16 [33] 408 A15,1D9,1 24 [25]

456 D10,1E7,1
2 24 [25] 456 A17,1E7,1 24 [25]

552 D12,1
2 24 [25] 624 A24,1 24 [25]

744 E8,1
3 24 [25] 744 D16,1E8,1 24 [25]

1128 D24,1 24 [25]
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