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Abstract

For the simple Lie algebra so,,, we study the commutant vertex operator algebra of
L&, (n,0) in the n-fold tensor product Lg,, (1,0)®™. It turns out that this commutant
vertex operator algebra can be realized as a fixed point subalgebra of Lg, (m,0) (or its
simple current extension) associated with a certain abelian group. This result may be

viewed as a version of level-rank duality.

1. Introduction

Let g be a finite dimensional simple Lie algebra and g the associated
affine Lie algebra. Let L(1,0) be the basic representation of g. Then Lg(1,0)
is a rational vertex operator algebra. For [ € N, the tensor product L(1, 0)&!
is still rational and the diagonal action of g on I@(1,0)®l defines a vertex
subalgebra L5(1,0) of level . As a module of the vertex operator algebra
L5(1,0), Lg(1,0)%" is a direct sum of irreducible g-modules:

L(1,00%" = @ Ly(1, A) @¢ My(1, M), (1.1)

where Lg(1, A) are level [ irreducible g-modules and M;(l, A) = Homg(Lz(1, A),
Ls(1, 0)®") are vector spaces. The subspace M;(1,0) is a vertex operator al-
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gebra, which is called the commutant (or coset) of Lg(l,0) in Lg(1, 0)®" and
is denoted by C L§(1,0)®Z(L§(l ,0)). Commutant vertex operator algebras ini-
tiated in [29, 30] were first introduced in [FZ] from the point view of vertex
operator algebras. Since then describing commutant vertex operator alge-
bras has been one of the most interesting questions in the theory of vertex
operator algebras. Many interesting examples, especially coset vertex opera-
tor algebras related to affine vertex operator algebras, have been extensively
studied both in the physics and mathematics literatures [1], [2], [3], [4], [5],
[9], [10], [11], [12], [13], [14], [17], [18], [28], [31], [32], [38], [43], [44], etc.

For k € Z4, let Lﬁ(k’ 0) be the Heisenberg vertex operator subalgebra
of L5(k,0) associated with a Cartan subalgebra. The commutant of Lﬁ(k’ 0)
in L5(k,0), denoted by K(g, k), is the so called parafermion vertex operator
algebra [46]. Parafermion vertex operator algebras have been studied exten-
sively [2]-[3], [7], [12], [14], [17] -[18], [31], [44], etc. It was proved in [38] and
[32] independently that CL;[;(l,O)@l(Lg@(Z’O)) >~ K(sl;,n) as vertex opera-
tor algebras, which presents a version of level-rank duality. More generally,
given a sequence of positive integers £ = (I1,...,ls), the tensor product ver-
tex operator algebra L5({,0) = Lg(l1,0) ® Lg(l2,0) ® -+ ® L5(ls,0) has a
vertex operator subalgebra isomorphic to Lg(|£],0) with [£] =13 + -+ + .
The sequence [ defines a Levi subalgebra [; of slj;. Denote by LQ (n,0) the
vertex operator subalgebra of L% (n,0) generated by ly. Set K (sljy,lg,n) =
CLJ@ (n,O)(L[Z(n’O))' It was established in [32] that CL;[;(E,O)(L@(MLO)) =

K (5I_‘£|, [p,n), presenting a more general version of level-rank duality.

In this article, we try to generalize the results in [38] and [32] to a com-
plex finite-dimensional simple Lie algebra g of type B or D. For [ € N,
let I@(1,0)®l be the tensor product of the affine vertex operator algebra
L5(1,0). The main aim is to study the commutant of Lg(l,0) in Lg(1,0)%".
We will determine the structure of this commutant and establish a version
of level-rank duality for these two cases. The idea is to embed the tensor
product vertex operator algebra into a large lattice vertex operator algebra
(or superalgebra) associated with a root lattice of type D or B and to use
the fermionic construction of the affine vertex operator algebra Lg (1,0). It
turns out that the tensor product Lg (1,0)®" is isomorphic to the orbifold
VOA Lg,  (1,0)¢ for some abelian subgroup G < Aut(Lg, (1,0)). Us-
ing this fact and some results on conformal embeddings of vertex operator
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algebras given in [35], we show that

Cr.,, 0@ (L, (n,0) = Lg, (m,0)¢

if m or n is odd and

C

50

_oen (L, (n,0) = (Lgy, (m, 0) & Lg, (m,mA;))“

if both m,n are even.

The paper is organized as follows. In Section 2, we briefly review some
basic notations and facts on vertex operator algebras. In Section 3, we recall
the definition of fermionic vertex superalgebras and a construction of the
affine VOA Lg (m,0) using the fermionic vertex superalgebras. In Section

4, we discuss and prove our main results.

2. Preliminaries

Let V.= (V,Y,1,w) be a vertex operator algebra [6], [26], [39]. We
review various notions of V-modules and the definition of rational vertex

operator algebras and some basic facts (cf. [26], [47], [15], [39]).

Definition 2.1. A weak V-module is a vector space M equipped with a

linear map

Y V — End(M)[[z,271]]
v Yar(v,2) =3 ez vnz "L, v, € End(M)

satisfying the following:

1) vyw =0 for n >> 0 where v € V and w € M;
2) Yar(1,2) =idag;
3) the Jacobi identity holds:

22 — 21

zalé <21 — ZQ) Yar(u, z1)Yar (v, z2) — zalé (

20

) Y (v, 22)Yar (u, 21)

—20

22

= (M) Yar (Y (u, z0)v, 22). (2.1)
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Definition 2.2. An admissible V-module is a weak V-module which carries
a Zy-grading M = P M(n), such that if v € V, then v, M(n) C
M(n+r—m—1).

neEly

Definition 2.3. An ordinary V-module is a weak V-module which carries
a C-grading M = @, ¢ M) such that

1) dim(M,) < oc;

2) My, =0 for fixed A and n << 0;

3) L(0)w = Aw = wt(w)w for w € M) where L(0) is the component opera-

tor of Yar(w,2) =3, ez L(n)z~" "2

Remark 2.4. It is easy to see that an ordinary V-module is admissible. If

W is an ordinary V-module, we simply call W a V-module.

We call a vertex operator algebra rational if the admissible module cat-

egory is semi-simple. We have the following result from [15] (also see [47]).

Theorem 2.5. IfV is a rational vertex operator algebra, then V' has finitely
many irreducible admissible modules up to isomorphism and every irreducible

admissible V -module is ordinary.

3. Fermionic Vertex Superalgebras

In this section, we recall the basic fact on infinite-dimensional Clifford
algebras and the associated vertex operator superalgebras [20, 22, 21, 24,
33, 34, 36, 37, 1, 40]. Let m € Z,. The Clifford algebra Cla,, is a complex
associative algebra generated by Q,Z)f(r), 1<i<m,re€Z+ %, satisfying the

non-trivial relations

[ (r), 0T ()] = o (Y] () + 7 ()15 (1) = Sr4.0035,

where 1 < 1,7 <m, r,sGZ—i—%.

Let Fo,, be the irreducible Cls,,-module generated by the cyclic vector
1 such that

YE(r)L =0, forr >0, 1 <i<m.
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Define the fields 13 (2), 1 <i < m, on Fa,, by
1
vi(z) = %wﬁr +5)a

The fields Q,Z)Zi(z), 1 <7 < m, generate Fa,,, which has a unique structure of
a simple vertex superalgebra [22, 34, 37, 40, 1].

For r, k € Zy, let Lg, (k,0) be the simple vertex operator algebra asso-
ciated to the integrable module of the affine orthogonal Lie algebra s0, with

level k. The following result is well known [21].

Theorem 3.1. Let (Fop,)"" be the even part of the vertexr superalgebra
Fom. Then

(me)even o L’\

$502m

(1,0).
Let m € Z. We now consider the Clifford algebra Clo,,+1 generated by

1

1
G (), Yamia(r), €L+ 5, 1< i <m

with the non-trivial relations
[%i(?“)a%j(s)]nt = 5ik5r+s,07

[WV2m+41(7), Yam+1(8)]+ = Oris.0,

where 1 < i,k < m, r,s € Z + % Let Fom+1 be the irreducible Cloy,41-

module generated by the cyclic vector 1 such that
YE ()1 = Yoms1 (1)1 =0, for r >0, 1 <i<m.
Define the following fields on Fa,,41 as follows:

Y = v+ )

reZ

¢2m+1 (z) = Z¢2m+1(7“ + l)zfr—l'

2
reZ
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The fields Q,Z)Zi(z), Yom+1(2), 1 <i < m, generate Fo,,41, which has a unique
structure of a simple vertex superalgebra [22, 34, 37, 40, 1]. By [21], we have
the following theorem.

Theorem 3.2. For m € Z, we have

(f2m+1)even = L5A02m+1

(1,0).

4. Level-rank Duality for Affine Vertex Operator Algebras
of Type B and D

In this section, we will study the tensor decompositions of affine vertex
operator algebras of type D and B.

4.1. Type D

For m >4, let Lg, (1,0) be the rational simple vertex operator algebra

associated with the integrable highest weight module of the affine Lie algebra
§09;, with level 1. For n € Z>s, denote

V = Lg

$02m,

(1,0)®™,
Then
U= L@Qm (n, 0)

can be diagonally imbedded into V' as a vertex operator subalgebra. Our
main aim in this section is to study the commutant Cy (U) of U in V. The
proof of the following lemma is quite similar to the proof of Lemma 3.1 and
Lemma 3.5 in [32].

Lemma 4.1. The commutant Cy (U) is a simple vertex operator subalgebra
of V, and (U,Cy(U)) is a duality pair in V, i.e. Cy(Cy(U)) ="U.

4.1.1. The case n =2
We define the following lattice

Royy =Zx1 @ -+ B Lxom
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where (z;,x;) = 055, 1 < 4,5 < 2m.

Let Vg,,, be the associated lattice vertex superalgebra with the following

2-cocycle €

1, ifi<y,
(i z) = { —1, if Q>

Let

m—1 m—1

L1 = @ Z(xi + xi-i-l) and Lg = @ Z(wm+i + xm-i—i—f—l)
i=1 i=1

be two sublattices of Rs,,. Then L1 = Ly = D,,, and

Vi, 2V, 2 Lg, (1,0),

$502m

and Lg, (2,0) can be naturally regarded as a vertex operator subalgebra of
Vi, @ Vi,. Set

V=V,®Vy,, and U=Lg, (2,0).
Let ﬁm be the sublattice of Ry, Z-linearly spanned by
{Zi + i1 + Toi + Tt 1, T — Tt + T — T | 1 <0 <m— 14,
and let D,, be the sublattice of Rs,, Z-linearly spanned by
{i + 25 — Tongi — Ty Ti — Tj — Tgi + Tgj | 1 <4< j <mb

Notice that 75m ~ D,, = /2D, as lattices. By a similar argument as in

[44], it is easy to verify that

Vs CU=Lg, (2,0).

Dm $502m
Moreover, we have the following lemma.

Lemma 4.2.

(1) (V3 ,Vp,,) is a duality pair in V.
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(2) (Cy(U), K(s02,2)) is a duality pair in Vp, , where K($09,,2) is the
commutant of Vﬁm in Lg, (2,0), which is called a parafermion vertex
operator algebra.

Proof. Notice that D,, and D,, are orthogonal to each other. It means that
the associated lattice vertex operator algebras Vﬁm and Vp,, are commutant
to each other. The rest of the proof of (1) is similar to that of Lemma 3.2
in [32].

By Lemma 4.1, we know that (Cy (U), Lg,, (2,0)) is a duality pair in V.
Notice also that (Vj , K (s02m,2)) is a duality pair in Lg,, (2,0) ( see [14]

502m,
). Then (2) follows from (1) and the reciprocity law established in Theorem
5.4 of [32]. O
Denote

o' =x; — Tmai, 1 <1< m.

Then {a' —a?,a?—a3,--- o™ 1 —a™ o™ 1 +a™} is a basis of D,,, = v/2D,,,.

Consider
VAT - VZal ® VZa2 ® et ® VZam-
Define vertex operator algebra automorphisms of Vam as follows:

i

7' (=1)1 — e e e e o' (=1)1, e —e —(e” —efa.),

W U@ @u" = r(u) @ T(w?) @ - @ T(u™);

6:a'(—1)1 — af(-1)1, e s e e s e s odd,

2 i

(=11 — —af(=1)1, e s e*ai, e~ Y —e%, 1is even,
W QU@ @u" = 0(u') @0 @ @ 0(u™);
@ (0%

o:al(=1)1 = —ai(=1)1, e s e e 1y e

Wt - @u" = o) @o?) @@ o(u™);
where v’ € V7aiy, 1 <4 < m. Then we have

Lemma 4.3 ([13]). 07(V 5p ) = Vim.
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It can be checked directly that, for 1 <i<m —1,

b7 (0" — o121 (X7 e )
1, . . i iy i
= (o’ =11 — (e g emattathy (4.1)
1 . : iy i i
b7 (0! +a (=121 (T e )
= L' —a™ (1)1 4 (e g emattahy (4.2)

The following Lemma comes from [38], [32], [43], and [31].

Lemma 4.4.
(1) (Lg,(m,0), K(sln,2)) is a duality pair in Vap.
(2) K(sly,,2) is generated by

.. 1 . .
w9 = 1_6(0/ _ az+1)(_1)21 _

(3) K(sly,,2) is rational.
By (2) of Lemma 4.4, we have

K (s1n,2) C V. (4.3)

Then by (1) of Lemma 4.4, we have the following lemma.

Lemma 4.5. (K (sl,,,2), L

<, (M, 0)7) is a duality pair in Vi

Let
y=al+a?+- +a™
We are now in a position to state the following level-rank duality.

Theorem 4.6.

(1) Cr

509
(2) CLﬁ,Qm(1,0)®2 Lg,,, (2,

(3) CK(sagm,Q)(K(s[mv 2)) = K(5[27m)a'

(102 (Lo
(



40 CUIPO JIANG AND CHING HUNG LAM [March

Proof. By (1) of Lemma 4.4, (L=

5[2

Since (Vzy, K(sl2,m)) is a duality pair in Ly (m,0), we deduce that

(m,0), K(sly,,2)) is a duality pair in Vam.

Oy (K (81, 2) ® K (s12,m)) = V.

By (4.3) and the fact that K (sl,,,2) ® K (sly, m) and K (sl,,,2) ® K(slz, m)?

have the same conformal vector, we have
Cve,, (K (sln,2) ® K(sly,m)7) = V7, (4.4)
1

By Lemma 4.3, 07(V, 5p, ) = Vim. Notice that K (s09y,,2) is generated by
J(0F — ot (-1 4 (e ettt
100 ot (-1 4 (e ettt
where 1 <i <m —1. By (4.1) and (4.2),
07 (K (s09m,2)) C CVXT(VZUW)'
Then by (2) of Lemma 4.2, we have
Viy € vz, (07(K(s02m, 2))) = 07(Cy (U)). (4.5)

On the other hand, it can be checked directly that 67(K(so2p,,2)) and
K(sly,,2) ® K(sly,m)? have the same conformal vector. Then by (4.4),

we have
07(Cyv(U)) C V7,
Together with (4.5), we deduce that
0r(Cv(U)) = Vz,,

proving (1) and (2). Since (07(K (s02m,2)),07(Cy(U))) is a duality pair in

V%, we have
AT

K (50, 2) ® K (sly,m)” C 07(K (s09,m,2)).
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Then
K(sl2,m)7 C Cor(K (som,2)) (K (8, 2)).
Notice that
Crg, moye (VZy) = K(slz,m)”
and

CVXTI" (K(ﬁ[m, 2)) =L~

slo

(m,0)7.
So

Cor(K (s02m,2)) (K(sly,2)) C L;[2 (m,0)7.
Since CeT(K(502m72))(K(5Im, 2)) commutes with VZJw it follows that
Cor(K (soam,2)) (K (81, 2)) = K (slg,m)°.
Therefore (3) holds. 0

Remark 4.7. For the proof of (1) in Theorem 4.6, one can also refer to [1].

4.1.2. The case m € Z>4 and n € Z>3

Let Clopmn be the Clifford algebra generated by ¢f§(r), 1 <i<m,

1<j<n,reZ+ %, with the non-trivial relations

[W35 (), ()] = ¢5 (M (s) + VT (s)U5s (r) = Gikdjibrys0,  (4.6)

where 1 < i,k <m,1 <4l <n,rseZ+ % Let Fo,n be the irreducible
Clomn-module generated by the cyclic vector 1 such that

Y5 (N1=0, forr >0, 1<i<m, 1<j<n.

Then by Theorem 3.1, FsP = [

2mn $02mn
by

(1,0). Obviously F§Ue™ is generated

2mn

1 1 1 1 ..
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Define the fields on Fy,,, as follows:

¢$ Z¢ P 1.

rez
For 1 < j < n, let Fop; (vesp. Fip, for 1 < i < m) be the subalgebra of

Fomn generated by the fields wi(z) 1 <i < m (resp. wi( ), 1 <7 <n).

Then F5 & Lg,  (1,0). We denote F5° by L(j ) _(1,0). Then we have

v=rl 10eLl 1,00 --@Ll (1,0)= L, (1,0°" C L, (1,0).

$02m,

It is obvious that Lg, (n,0) can be diagonally embedded into V' as a vertex

operator subalgebra of V', and
1
Z% -5 wl] Z% wzj __)17 1§kal§m

are generators of Lg, (n,0). We denote this diagonally imbedded vertex

operator subalgebra of V by U and U = Lg, (n,0). Specifically, let

1 1 1 1
ap; = sz)]:rj(_§)w];j(_§)1_¢lj+1,j(_§)¢l;+1,j(_§)1)
1 1
€k; = v—1¢;§(—§)¢;§+1,j(—5)1,

1 1
fkj = \/—_1%2]-(—5)%214(—5)1,

for1<k<m-—1and

Y 1 1 1 1

g = Y1 (= 3 7717173'(_5)1+w;j(_§)w;j(_§)1’
1 1

emj = V—1¢_ 1 §)w:rrlj(_§)1’
1 1

i = V=T (=5 (=)

Then it can be checked directly that {a}g/j, ekjs [rj: 1 < k < m} are Chevalley

generators of the simple Lie algebra s09,,(C).

Set
(51 = =Gl + Ui (-3,
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1 1 1
(31 = L2 - v ()
for1<k<m,1<j<n. Then
1 1
%}(‘5)1 = 7(¢kj(——)1+\/_?/)m+kj(—§)1)’
1 1
Ui (=5)1 ﬁ(¢kj(_§)1 - \/—_1?/)m+k;,j(—§)1),
and
(Vi (1), 15 (8)]4 = 6ijOkiOr-5,0- (4.7)
It is easy to see that for 1 < k <m — 1,
1 1 1 1
oy = \/—_1(¢m+k,j(—§)¢kj(—§)1 —¢m+k+1,j(—§)¢k+1,j(—§)1),
1 1 1 1 1
erj = —[(¢kj(——)¢m+k+1,j(—§)1 + U1, (= 5)¥maki(=5)1)
VT (515 (= )+ B (= Wik~ )DL
1 1 1 1 1
fri = Sk (=5 marrr (=) + it (=5)Uman,i (= 35)1)
1 1 1 1
+\/—_1(¢kj(—§)¢k+1,j(—§)1 + ¢m+k,j(—§)¢m+k+1,j(—§)1)],
and
y 1 1 1 1
Ui = \/__1(w2m—1,j(_§)wm—1,j(_§)1 + Yo (= 5)¥mi(=5)1),
1 1 1 1 1
€mj = 5[(_¢mfl,j(_§)¢2m,j(_§)1 +¢mj(_§)¢2mfl,j(_§)1)
1 1 1 1
+\/__1(wmfl,j(_§)wmj(_§)1 = Yam-1,(=5)¥2m(=35)1)],
fmj = %[(wm—l,j(_%)w%n,j(_%)l _wmj(_%)w%n—l,j(_%)l)

+\/—_1(¢m—1,j(—%)¢mj(_%)1 - me—l,j(_%)me,j(_%)l)]'

It is also easy to check that ( see also [23] )

Z wkz wkj Z wrl wsl ) )] = 07
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for 1 < 4,7 <n, 1< rs < 2m. Moreover the vertex operator subal-
gebra of Lg, (1,0) generated by Z Vri(— )k (—3)1, 1 < i,j < n, is
isomorphic to Lg (2m,0). We den]z)te this vertex operator subalgebra by
X (2 L, (2m,0)).

Denote by C7, .

502m,

(170)(L£¢02m (n,0)) the commutant of U = Lg, (n,0)

in Lg, (1,0). Then we have the following lemma.
Lemma 4.8. X C C’Lbfo2 1,0)(Lsa,,, (1, 0)).
Recall that the vertex operator algebra Lg, (1,0) is generated by

qpkj(——)zprs(——)l 1 <kr<2m,1<yjs<n Forl<i<n, wede-

fine the vertex operator algebra automorphism o; of Lg, (1,0) by

1 1 LS. 1 1
Ui(¢kj(—§)¢rs(—§)1) = (—1)5”+5“¢kj(—§)¢rs(—§)1- (4.8)
Then
o? =id,
and for 1 S .] S n,u = ¢k1i1(_m1 - %) e Q;Z)k‘Qr’igr(_m2T' )1 € Lsﬂgmn(l’o)’
where 1 < ky,--- ko <2m, 1 <y, - ,igr <, mq,--- ,may €N,

oju = (1) oy,

(1,0) generated by {o;,
1 < i <n}. It is obvious that G is an abelian group. Set

Denote by G the automorphism group of Lg

$02mn

L@an(l,O) ={veLg, (1,0)|g(v)=v, geG}.

Let V=LY 1L,0)oLY (1,0)® - ®LY (1,0) = Lg,, (1,0°" and
U= Lg, (n,0) be deﬁned as above. We have the following lemma.

Lemma 4.9. U = Lg, (n,0) C Lg

502mn

(1,0)% and

L~

$02mn

(L0 =v=rl oerl oo oLl (10

Proof. Recall that for 1 < j <n, LEAJO)Q (1,0) is generated by
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¢k;j(—%)¢lj(—%)1, 1 <k, <2m. By the definition of o;, for any 1 <¢<mn
1 1 1 1
i (=5)1i(=5)1) =Yg (=5) (= 5)1-

(1,0)¢. This implies that V C Lg
general, by the definition of o;, 1 < j < n, we have

() el
So LZ) (1,0) C Lg (1,0)¢. In

502mn 502mn

Jju — ( 1)6]11+ +51127"u

for u = Vg (=1 — 1) Wpyin, (—mor — 2)1 € Lg, (1,0), where 1 <
ki, sk <2my 1 <iq,--- i, < m, my,- - ,ma € N. Then for each j,
oju = u if and only if the number of 7;’s which i, = j is even. This means
that u € V. O

4.1.3. The case n =2N and N > 2

In this subsection, we assume that m € Z>4, n = 2N € 2Z and N > 2.
Set

2m 1 1 1 1
By = \/—_12(¢i,N+k(—§)¢ik(—§)1 - %,N+k+1(—§)¢i,k+1(—§)1),
—1
1 1 1 1 1
e =3 ;[(¢ik(—§)¢z‘,1v+k+1(—§)1 +Wikr1(=5)¥in+k(=5)1)
+\/__1('¢ik(_%)wi,k+l(_%)1 + %’,Nﬂs(—%)%’,NMH(—%)U]’
1 1 1 1 1
fo =35 ;[—(¢ik(—§)¢i,N+k+1(—§)1 + Y1 (= 5)¥in+r(=5)1)
+\/__1(¢ik(_%)¢i,k+l(_%)1 + ?,Z)z‘,NJrk(—%)¢1,N+k+1(—%)1)],
for 1<k <N -1 and
1 1 1

By = \/__1Z(wi,QN—l(_%)wi,N—l(__)l + ¢1,2N(—§)¢z‘N(—§)1),

2
1 1 1
en = Z —i N—1( )%‘,21\1(—5)1+¢iN(—§)¢z‘,2N—1(—§)1)

+vV =1 N—1 (—§)wm(—%)1 - %,21\1—1(—%)%,21\1(—%)1)]7
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2m
i = %;[wm_l( Sian(= )1~ bix (~5)ran -1 (—3)1)
+\/__1(¢i,N71(_%)¢iN(_%)1 - %,21\771(—%)%,21\7(—%)1)].

Then {8/, ek, fx,1 < k < N} are Chevalley generators of so,, and generate
the vertex operator subalgebra X = Lg (2m,0). For 1 <1i < j <n, set

2m

u®) = H(¢ki(_%)+\/—_1¢kj(_%))1’ (4.9)
k=1
2m

) = H(wm(——) \/_wkj(__)) : (4.10)
k=1

The following lemma can be checked by a direct calculation.

Lemma 4.10. For1 <i<j <n,

U(U)a (i) € CLA (1,0) (Lﬁ/bgm (’I’Z,O))

502mn

Furthermore, for 1 <k < N, r € Z,, we have

B (r)u = e (ryu™ = fi(r)u™ =0,
BY(r)o ) = ex(r)o) = fi(rul =0,

and
glv(o)u(l,zvﬂ) — 9mu LN+ , BY(0)u (LN+1) _ ek(o)u(l,N-i-l) —0,
GO = om0 500N 0 04 —

where 2 < s < N,1<k<N.

Let A;,i=0,1,--- | N, be the fundamental weights of the affine Lie alge-
bra §0,,. Notice that Lg, (1,0) is an integrable module of X = Lg, (2m,0).
Therefore, the Lg, (2m,0)-submodule of Lg, (1,0) generated by u(»V+1) is
irreducible and is isomorphic to Lg, (2m,2mA;) by Lemma 4.10. We simply

denote the Lg, (2m,0)-submodule generated by u(V+Y) by L (2m,2mA;).

Notice that U ® X = Lg
subalgebra of Lg

502mn

(n,0) ® Lg, (2m,0) is a full vertex operator

502m

(1,0). From now on, we simply identify U ® X with

$02mn

Lg, (n,0) ® Lg, (2m,0). The following lemma comes from [35].
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Lemma 4.11.

(1) If m = N = 1 mod 2, the simple vertex operator algebras W such that
Lg, (n,0) ® Lg, (2m,0) € W C Lg, (1,0) are in one to one corre-
spondence with the subgroups of Z /27 x 7./27..

(2) The simple vertex operator subalgebras W such that
Lg, (n,0) ® Lg (2m,0) C W C Lg

oo S0 (1,0) are in one to one corre-
spondence with the subgroups of (Z/27)3 if m = N = 0 mod 2, and the
subgroups of 7./27 x ZJAZ if m = 0 mod 2 and N =1 mod 2.

We have the following lemma.

Lemma 4.12. For m € Z>4, n =2N € 2Z and N > 2,

(1,0) (Lssy,, (1,0)) = Lg,,(2m,0) & L, (2m, 2mAy).

5°2mn
Proof. By Lemma 4.8 and Lemma 4.10, we have

Lg (2m,0) ® Lg, (2m,2mAy) C Cp,_

502mn

(170) (LSAUQm (n7 0))

If m =N =1 mod 2, by (1) of Lemma 4.11, the simple vertex operator
algebras W such that Lg, (n,0) ® Lg, (2m,0) C W C Lg, (1,0) are in
one to one correspondence with the subgroups of Z/2Z x Z/2Z. Then we
can deduce that

L5A02mn(170) (Lgan (n, 0)) = Lsfan (2m, 0) D Lfon (2m, 2mA1).

If m=0mod 2 or N =0 mod 2. Set

ﬂ[ (%k ——)1—\/_¢zN+k:( 1)1>

k=1

2
1
Vi, k(__)]- - \/—_1¢m+i,N+k;(—§)1)] ;

SH
I
s

.
I
N

+

/N

u? = H(H(w D VT k1) + VT (-1

2
k=1

1 1

+\/—_1¢m+z‘,N+k(—§)1)>> ((%N(—%)l - \/—_1¢i72N(_§)1)

1

+\/_(wm+zN )]— - \/_wm—l—z 2N(_§)1))
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Then it can be checked directly that
D afirw' = egi(nw' =Y fii(rw’ =0,
j=1 j=1 j=1

Bl (' = es(rju’ = fy(r)uw' =0,

wheret =1,2, r € Zy, 1 <k <m,1<s < N. Furthermore, we have

n
> o (0)w! =0,
j=1
n
>y (0)wh = —nw!, 1<k<m, 1<I<m-—1,
j=1
n
j=1
BY (0)w! =0,
BY(0)wt = —2maw!, 1<s<N-1,1<k<N,
fe(0)w! =0,
n
> oy (0w? =0,
j=1
n
ZO%(O)WZWQ, 1<k<m, 1<I<m-1,
j=1
n
Z ek](o)wl = 07
j=1
(B (0)w? =0,
BYr_ 1 (0)w! = —2maw?, s=1,---,N—2 N, 1<k<N.
ex(0)w! =0,
This means that the Lg, (n,0)®Lg, (2m,0)-submodule of Lg, (1,0) gen-

erated by w! is isomorphic to Lg, (n,nA,) ® Lg (2m,2mAy), and the

$502m

Lg, (n,0) ® Lg, (2m,0)-submodule of Lg

502mn

morphic to Lg, (n,nAn) ® Lg, (2m,2mAyn_1). By (2) of Lemma 4.11, the

$502m

(1,0) generated by w? is iso-

simple vertex operator subalgebras W such that Lg, (n,0)® Lg, (2m,0) C
W C Lg,, (1,0) are in one to one correspondence with the subgroups
of (Z/27)% if m = N = 0 mod 2, and the subgroups of Z/27Z x Z/A7 if

m = 0 mod 2 and N = 1 mod 2. By the fusion rules of affine vertex
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operator algebras of type D (see [41]), we have

1.0 (Lsay,, (0,0)) = L, (2m,0) @ Lg,, (2m, 2mAy)

502

as desired. 0O

Recall that G < Aut(Lg,, (1,0)) is the abelian group generated by o;,
1 < i < n, where o; is defined as in (4.8). The following is the main result
of this subsection.

Theorem 4.13. For m € Z>4, n = 2N € 27, and N > 2,
(1) Cr,, @0#n (Le, (1,0)) = (Lg, (2m,0) @ Lg,, (2m, 2mA;))“.
(2) Cp..

509,

1,007 (Le,,, (n,0)) is generated by u®) 40 1 <i<j<n.
Proof. By Lemma 4.12, we have

1,0)(Lsoy, (7,0)=Cr (1,0)(U)=Lg,(2m,0) & Lg,, (2m, 2mAy).

S509mn ( ’

Cp_

S502mn (

2m
Recall that Lg (2m,0) is generated by Y. ¥p;(—2)¢p;(—2)1, 1 < 4,5 < n.

Since for 1 < r <mn, o
2m 1
(Z?Z)/m S (—5)1) = (1 3 (= g ()1,
k=1

it follows that Lg, (2m, 0) is invariant under G, that is, G acts on Lg, (2m,0).
By (4.9) and (4.10) we have

1,N+1) _ , (1,N+1
ouLN+D — (LN+1)

JN_i_lu(LNJrl) — ,U(l,NJrl)’ ] 7& 1,N +1.
ouLNFD = LN+

Notice that Lg (2m,2mA;) is generated by u"V*1) and v(bV+1) is in the
s0,-submodule of Lg (2m,2mA;) generated by u»N+1 we know that G
acts on Lg, (2m,2mAy), also. Then (1) follows from Lemma 4.9 and (2)
follows from Lemma 4.10. O
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4.1.4. The case n=2N+1, N € Z

In this subsection, we assume that m € Z>4, n = 2N +1 € 2Z + 1 and
N € Z,. Using Table 3 of [35], we can deduce the following result.

Lemma 4.14. Form € Z>4, n=2N +1€2Z, +1 and N € Z,

By Lemma 4.14 and Lemma 4.9, we have

Theorem 4.15. For m € Z>4, n=2N +1€2Z+1 and N € Z,

CLEAOQM(LO)(XWL (Ls/BQm (n7 0)) = L/\Un (2m7 O)G

4.2. Type B

Let m,n € Z;. We now consider the Clifford algebra Cl(g, 1), gener-
ated by

1
Vig(r), r€Z+4 5, 1<i<2m+1, 1<j<n,

with the non-trivial relations

(Vi (r), Yra(s)]+ = 6ik616r15,0,

where 1 < i,k <2m+1,1<jl<n,rs€Z+ 3.

Let F(2m+1)n be the irreducible Cl (9,4 1),-module generated by the cyclic
vector 1 such that

Pij(r) =0, forr >0, 1 <i<2m+1, 1 <j<n.

Define the following fields on F,, 1)
Gig(2) = S il + 2) T,
’ rez ’ 2

The fields v;;(2), 1 <i <2m+1,1 < j < n generate on F(2m+1)n the unique
structure of a simple vertex superalgebra [22, 34, 37, 40, 1]. Recall from [21]
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that
.7-"(62”;711)” = Lﬁ(2m+l)n(1, 0).
4.2.1. The case n =2

Let @7 Ze' be a lattice such that (¢, ¢/) = d;5. Set

2m—+1

i=1
Let Vzo, be the lattice vertex operator algebra associated with the lattice
L = Z2v. Let o be the automorphism of V75, defined by

—

o(Y(=na)y(—n2) - y(=nk)e®) = (=1 y(=n1)y(—ng) - - y(—np)e
for n; > 1,1 <i <k and a € L. The following result follows from [1].

Theorem 4.16.

CL (1,0)®2 (Lﬁ/\ogm_H (2’ O)) = VZ(?-Q'V’

§02m41
4.2.2. The case n >3

As in Subsection 4.1.2, we define the vertex operator algebra automor-

phism o of Lg, 1,0) for 1 < i < n as follows:

2m—+1)n (

1

D1) = (1M (-

Ly,

(W (5 Vb~ :

Then

o? =id.

Denote by G the automorphism group of Lg (1,0) generated by

50(2m41)n

{oi, 1 <i<n}. Then G is an abelian group. Set

L (1,009 = {v € Lg (1,0) | g(v) = v, g € G}.

50 (2m+1)n 50(2m+1)n

Similar to the proof of Lemma 4.12 and Lemma 4.14, using Table 3 of
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[35] we can deduce that for n > 3,

(1,0) (Lsfbgm+1(nv 0)) - Lfon (2m +1, O)

Lﬁ’(2m+1)n
Then as discussions in Section 4.1.4, we have

Theorem 4.17. For n > 3,

CLsAUQerl (170)®n (L5/52m+1 (n’ O)) = L5/an(2m + 1’ O)G

Remark 4.18. By the above results, [42, Theorem 5.6], [45, Theorem 1],
and [8, Theorem 5.24], the commutant vertex operator algebra

CLes (1,0)%n (Lss; (n,0)) is regular for m,n € Zx>3. Then the classification of
irreducible modules of the commutant vertex operator algebra follows from
[16].
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