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Abstract

We discuss conjugacy classes of embeddings of Alternating groups in Exceptional

Lie groups. We settle the count of classes of embeddings in E8 of a subgroup Alt10

and its double cover. This involves computation and the reduction of the problems to

relative eigenvector problems. We update previously published tables of embeddings.

We comment on the improvements present in our table and on the remaining unsettled

conjugacy questions.

1. Introduction

In their seminal 1987 paper [1], Arjeh Cohen and Bob Griess set out a

program to classify the finite simple subgroups that embed in exceptional Lie

groups. They reduced the problem to an investigation of the status of a small

set of candidate subgroups. Over the next 15 years, these cases were resolved

by a number of group theorists in [2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 17, 18,

19, 20, 21, 22, 23, 32]. Eventually, [16] gave a table with a complete list of

subgroups. This table also contains partial information about the important

matter of conjugacy classes of embeddings. Relatively little has been done to

settle remaining conjugacy questions since the publication of [16]. The only

new results [14, 25] concern conjugacy of embeddings of alternating groups.
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In this paper, we summarize this progress and deal with the new cases of

embeddings of Alt10 and its double cover into E8.

Table 1 updates the part of Table QE of [16] that relates to alternating

subgroups. The notation matches that of the old table, and is explained in

Section 2. Those entries marked with a † represent improvements to the

old table, while those marked ‡ are improvements due to new results in

this paper. Any entry that contains an inequality represents a conjugacy

question that remains open.

Table 1: Projective Embeddings of Alternating groups in Exceptional Lie groups.

Finite

z Simple G2(C) F4(C) 3E6(C) 2E7(C) E8(C)

Group

1 Alt5 4 13(8) 15(10) 19(12) 31(19)†

2 4 12(21) 18(32) 96(51)† 103(58)†

1 Alt6 0 ≥ 5(≥ 3) † Z ≥ 10(≥ 6) † Z ≥ 12(≥ 7) † S ≥ 18(≥ 11)†

2 0 2(1)† 3(2)† 3(2)† 17(9)†

3 2(1); 3A2 8(4)† 22(9)† 22(12)† ≥ 34(≥ 17) † Z

6 0 0 4(1) † 6A5 12(4)† 12(4)†

1 Alt7 0 0 1(1) † 6A5 1(1) † 22D6 ≥ 2(≥ 2) † Z

2 0 1(1) † 4A3 1(1)† 1(1)† 4(4)†

3 0 0 2(1) † 6A5 2(2)† 1(1)†

6 0 0 4(1) † 6A5 4(2)† 2(1)†

1 Alt8 0 0 0 1(1) † 4A7 1(1)†

2 0 1(1)† 1(1)† 1(1)† 3(3)†

1 Alt9 0 0 0 3(2) † 4A7 4(3)†

2 0 1(1)† 1(1)† 1(1)† ≥ 4(≥ 3)†

1 Alt10 0 0 0 0 1(1) ‡ 3A8

2 0 1(1)† 1(1)† 1(1)† 2(2) ‡ 2D8

Altn

2 n=11, . . . , 17 0 0 1(1) † n ≤ 11 1(1) † n ≤ 13 1(1) † n ≤ 17; 2D8

An embeddingG ≤ E of a quasisimple group G in a Lie group E is called

Lie imprimitive if it factors through a smaller Lie group. Other embeddings

are Lie primitive. We recall that there is a chain of natural embeddings

G2 < F4 < 3E6 < 2E7 < E8. Hence, a projective embedding into one

of them is a projective embedding into E8. This means that although [1]

stressed the problem of embeddings into E8, the possibility of imprimitive
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embeddings that factor through a smaller exceptional group forced consid-

eration of embeddings into all of the exceptional Lie groups. Moreover, the

central extensions that appear in the chain of exceptional groups naturally

leads us to consider projective embeddings rather than just embeddings.

Most of the difficult questions that remained after [1] concerned the status

of finite groups that could only embed Lie primitively into one of the excep-

tional groups. Other imprimitive cases reduce to a question of an embedding

into a classical Lie group.

The majority of questions about Lie primitive embeddings were resolved

by exhaustive computer search. (Indeed, for cases such as the embeddings

of 2-dimensional linear groups given in [32], where a machine free argument

exists, alternative computational solutions are also available.) Various com-

putational strategies have been applied, but all ended with a classification up

to conjugacy. In contrast, knowledge of just one imprimitive embedding of a

group, settled its status for the project of [1], but did so without necessarily

resolving conjugacy. In fact, in many cases where imprimitive embeddings

are known there is still an interesting open question of whether there might

also be primitive embeddings.

In the case of embeddings of Alt10 into E8 that we treat in this paper,

the possibility of a new Lie primitive embedding was left open in [16], but was

ruled out in 4.4.4 of Litterick’s thesis [24]. Our new analysis also rules out a

Lie primitive embedding and resolves conjugacy of imprimitive embeddings,

which was not treated in [24]. The computational methods developed for

the Lie primitive cases seem appropriate for our present work. We chose

to use the method introduced in [17], which in hindsight is by far the most

convenient of the strategies applied. We discuss this method in Section 3.

We should also mention [9], the first in a series of papers by David Craven

that attempt to severely narrow the possibilities for Lie primitive quasisim-

ple finite subgroups of groups of exceptional Lie type in all characteristics.

Litterick’s thesis [24] is part of that larger effort.

2. Alternating Subgroups of Exceptional Lie Groups

Since the publication of [16], progress has been made on the conjugacy

problem in the case of the alternating groups and their nonsplit covers. The

most definitive conjugacy results for alternating groups in [16, Table QE]
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concern embeddings of Alt5 and its double cover SL(2, 5). This summarizes

the work of [10], [11], [12] and [13]. The rows in [16, Table QE] that cover

these cases contain the following entries:

z G G2(C) F4(C) 3E6(C) 2E7(C) E8(C)

1 Alt5 4 13(8) 15(10) 19(12) ≥ 31(≥ 19)Z

2 4 12(21) 18(32) ≥ 96(≥ 51) ≥ 103(≥ 58)S

The first row (where z = 1) deals with the simple group Alt5 and the second

row its double cover. An entry such as the 13(8) in the F4 column for Alt5
means that there are 13 classes of injective homomorphisms Alt5 → F4(C)

and that the images of these homomorphisms give 8 classes of subgroups in

F4(C). In general, the number of classes of homomorphisms is at least as

large as the number of classes of subgroups. In the case of embeddings of

Alt5 into G2, the table indicates that the two counts agree and are both 4.

In the E8-column of the first row of the table in [16] there was an in-

equality, which has been replaced by a definitive entry in our Table 1. The

inequality represented an uncompleted conjugacy problem. The issue was

the possibility of Lie primitive embeddings of Alt5 with one particular fusion

pattern (see Definition 1 below). Similarly, in 2E7, there was the possibility

of a Lie primitive class of 2Alt5 subgroups which caused uncertainty in the

entries in both the E7 and E8 columns. The letters Z and S appended to

these uncertain entries summarize information about centralizers of possible

extra embeddings — Z meaning zero-dimensional, and S small dimensional.

The only additional unexplained notation that appears in our Table 1 is that

certain entries are followed by the name of another Lie group. For example,

there is an entry 2(1); 3A2 in the G2 column for the row 3Alt6. This means

that the two embeddings of 3Alt6 into G2(C) factor through an intermediate

subgroup 3A2.

The open questions about embeddings of Alt5 and its double cover were

settled in 2003 by Lusztig in [25] using a method suggested by J.P. Serre.

We now know there are no Lie primitive Alt5 or 2Alt5 subgroups in any of

the exceptional complex Lie groups.

In [14], the case of Altn and its nonsplit covers for n ≥ 6 was addressed,

leading to several improvements in Table QE. The methods used in [14] were

similar to those used in [10], [11], [12] and [13]. But as with the cases of Alt5
and 2.Alt5 in E8, there were several unresolved cases left over from [14],
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E8:

Alt6: There are several unresolved cases here. In the case of Alt6 Fusion

Patterns 11 and 18, there are no known embeddings of groups with these

fusion patterns, but since the centralizer is 0-dimensional, there could be

Lie primitive embeddings. In the cases of Fusion Patterns 131 and 243 (see

[14, Table 25]), we have embeddings in smaller Lie subgroups (in fact, by

an argument due to Borovik, two nonconjugate embeddings in the case of

fusion pattern 243), but because the centralizers are 0-dimensional, there

could also be Lie primitive instances of groups with these fusion patterns.

Alt7: There is a class with Fusion Pattern 1 which can be constructed

in the 2D8 subgroup but has 0-dimensional centralizer. So there could also

be Lie primitive classes. The character is 10a + 10b + 142a + 154 + 354.

2Alt9: Since the central involution has type 2B, we can assume this class

is in the 2D8 subgroup (sharing the central involution of the 2D8 subgroup),

and an instance of 2Alt9 with fusion pattern 1 can be constructed. However,

we cannot say that this embedding is unique in 2D8, which is necessary

to determine whether it is unique in E8. The adjoint character for this

embedding is 8 + 282 + 56 + 8a2 + 8b2 + 562a2. (The characters with a “2” in

their subscript are the faithful ones. The others are Alt9 characters.)

3Alt6: Since there is a central element of order 3, there will be no Lie

primitive embeddings, and in fact, all instances of this group in E8 have a 3B

central element. The centralizer of a 3B element has type 3A2E6, so one is

reduced to constructing 3Alt6 subgroups in this group. Each fusion pattern

has one possible construction except there are four that might have more

than one because they involve Alt6 subgroups of 3E6 with Fusion Patterns

252 and 260 which may have Lie primitive classes. So this problem reduces

to those two problems.

3. Computer Construction of Embeddings

In this section, we give an overview of a method to classify embeddings

from a finite group G into a Lie group E(C). This method was first applied

computationally in [17], and was based on a computer free approach for

constructing embeddings introduced in [29]. It was also used in [30], which

contains full details of the procedure, where it appears as Algorithm 2.3. We
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begin with three observations, each of which changes the underlying field to

a form slightly more suitable for machine computation.

In general, to compute embeddings into Lie groups, it is convenient to

work over a field of finite characteristic rather than over the complex num-

bers. The change of field allows for exact arithmetic and gives us access to the

standard computational tools of modular representation theory such as the

Meataxe [26] and condensation [27, 28]. Larsen’s powerful 0− p correspon-

dence [18] gives the option to change field in this way. The correspondence

is a bijection between conjugacy classes of embeddings of a finite group G

into E(C) and its embeddings into a Chevalley group E(k), whenever k is

an algebraically closed field with characteristic co-prime to |G|.

In order to count embeddings G ≤ E(k), we first count actions of G

on the Lie algebra E of E(k). (Our proof of Theorem 1 in Section 4 is an

example of the sort of argument that can relate the two counts.) We begin

with a natural action of G on some larger Lie algebra L and search for all

invariant subalgebras of type E . Of course, we should try to ensure that L

is as small as possible, and Theorem 2.2 of [30] shows that a classical (i.e.

linear, orthogonal or symplectic) Lie algebra defined on a minimal module

for E serves as a good choice for L.

Our computational procedure to locate particular G-invariant subalge-

bras of L begins from input that specifies the action of G on a natural module

for L and structure constants for the (Lie) multiplication of basis vectors in

the algebra. This input data is a finite set of matrices, whose entries there-

fore lie in a finite subfield k ≤ k. In particular, the structure constants for

the algebra define a G-invariant k-Lie algebra L with L ⊗ k = L. In this

way, we end up with a problem suitable for machine computation: we in-

put a G-invariant Lie algebra L defined over a finite field k and determine

G-invariant subalgebras of L that meet appropriate other conditions.

The conditions that we shall impose to pick out desirable subalgebras

of L are representation theoretic and always have the following form:

The subalgebra E contains copies of one or more particular (ab-

solutely) irreducible G-modules U,W, . . . and is contained in a

particular submodule M ≤ L.
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For example, in Section 5 where G = Alt10 and we seek G-invariant

algebras of type E8 whose adjoint character restricts to 9 + 35 + 36 + 842

on G, we set M to be the sum of all irreducible constituents of L with

these characters and U and W to be the irreducibles with characters 9 and

35. These choices are clearly designed to catch all E8-subalgebras with the

required character. We aim to find all images of U,W, . . . in L that can

lie in an algebra with these properties. The subalgebras generated by such

images will give us large pieces of the desired subalgebras of L (and in the

Lie primitive case, give us exactly the desired subalgebras).

For computational purposes M is specified by giving a basis inside L. It

is possible that a finite extension of the field k might be required to specify

this basis, in which case we just enlarge k as needed. We write M for the kG-

module spanned by the basis. A further finite extension of k might be needed

to accommodate one or more of the irreducibles U,W, . . .. The potential need

for multiple field extensions seems to have little computational significance.

In practice we have rarely needed more than a quadratic extension of a prime

field.

A precise statement of our computational problem in the case where

we make use of two irreducible G-modules U and W follows. (It is easy

to formulate very similar problems for any number of input modules, and

our later strategy for finding solutions also applies similarly. An example of

such modifications, for the case where we make use of just one irreducible

W , appears in Section 4.)

Problem 1. Let U and W be kG-modules, let L be a G-invariant k-

Lie algebra and M a G-submodule of L. Determine all pairs (hU , hW ) ∈

HomkG(U,L)⊗ k ×HomkG(W,L)⊗ k with [hU (U), hW (W )] ⊂ M ⊗ k.

Let us write HU and HW for HomkG(U,L)⊗ k and HomkG(W,L)⊗ k.

Observe that the requirement that [hU (U), hW (W )] ⊂ M ⊗ k is a bilinear

condition on the pair (hU , hW ). Therefore, as explained in detail in [30], the

solutions to Problem 1 correspond to elements hU ⊗ hW in a computable

subspace N ≤ HU ⊗ HW . Our strategy is to determine all pure tensors in

this space. (A pure tensor is the tensor product of two vectors, rather than

the more typical sum of tensor products.)

Let a1, . . . , a� be a basis of the dual space of HW ; these elements map

HU ⊗ HW to HU in the usual way. Any pure tensor x can be factored as
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a product hu ⊗ hw and it has proportional images under the maps a1, . . . a�
because: xai = (hw, ai)hu. In this way, we reduce Problem 1 to an instance

of:

Problem 2. (Relative Eigenvectors) Given a set of linear maps ai : X →

Y, 1 ≤ i ≤ � find all vectors x for which there exist a vector y and scalars

λ1, λ2, . . . , λ� such that xa1 = λ1y, xa2 = λ2y, . . . , xak = λky.

Equivalently, rephrasing this in terms of matrices gives the relative eigen-

vector problem described in [17] and [30].

Problem 3. (Relative Eigenvectors) Given a set of r×cmatrices A1, A2, . . . A�

find all relative eigenvectors x for which there exist a vector y and scalars

λ1, λ2, . . . , λ� such that xA1 = λ1y, xA2 = λ2y, . . . , xAk = λky.

The special case where r = c, � = 2 and A1 is the identity matrix

is just the ordinary eigenvector problem. As in the ordinary eigenvector

problem, we expect and allow for extension of scalars when seeking relative

eigenvectors. (Of course, this requirement is implicit in the extension of

scalars written into the formulation of Problem 1.)

In general, there is no efficient algorithm for the relative eigenvector

problem; it is NP-hard [31]. However, some special cases of the problem

are easy to solve. For example, if any one of the maps, a1 say, has a right

inverse r, then clearly relative eigenvectors are just common eigenvectors of

a2r, a3r, . . . , akr. Instances of this case of the problem were obtained in all

prior applications described in [17, 30].

Moreover, if � = 2, the Relative Eigenvector Problem has a well under-

stood solution [33]. A recursive algorithm described in [31] calculates a set

of subspaces whose union contains all relative eigenvectors. The subspaces

are all spanned by relative eigenvectors and only one contains any vectors

that are not relative eigenvectors. This gives an approach to the general

problem: find spaces containing relative eigenvectors for several pairs of the

matrices and compute intersections. Unfortunately, it is possible that some

subspaces involved in this procedure might not be proper, so the strategy has

no guarantee of complete success. However, it gives enough of a restriction

on the relative eigenvectors to classify embeddings in the cases treated later

in this paper. Although we will not make use of the possibility, we remark
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that the Relative Eigenvector Problem can always be reduced to a Gröbner

Basis calculation.

4. Embeddings of 2Alt10 in E8

As discussed in Section 2, we give the resolution of the conjugacy prob-

lem for 2Alt10 in E8 with Fusion Pattern 1. To begin, we determine the

possibilities for the restriction of the adjoint character for E8 to a subgroup

G ∼= 2Alt10 of E8 with this fusion pattern. We follow [7] and look at feasible

characters of G for E8.

Definition 2. Suppose E(C) is a complex Lie group, V is an irreducible

module for E(C) of degree n over C, and μ the corresponding character

for V . A character φ of degree n for a finite group G ≤ E(C) is said to

be feasible for E(C) if, for each g ∈ G, there exists h ∈ E(C) such that

φ(g) = μ(h).

As in [7], we sometimes loosen this definition and call a character φ of

G feasible for E(C) if φ(g) = μ(h) for some element orders in G.

Generally speaking, if the module for E(C) is small enough and the

irreducible characters for G are large enough, we find feasible characters by

an exhaustive computer search through all possible n-dimensional characters

of G, eliminating a possibility whenever its value at an element of G cannot

match a corresponding value on E(C).

If G is a 2Alt10 subgroup of E8 with Fusion Pattern 1, this method

shows that the only feasible character of G is 36+84+64a+64b (using Atlas

[8] notation).

As shown in [14, §5.6], there is exactly one other conjugacy class of

2Alt10 subgroups in E8. The adjoint character restricts to the character

121+97+36+168a2 for this second class. (The faithful characters are denoted

with a “2” in the subscript. The other characters are Alt10 characters.) Our

following computer analysis shows that there is also exactly one class of

embeddings with Fusion Pattern 1. Together, these two classes account for

our new entry of 2 in the 2Alt10-row of Table 1.

We now apply the method of Section 3 to classify embeddings 2Alt10 <

E8(C) that have adjoint character 36+84+64a +64b. In this section we fix
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the following choices for the objects described in Section 3: k is the finite

field Z11 and k is its algebraic closure, G is 2Alt10, L is the Lie algebra

of a non-singular G-invariant symmetric bilinear form on a 248-dimensional

kG-module V with character 36 + 84 + 64a +64b. We remark that as a kG-

module, L is isomorphic to the skew square of V — see [29]. We obtain an

explicit representation of G on V in the usual way by applying the Meataxe

to decompose tensor products of small kG-modules.

Let W be an irreducible submodule of V with character 64a. An ap-

plication of the Meataxe and condensation shows that HomkG(W,Λ2V ) is

8-dimensional and gives an explicit basis for this space. (In this context, ex-

plicit means that each basis element is a matrix with 64 rows and 247×248/2

columns. The large number of columns is the reason why condensation needs

to be used along with the Meataxe.) As explained in Section 3, we pick a

module M that contains all copies of 36, 64a, 64b and 84 in L. Here, M is

2188-dimensional, its decomposition into irreducibles is 369+648a+648b+8410.

In this case, we work with just one irreducible module W , and adapt

Problem 1 to use a map that turns an element (hw, hw′) ∈ HW × HW to

the space [hw(W ), hw′(W )]. Again, there is a computable subspace N ≤

HW ⊗ HW consisting of tensors with images inside M ⊗ k. We need to

search for particular elements of N that have the form hw ⊗ hw. Since this

element belongs to S2(HW ), we gain by using N ∩ S2(HW ) in place of N

when we pass, as in Section 3, to a relative eigenvector problem.

We compute dim(N) = 21 and dim(N ∩ S2(HW )) = 13. This means

we must solve a relative eigenvector problem with 8 matrices of size 13× 8.

Now, since 13 > 8, none of the matrices can have a right inverse, and there

is no straight reduction to an ordinary eigenvector problem. However, the

strategy of repeatedly cutting the size of the solution space by finding rela-

tive eigenvectors for pairs of matrices is completely successful. It produces a

set of four relative eigenvectors. Each has entries in a field F112 , a quadratic

extension of k. Moreover, each relative eigenvector corresponds to a homo-

morphism that maps W to an image that does generate an algebra of type

E8.

We have now shown that L has exactly four G-invariant subalgebras

of type E8. We further note that if X is an irreducible constituent of V

and cX is a linear transformation that acts as −1 on X and 1 on the other

constituents then cX is an automorphism of L that centralizes G. We check
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by computation that c36 and c64a transitively permute the four G-invariant

copies of E in L. We now have:

Theorem 1. There is exactly one conjugacy class of embeddings of 2Alt10

in E8(C) that have character 36 + 84 + 64a + 64b.

Proof. Let G be the group 2Alt10, and E be the group E8(k), where k

is the algebraic closure of F11. Let E be the Lie algebra of E, and Γ be

the general linear group of invertible linear transformations of E . Let 〈 , 〉

be the Killing form of E and let Λ be the orthogonal subgroup of Γ that

preserves this form. Let L be the Lie algebra of Λ. Suppose that θ1 and

θ2 are injective homomorphisms from G to E, whose images have character

36 + 84 + 64a + 64b. Let Ci be the centralizer in Λ of the image of G under

θi, for i = 1, 2. Write V for the representation of G given by the map

θ1 : G → E ≤ Γ.

Observe that although there are infinitely many G-invariant bilinear

forms on V, these differ only by (independent) multiplication by scalar factors

on each of the four irreducible constituents of V . These bilinear forms are

all equivalent under the centralizer CΓ(g
θ1) (because Γ consists of matrices

over an algebraically closed field). Accordingly, V and 〈 , 〉 are equivalent

to the representation and bilinear form considered in our machine analysis.

In particular, L contains exactly four Gθ1 -invariant subalgebras of type E8.

There is an element α ∈ Γ with θ2 = θα
1
, since the embeddings give

representations of G with the same character. Moreover, α−1 transforms

the Gθ2- invariant form 〈 , 〉 to a Gθ1 -invariant form, which as we noted is

the image of 〈 , 〉 under an element β ∈ CΓ(g
θ1). Hence, γ = α−1β−1 is an

element of Γ that transforms θ2 to θ1 and belongs to Λ since it fixes 〈 , 〉.

We now observe that Eγ is another Gθ1-invariant subalgebra of L of type

E8. (It is Gθ1-invariant because E is Gθ2-invariant and γ transforms θ2 to

θ1 and it is contained in L because γ ∈ Λ.) Hence, Eγ has the form Ec for

some c ∈ C1 (since it is one of the four invariant subalgebras of type E8, all

of which have this form according to our computation). Now let δ = γc−1.

This element transforms θ2 to θ1 and belongs to E since it acts on E . In

particular, θ1 and θ2 are E-conjugate.
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We have now shown there there is just one class of embeddings from G

to E, and the theorem follows by applying Larsen’s 0−p correspondence. ���

5. Embeddings of Alt10 in E8

In this section, we discuss the resolution of the conjugacy problem for

Alt10 in E8. If G is such an Alt10 subgroup of E8, we calculate the 248-

dimensional characters for G which are feasible for E8 by doing an exhaustive

computer search of all 248-dimensional characters for G, eliminating those

which do not give the exact values needed for an Alt10 subgroup of E8. The

only character that is feasible is 9 + 35+36+ 842 (using Atlas [8] notation).

Our machine analysis in this case is designed to show that any embed-

ding into E8 factors through an intermediate subgroup 3A8. We did carry

the computation further to obtain and classify embeddings into E8, but a

machine free argument can supply this additional information too.

It is convenient to work over the finite field k = Z11 and its algebraic

closure k. Here, G is Alt10, and L is the Lie algebra of a non-singular G-

invariant symmetric bilinear form on a 248-dimensional kG-module V with

character 9 + 35 + 36 + 842. Our computation requires an explicit choice of

module and bilinear form. As usual, the module V is made from constituents

constructed with the Meataxe and we select a form that decomposes as a di-

rect sum of invariant bilinear forms on five irreducible constituents of V . We

may and do choose identical G-invariant forms on the two 84-dimensional

constituents. (When we extend scalars to k there is just one class of G-

invariant form. This means we can safely choose any invariant form. How-

ever, certain other choices might require additional extensions to the scalars

in the course of computation, and this is undesirable.) We write Λ for the

orthogonal group that fixes the bilinear form and C for CΛ(G).

In our computation, we apply the procedure of Section 3 more than

once. In each application we impose the condition that the product inside

L of two unknown G-invariant modules only involves composition factors

with characters 9, 35, 36 and 84. The largest submodule M ≤ L with these

characters has dimension 2457 = 6 × 9 + 9 × 35 + 16 × 36 + 18 × 84. We

work with images of G-modules U and W with respective characters 9 and

35. The spaces HU and HW have dimensions 6 and 9, respectively. As

in Section 4, we compute explicit bases for them using the Meataxe and
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condensation. If h ∈ HW and h(W ) belongs to a subalgebra of L with type

E8, then [h(W ), h(W )] ⊂ M . As usual, this reduces to a relative eigenvector

problem. In this case a partial solution to the problem shows that h lies in

a particular 4-dimensional subspace H†

W ≤ HW .

Now, all pairs (hW , hU ) ∈ H†

W ×HU for which hW (W ) and hU (U) could

lie in an E8-subalgebra of L satisfy [hW (W ), hU (U)] ⊂ M . Again this is a

relative eigenvector problem. In this case, the solution shows that either hW

belongs to a particular 1-dimensional subspace H‡

W ≤ H†

W or hU belongs to

one of two particular 2-dimensional subspaces H†

U and H‡

U in HU . Further,

H†

U and H‡

U are interchanged by an element of C — this means we need

only track solutions from one of these alternatives since solutions in the

other follow in lock step.

The subspaceH‡

W (W ) turns out to be barren, but instead of an intricate

computation to verify that it cannot extend to an E8-subalgebra, we just

observe by computation that H‡

W (W ) generates a copy of A8 in L. Hence,

even if it could extend to a copy of E8, this copy would contain an invariant

A8-subalgebra.

We must now consider the other case, of an E8-subalgebra in L that is

C-conjugate to one that contains the image of a non-trivial element of H†

U .

Here, we compute that the subalgebra of L generated by H†

U(U) has type

A8⊕A8. (As it happens, it contains the A8-subalgebra mentioned in the last

paragraph.) Working over a quadratic extension of k, we obtain elements h1

and h2 in H†

U for which the two images hi(U) generate commuting algebras

of type A8 in L. Moreover, exactly two elements of the form h = h1 + xh2,

with 0 	= x ∈ k, have the property that h(U) generates a copy of A8. For all

other values of x we get a subalgebra with at least two 9-dimensional Alt10-

constituents. (This is because the intersection of [[h(U), h(U)], h(U)] with

HU(U) depends cubically on x. The condition that this intersection should

coincide with h(U) is a cubic in x with a known root x = 0 and two other

roots, which turn out to be mutually negative.) We have now established:

Theorem 2. Any Alt10-invariant E8-subalgebra of L contains an Alt10-

invariant subalgebra of type A8.
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We computed further properties of the four H†

U -elements h1, h2 and

h1 ± xh2 described above. Only the images of the last two extend to G-

invariant copies of E8 in L. However, this machine computation is not

needed here.

Observe that there are known embeddingsAlt10 ≤ 3A8(C) and 3A8(C) ≤

E8(C). Moreover, any two Alt10 subgroups of the 3A8 subgroup are conju-

gate, because there is only one nontrivial 9-dimensional character for Alt10.

Further, since our machine calculation shows that any Alt10 subgroup of E8

is conjugate to a subgroup of the 3A8 subgroup of E8, we apply [11, Remark

4.14] to Alt10 to see that any two Alt10 subgroups of E8 are conjugate in E8.

A final computation shows that each of the A8-subalgebras that extend

to copies of E8 contains a G-invariant subalgebra with character 36 and

type B4. This also follows from the observation that the embedding into E8

can be realized through an intermediate subgroup 2D8. Accordingly, any

G-invariant algebra of type E8 must contain G-invariant subalgebras with

types A8 and D8, with respective characters 9 + 35 + 36 and 36 + 84. The

intersection of these subalgebras is aG-invariant subalgebra which must have

character 36 (since 36 has multiplicity 1 in the character of the embedding

of G in E8).
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