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Abstract

Motivated by an earlier result of N. Katz, we establish all possible equalities between

symmetric squares, alternating squares, and tensor products of complex irreducible Weil

characters of finite symplectic groups in odd characteristic. We also construct an infi-

nite series of examples of irreducible symmetric cubes and alternating cubes of complex

representations of finite groups.

1. Introduction

The so-called Weil representations were introduced by A. Weil [30] for

classical groups over local fields. Weil mentioned that the finite field case

may be considered analogously. This was developed in detail by R. E. Howe

[12] and P. Gérardin [8], for characteristic zero representations. The same

complex representations were introduced independently by I. M. Isaacs [13]

and H. N. Ward [29] for finite symplectic groups Sp
2n(q) with q odd, and by
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G. M. Seitz [22] for finite unitary groups. (These representations for Sp
2n(p)

were also constructed in [3].) Weil representations attract much attention

because of their many interesting features, cf. for instance [4], [5], [9], [10],

[20], [21], [24], [25], [31].

The construction of Weil representations may be found in [12], [8], [22],

etc. Let us recall this construction in the case of G = Sp
2n(q), where q is a

power of an odd prime p > 2 and n ≥ 1. Let V = F
2n
q be endowed with a

non-degenerate symplectic form (·, ·) : V × V → Fq. Then one checks that

Q := {(α, v) | α ∈ Fq, v ∈ V }, considered with the operation

(α, v) · (β,w) = (α+ β + (v,w), v + w)

is a p-group (of special type), with

Z(Q) = [Q,Q] = Φ(Q) = {(α, 0) | α ∈ Fq}

being elementary abelian of order q. Then G = Sp(V ) acts on Q as outer

automorphisms that act trivially on Z(Q).

Fix a nontrivial linear character ψ of the additive group (Fq,+). Then ψ

can be naturally viewed as a character of Z(Q). One can show, cf. [10, §13],

that there is a unique (up to equivalence) complex irreducible representation

Φ of Q of degree qn that affords the character qnψ of Z(Q). For any g ∈ G,

the action of g on Q fixes ψ and so sends Φ to an equivalent representation

Λ(g)ΦΛ(g)−1 for some Λ(g) ∈ GLqn(C). The map g �→ Λ(g) is in fact a

projective representation of G and can be lifted to a linear representation

Ω, see [10, §13], which is called a reducible Weil representation of G, with

character ω = ωn. The latter character can be decomposed into the sum

η + ξ of two (irreducible) Weil characters, which correspond to the two

eigenspaces of Ω(j), where Z(G) = 〈j〉 ∼= C2. Here, η has degree (qn − 1)/2

and ξ has degree (qn + 1)/2.

The character ω remains unchanged in the above construction if one

replaces ψ by another character ψa : x �→ ψ(ax) as long as a ∈ F
×2

q . If,

however, we replace ψ by ψ∗ : x �→ ψ(ax) for some a ∈ F
×

q � F
×2

q , then we

get a new character ω∗ = η∗ + ξ∗, which is the sum of another pair of Weil

characters, η∗ of degree (qn − 1)/2 and ξ∗ of degree (qn + 1)/2. It is also
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convenient to consider H = CSp(V ), the group of conformal transformations

of the symplectic space V :

H = {f ∈ GL(V ) | ∃κ(f) ∈ F
×

q , (f(u), f(v)) = κ(f)(u, v),∀u, v ∈ V.}

Then a conjugation by f ∈ H with κ(f) ∈ F
×

q �F
×2

q fuses ω with ω∗, η with

η∗, and ξ with ξ∗, see [10, Lemma 13.4].

In the course of his study of finite monodromy groups on A
1, Nick Katz

[14] noted that, when n = 1 the alternating square ∧2(ξ) coincides with ei-

ther Sym2(η) or Sym2(η∗). The goal of this paper is to show that in fact this

phenomenon, as well as several other interesting equalities between symmet-

ric square, alternating squares, and tensor products, of Weil representations

indeed occur for all n.

Theorem 1.1. Let q be an odd prime power, n any positive integer, and

let {η, ξ}, {η∗, ξ∗} be the two pairs of complex Weil characters of Sp
2n(q)

defined above. Then the following statements hold.

(i) ξη = ξ∗η∗. However, ξη∗ 	= ξ∗η, ξ2 	= (ξ∗)2, and η2 	= (η∗)2.

(ii) Suppose q ≡ ±1(mod 8). Then

Sym2(η) = Sym2(η∗) = ∧2(ξ) = ∧2(ξ∗).

However, Sym2(ξ) 	= Sym2(ξ∗), ∧2(η) 	= ∧2(η∗).

(iii) Suppose q ≡ ±3(mod 8). Then

Sym2(η) = ∧2(ξ∗), Sym2(η∗) = ∧2(ξ), Sym2(ξ) = Sym2(ξ∗),

∧2(η) = ∧2(η∗).

However, Sym2(η) 	= Sym2(η∗) and ∧2(ξ) 	= ∧2(ξ∗).

Let ε := (−1)(q−1)/2. Our proof of Theorem 1.1 relies on the following

result which is of independent interest:

Theorem 1.2. Let j denote the central involution of Sp
2n(q). Then for any

element g ∈ Sp
2n(q),

ω(g)ω(jg) = εnω(g2), ω∗(g)ω∗(jg) = εnω∗(g2)
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if q ≡ ±1(mod 8), and

ω(g)ω(jg) = εnω∗(g2), ω∗(g)ω∗(jg) = εnω(g2)

if q ≡ ±3(mod 8).

In the next theorem, we construct, for the first time, infinite series of

examples of irreducible symmetric cubes and alternating cubes of complex

representations (of finite groups of Lie type of degree > 1), as well as irre-

ducible tensor products of complex representations, with one factor being

non-Weil. Note that previous examples of the latter kind [18] all involve

only Weil representations. Furthermore, it was shown in [11] that, if k ≥ 4

and Φ is a complex irreducible representation of a finite group G of degree

≥ 5 then Symk(Φ) cannot be irreducible, unless G is one of a few (explicitly

known) groups of small order. In fact, we also exhibit examples of complex

representations Φ of degree > 1 with S2,1(Φ) being irreducible, where S2,1(·)

is the Schur functor labeled by the partition (2, 1), cf. [6, §6.1]. Questions

about irreducibility of tensor products and symmetric/alternating powers

(or more generally, of Sλ(Φ) for Schur functors Sλ labeled by partitions λ of

a small positive integer) of representations Φ of finite groups are of interest

to the Aschbacher-Scott program [1], [2] of classifying maximal subgroups of

finite classical groups, cf. [15], [16], [17], [19].

Theorem 1.3. Suppose that n ≥ 3. Then the following characters

∧3(ξ), Sym3(η), Sym3(ξ)− ξ̄, ∧3 (η)− η̄, Sym2(ξ)⊗ η,

∧2(η)⊗ ξ, ∧2 (ξ)⊗ η − η̄, Sym2(η)⊗ ξ − ξ̄, S2,1(ξ), S2,1(η)

of Sp
2n(3) are all irreducible and pairwise distinct.

Some (but not all) of our results can also be extended to the modular

case. We restrict ourselves to formulate the result in some interesting cases.

Let G = Sp
2n(q) with q odd as above, and let F be an algebraically closed

field of characteristic � � 2q. It is well known, cf. [10, Proposition 13.6],

that there are irreducible FG-modules U , respectively, Ũ , W , and W̃ , whose

Brauer characters are the restriction of η, η∗, ξ, and ξ∗, respectively, to the

�′-elements of G. Recall [32] that if k ≥ 3 then qk − 1 admits a primitive

prime divisor ppd(q, k), that is, a prime divisor of qk−1 that does not divide∏k−1

j=1
(qj − 1). Note that ppd(q, 2n) divides qn + 1.



2018] WEIL REPRESENTATIONS OF SYMPLECTIC GROUPS 447

Theorem 1.4. Suppose that either � � |G|, or � = ppd(q, 2n) and n ≥ 2, or

� = ppd(q, n) and n ≥ 3 is odd, or n = 1 and q ≡ 1(mod 4) and �|(q+1)/2,

or n = 1 and q ≡ 3(mod 4) and �|(q − 1)/2. Then the following statements

hold.

(i) The modules U ⊗W , Ũ ⊗ W̃ , Sym2(U), Sym2(Ũ ), ∧2(W ), ∧2(W̃ ) are

all semisimple. Furthermore, U ⊗W ∼= Ũ ⊗W̃ . If q ≡ ±1(mod 8) then

Sym2(U) ∼= Sym2(Ũ ) ∼= ∧2(W ) ∼= ∧2(W̃ ).

If q ≡ ±3(mod 8), then

Sym2(U) ∼= ∧2(W̃ ), Sym2(Ũ) ∼= ∧2(W ).

(ii) Suppose that q = 3 and n ≥ 3. Then the modules

∧3(W ), Sym3(U), Sym2(W )⊗ U, ∧2 (U)⊗W, S2,1(U), S2,1(W )

of Sp
2n(3) are all irreducible.

2. Weil Character Values

Recall that we have fixed a nontrivial linear character ψ of the additive

group (Fq,+), and let ψ∗(x) = ψ(ax) for some non-square element a ∈ F
×

q .

Let the functions γ, γ∗ : Fq → C be defined via

γ(b) = q−1/2
∑
x∈Fq

ψ(bx2), γ∗(b) = q−1/2
∑
x∈Fq

ψ∗(bx2), ∀b ∈ Fq.

Also, let χ denote the unique linear character of order 2 of the multiplicative

group F
×

q , and let

d(x) := dimFq
Ker(x)

for any x ∈ End(V ).

A key role in our arguments is played by the following result [23, Theo-

rem 1A, Remark 1.3]:

Theorem 2.1. There is a function σ : Sp
2n(q) → F

×

q such that the following

statements hold.



448 R. M. GURALNICK, K. MAGAARD AND P. H. TIEP [December

(i) If g ∈ Sp
2n(q) then

ω(g) = q(1/2)d(g−1V )γ(1)2n−d(g−1V )χ(σ(g)).

(ii) If g ∈ Sp
2n(q) and det(g − 1V ) 	= 0, then σ(g) = det(g − 1V ).

First we record the values of γ(1) and γ∗(1):

Lemma 2.2. γ∗(1) = −γ(1) and {γ(1), γ∗(1)} = {ε1/2,−ε1/2}.

Proof. This follows, for instance, from formula (ii) in [23, §2] and the well-

known character table of Sp
2
(q) ∼= SL2(q), which shows that {ω(t), ω∗(t)} =

{(εq)1/2,−(εq)1/2} for a transvection t ∈ Sp
2
(q) when n = 1, see e.g. [26,

Lemma 2.6(iii)]. ���

Fix a decomposition V = A⊕A∗ into a direct sum of two maximal totally

isotropic subspaces. Then the stabilizer of this decomposition is isomorphic

to GL(A) ∼= GLn(q), and the restriction of ω = ωn to GLn(q) gives rise to

the reducible Weil character

τn : g �→ qdimFq
Ker(g−1A) (2.1)

of GL(A) (which is just the permutation character of the action of GL(A)

on the point set of A ∼= F
n
q ). Similarly, one can embed GU(B) ∼= GUn(q) in

Sp
2n(q) (where B = F

n
q2

is endowed with a non-degenerate Hermitian form),

and then the restriction of ωn to GUn(q) gives rise to the reducible Weil

character

ζn : g �→ (−1)n(−q)
dimF

q2
Ker(g−1B)

(2.2)

of GU(B), cf. [8].

On the other hand, G = Sp
2n(q) can also be naturally embedded in

GL2n(q) and GU2n(q), and one has the following formulae for the restriction

of τ2n and ζ2n to G:

Lemma 2.3. The following statements hold.

(i) For any g ∈ Sp
2n(q), ω

∗(g) = (−1)d(g−1V )ω(g).

(ii) If q ≡ 1(mod 4), then (ωn)
2 = (ω∗

n)
2 = (τ2n)|G and ωnω

∗

n = (ζ2n)|G.

(iii) If q ≡ 3(mod 4), then (ωn)
2 = (ω∗

n)
2 = (ζ2n)|G and ωnω

∗

n = (τ2n)|G.
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Proof. (i) follows from Theorem 2.1(i) and Lemma 2.2. By the same state-

ments, we also have

ω(g)2 = qd(g−1V )ε2n−d(g−1V ) = (εq)d(g−1V ),

and

ω(g)ω∗(g) = qd(g−1V )(−ε)2n−d(g−1V ) = (−εq)d(g−1V ),

whence (ii) and (iii) follow. ���

Note that the function σ is multiplicative in the sense that if V = A⊕B

is an orthogonal sum of two non-degenerate subspaces and g = xy with

x ∈ Sp(A) and y ∈ Sp(B), then σ(g) = σ(x)σ(y), cf. [23, §4.2.1]. It follows

from Theorem 2.1(i) that

ωn(g) = ωk(x)ωn−k(y), (2.3)

if dimA = 2k and dimB = 2n− 2k.

Proposition 2.4. For any g ∈ Sp
2n(q), the following statements hold.

(i) d(g2 − 1V ) = d(g − 1V ) + d(jg − 1V ).

(ii) d(jg2 − 1V ) is even. In particular, ω(jg2) = ω∗(jg2).

Proof. Without loss we may extend the symplectic form (·, ·) to Ṽ :=

V ⊗Fq
Fq and then replace V by Ṽ (which we then denote by V again), and

Sp
2n(Fq) by Sp

2n(Fq). Let s and u denote the semisimple and unipotent

part of g, and let Vλ := Ker(s − λ · 1V ) for any λ ∈ F
×

q . Also, let i and −i

denote the two square roots of −1 in Fq. Then

V =
⊕
λ∈F

×

q

Vλ. (2.4)

(i) It suffices to show that Ker(g2 − 1V ) = Ker(g − 1V )⊕Ker(g + 1V ). One

inclusion is obvious. For the other inclusion, let v ∈ Ker(g2 − 1V ). Then

s2(v) = v, and the decomposition (2.4) implies that v = v++v− with v+ ∈ V1

and v− ∈ V−1. As g2 = s2u2 fixes v and stabilizes each of V1 and V−1, we

must have that

u2(v+) = v+, u2(v−) = v−. (2.5)
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Note that the order of the unipotent element u is odd, so (2.5) implies that

u fixes each of v+ and v−. Thus v+ ∈ Ker(g − 1V ) and v− ∈ Ker(g + 1V ),

and the statement follows.

(ii) Note that Vλ ⊥ Vμ whenever λμ 	= 1; in particular, V±i ⊥ Vλ whenever

λ 	= ±i. It follows that W := Vi ⊕ V−i is a g-invariant non-degenerate sub-

space of V . Furthermore, the subspaces Vi and V−i are both totally isotropic,

and of the same dimension since s and s−1 are conjugate in Sp(V ), see [28,

Proposition 3.1]. Thus both V±i are maximal totally isotropic subspaces of

W , and we can identify V−i with the dual space V ∗

i . As u stabilizes each

of V±i, it follows that Ker((u|Vi
)2 − 1Vi

) and Ker((u|V−i
)2 − 1V−i

) have the

same dimension. Arguing as in (i), we can show that

Ker(jg2 − 1V ) = Ker((u|Vi
)2 − 1Vi

)⊕Ker((u|V−i
)2 − 1V−i

).

Hence Ker(jg2− 1V ) has even dimension, yielding the first part of the state-

ment. The second part now follows from Lemma 2.3(i). ���

It suffices to prove just one of the two identities in Theorem 1.2 (in each

of the two cases for q); the other identity then follows using a conjugation

by some x ∈ CSp
2n(q).

Proposition 2.5. Theorem 1.2 holds if g ∈ Sp
2n(q) is unipotent.

Proof. (i) Since both ω and ω∗ are multiplicative, see (2.3), it suffices to

prove the statement in the case g fixes no proper non-degenerate subspace

of V . Since g is unipotent, it follows from the proof of [27, Proposition 7.1]

that the Jordan canonical form of g on V is either a single block J2k of even

size 2k, or a direct sum tJk of t ≥ 1 Jordan blocks of the same odd size k

(in fact t = 2, but we do not need it).

Note that det(jg − 1V ) = (−2)2n is a square in F
×

q , so by Theorem 2.1

and Lemma 2.2 we have that χ(σ(jg)) = 1 and

ω(jg) = εn. (2.6)

Suppose in addition that q ≡ ±1(mod 8). Then 2 is a square in F
×

q by

quadratic reciprocity. By [27, Proposition 7.1] and its proof, g and g2 are

conjugate in G = Sp
2n(q). In particular, ω(g) = ω(g2), and so we are done
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by (2.6). So it remains to consider the case q ≡ ±3(mod 8), equivalently, 2

is not a square in F
×

q .

(ii) Consider the case g acts on V as J2k, i.e. k = n and g is a regular

unipotent element. By [27, Lemma 7.2], there is some x ∈ H � Z(H)G

conjugating g to g2, where H = CSp
2n(q). As mentioned above, H fuses ω

and ω∗, and certainly Z(H)G fixes each of ω and ω∗. Hence ω∗ = ωx, and

so

ω∗(g2) = ωx(gx) = ω(g),

and we are again done by (2.6).

(iii) Now we may assume that the Jordan canonical form of g on V is tJk for

some odd k. By part (c) of the proof of [27, Proposition 7.1], g and g2 are

conjugate in G, and so ω(g) = ω(g2) and also d(g − 1V ) = d(g2 − 1V ). As

tk = 2n, we have that d(g− 1V ) = t is even, whence d(g2 − 1V ) is even. The

latter implies by Lemma 2.3(i) that ω∗(g2) = ω(g2). Thus ω∗(g2) = ω(g),

and we are done by (2.6). ���

Proof of Theorem 1.2. Let s denote the semisimple part of g. Then we

can decompose V as an orthogonal sum V = V ′ ⊕ V1 ⊕ V−1 of g-invariant

non-degenerate subspaces, where s acts as 1V1
on V1, −1V−1

on V−1, and

neither 1 nor −1 is an eigenvalue for s|V ′ . Again using the multiplicativity

of ω and ω∗ in the sense of (2.3), it suffices to prove the statement in the

case g fixes no proper non-degenerate subspace of V . The latter condition

on g implies that exactly one of the three summands V ′, V1, V−1 is nonzero

(and then equal to V ).

Suppose V = V1. Then g is unipotent, and we are done by Proposition

2.5.

Next suppose that V = V−1. Then jg is unipotent and g2 = (jg)2, and

so we are again done by applying Proposition 2.5 to jg.

Thus we may assume now that V = V ′, i.e. det(g2 − 1V ) 	= 0 and

d(g2 − 1V ) = 0. By Proposition 2.4(i),

d(g − 1V ) = d(jg − 1V ) = 0, det(g − 1V ) 	= 0, det(jg − 1V ) 	= 0.
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It follows by Theorem 2.1 and Lemma 2.2 that

ω(g) = εnχ(det(g − 1V )), ω(jg) = εnχ(det(jg − 1V )) = εnχ(det(g + 1V )).

Hence

ω(g)ω(jg) = χ(det(g2 − 1V )).

On the other hand, Theorem 2.1 and Lemma 2.2 applied to g2 yield

ω∗(g2) = εnχ(det(g2 − 1V )) = ω(g2),

and the statement follows. ���

3. Symmetric and Alternating Squares

In this section, we set δ := εn = (−1)n(q−1)/2. First we give a formula

for the irreducible Weil characters in terms of ω and ω∗:

Lemma 3.1. The following statements hold for any g ∈ G = Sp
2n(q):

ξ(g) =
ω(g) + δω(jg)

2
, η(g) =

ω(g)− δω(jg)

2
,

ξ∗(g) =
ω∗(g) + δω∗(jg)

2
, η∗(g) =

ω∗(g)− δω∗(jg)

2
.

Proof. By [26, Lemma 2.6(i)], j acts on any G-module affording the char-

acter ξ or ξ∗ as the multiplication by δ. Similarly, j acts on any G-module

affording the character η or η∗ as the multiplication by −δ. Hence

ω(g) = ξ(g) + η(g), ω(jg) = ξ(jg) + η(jg) = δξ(g) − δη(g),

and the statements follow. ���

Corollary 3.2. ξη = ξ∗η∗.

Proof. By Lemma 3.1, for any g ∈ Sp
2n(q) we have

ξ(g)η(g) =
ω(g)2 − ω(jg)2

4
, ξ∗(g)η∗(g) =

ω∗(g)2 − ω∗(jg)2

4
.

Since ω(h)2 = ω∗(h)2 for all h ∈ Sp
2n(q) by Lemma 2.3, the statement

follows. ���
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Lemma 3.3.

(i) If q ≡ ±1(mod 8) then Sym2(ξ) 	= Sym2(ξ∗) and ∧2(η) 	= ∧2(η∗).

(ii) If q ≡ ±3(mod 8) then ∧2(ξ) 	= ∧2(ξ∗) and Sym2(η) 	= Sym2(η∗).

(iii) In general, ξη∗ 	= ξ∗η.

Proof. (i) Consider a transvection t ∈ G = Sp
2n(q). As mentioned in

part (i) of the proof of Proposition 2.5, q ≡ ±1(mod 8) implies that t2 is

conjugate to t in G. Hence [26, Lemma 2.6(iii)] implies that

Sym2(ξ)(t)=
3+εq2n−1+4qn−1

√
εq

8
, Sym2(ξ∗)(t)=

3+εq2n−1−4qn−1
√
εq

8
.

In particular, Sym2(ξ) 	= Sym2(ξ∗). Similarly, ∧2(η) 	= ∧2(η∗).

(ii) We again evaluate relevant characters at a transvection t ∈ G. Since q ≡

±3(mod 8), 2 is not a square in F
×

q . Hence by the proof of [27, Proposition

7.1], there is some x ∈ H � Z(H)G that conjugates t to t2, where H =

CSp
2n(q) as usual. As mentioned above, ηx = η∗, hence

η∗(t2) = ηx(t2) = η(t).

Now using [26, Lemma 2.6(iii)] we can see that

Sym2(η∗) =
η∗(t)2 + η(t)

2
=

−1 + εq2n−1 + 4qn−1
√
εq

8
.

Similarly, one computes that

Sym2(η) =
η(t)2 + η∗(t)

2
=

−1 + εq2n−1 − 4qn−1
√
εq

8
,

and so Sym2(η) 	= Sym2(η∗). The inequality ∧2(ξ) 	= ∧2(ξ∗) is proved in the

same way.

(iii) Again we use [26, Lemma 2.6(iii)] to see

ξ(t)η∗(t) =
−(1 + qn−1

√
εq)2

4
	=

−(1− qn−1
√
εq)2

4
= ξ∗(t)η(t). ���
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Proof of Theorem 1.1. By Lemma 3.1 and Lemma 2.3(i) we have

∧2(ξ)(g) =
ω(g)2 + ω(jg)2 + 2δω(g)ω(jg)

8
−

ω(g2) + δω(jg2)

4
,

∧2(ξ∗)(g) =
ω(g)2 + ω(jg)2 + 2δω∗(g)ω∗(jg)

8
−

ω∗(g2) + δω∗(jg2)

4
.

(3.1)

Similarly,

Sym2(η)(g)=
ω(g)2 + ω(jg)2−2δω(g)ω(jg)

8
+

ω(g2)−δω(jg2)

4
,

Sym2(η∗)(g)=
ω(g)2 + ω(jg)2−2δω∗(g)ω∗(jg)

8
+

ω∗(g2)−δω∗(jg2)

4
.

(3.2)

Also, by Proposition 2.4(ii) we have

ω(jg2) = ω∗(jg2). (3.3)

(i) First we consider the case q ≡ ±1(mod 8). By Theorem 1.2,

ω(g)ω(jg) = δω(g2), ω∗(g)ω∗(jg) = δω∗(g2).

Together with (3.1), (3.2), and (3.3), this implies that

∧2(ξ) = ∧2(ξ∗) = Sym2(η) = Sym2(η∗).

(ii) Assume now that q ≡ ±3(mod 8). By Theorem 1.2,

ω(g)ω(jg) = δω∗(g2), ω∗(g)ω∗(jg) = δω(g2). (3.4)

Together with (3.1), (3.2), and (3.4), this implies that

∧2(ξ) = Sym2(η∗), ∧2 (ξ∗) = Sym2(η).
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We also have by Lemma 3.1 and Lemma 2.3(i) that

Sym2(ξ)(g) =
ω(g)2 + ω(jg)2 + 2δω(g)ω(jg)

8
+

ω(g2) + δω(jg2)

4
,

Sym2(ξ∗)(g) =
ω(g)2 + ω(jg)2 + 2δω∗(g)ω∗(jg)

8
+

ω∗(g2) + δω∗(jg2)

4
,

∧2(η)(g) =
ω(g)2 + ω(jg)2 − 2δω(g)ω(jg)

8
−

ω(g2)− δω(jg2)

4
,

∧2(η∗)(g) =
ω(g)2 + ω(jg)2 − 2δω∗(g)ω∗(jg)

8
−

ω∗(g2)− δω∗(jg2)

4
.

Using (3.3) and (3.4), we arrive at

Sym2(ξ) = Sym2(ξ∗), ∧2 (η) = ∧2(η∗). (3.5)

(iii) The remaining statements in Theorem 1.1 now follow from Corollary

3.2 and Lemma 3.3. ���

Note that in the case q = 3, 5 formula (3.5) and Corollary 3.2 were

established in [18, Proposition 5.5], but by different means, along the lines

of §4. We also note that, even though special unitary groups SUn(q) admit

complex irreducible Weil characters of degree k and k + 1 for a suitable k,

the symmetric square of the smaller-degree character does not coincide with

the alternating square of another Weil character of the larger degree.

A further remark is that Theorem 1.1 establishes the existence of some

isomorphisms between certain symmetric and alternating squares of complex

Weil modules. It remains a question if one can construct natural isomor-

phisms between these pairs of complex modules in those cases.

4. Symmetric and Alternating Cubes

Recall the Weil character τn of GLn(q) as defined in (2.1).

Lemma 4.1. Fix a positive integer k and let

s(k, n) := [(τ2n)
k|Sp2n(q)

, 1Sp2n(q)
]Sp2n(q).

Then s(k, n) = s(k, k) for all n ≥ k.
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Proof. Note that s(k, n) is just the number of G-orbits on the set V k of

ordered k-tuples (v1, . . . , vk), with vi ∈ V = F
2n
q and G = Sp(V ). Fix a

symplectic basis (e1, . . . , en, f1, . . . , fn) of V , i.e. (ei, ej) = 0 = (fi, fj) and

(ei, fj) = δi,j. Also, let

Uj := 〈e1, . . . , ej , f1, . . . , fj〉Fq

for 1 ≤ j ≤ k.

(i) First we show that any G-orbit on V k intersects (Uk)
k, which implies

that s(k, n) ≤ s(k, k). In fact, we will prove by induction on 1 ≤ j ≤ k that

the G-orbit of any α = (v1, . . . , vj) ∈ V j intersects (Uj)
j .

For the induction base j = 1, we can certainly find g ∈ G such that

g(v1) = e1 ∈ U1.

For the induction step j ≥ 2, we may assume that there is some g ∈ G

such that g(vi) ∈ Uj−1 for all 1 ≤ i ≤ j − 1. Now write g(vj) = u+ w with

u ∈ Uj−1, w ∈ W := 〈ej , . . . , en, fj , . . . , fn〉Fq
.

Then we can find h ∈ Sp(W ) ≤ G such that h acts trivially on Uj−1 and

h(w) = ej , and observe that

hg(α) = (g(v1), . . . , g(vj−1), u+ ej) ∈ U j
j .

(ii) Conversely, suppose that (u1, . . . , uk), (v1, . . . , vk) ∈ Uk belong to the

same G-orbit, i.e. there is some g ∈ G such that g(ui) = vi for all i.

Then g|M is an isometry between the subspaces M := 〈u1, . . . , uk〉Fq
and

〈v1, . . . , vk〉Fq
of Uk. By Witt’s lemma, g|M extends to some h ∈ Sp(Uk),

whence (u1, . . . , uk) and (v1, . . . , vk) belong to the same Sp(Uk)-orbit. Thus

s(k, k) ≤ s(k, n). ���

Corollary 4.2. For G = Sp
2n(3) and n ≥ 3,

[ω3, ω3]G = 80.

Proof. By Lemma 2.3(iii),

[ω3, ω3]G = [(ωω̄)3, 1G]G = [(τ6)
3|G, 1G]G = s(3, n).
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Direct computation using [7] shows that s(3, 3) = 80, and so we are done by

Lemma 4.1. ���

Proof of Theorem 1.3. From now on, let G = Sp
2n(3) with n ≥ 3. By

[10, Lemma 13.4],

ω∗ = ω̄, ξ∗ = ξ̄, η∗ = η̄.

(i) First we note by Theorem 1.1 and [18, Proposition 5.4] that the characters

Sym2(ξ) = Sym2(ξ̄), ∧2 (η) = ∧2(η̄), ξη = ξ̄η̄

Sym2(η), Sym2(η̄), ∧2 (ξ), ∧2 (ξ̄), ξη̄, ξ̄η
(4.1)

are all irreducible, but ∧2(ξ) 	= ∧2(ξ̄). It follows that

[Sym2(ξ)⊗ ξ, ξ̄]G = [Sym2(ξ),Sym2(ξ̄) + ∧2(ξ̄)]G = 1,

[∧2(ξ)⊗ ξ, ξ̄]G = [∧2(ξ),Sym2(ξ̄) + ∧2(ξ̄)]G = 0.
(4.2)

On the other hand,

Sym2(ξ)⊗ ξ = Sym3(ξ) + S2,1(ξ), ∧2 (ξ)⊗ ξ = ∧3(ξ) + S2,1(ξ), (4.3)

where S2,1(·) is the Schur functor labeled by the partition (2, 1) of 3, see [6,

(6.8), (6.9)]. Hence, (4.2) implies that [S2,1(ξ), ξ̄]G = 0 and

[Sym3(ξ), ξ̄]G = 1; (4.4)

in particular, Sym3(ξ) is not irreducible. Similarly,

[Sym2(η) ⊗ η, η̄]G = [Sym2(η),Sym2(η̄) + ∧2(η̄)]G = 0,

[∧2(η) ⊗ η, η̄]G = [∧2(η),Sym2(η̄) + ∧2(η̄)]G = 1,

implying that

[∧3(η), η̄]G = 1. (4.5)

In particular, ∧3(η) is not irreducible. Also, by Theorem 1.1(iii) we have

[∧2(ξ)⊗ η, η̄]G=[Sym2(η̄)⊗ η, η̄]G = [Sym2(η̄),Sym2(η̄)+∧2(η̄)]G=1,
(4.6)

[Sym2(η)⊗ ξ, ξ̄]G=[∧2(ξ̄)⊗ ξ, ξ̄]G = [∧2(ξ̄),Sym2(ξ̄)+∧2(ξ̄)]G=1.
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Now using (4.3), (4.4), (4.5), and (4.6), we can decompose

ω3 = (ξ + η)3 = ξ3 + η3 + 3ξ2 ⊗ η + 3η2 ⊗ ξ

= Sym3(ξ) + ∧3(ξ) + 2S2,1(ξ) + Sym3(η) + ∧3(η) + 2S2,1(η)

+3Sym2(ξ)⊗ η + 3 ∧2 (ξ)⊗ η + 3Sym2(η) ⊗ ξ + 3 ∧2 (η)⊗ ξ

= (Sym3(ξ)− ξ̄) + ∧3(ξ) + 2S2,1(ξ) + Sym3(η) + (∧3(η) − η̄) + 2S2,1(η)

+3Sym2(ξ)⊗ η + 3(∧2(ξ)⊗ η − η̄) + 3(Sym2(η)⊗ ξ − ξ̄)

+3 ∧2 (η)⊗ ξ + 4ξ̄ + 4η̄ (4.7)

into a sum of true characters of G. This decomposition implies in particular

that [ω3, ω3]G ≥ 80. On the other hand, Corollary 4.2 states that [ω3, ω3]G =

80. It follows that the summands in the last expression given in (4.7) for ω3

must be all irreducible and pairwise distinct. ���

5. The Modular Case

In this section, we prove Theorem 1.4. The statements are obvious if

� � |G|, so we will assume that �||G|. Now the assumption on � implies

that �|(q2n − 1), and that any irreducible character θ of G has �-defect 0 if

�|(qn − 1) but (qn − 1)/(q − 1)|θ(1), or if �|(qn + 1) but (qn + 1)/2|θ(1).

(a) Now, in the case of Theorem 1.4(ii), note by Theorem 1.3 that the Brauer

character ϕ of any module in the list is the reduction modulo � of some

irreducible character θ ∈ Irr(G) of degree divisible by (q2n − 1)/4. By

the aforementioned remark, θ has �-defect 0, and so ϕ is irreducible as

claimed.

(b) We will now work on the proof of Theorem 1.4(i). As mentioned in

[18, §5], the restriction of the character τ2n in Lemma 2.3 to G is the

sum of twice the trivial character, an irreducible character αn of degree

(qn − 1)(qn + q)/2(q − 1) (of multiplicity 1), an irreducible character

βn of degree (qn + 1)(qn − q)/2(q − 1) (of multiplicity 1) if n > 1, two

irreducible characters of degree (q2n − 1)/2(q − 1) (each of multiplicity

1), and (q− 3)/2 irreducible characters of degree (q2n − 1)/(q − 1) (each

of multiplicity 2).

Similarly, the restriction of the character ζ2n in Lemma 2.3 to G is the

sum of an irreducible character γn of degree (qn + 1)(qn + q)/2(q + 1)
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generally those cases where the centralizer is finite or small-dimensional.

Two of these cases are resolved in this paper. We now give some details

about the unresolved cases from [14].

We first introduce a definition and then discuss the problem cases. An

organizing principle in much of this work is the notion of a fusion pattern,

defined as in [15, 1.2].

Definition 1. A fusion pattern from the group M to the group N is a

function f from the set of conjugacy classes of M to the set of conjugacy

classes of N such that

1. if κ is a class in M of order n then f(κ) is a class in N of elements of

order n.

2. f commutes with power maps, that is, if κ(m) denotes the conjugacy

class of all mth powers of elements of κ, a conjugacy class in M , then

f(κ(m)) = f(κ)(m) for every class κ in M and all integers m.

There is a discussion of how we denote fusion patterns as well as a

numbering system for them in the material following [14, Definition 2.3].

We have kept the numbering systems consistent throughout the progression

G2 < F4 < 3E6 < 2E7 < E8 so an Alt6 group with Fusion Pattern 260 in F4

would also have Fusion Pattern 260 in 3E6, 2E7 and E8.

Conjugacy results are summarized in [14, Table 1], and are included

(with improvements from this paper) in Table 1 of this paper. Throughout

this paper, we will use Atlas [8] notation or a slight variation of it for char-

acters. When there are two characters of the same degree, we distinguish

them by using subscripts a, b, . . ., etc.

The two cases which are resolved in this paper are Alt10 in E8 and

2Alt10 with Fusion Pattern 1 in E8. The respective adjoint characters are

9+35+36+842 and 36+84+64a+64b. In the case of Alt10 in E8, Frey was able

in [14] to construct instances of an Alt10 subgroup with this fusion pattern

in both the 3A8 and 2D8 subgroups, but was unable to determine whether

those two instances were conjugate to each other, and further, because the

centralizer is 0-dimensional, was unable to rule out the possibility of Lie

primitive instances of this group. The resolution of this case is given in

Section 5.
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In the case of 2Alt10 in E8, Frey was able in [14] to construct an instance

of this group with Fusion Pattern 1 in the 2D8 subgroup, (since the central

involution of this 2Alt10 subgroup comes from the 2B conjugacy class), but

was unable to determine if the class of such groups is unique in the 2D8

subgroup, which is necessary to show that the class is unique in E8. The

resolution of this case is given in Section 4.

Finally, we list the remaining unresolved cases, and the issues for each

of them.

F4

Alt6: In F4, there is an Alt6 subgroup with Fusion Pattern 260 which

has 0-dimensional centralizer. Cohen and Wales were able to construct such

a subgroup in a subgroup of F4 of type A2A2 in [7], but were unable to

show that there were no Lie primitive instances of subgroups with this fusion

pattern. The 26-dimensional characters for this case are the sister characters

8a + 92 and 8b + 92, while the adjoint characters, are 8a + 83b + 102 and its

sister character 83a + 8b + 102.

3E6:

Alt6: In 3E6, there is an Alt6 subgroup with Fusion Pattern 252 which

has 0-dimensional centralizer. In [7, 6.14], Cohen and Wales were able to

construct such a subgroup in 3E6 via a C4 subgroup or an irreducible A2

subgroup. There is also the possibility of Lie primitive embeddings. The

27-dimensional character for this case is 5a + 5b + 8a + 9a.

2E7:

Alt6: In 2E7 there is an Alt6 subgroup with Fusion Pattern 244 which

has 0-dimensional centralizer. There is an instance of an Alt6 subgroup with

this fusion pattern in the 4A7 subgroup. There is also an instance in a

3A2A5 subgroup of 2E7. It is unknown whether or not these two instances

are conjugate to each other. It is also possible that there are Lie primitive

subgroups with this fusion pattern. The characters for this case are 82a+104

and 53a + 53b + 84a + 83b + 93 + 102.
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(of multiplicity 1), an irreducible character δn of degree (qn − 1)(qn −

q)/2(q + 1) (of multiplicity 1) if n > 1, two irreducible characters of

degree (q2n−1)/2(q+1) (each of multiplicity 1), and (q−1)/2 irreducible

characters of degree (q2n − 1)/(q + 1) (each of multiplicity 2).

(c) Here we consider the case where q ≡ 1(mod 4) and moreover �|(q + 1) if

n = 1. Set e := (q2n−1)/2(q−1). By Theorem 1.1(i) and Lemma 2.3(ii),

ξη = ξ∗η∗ and (τ2n)|G − 2ξη is a true character. In particular, every

irreducible constituent of ξη must occur in (τ2n)|G with multiplicity at

least 2. Clearly, 1G is not an irreducible constituent of ξη. It follows from

the remarks in (b) that every irreducible constituent in ξη has degree 2e,

whence it has �-defect 0 (and occurs with multiplicity 1). Hence the

module U ⊗ W is semisimple, and similarly for Ũ ⊗ W̃ . As these two

modules have the same Brauer character, they are isomorphic.

It is well known, cf. [10, Corollary 13.7], that ξ has Frobenius-Schur

indicator +1 and η has Frobenius-Schur indicator −1. Thus 1G is neither

an irreducible constituent of ∧2(ξ), nor of Sym2(η). Next, the common

degree of ∧2(ξ) and Sym2(η) is divisible by e. On the other hand, none

of the integers αn(1), βn(1), and αn(1)+βn(1) is divisible by e. It follows

from the remarks in (b) that every irreducible constituent in ∧2(ξ) and

in Sym2(η) has degree divisible by e, whence they all have �-defect 0.

Hence the modules Sym2(U) and ∧2(W ) are semisimple, and similarly

for Sym2(Ũ) and ∧2(W̃ ). In particular, if any two of these four modules

have the same Brauer character, then they are also isomorphic. Hence

we are done by Theorem 1.1.

(d) Here we consider the case where q ≡ 3(mod 4) and moreover �|(q − 1)

if n = 1. Set f := (q2n − 1)/2(q + 1). By Theorem 1.1(i) and Lemma

2.3(iii), ξη = ξ∗η∗ and (ζ2n)|G − 2ξη is a true character. In particular,

every irreducible constituent of ξη must occur in (ζ2n)|G with multiplicity

at least 2. It follows from the remarks in (b) that every irreducible

constituent in ξη has degree 2f , whence it has �-defect 0 (and occurs with

multiplicity 1). Hence the module U ⊗ W is semisimple, and similarly

for Ũ ⊗ W̃ . As these two modules have the same Brauer character, they

are isomorphic.

As above, the common degree of ∧2(ξ) and Sym2(η) is divisible by f . On

the other hand, none of the integers γn(1), δn(1), and γn(1)+δn(1) is divisible

by f . It follows from the remarks in (b) that every irreducible constituent in
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∧2(ξ) and in Sym2(η) has degree divisible by f , whence they all have �-defect

0. Hence the modules Sym2(U) and ∧2(W ) are semisimple, and similarly

for Sym2(Ũ ) and ∧2(W̃ ). In particular, if any two of these four modules

have the same Brauer character, then they are also isomorphic. Hence we

are again done by Theorem 1.1, and the proof of Theorem 1.4 is completed.
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