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Abstract

We reduce some key calculations of compositions of morphisms between Soergel bi-

modules (“Soergel calculus”) to calculations in the nil Hecke ring (“Schubert calculus”).

This formula has several applications in modular representation theory.

1. Introduction

Determining the modular irreducible characters of the symmetric groups

and of simple groups of Lie type is a major open problem in representa-

tion theory. Recently it has been discovered that there are certain hidden

monoidal categories lurking “behind” or “inside” these categories of rep-

resentations. The two most prominent examples of such categories are the

Khovanov-Lauda-Rouquier categorifications of modules over Kac-Moody Lie

algebras and module categories for Soergel bimodules (which categorify mod-

ules for Weyl groups or their associated Hecke algebras).

In this paper we concentrate on the monoidal category of Soergel bi-

modules. Although the definition of the category of Soergel bimodules is

elementary (as a full subcategory of bimodules over a polynomial ring), cal-

culations can be prohibitively difficult. Performing such calculations is im-

portant, as they often provide a means of calculating an irreducible character

or a decomposition number. This is a theorem for rational representations
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of algebraic groups (if the characteristic is larger than the Coxeter number)

via results of Soergel [18] and Fiebig [8]. A conjecture of Riche and the

second author [17, Conjecture 1.6] would imply that these calculations also

give all characters of tilting modules for algebraic groups, and hence all de-

composition numbers for symmetric groups (this conjecture is a theorem for

GLn in charateristic p > n [17, Theorem 1.8]). The reader is referred to the

introductions of [11] and [17] for a more detailed survey of the connections

between Soergel bimodules and modular representation theory.

Progress on the problem of performing calculations with Soergel bimod-

ules has been made by Libedinsky [14], Elias-Khovanov [4], Elias [3] and

Elias-Williamson [6] culminating in a presentation of the monoidal category

of Soergel bimodules by generators and relations. The description is dia-

grammatic and has led to progress on understanding the category of Soergel

bimodules and its module categories. Though much simpler than calcula-

tions in bimodules, these diagrammatic calculations can still be very difficult.

In particular, it is desirable to find additional simplifications that make

calculations more feasible. In this paper we take the first step in this direc-

tion. The classes of indecomposable Soergel bimodules in the Grothendieck

group are controlled by certain integral symmetric forms known as “intersec-

tion forms”. For the above applications to modular representation theory it

is important to calculate the ranks of these matrices modulo a prime number

p. In this paper we explain that a subset of the entries of these matrices are

canonical, and are given by a simple formula in the nil Hecke ring (see The-

orem 5.1). Let us emphasise that our formula does in general determine the

intersection form entirely. However we still feel our formula is a significant

simplification, and we believe our formula will have other applications. In

the final section of this paper we show that our formula can be used to easily

rederive interesting examples discovered by Kashiwara-Saito and Braden. In

[22] the second author uses this formula to construct many more such exam-

ples, and deduces that the exceptional characteristics occurring in Lusztig’s

conjectured character formula grow exponentially in the rank.

The authors have the optimistic hope that one should be able to reduce

all essential calculations amongst Soergel bimodules to calculations in the

nil Hecke ring. That this is in principle possible is evidenced by the work

of Dyer [1]. Our goal is explicit formulas that allow us to calculate the
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characters of the indecomposable Soergel bimodules algorithmically. This

paper can be seen as a first step in this direction.

2. Background

2.1. Let S be a finite set and (mst)s,t∈S be a matrix with entries in N∪{∞}
such that mss = 1 and mst = mts ≥ 2 for all s 6= t. Let W be a group

generated by S with relations (st)mst = 1 for s, t ∈ S with ms,t < ∞. We

say that (W,S) is a Coxeter system and W a Coxeter group. The Coxeter

group W is equipped with the length function ℓ : W → N and the Bruhat

order ≤.

An expression is a finite sequence of elements of S. We denote by

Ex(S) = ⊔i∈NS
i

the set of all expressions. Let w = (s1, s2, . . . , sm) ∈ Ex(S). The length

ℓ(w) of w is m. A subexpression of w is a sequence (se11 , se22 , . . . , semm ), where

ei ∈ {0, 1} for all i. We call e the associated 01-sequence and simply write

(se11 , se22 , . . . , semm ) as we.

The group multiplication gives a natural map

Ex(S) → W, w 7→ w•,

where w• = s1s2 · · · sm for w = (s1, s2, . . . , sm). Notice that ℓ(w•) ≤ ℓ(w).

If equality holds, then we call w a reduced expression.

Given a subexpression we of w we set (we)• = se11 se22 . . . semm .

2.2. Now we recall the Demazure product.

Let x, y ∈ W . By [9, Lemma 1], the set {uv;u ≤ x, v ≤ y} contains a

unique maximal element. We denote this element by x ∗ y and call it the

Demazure product of x and y. Then

{uv;u ≤ x, v ≤ y} = {w ∈ W ;w ≤ x ∗ y}.

In particular, if x′ ≤ x and y′ ≤ y, then (x′) ∗ (y′) ≤ x ∗ y.
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The operator ∗ gives a monoidal structure on W . This monoidal struc-

ture gives another natural map

Ex(S) → W, w 7→ w∗,

where w∗ = s1 ∗ s2 ∗ · · · ∗ sm for w = (s1, s2, . . . , sm).

By definition, (we)• ≤ w∗ for any 01-sequence e. In particular w• ≤ w∗.

2.3. Given an expression w = (s1, s2, . . . , sm), a 01-sequence e = (e1, e2, . . .,

em) and 0 ≤ k ≤ m, we set w≤k = (s1, . . . , sk), e≤k = (e1, . . . , ek) and

wk = (w
e≤k

≤k )•.

We define the decorated sequence (d1e1, d2e2, . . . , dmem) associated to

(w, e). Here di ∈ {U,D} is the decoration to ei. (Here U stands for “Up”

and D stands for “Down”.) The decoration is defined as follows. For any i,

di =

{
U if wi−1si > wi−1,

D if wi−1si < wi−1.

It will often be convenient to view e as the string

(d1e1, d2e2, . . . , dmem)

in the symbols U0, U1,D0,D1. As the decoration is determined by e and

w, this is no more information. The defect of e is defined to be

df(e) := ♯{i; diei = U0} − ♯{i; diei = D0}.

2.4. The Hecke algebra H of W is the free Z[v, v−1]-algebra with basis Hw

for w ∈ W and multiplication given by

HxHy = Hxy, if ℓ(xy) = ℓ(x) + ℓ(y);

(Hs + v)(Hs − v−1) = 0, for s ∈ S.

For w = (s1, . . . , sm) ∈ Ex(S), we set Hw = Hs1 · · ·Hsm . Then Hw =

Hw•
if w is a reduced expression.

The Hecke algebra H has a Z-linear bar involution ¯ : H → H sending

v to v−1 and Hw to H−1
w−1 for all w ∈ W . For any w ∈ W , the Kazhdan-
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Lusztig element Hw is the unique bar-invariant (i.e. h = h) element in

Hw +
∑

x<w vZ[v]Hx. The elements {Hw | w ∈ W} form a basis of H.

For w = (s1, . . . , sm) ∈ Ex(S), we set Hw = Hs1
· · ·Hsm .

2.5. We fix a realization (in the sense of [6, §3.1]) h of W over a commutative

ring k. Recall that this consists of a free and finitely generated k-module h

together with subsets

{αs}s∈S ⊂ h∗ and {α∨
s }s∈S ⊂ h

of “roots” and “coroots” such that 〈αs, α
∨
s 〉 = 2 for all s ∈ S and the formulas

(for s ∈ S and v ∈ h)

s(v) := v − 〈αs, v〉α∨
s

define an action of W on h.

For simplicity in this paper we will assume that one of the following two

assumptions is satisfied:

(1) k = R and h is the geometric representation of W (defined for example

in [10, Section 5.3]);

(2) h is obtained by extension of scalars from a realization defined over Z for

which the matrix (〈α∨
s , αt〉)s,t∈S is a generalized Cartan matrix (in the

sense of [12, Chapters 1 and 3]).

Additionally, we assume that the maps αs : h → k and α∨
s : h∗ → k are sur-

jective. (This condition is called Demazure surjectivity in [6]. It is automatic

if 2 is invertible in k.)

Remark 2.1. It is possible (and can be interesting, see [2]) to consider

more general realizations, however this can introduce extra subtleties. For

example one may not have a good notion of positive roots and Demazure

operators need not satisfy the braid relations. It is for this reason that we

make the assumptions above.

We denote by R = S(h∗) the symmetric algebra of h∗ over k. We view

R as a graded k-algebra with deg h∗ = 2. Because W acts on h∗, it also
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acts on R by functoriality. For any s ∈ S we define the Demazure operator

∂s : R → R[−2] by

∂s(f) =
f − sf

αs
.

(This is well defined under our assumptions on h, see [6, §3.3].)

2.6. An S-graph is a finite, decorated, planar graph with boundary Γ satis-

fying:

(1) The graph Γ is properly embedded in the planar strip R× [0, 1].

(2) The edges of Γ are colored by S and all vertices are of the following

types:

(i) univalent vertices (“dots”):

(ii) trivalent vertices:

(iii) 2mst-valent vertices:

(We require that there are exactly 2mst edges originating from the

vertex, and that they are alternately colored s and t around the

vertex. For example, the pictured example has mst = 8.)

(3) The regions of Γ may be decorated by boxes containing homogenous

elements of R. (The regions of an S-graph are by definition the connected

components of the complement of Γ in R× [0, 1].)

Here is an example of an S-graph (with ms,t = 5, ms,u = 2, mu,t = 3):

f1

f2

where fi ∈ R are homogenous polynomials. We define the degree of an

S-graph as the sum over the degrees of its vertices and boxes, where each

box has degree equal to the degree of the corresponding element of R, and
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the vertices have degrees given by the following rule: dots have degree 1,

trivalent vertices have degree -1 and 2mst-valent vertices have degree 0. For

example, the degree of the S-graph above is −1+1− 1+ 1− 1− 1+ 1+ 1+

1− 1 + deg f2 + deg f2 = deg f1 + deg f2.

The boundary points of any S-graph on R × {0} and on R × {1} gives

two sequences of colored points, and hence two elements in Ex(S). We call

these two sequences the bottom boundary and top boundary. For example,

the bottom (resp. top) boundary of the S-graph above is (s, t, s, t, t, s, u, t)

(resp. (t, s, t, u, s, t, u, u)).

2.7. We now define the diagrammatic category of Soergel bimodules. Much

greater detail and generality can be found in [3, 6]. The important case of

W of type A is discussed in detail in [4]. Our intention is to give the reader

a summary.

Let SD be the monoidal category whose objects are w ∈ Ex(S). For any

x, y ∈ Ex(S), HomSD(x, y) is defined to be the free R-module generated by

isotopy classes of S-graphs with bottom boundary x and top boundary y,

modulo the local relations below. The structure of a monoidal category is

induced by horizontal and vertical concatenation of diagrams.

Here are the relations. We use the coloring s and t.

2.7.1. Frobenius unit.

= .

2.7.2. Frobenius associativity.

= .

2.7.3. Needle relation.

= 0.
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2.7.4. Barbell relation.

= αs .

2.7.5. Nil Hecke relation.

f = sf + ∂sf

(See §2.5 for the definition of ∂s.)

2.7.6. Two-color associativity.

We give the first three cases, i.e. mst = 2, 3, 4. The reader can probably

guess the general form (see [3] (6.12) for all the details).

mst = 2 (type A1 ×A1):

=

mst = 3 (type A2):

=

mst = 3 (type B2):

=
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2.7.7. The Jones-Wenzl relation.

Elias’ Jones-Wenzl relation expresses a dotted 2mst-vertex

as a linear combination of diagrams consisting only of dots and trivalent

vertices. We will not give the general form of the relation here, as the de-

termination of the coefficients is complicated. (To understand the results of

this paper, explicit knowledge of only the simplest coefficients is necessary.)

We give the details when mst = 2, 3, 4 and refer the reader to [3] for more

information.

mst = 2 (type A1 ×A1):

=

mst = 3 (type A2):

= +

mst = 4 (type B2). Here there are two natural choices of realization,

and this affects the coefficients in the Jones-Wenzl relation. Assume first

that we are using the symmetric “geometric” realization, so that

〈α∨
s , αt〉 = 〈α∨

t , αs〉 = −
√
2.

Here a Jones-Wenzl relation takes the form

= + + +
√
2 +

√
2

and one obtains the other relation by swapping red and blue.
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On the other hand if we take the “Cartan matrix” realization with

〈α∨
t , αs〉 = −2 and 〈α∨

s , αt〉 = −1

(so that the non-simple positive roots are αs + αt and αs + 2αt) then the

relation is not stable under interchanging red and blue, and the Jones-Wenzl

relations are

= + + + 2 +

= + + + + 2

Remark 2.2. A useful mnemonic to remember the placement of the coeffi-

cients in the Jones-Wenzl relation is given by the relation

= πst (2.1)

where πst denotes the product of all positive roots in the root subsystem

corresponding to s, t. The reader can convince themselves that each Jones-

Wenzl relation given above implies that (2.1) holds. With some practice,

(2.1) can be used to remember the placement of the coefficients above.

2.7.8. Zamolodchikov relations

We will not repeat the definition of the Zamolodchikov relations here,

and instead refer the reader to [6, §1.4.3]. (See [7] for topological back-

ground).

2.8. All relations defining SD are homogenous for the grading on S-graphs

defined in §2.6. It follows that the SD is enriched in graded k-modules.

Throughout it will be convenient to view SD as enriched in graded left R-
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modules via

f · D = Df

for an S-graph D and homogenous f ∈ R.

Given a S-graph D we denote by D the S-graph obtained by flipping

the diagram vertically. This operation induces a contravariant equivalence

(also denoted G 7→ G on morphisms) of the monoidal category SD.

2.9. For any x ∈ W , let SD≮x be the quotient category of SD by the ideal

SD<x of SD generated by all the morphisms which factor through y, where y

is a reduced expression for some y < x. Let Hom≮x(−,−) denote morphisms

in SD≮x. The image of any reduced expression for x in SD≮x yields an object

defined up to canonical isomorphism, independent of the choice of reduced

expression (see [6, 6.5]). We denote this object x. We have End≮x(x) = R.

By [6, Theorem 1.1], Hom≮x(w, x) and Hom≮x(x,w) are free (graded) R-

modules with graded basis given by the (images of the) light leaves LLw,e and

LLw,e respectively, where e runs over the 01-sequences with (we)• = x. The

light leaves are constructed in [6, §6.1]. For any w ∈ Ex(S) the intersection

form for w at x is the R-bilinear pairing of graded free R-modules

Ix,w : Hom≮x(x,w)×Hom≮x(w, x) → End≮x(x) = R.

2.10. We give two examples of intersection forms.

First, assume that W is a dihedral group with simple reflections s and t.

Let w = sts, x = s. There are two subexpressions for x: e1 = (U1, U0,D0)

(defect 0) and e2 = (U0, U0, U1) (defect 2). The corresponding light leaves

morphisms are

l1 = and l2 = .

The intersection form is given by the matrix:

(li ◦ l̄j)i,j∈{1,2} =
(
〈αt, α

∨
s 〉 αt

αt αsαt

)
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For example, the upper left entry follows from the following calculation:

= αt = ∂s(αt) + s(αt) = ∂s(αt)

(we use the barbell, nil Hecke and needle relations, as well as ∂s(αt) =

〈αt, α
∨
s 〉). This example shows the existence of torsion in the intersection

cohomology of the Schubert variety indexed by sts if 〈αt, α
∨
s 〉 < −1 (as

happens in B2, G2 and Ã1).

For the second example, assume that W is of type D4 with generators

s, t, u, v such that s, u and v commute. Let w = vuvtsuv, x = suv. We

only give the part of the intersection form corresponding to light leaves mor-

phisms of degree 0. Then there are three subexpressions of defect 0. These

subexpressions, and the corresponding light leaves maps are the following:

U1 U1 U0 U0 D0 D0 U1. U1 U0 U1 U0 D0 U1 D0 U0 U1 U1 U0 U1 D0 D0

We leave it to the reader to pair these morphisms and obtain the intersection

form 


0 −1 −1

−1 0 −1

−1 −1 0




Note that the determinant of this matrix is -2. This example of 2-torsion in

the D4 flag variety was discovered by Braden [21, A.18].

The goal of this paper is to show that light leaves morphisms corre-

sponding to sequences without D1 (like those above) are canonical and to

give a formula for the corresponding entry in the intersection form in terms

of the nil Hecke ring.

2.11. Let SD⊕ denote the additive graded envelope of SD. That is, objects

of SD⊕ are formal direct sums of shifts of the objects w in SD, with obvious

morphisms. We denote by SD⊕,0 the subcategory of SD⊕ consisting only of
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degree zero morphisms, and by Kar(SD) the Karoubian envelope of SD⊕,0.

Then Kar(SD) is a k-linear category with grading shift functor [1].

Under the assumptions of §2.5, the main theorems of [6] give a basis for

hom spaces in SD and deduce a classification of the indecomposable objects

up to isomorphism and shift: for any x and reduced expression x for x, x

has a unique summand bx which is not a summand up to shift of y for any

y < x, and any indecomposable object in Kar(SD) is isomorphic to bx[m]

for some x ∈ W and m ∈ Z.

From this one deduces an isomorphism of Z[v, v−1]-algebras

ε : H
∼→ [Kar(SD)] Hw 7→ w.

where [Kar(SD)] denotes the split Grothendieck group of Kar(SD). For any

w ∈ Ex(S) one has in [Kar(SD)]

[w] =
∑

x∈W

mx[bx]

where mx denotes the graded rank of the intersection form Ix,w. This ex-

plains the central importance of the intersection forms.

In [5] it is proved (using Soergel bimodules) that if k is a field of char-

acteristic 0 then ε sends the Kazhdan-Lusztig basis element Hw to the class

of bw.

2.12. Though it will not be used in this paper, we briefly explain the con-

nection to Soergel bimodules. Let us assume that k is a field of characteristic

6= 2.

For any s ∈ S, we denote by Rs ⊂ R the invariant subring and

Bs = R⊗Rs R[1]

a graded R-bimodule. For any w = (s1, . . . , sm) ∈ Ex(S), we define the

corresponding Bott-Samelson bimodule to be

Bw := Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsm .

Let SBim be the category of Soergel bimodules, that is, the Karoubi envelope

of Bw for all w ∈ Ex(S) inside the category of graded R-bimodules.
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By [19, Satz]1 for any w ∈ W , there exists a unique (up to isomorphism)

indecomposable R-bimodule Bw which occurs as a direct summand of Bw

for any reduced expression w with w• = w, and does not occur as a direct

summand of Bx for any x with w � x∗. The set {Bw}w∈W is a complete set

of indecomposable Soergel bimodules (up to isomorphism and degree shift).

In [6] a functor F : SD → SBim is constructed and it is proved that

F induces an equivalence of monoidal categories Kar(SD)
∼→ SBim. In

particular, F maps bw to Bw, for any w ∈ W .

3. Gobbling Morphisms

3.1. In general light leaves morphisms are not canonical, and this causes

many complications. For example it seems difficult to make all entries in in-

tersection forms canonical. In this section we introduce gobbling morphisms,

which are certain canonical morphisms between Soergel bimodules.

The aim of this section is to prove:

Proposition 3.1. Let w = u1 . . . un be an expression. Any two morphisms

w → w∗ in SD 6<w∗ given by diagrams consisting only of 2mst-valent vertices

and ℓ(w)− ℓ(w∗) trivalent vertices are equal.

Definition 3.2. We call the morphism w → w∗ in SD≮w∗ whose unicity is

given by the previous proposition the gobbling morphism and denote it by

Gw.

Remark 3.3. One has degGw = −(♯ of trivalent vertices in Gw) = ℓ(w∗)−
ℓ(w).

For w in the proposition we can consider the subexpression e := e1 . . . en
defined inductively by the recipe

ei :=

{
1 if wi−1si > wi−1,

0 otherwise.
(3.1)

where wi := (w
e≤i

≤i )•. Obviously (we)• = w∗. Also note that the decoration

of e consists entirely of U1’s and D0’s. Hence (any choice of) the light leaf

1under some mild assumptions on the realization h (which we ignore here).
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morphism Lw,e consists only of 2mst-valent vertices and exactly ℓ(w)−ℓ(w∗)

trivalent vertices. In particular Lw,e satisfies the conditions of Proposition

3.1.

Let lw denote the image of Lw,e in D≮w∗ . We can restate Proposition

3.1 as:

Proposition 3.4. Any morphism w → w∗ in SD 6<w∗ satisfying the condi-

tions of Proposition 3.1 is equal to lw.

This is the version we will prove. We start with some preparatory lem-

mata. The first lemma shows that the space in which the gobbling mor-

phism(s) live is free of rank one, and that this degree is the minimal non-zero

degree:

Lemma 3.5. Hom 6<w∗(w,w∗) is zero in degrees < ℓ(w∗) − ℓ(w) and the

degree ℓ(w∗)− ℓ(w) part of Hom 6<w∗(w,w∗) is of rank 1.

Proof. We know that Hom 6<w∗(w,w∗) has a basis given by light leaf mor-

phisms corresponding to 01-sequences e′ with (we′)• = w∗. Notice that

(we′)• = w∗ implies that the number of 0’s in e′ is less than or equal to

ℓ(w)− ℓ(w∗). Hence df(e′) ≥ ℓ(w∗)− ℓ(w). If the equality holds, then there

are exactly ℓ(w∗) U1’s and exactly ℓ(w) − ℓ(w∗) D0’s in e′. In this case, e′

equals e defined above. ���

Lemma 3.6. Suppose that f : w → w∗ is a morphism in SD 6<w∗ of degree

ℓ(w∗) − ℓ(w). Let e be a subsequence of w such that e has at least one D0

or D1. Fix a choice of light leaf morphism LLw,e : w → (we)• in SD. In

SD 6<w∗ we have:

f

LLw,e

= 0.

Proof. When we precompose f with a 2m-valent vertex we obtain a mor-

phism of the same form. If we precompose f with a dot to obtain a

map g : w′ → w
f→ w∗ then there are two cases:
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(1) if w′
∗ = w∗ then our new morphism g is of the same form as f ;

(2) if w′
∗ 6= w∗ then w′

∗ < w∗ and our new morphism g is zero in SD 6<w∗ .

Hence by our assumptions on e we can assume that we precompose f with a

trivalent vertex or cup (which factors through a trivalent vertex).

Then the fact that these morphisms are 0 follows from the previous lemma

by degree considerations. ���

Let us say that an S-graph ends in a pitchfork if it is equivalent modulo

isotopy and the Frobenius relations to an S-graph of the form

. . . . . .

G

for some S-graph G. For example, the morphisms

and

both end in pitchforks. The following lemma is proved in the same way as

the previous lemma.

Lemma 3.7. Suppose that f : w → w∗ is a morphism in SD 6<w∗ of degree

ℓ(w∗) − ℓ(w). Then f is “killed by all pitchforks”: if uiui+1ui+2 = sts for

some i and simple reflections s, t ∈ S then:

f

. . . . . .
u1 ui ui+1 ui+2

= 0.

This lemma has as a consequence that that adding the “square” of a

2mst-valent vertex does not change a gobbling morphism:

Corollary 3.8. Suppose that f : w → w∗ is a morphism in SD≮w∗ of degree
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ℓ(w∗)− ℓ(w). Let i be such that uiui+1 . . . ui+mst−1 = sts . . . . Then

f

. . . . . .
. . .

. . .

. . .

u1 ui ui+mst−1

=
f

. . . . . .. . .

u1 ui ui+mst−1

.

Proof. As explained in [3, Claim 6.7], two-color associativity §2.7.6 and the

Jones-Wenzl relation §2.7.7 imply that we can write

. . .

. . .

. . .

= . . . + P

where all terms in P end in pitchforks. Now the result follows from Lemma

3.7. ���

Proposition 3.9. If e is defined as in (3.1), then the images of any two

choices of light leaves morphisms Lw,e and L′
w,e in SD 6<w∗ agree.

In the proof of the proposition we will need the notion of a rex move

from [6, §4.2]: a rex move β : x → x′ is a sequence of reduced expressions

x = x0 → x1 → . . . xm = x′ such that each move xi → xi+1 involves the

application of a single braid relation (st . . . → ts . . . (mst-factors) for mst ≥
2). Any two reduced expressions can be linked via rex moves (a theorem of

Matsumoto, see e.g. [15, Theorem 1.9]). Rex moves give morphisms in SD
by composing the corresponding 2mst-valent vertices (see [6, §6.1]).

Proof. We prove the proposition by induction on the defect df(e) of e. If

df(e) = 0 then a choice of light leaf morphism is simply a choice of reduced

expression x for w• together with a rex move w → x. The corollary follows in

this case because the difference between any two rex moves lies in SD<w∗
(a

consequence of Elias’ Jones-Wenzl relation and the Zamolodchikov relations,

see [6, Lemma 7.4]).
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We now assume that df(e) ≥ 1 and let i + 1 denote the position of the

first D0 in e. We can draw two choices of light leaves morphisms as

β

lw′

. . .

. . .
. . .

. . .

w≤i

x

β′

l′w′

. . .

. . .
. . .

. . .

w≤i

x′

where x, x′ are reduced expressions for (w≤i)• both ending in si+1 (coloured

red in the above diagrams). By applying the previous corollary we can

replace β′ by a rex move of the form:

β′′

. . .

w≤i

. . .
β′′′

. . .
x′

x

Now we can slide β′′′ into l′w′ in the right hand diagram above. Hence we

can assume x = x′ in the above diagram. Now we can apply induction to

conclude that lw′ = l′w′ . Thus we can assume that the above two diagrams

are identical except in the boxes corresponding to β and β′. Now the result

follows from Lemma 3.6 and the lemma below. ���

Lemma 3.10. Let β1, β2 be two rex moves from w1 → w2, where w1 and

w2 are reduced expressions. Then we can write

β1 − β2 =
∑

e,e′

ce,e′
LLw1,e

LLw2,e
′

for homogenous ce,e′ ∈ R and where LLw1,e
, LLw2,e

′ are light leaf morphisms

corresponding to subsequences e, e′ having at least one D1 or D0.
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Proof. We know that the left hand side vanishes in SD 6<w1• and hence all

terms on the right hand side factor through some y with y
•
< (w1)•. Assume

for contradiction that there is a term on the right hand side with ce,e′ 6= 0,

where e is a subsequence of w1 without D1 or D0. In particular, df(e) =

ℓ(w1)− ℓ((w1
e)•). For degree reasons df(e′) + deg(ce,e′) = ℓ((w1

e)•)− ℓ(w1).

However df(e′) ≥ ℓ((w1
e)•) − ℓ(w1) and hence deg(ce,e′) = 0 and df(e′) =

ℓ((w1
e)•)− ℓ(w1). Hence e′ consists entirely of U1’s and D0’s, however this

is impossible as w2 is reduced. ���

3.2. Proof of Proposition 3.4 in rank 2

Assume that W is of rank 2, i.e. a dihedral group. We denote the simple

reflections of W by s and t and denote the order of st (possibly ∞) by m.

The longest element of W is w0 (if it exists).

If m = ∞ then the proposition is easy: only trivalent vertices can occur,

and the proposition follows from the fact that any two morphisms

ss . . . s → s (k factors on the left)

consisting of exactly k trivalent vertices and no dots are equal (a consequence

of the Frobenius associativity relation §2.7.2).
From now on we will assume that m is finite. If w∗ 6= w0 then the result

follows similarly to the case m = ∞ above. So we may assume w∗ = w0.

Let us denote by lw the light leaves map w → w∗ as above. In this

section (i.e. until §3.3) we always regard lw as a morphism to bw0
. That

is we always compose with some number ≥ 1 of iterates of the 2mst -valent

vertex.
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We can depict lw schematically as follows (we depict the case m = 4):

lw =
β

with β =

(The dashed region in β denotes any k ≥ 1 compositions of 2m-valent vertices

which will be implicit (and not displayed) in all diagrams until §3.3.)

Lemma 3.11. Let w ∈ Ex(S) with w∗ = w0. In Hom(w,bw0
) we have:

(1)

lw

. . .

. . . . . .

= lw′ .

(2) If w is of the form w = u1 . . . un with uiui+1 . . . ui+m−1 = sts . . . (m

times). Then, in Hom(w,bw0
):

lw

. . .

. . . . . .. . .

. . .

= lw′ .

(In (1) and (2) the definition of w′ should be clear from the diagrams.)
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This lemma is clearly equivalent to Proposition 3.4. (The apparently

missing case of composing with a splitting trivalent vertex does not

satisfy the conditions of Proposition 3.1.) Also, part (1) of the lemma follows

directly from the definitions and the Frobenius associativity relation §2.7.2.
After examining the above picture of lw it is not difficult to see that (2) is

implied by the following two claims:

Claim 3.12. We have:

(m even)

. . .

. . .

=

. . .

. . .

. . .

(m odd)

. . .

. . .

=

. . .

. . .

. . .

Claim 3.13. Suppose k ≤ m and w is of the form

w = sts . . . (k +m-factors)

Then in Hom(w′,bw0
) we have:

(m even)

. . .

...

. . .

. . .

. . .

β

k m

w

w′

= lw′ (m odd)

. . .

...

. . .

. . .

. . .

β

k m

w

w′

= lw′ .

(In both cases the purple line indicates a line that is either blue or red,

depending on the parity of k.)

The first claim is just a restatement of the two-colour associativity re-

lation §2.7.6. It remains to prove Claim 3.13.

We prove Claim 3.13 by induction on k. For k = 0 there is nothing

to prove. The case k = 1 is again a restatement of two-colour associativity

relation §2.7.6. For concreteness we assume that m is even. It is not difficult

to check that the same argument works for m odd.
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Assume first that k is even. Then we can write

. . .

. . . . . .

...

β

k m

=
β

. . .

. . .

. . . . . .

...

m

(we use induction and Proposition 3.4 to rewrite the term on the right hand

side enclosed in the gray box as a light leaves morphism). Hence the term

in the claim is equal to:

β

. . .

. . .

. . . . . .

. . .

= lw′

. . .

. . . . . .

= lw′′

. . .

. . . . . .

(at each step we apply induction to the term in the gray box). Now we are

done by part (1) of Lemma 3.11.

Now assume that k is odd. Then we have

. . .

. . . . . .

...

β

k m

= β

. . .

. . .

. . .

. . . . . .

...

m

= β

. . .

. . .

. . .

. . . . . .

...

m

(again for the first step we apply induction and Proposition 3.4 to simplify
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the term in the gray box). For the second equality we have used the relation

. . .

. . .

. . .

=
. . .

. . .

. . .

which follows by induction (or can be checked direction from two colour

associativity). Now the argument proceeds as in the case of k even.

3.3. Proof of Proposition 3.4 in general

Now take W any Coxeter system. As in the dihedral case it is enough

to establish the following claim:

Lemma 3.14. Let w ∈ Ex(S) with w∗ = x. In SD 6<x we have:

(1)

lw

. . .

. . . . . .

= lw′ .

(2) If w is of the form w = u1 . . . un with uiui+1 . . . ui+m−1 = sts . . . (m

times). Then

lw

. . .

. . . . . .. . .

. . .

= lw′ .

(In (1) and (2) the definition of w′ should be clear from the diagrams.)

As in the dihedral case (1) is immediate from the definitions. It remains
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to prove (2). We depict lw schematically as follows:

LL1

X

LL2

. . .

. . .

. . .
. . .

. . .

w1 w2

x

. . .w∗

(Here w1 = u1 . . . ui−1, w2 = ui+m . . . un and x is a reduced expression for

(w
e≤i−1

≤i−1 )•.) Let us write (w
e≤i−1

≤i−1 )• as x′v where x′ is minimal in x′〈s, t〉 and
v ∈ 〈s, t〉. By Corollary 3.9 we can assume that x is of the form x′ v where

x′ (resp. v) is a reduced expression for x′ (resp. v).

Moreover, by the construction of light leaves we can assume that X has

the form:

X =
. . .

. . .

β

. . .

. . .

...

x′ v sts . . .

Now the claim reduces to a rank 2 calculation, which we have covered in the

previous section.

4. Properties of Gobbling Morphisms

The following important property of gobbling morphisms explains their

name:

Proposition 4.1. Let w = u1 . . . un. Fix 1 ≤ i ≤ n and set w′ :=
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u1 . . . ui−1ui+1 . . . un. We have

Gw

. . .. . .

. . .

ui−1 ui ui+1

=





Gw′

. . .. . .

. . .

ui−1ui+1

if w∗ = w′
∗,

0 otherwise.

In the proof we will need the following lemma:

Lemma 4.2. The following relations hold. In each case P is a linear com-

bination of diagrams, all of which end in pitchforks:

(mst odd) . . .

. . .

=
. . .

+ P (mst even) . . .

. . .

=
. . .

+ P

(mst odd) . . . . . .

. . . . . .

= . . . . . . + P (mst even) . . . . . .

. . . . . .

= . . . . . . + P

(In the second pair of relations the brown and gray lines can be chosen to be

either red and blue, or blue and red.)

Proof. This is a consequence of Elias’ Jones-Wenzl relation. (The only

tricky point is to check that the coefficient of 1 in the right hand term is

correct. The reader can verify directly that this is the case for mst = 2, 3, 4

using the relations we have given.) ���

Proof.[Proof of Proposition 4.1] If w′
∗ 6= w∗ then w′

∗ < w∗ because w′ is a

subexpression of w and the result is zero because we are working in SD 6<w∗ .

So now we assume that w′
∗ = w∗. Let us induct on the number N of

2mst-valent vertices which occur in Gw. If N = 0 then Gw consists only of

trivalent vertices and the result is clear by the Frobenius unit relation §2.7.1.
Now we examine what happens when we apply the relations to simplify

the diagram on the left hand side of the proposition. If the dot first meets

a trivalent vertex then the result is clear from the Frobenius unit relation
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§2.7.1 (the source and target have the same star product because s∗s = s). If

the dot meets a 2m-valent vertex then we can apply Lemma 4.2 to expand it

(and remove the 2m-valent vertex in question). By Lemma 3.7 we can ignore

all the terms labelled P in the lemma. Now we are done by induction (note

that in each of the relations in Lemma 4.2 the expression corresponding to

through strands on the bottom and top boundary of the pictured right hand

term have the same ∗-product). ���

5. Morphisms without D1’s

5.1. The nil Hecke ring

Denote by Q the field of fractions of R.

Consider the smash product QW := Q ∗W . That is, Q ∗W is a free left

Q-module with basis {δw | w ∈ W} and multiplication given by

(fδx)(gδy) = f(xg)δxy.

Inside QW we consider the elements

Ds :=
1

αs
(δid − δs) = (δid + δs)

1

αs
.

The elements Ds satisfy the relations:

D2
s = 0; (5.1)

DsDt . . . = DtDs . . . (mst-factors on both sides) (5.2)

Dsf = (sf)Ds + ∂s(f) for all f ∈ Q. (5.3)

If y ∈ W and y = st . . . u is a reduced expression then, by (5.2), we obtain

well-defined elements

Dy := DsDt . . . Du ∈ QW .

The nil Hecke ring NH is defined to be the R-subring of Q ∗W generated

by {Dw | w ∈ W}. (This is not the definition of Kostant-Kumar [13], but

agrees with it for the realizations they consider.) As a left R-module NH is

free with basis {Dw | w ∈ W}.
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5.2. Given a word w = (s1, . . . , sm) and a subexpression e we have a corre-

sponding light leaves map LLe : w → (we)• in SD 6<we
. Now it is clear from

construction that if the decoration of e has no D1’s then LLe has the form

Gw′

. . .. . .

. . .

w

where w′ is the subword of w consisting of all si such that diei 6= U0 and

Gw′ denotes the gobbling morphism associated to w′. In particular, the light

leaves morphism LLe is canonical in this case.

Consider two subexpressions e1 and e2 of w such that (we1)• = (we2)•.

Define an element of the nil Hecke ring as the product

f(e1, e2) = f1f2 . . . fm

where

fi =





αsi if e1i = e2i = U0,

1 if exactly one of e1i and e2i is U0,

Dsi otherwise.

Finally, define d(e1, e2) as the coefficient of D
(we1 )•

in f(e1, e2). Hence

d(e1, e2) ∈ R.

Theorem 5.1. If (we1)• = (we2)• and the decorations of e1 and e2 have no

D1, then

〈LLe1 , LLe2〉 = d(e1, e2).

Remark 5.2. Given a subexpression e of w let J := {1 ≤ i ≤ m | ei = 1}
and write J = {i1, . . . , ir} with i1 < i2 < · · · < ir. Then e has no D1’s if and

only if (si1 , si2 , . . . , sir) is reduced. That is, e has no D1s if the expression

obtained from we = (se11 , . . . , semm ) by deleting all occurrences of id is reduced.

Proof. Set x = (we1)• = (we2)•. Let w
′1 be the expression obtained from w

by deleting all the places i with die
1
i = U0 and w′2 be the expression obtained
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from w by deleting all the places i with die
2
i = U0. Then x = (w′1)∗ = (w′2)∗.

Therefore:

LLw,e1 ◦ LLw,e2 = Gw′1 ◦K ◦Gw′2 =

Gw′1

Gw′2

w′1

w′2

wK

The graph K consists of vertical edges, vertical dotted edges and boxes. For

example,

K = αs4 αs6 αs11

The graph K is determined by e1 and e2 as follows. At the ith place, we

associate a box labelled by αsi if die
1
i = die

2
i = U0, we associate a vertical

dotted edge with label si if exactly one of die
1
i and die

2
i is U0 and associate a

vertical edge colored by si if neither die
1
i nor die

2
i is U0 (here ∗ ∈ {U1,D0}):

αsi

U0

U0

U0

∗

∗

U0

∗

∗

In the category SD, by using the nil Hecke relation we may write K as

an R-linear combination of graphs consisting of vertical edges, dotted edges

and broken vertical edges. (See 2.7.5 for an example of this process and a

broken edge.) More precisely, consider the following sets:

ε := {i | (die1i , die2i ) 6= (U0, U0)},
εφ := {i | exactly one of die

1
i , die

2
i is U0}.

Thus ε indexes those positions in K which do not correspond to boxes, and

εφ corresponds to those edges in K which carry one dot.

For any γ with εφ ⊂ γ ⊂ ε, let Kγ be the graph obtained from K by
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removing all boxes and breaking any edge corresponding to i ∈ γ − εφ. For

example, with K as above:

Kεφ
=

Kε =

On the other hand, let M be the R-algebra with generators As and Bs

for s ∈ S and “nil Hecke” relation

Asf = s(f)As + ∂s(f)Bs (5.4)

for s ∈ S and f ∈ R. Define F = F1 · · ·Fm ∈ M , where

Fi =





αsi if e1i = e2i = U0,

Bsi if exactly one of e1i and e2i is U0,

Asi otherwise.

For any γ with εφ ⊂ γ ⊂ ε, we define Fγ = F1,γ · · ·Fm,γ , where

Fi,γ =





Bsi if i ∈ γ,

Asi if i ∈ ε− γ,

1 otherwise.

Using (5.4) we may write

F =
∑

εφ⊂γ⊂ε

aγFγ with aγ ∈ R. (5.5)

Because the nil Hecke relation holds in SD, we have

Gw′1 ◦K ◦Gw′2 =
∑

εφ⊂γ⊂ε

aγGw′1 ◦Kγ ◦Gw′2 .

LetK ′
γ be the subgraph ofKγ consisting of only unbroken vertical edges.

If w′
γ denotes the subexpression of w corresponding to those i ∈ ε− γ, then
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K ′
γ is the identity on Bw′

γ
. By Proposition 4.1,

Gw′1 ◦Kγ ◦Gw′2 =




Gw′

γ
◦K ′

γ ◦Gw′
γ

if (w′
γ)∗ = x,

0 otherwise.

On the other hand we claim:

Gw′
γ
◦K ′

γ ◦Gw′
γ
=




idx if w′

γ is reduced,

0 otherwise.

Indeed, if w′
γ is reduced then Gw′

γ
, K ′

γ and Gw′
γ
are all canonical isomor-

phisms between different representatives for x, and if w′
γ is not reduced

then Gw′
γ
◦ K ′

γ ◦ Gw′
γ
is an endomorphism of x of negative degree, and

EndSD≥x(x) = R is zero in negative degree. Thus

〈LLe1 , LLe2〉idx = Gw′1 ◦K ◦Gw′2 =
∑

εφ⊂γ⊂ε,

w′
γ is a reduced expression for x.

aγ idx.

We now explain how the right hand side can be computed in the nil

Hecke ring. Consider the homomorphism of Q-algebras

p : M → NH, As 7→ Ds, Bs 7→ 1.

If εφ ⊂ γ ⊂ ε then w′
γ is a subexpression of both w′1 and w′2. In particular

(w′
γ)∗ ≤ w′1

∗ = w′2
∗ = x and hence

p(Fγ) ∈ NH≤x :=
⊕

y≤x

RDy.

Furthermore, in the quotient NH≤x/NH<x ( NH<x :=
⊕

y<xRDy) we have

p(Fγ) =




Dx if w′

γ is a reduced expression for x,

0 otherwise.
(5.6)
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Hence applying p to (5.5) we obtain

p(F ) =
∑

εφ⊂γ⊂ε,

w′
γ is a reduced expression for x.

aγDx +NH<x = 〈LLe1 , LLe2〉Dx +NH<x.

From the definitions we see p(F ) = f(e1, e2) and the result follows. ���

6. Examples

6.1. This example comes from [16, Example 8.3.1].

Let W = S8. Let

w = (s1, s3, s2, s4, s3, s5, s4, s3, s2, s1, s6, s7, s6, s5, s4, s3),

e = (U1, U1, U0, U1, U1, U1, U1, U1, U0,D0, U0, U1, U0,D0,D0, D0).

Then

f(e, e) = D1D3α2D4D3D5D4D3α2D1α6D7α6D5D4D3 = 2Dx,

where x = s1s3s4s3s5s4s3s7.

Notice that e is the unique 01-sequence of defect 0 with (we)• = x. Also

note that no D1 appears in e. Thus by Theorem 5.1, 〈LLw,e, LLw,e〉 = 2.

This tells that the character of bw in the Hecke algebra is not that predicted

by Kazhdan-Lusztig theory if the characteristic of k is 2.

In fact, the reducibility of the characteristic cycle shown in [16, Example

8.3.1] is implied by the above calculation, using the results of [20].

6.2. The following two examples were discovered by Braden [21, Appendix

A].

6.2.1. Let W = S8. Let

w = (s3, s2, s1, s5, s4, s3, s2, s6, s5, s4, s3, s7, s6, s5)

e = (U1, U1, U0, U1, U0, U1,D0, U1, U1, U0, D0, U0,D0,D0).

Then

f(e, e) = D3D2α1D5α4D3D2D6D5α4D3α7D6D5 = 2Dx,
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where x = s2s3s2s5s6s5. Again e is the unique defect zero subexpression of

w such that (we)• = x.

6.2.2. We repeat the example in D4 considered in §2.10, this time using

our formula. Let W = D4 with S = {s, t, u, v} and such that su = us, sv =

vs, uv = vu. Let

w = (s, u, v, t, s, u, v), (6.1)

Then there are three subexpressions of w for x = suv of defect zero:

e1 = (U0, U1, U1, U0, U1,D0,D0)

e2 = (U1, U0, U1, U0,D0, U1,D0)

e3 = (U1, U1, U0, U0,D0,D0, U1)

we have

f(e1, e1) = αsDuDvαtDsDuDv = 0

f(e1, e2) = DvαtDsDuDv = −Dx.

By symmetry, the matrix (〈LLei , LLej 〉)1≤i,j≤3 is given by




0 −1 −1

−1 0 −1

−1 −1 0


 .

6.2.3. This example was discovered by the second author [23].

Let W = S12 = 〈s1, s2, . . . , s9, sa, sb〉. Consider w and e as follows:

(s1, s2, s1, s3, s2, s1, s5, s4, s6, s5, s4, s3, s7, s6, s5, s4, s3, s8, s7, s9, s8, s7, s6, s5,

sa, sb, sa, s9, s8, s7)

(U1 U1 U1 U1 U1 U1 U1 U0 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1

U1 U1 U0 D0 U0 U1 U0 D0 D0 D0)

Then e is the unique defect zero subexpression for

x = s1s2s1s3s2s1s5s6s5s4s3s7s6s5s4s3s8s7s9s8s7sb.
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Then

f(e, e) = D1213215α4D65437654387987α6D5αaDbαaD987 = 2Dx.

The significance of this example is that it is probably the first example

in type A where w• and x lie in the same two-sided cell.
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14. N. Libedinsky, Sur la catégorie des bimodules de Soergel. J. Algebra 320 (2008), no.
7, 2675-2694.

15. G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, 18.
American Mathematical Society, Providence, RI, 2003.

16. M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J.
89 (1997), 9–36.

17. S. Riche and G. Williamson, Tilting modules and the anti-spherical quotient, preprint,
arXiv:1512.08296.

18. W. Soergel, On the relation between intersection cohomology and representation theory

in positive characteristic. Commutative algebra, homological algebra and representa-
tion theory (Catania/Genoa/Rome, 1998). J. Pure Appl. Algebra 152 (2000), no. 1-3,
311-335.

19. W. Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomrin-

gen, J. Inst. Math. Jussieu 6 (2007), 501–525.

20. K. Vilonen, G. Williamson, Characteristic cycles and decomposition numbers, Math.
Res. Lett. 20 (2013), no. 2, 359–366.

21. G. Williamson (with an appendix by Tom Braden), Modular intersection cohomology

complexes on flag varieties. Math. Z. 272 (2012), no. 3-4, 697–727.

22. G. Williamson, Schubert calculus and torsion, Preprint. arXiv:1309.5055.

23. G. Williamson, A reducible characteristic variety in type A, preprint. arXiv:1405.3479.


	1. Introduction
	2. Background
	3. Gobbling Morphisms
	4. Properties of Gobbling Morphisms
	5. Morphisms without D1's
	6. Examples

