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Abstract

Let G be a simple, simply-connected algebraic group over the complex numbers with

Lie algebra g. The main result of this article is a proof that each irreducible representation

of the fundamental group of the orbit O through a nilpotent element e ∈ g lifts to a

representation of a Jacobson-Morozov parabolic subgroup of G associated to e. This result

was shown in some cases by Barbasch and Vogan in their study of unipotent representations

for complex groups and, in general, in an unpublished part of the author’s doctoral thesis.

In the last section of the article, we state two applications of this result, whose details

will appear elsewhere: to answering a question of Lusztig regarding special pieces in the

exceptional groups (joint work with Fu, Juteau, and Levy); and to computing the G-

module structure of the sections of an irreducible local system on O. A key aspect of the

latter application is some new cohomological statements that generalize those in earlier

work of the author.

1. Lifting Result

Let G be a simple, simply-connected algebraic group defined over the

complex numbers C with Lie algebra g. Let O be a nilpotent orbit in g.

Picking e ∈ O, we can identify O with G/Ge, where Ge = ZG(e) is the

centralizer in G of e under the adjoint action.
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1.1. Statement of the result

This paper is concerned with the irreducible representations

π : Ge → GL(V )

such that the identity component G◦
e of Ge is in the kernel of π. In other

words, π descends to an irreducible representation of the component group

A(e) := Ge/G
◦
e. Since this group identifies with the fundamental group of O

at the base point e (in the analytic topology), we refer to π or its associated

bundle G×Ge V over O as an irreducible local system on O.

Put e in an sl2-triple {e, h, f} and write

g =
⊕

i∈Z

gi

where gi is the i-eigenspace of ad(h) on g. Let p = ⊕i≥0gi. Let P be the

subgroup of G with Lie algebra p and let L be the subgroup of P with Lie

algebra g0. It is known that Ge ⊂ P (see [2]). The main result of the paper

is

Theorem 1.1. Let (π, V ) be an irreducible representation of Ge, trivial on

G◦
e. Then there exists a representation (π̃, V ) of P such that π̃|Ge = π.

Since π is irreducible, any lifting π̃ to P must also be irreducible. There-

fore the unipotent radical UP of P acts trivially on V since the UP -invariants

are stable under the action of P and must be nonzero. Thus L must act ir-

reducibly on V , and hence if π̃ exists, it can be specified by a highest weight

representation λ of L, after choosing a maximal torus T in L with h ∈ t and

a Borel subgroup B with T ⊂ B ⊂ P , where t is the Lie algebra of T .

In the classical groups, our proof is by direct construction using parti-

tions; in the exceptional groups, we use the explicit knowledge of the struc-

ture of A(e) from [11]. For applications it is also useful to find λ ∈ t∗ of

minimal length, subject to a fixed W -invariant form on t∗.

For some orbits, Theorem 1.1 was proved by Barbasch and Vogan in [1,

§9] as part of their study of unitary representations for complex Lie groups.

For the cases they consider there is a unified—and somewhat mysterious—

explanation for the highest weights that arise.
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Theorem 1.1 in full generality was proved in my PhD thesis [10] under

the direction of George Lusztig. It was not published as it became part of

a manuscript that dealt with the graded G-module of regular functions on

the universal cover of O. That manuscript (circa 2005) was distributed on

a limited basis. In §4.2 we discuss some of the results from the manuscript.

In §4.1 we give another application of the theorem to a question of Lusztig

from [8] concerning special pieces in the exceptional groups, which is joint

work in progress with Fu, Juteau, and Levy.

I thank David Vogan for many helpful discussions about Theorem 1.1

and its applications to rings of functions on orbit covers. I am deeply grateful

to George Lusztig, for suggesting that Theorem 1.1 should hold in general,

for his supervision of my thesis, and for his continued encouragement and

friendship over the years.

1.2. Algorithm for lifting

We give a method to establish Theorem 1.1, which we carry out in the

exceptional groups in the next section. Keep the notation from §1.1. Let m

denote the span of the sl2-triple {e, h, f} through e. Then Ge = ZG(m)Ue is

a Levi decomposition, where Ue is the unipotent radical of Ge. Now let Vλ

be a highest weight representation of L, viewed also as a representation of

P where U acts trivially. Since Ue ⊂ U and ZG(m) ⊂ L, we are reduced to

studying the restriction of Vλ to the reductive group ZG(m).

The first step in showing Theorem 1.1 is to see whether G◦
e acts trivially

on Vλ, which, by the above, is equivalent to Z◦
G(m) acting trivially. This

condition is equivalent to a maximal torus T ′ of ZG(m), and hence of G◦
e,

acting trivially on Vλ, which is equivalent to each weight of Vλ containing T ′

in its kernel.

To check this condition, we recall some results of Bala and Carter [2]

and their generalization in [11], and we refer to those references for proofs.

Let W = NG(T ) be the Weyl group. Let Φ ⊂ t∗ be the roots determined

by T and let Π be the simple roots determined by B. Let −θ be the lowest

root of Φ given the choice of Π. Set Π̃ = Π ∪ {−θ}. Let L be the lattice
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of characters X∗(T ) of T . Given J ( Π̃, define LJ to be the Z-lattice in L

spanned by the elements of J . Set ΦJ = LJ ∩ Φ. Define the subalgebra

gJ = t⊕
⊕

α∈ΦJ

gα

where gα is the root space for α. Let GJ denote the connected group in G

with Lie algebra gJ .

By Bala-Carter [2], there exists a pair (gJ , e1) with J ⊂ Π and e1 ∈ gJ

distinguished nilpotent. Then the identity component of TLJ is a maximal

torus of Ge1 . Put e1 in an sl2-triple {e1, h1, f1} in gJ with h1 ∈ t. Then

there exists w ∈ W such that w(h1) = h and it follows that w(e1) ∈ g2

(using w also for any lift to NG(T )) and so w(e1) = x ·e for some x ∈ L since

L acts transitively on G · e ∩ g2. Now G◦
e acts trivially on Vλ if and only if

G◦
x·e = x(G◦

e)x
−1 does. Hence it is enough to check that a maximal torus of

G◦
w(e1)

acts trivially on Vλ. Such a maximal torus is given by the identity

component of w(TLJ ). Now a weight µ is trivial on the identity component

of w(TLJ ) if and only if n ·w−1(µ) is trivial on TLJ for some positive integer

n, which is equivalent to n · w−1(µ) ∈ LJ . Therefore,

Proposition 1.2. Let {e, h, f} be an sl2-triple used to define P and L with

h ∈ t. Let w ∈ W be such that w−1(h) is the semisimple part of an sl2-

triple {e1, w
−1(h), f1} with e1 distinguished in gJ for J ⊂ Π. Then G◦

e acts

trivially on Vλ if and only if each weight of Vλ lies in the rational closure of

wLJ in X∗(T ).

Example 1.3. Consider the nilpotent orbit of type D4(a1) in E6. Let J =

{α2, α3, α4, α5}, using Bourbaki’s notation for labeling simple roots, so that

gJ has semisimple part of type D4. Consider the semisimple element h1 ∈

gJ ∩ t given by 4α∨
3 + 6α∨

4 + 4α∨
5 + 4α∨

2 in the basis of simple coroots of E6.

Then h1 completes to an sl2-triple in gJ whose nilpotent elements belong

to D4(a1). Applying w = s4s3s5s2s4s3s5s1s6 where si := sαi
to h1 yields

a dominant element h with values {αi(h)} that give the weighted Dynkin

diagram 0 0 2 0 0
0 of D4(a1). Hence the Levi subgroup L has semisimple type

A2 +A2 +A1 corresponding to all simple roots of E6 except for α4.

The highest weight representation V̟2
of L is two-dimensional with

weights µ1 = ̟2, µ2 = ̟2−α2. In a basis of simple roots ̟2 equals 1 2 3 2 1
2 .

Applying w−1 to µ1 and µ2 yields, respectively, 0 1 2 1 0
1 and 0 1 1 1 0

1 , which
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both lie in LJ , the weights spanned by the roots of J . Hence G◦
e acts trivially

on V̟2
.

Remark 1.4. All the representations in the proof of Theorem 1.1 turn out

to be minuscule for L and so the weights of Vλ are a single orbit under the

action of the Weyl group WL of L. Consequently only the highest weight λ

in Proposition 1.2 ends up needing to be checked.

For the rest of the section, assume G is of adjoint type, so that L is

generated by Φ. We review some results from [11]. Define cα by the equation

θ =
∑

α∈Π cαα and set c−θ = 1. Let

dJ = gcd(cα)α∈Π̃−J .

Since G is adjoint, the torsion subgroup of L/LJ is cyclic of order dJ and is

generated by the image of the element

τJ =
1

dJ
(

∑

α∈Π̃−J

cαα).

The center Z(GJ) of GJ equals TLJ and so the character group of Z(GJ) is

isomorphic to L/LJ .

Let C be a conjugacy class in A(e). Then there exists a pair (gJ , e1)

with J ( Π̃ and e1 ∈ gJ a nilpotent element with the following properties:

e1 is distinguished in gJ ; e = g · e1 for some g ∈ G; and any y ∈ Z(GJ)

whose image generates Z(GJ)/Z
◦(GJ ) has the property that the image of

gyg−1 in A(e) lies in C. The trivial conjugacy class C corresponds to the

case where J ⊂ Π.

Now given that Vλ is trivial on G◦
e and thus descends to a representation

of A(e), we can describe how to compute the character of Vλ as a represen-

tation of A(e) on a conjugacy class C ⊂ A(e). First, let (gJ , e1) be a pair

as above corresponding to C. As before, put e1 in an sl2-triple {e1, h1, f1}

in gJ with h1 ∈ t and let w ∈ W be such that w(h1) = h. Then as before

w(e1) = x · e for some x ∈ L. Next, choose s ∈ TLJ so that τJ(s) = ξ, a

primitive dJ -th root of unity. Then s ∈ Z(GJ) and its image generates the

component group of Z(GJ). Hence, the image of gsg−1 in A(e) lies in C,

where g := x−1w.
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Consequently the trace of an element of C on Vλ can be computed using

the element gsg−1 and this trace equals the trace of wsw−1 ∈ T since x ∈ L.

Let µ1, µ2, . . . be the not necessarily distinct weights of Vλ. Then the desired

trace is given by
∑

µi(wsw
−1), and this can be computed as follows. Since

µi is trivial on any torus in Gw(e1) and since TLJ ⊂ Ge1 , it follows that

w−1(µi) is trivial on the identity component of TLJ . Hence the image of

w−1(µi) in L/LJ is torsion and so must be an integral multiple ai of τJ , and

so µi(wsw
−1) = (w−1µi)(s) = ξai . Therefore,

Proposition 1.5. Let {e, h, f} be as before. Let w ∈ W be such that w−1(h)

is the semisimple part of an sl2-triple {e1, w
−1(h), f1} with e1 distinguished

in gJ for J ( Π̃. Let {µi} be the weights of T on a representation Vλ of L

where G◦
e acts trivially. Then for each i there exists ai ∈ Z with w−1(µi) =

aiτJ modulo LJ and the trace on Vλ of any element in the conjugacy class

of C parametrized by (gJ , e1) equals
∑

i ξ
ai .

Example 1.6. We compute the character of V̟2
from the previous exam-

ple on the conjugacy class parametrized by 3A2 (the notation refers to the

regular nilpotent element in the subalgebra of type 3A2). Here τJ = α4. A

semisimple element h1 of an sl2-triple for e1 of type 3A2 has weighted dia-

gram in E6 equal to
2 2 −6 2 2

2 . Then w = s4s3s5s2s1s4s6s3s5s2s1s4s6s3s5s2s4
sends h1 to h. Then w−1µ1 ≡ −τJ and w−1µ2 ≡ τJ , modulo LJ , and there-

fore the character value is ξ−1 + ξ = −1, where in this case ξ is a primitive

third root of unity. In a similar fashion, the character on the conjugacy class

parametrized by A3 +2A1 is computed to be 0 and so V̟2
is the irreducible

representation of A(e) ≃ S3 of dimension two. In fact, the representations

for this orbit fall under the framework in [1, §9].

2. Liftings in the Exceptional Groups

2.1. We carried out the preceding algorithm for the exceptional groups to

prove Theorem 1.1. Let Asimp(e) denote the component group relative to a

simply-connected G and let Aadj(e) denote the component group relative to

the adjoint group G/Z(G). The information for the irreducible representa-

tions of Aadj(e) are recorded in §2.2.

The algorithm begins by first running through the nonzero nodes of the

weighted Dynkin diagram of e to see if the corresponding one-dimensional
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representation V̟ of P descends to Asimp(e). Remarkably this always hap-

pens in types G2, F4, E7, E8 (and later we will see it does in types B,C,D),

even when Asimp(e) is trivial and even when ̟ is not in the root lattice.

Another way to say this is that Zg(m), which we know belongs to l, actually

belongs to [l, l]. In many cases, this is true because Zg(m) is semisimple,

but in the remaining cases it seems surprising. This fact is related to the

observation by several researchers that in the above cases the number of

irreducible components of codimension one of the complement of P · e in g2

is the number of nonzero nodes of the weighted Dynkin diagram. In type

E6 the same fact holds whenever Asimp(e) is non-trivial even when ̟ is not

in the root lattice. Consequently, we omit the trivial representation from

our tables since we get a trivial representation of Asimp(e) for each node

of the weighted Dynkin diagram with nonzero value that does not yield a

non-trivial representation of Asimp(e).

We also checked in E6 (respectively, E7) that if ̟ is a fundamental

weight not in the root lattice and ̟ corresponds to a node with non-zero

value in the weighted Dynkin diagram, then V3̟ (respectively, V2̟) de-

scends to a trivial representation of Aadj(e). This implies that the kernel

of the representation V̟, viewed as a representation of Asimp(e), is a nor-

mal subgroup of Asimp(e) isomorphic to Aadj(e). Hence Asimp(e) must be a

split central extension of Aadj(e). Furthermore, we observe that whenever

|Asimp(e)| > |Aadj(e)|, there is always one such node in the weighted Dynkin

diagram. This implies that Asimp(e) is always a split central extension of

Aadj(e) in E6 and E7, which gives a new proof of the splitting in these cases

(we note that there is no splitting in general in types B and D, see §3.2). It

follows that by tensoring the one-dimensional representations coming from

these fundamental weights (which are trivial on Aadj(e)) with the represen-

tations that we found for Aadj(e) (which are trivial on the image of the

center of G), all the irreducible representations for Asimp(e) in E6 and E7

are obtained. This completes the proof of Theorem 1.1 in the exceptional

groups.

2.2. Tables

In the following tables we list weights that yield nontrivial irreducible

representations of Aadj(e) in the exceptional groups. From the discussion
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in the previous section, this allows us to find all weights of L that give rise

to irreducible representations of Asimp(e). From there, it is easy enough to

construct lifts of minimal length. The numbering of simple roots is given in

types E by 1 3 4 ... n
2 as in Bourbaki (but different from that in [10]). We

first list the cases where Aadj(e) ≃ S2.

F4

r r r r> Bala-Carter Sign rep

0 0 0 1 Ã1 ̟4

2 0 0 0 A2 ̟1

2 0 0 1 B2 ̟4

1 0 1 0 C3(a1) ̟3

0 2 0 2 F4(a2) ̟2

2 2 0 2 F4(a1) ̟4

E6
r r r r r

r Bala-Carter Sign rep

0 0 0 0 0
2

A2 ̟2

2 0 2 0 2
0

E6(a3) ̟4
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E7
r r r r r r

r Bala-Carter Sign rep

2 0 0 0 0 0
0

A2 ̟1

1 0 0 0 1 0
0

A2 +A1 ̟1, ̟6

0 1 0 0 0 1
1

D4(a1) +A1 ̟3, ̟2-̟7

0 0 1 0 1 0
0

A3 +A2 ̟4, ̟6

2 0 0 0 2 0
0

A4 ̟1

1 0 1 0 1 0
0

A4 +A1 ̟1, ̟4

2 0 1 0 1 0
0

D5(a1) ̟4, ̟6

0 2 0 0 2 0
0

E6(a3) ̟3

2 0 2 0 0 2
0

E7(a4) ̟4

2 0 2 0 2 0
0

E6(a1) ̟1

2 0 2 0 2 2
0

E7(a3) ̟4
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E8
r r r r r r r

r Bala-Carter Sign rep

0 0 0 0 0 0 2
0

A2 ̟8

1 0 0 0 0 0 1
0

A2 +A1 ̟1, ̟8

2 0 0 0 0 0 0
0

2A2 ̟1

1 0 0 0 1 0 0
0

A3 +A2 ̟1, ̟6

2 0 0 0 0 0 2
0

A4 ̟8

0 0 0 0 0 0 0
2

D4(a1) +A2 ̟2

1 0 0 0 1 0 1
0

A4 +A1 ̟6, ̟8

1 0 0 0 1 0 2
0

D5(a1) ̟1, ̟6

0 0 1 0 0 0 1
0

A4 + 2A1 ̟4, ̟8

0 0 0 0 0 0 2
2

D4 +A2 ̟2

2 0 0 0 0 2 0
0

E6(a3) ̟7

0 1 0 0 0 1 0
1

D6(a2) ̟3, ̟7

1 0 0 1 0 1 0
0

E6(a3) +A1 ̟5, ̟7
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E8
r r r r r r r

r Bala-Carter Sign rep

0 1 0 0 0 1 2
1

D6(a1) ̟2, ̟3

0 0 1 0 1 0 2
0

E7(a4) ̟4, ̟6

2 0 0 0 2 0 2
0

E6(a1) ̟8

0 0 0 2 0 0 2
0

D5 +A2 ̟5

1 0 1 0 1 0 1
0

D7(a2) ̟1, ̟4

1 0 1 0 1 0 2
0

E6(a1) +A1 ̟8

2 0 1 0 1 0 2
0

E7(a3) ̟4, ̟6

2 0 0 2 0 0 2
0

D7(a1) ̟5

2 0 2 0 0 2 0
0

E8(a5) ̟4, ̟7

2 0 2 0 0 2 2
0

E8(b4) ̟4

2 0 2 0 2 0 2
0

E8(a4) ̟4, ̟8

2 0 2 0 2 2 2
0

E8(a3) ̟4
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Sign and standard representations of A(e) when A(e) ≃ S3

A(e) ≃ S3

Group Orbit Sign Standard

G2 G2(a1) ̟2 ̟1

E6 D4(a1) ̟4 ̟2

E7 D4(a1) ̟3 ̟1

E7 E7(a5) ̟4 ̟2 −̟7

E8 D4(a1) ̟7 ̟8

E8 D4(a1) +A1 ̟2, ̟7 ̟8

E8 E7(a5) ̟4, ̟6 ̟2

E8 E8(b6) ̟4, ̟8 ̟2

E8 E8(a6) ̟4, ̟7 ̟2, ̟8

E8 E8(b5) ̟4 ̟2

Character tables when A(e) ≃ S4, S5

F4(a3)

Conjugacy class ̟1 ̟2 ̟3 ̟4

F4(a3) 2 1 3 3

A3 + Ã1 0 -1 1 -1

A2 + Ã2 -1 1 0 0

B4(a1) 2 1 -1 -1

A1 + C3(a1) 0 -1 -1 1

E8(a7)

Conjugacy class ̟8 ̟6 ̟5 ̟7 ̟1 ̟2

E8(a7) 4 4 1 6 5 5

A5 +A2 +A1 -1 1 -1 0 1 -1

2A4 -1 -1 1 1 0 0

D5(a1) +A3 0 0 -1 0 -1 1

D8(a5) 0 0 1 -2 1 1

E7(a5) +A1 2 -2 -1 0 1 -1

E6(a3) +A2 1 1 1 0 -1 -1
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3. Lifting in the Classical Groups

In this section we prove Theorem 1.1 in the classical groups.

3.1. Types B,C,D

We first handle the case relative to a group that is symplectic or special

orthogonal. Fix ǫ ∈ {0, 1}. In what follows, all congruences are modulo

2. Let V be a complex vector space of dimension N with a non-degenerate

bilinear form φ : V × V → C satisfying φ(v,w) = (−1)ǫφ(w, v) for v,w ∈ V .

Let H be the subgroup of GL(V ) preserving the form φ, and let G be its

connected component (so G is not assumed to be simply-connected in this

section). Set n = ⌊N/2⌋. Then G is of type Bn when ǫ = 0, N odd; of type

Dn when ǫ = 0, N even; and of type Cn when ǫ = 1, N even.

Let e be a nilpotent element in the Lie algebra of one of these groups

with corresponding partition λ := (λ1 ≥ λ2 ≥ . . . ) of N . We first recall a

description of a basis of the component groups A′(e) := ZH(e)/Z◦
H (e) and

A(e) := ZG(e)/Z
◦
G(e). These are elementary abelian 2-groups with a natural

injective map of A(e) into A′(e).

Let

B(λ) := {j ∈ N | λj > λj+1 and λj 6≡ ǫ}.

Fix a normalized basis of V with respect to e as discussed in [5]. The basis

consists of vi,j for 1 ≤ i ≤ λj and the action of e is given by e.vi,j = vi−1,j

for i > 1 and e.v1,j = 0 For k ∈ B(λ), define an element bk ∈ H by bk.vi,j =

vi,j when j 6= k and bk.vi,k = −vi,k. Then bk ∈ ZH(e) and the images of all

the bk in A′(e) give a basis of A′(e) over F2. If ǫ = 1, then A(e) = A′(e). If

ǫ = 0, then A(e) is the subgroup of A′(e) of index two given by

{
∑

ajbj | aj ∈ F2 and
∑

aj = 0},

where we also use bj for its image in A(e).

Let p (respectively, q) be the largest even (respectively, odd) part of λ.

Let

E = {p, p − 2, . . . , 4, 2} and
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O = {q, q − 2, . . . , 5, 3}.

For s ∈ E ∪O define the subspace Fs spanned by the vectors vi,j satisfying

λj + 2− 2i ≥ s.

The Fs are isotropic and satisfy Fs ⊂ Fs′ whenever s
′ ≤ s. The subgroup of

G which fixes this partial isotropic flag is a parabolic subgroup P of G. The

dimension of Fs equals σ(s) where

σ(s) :=
∑

λj≥s

(
⌊
λj−s
2 ⌋+ 1

)
.

Let T be a maximal torus of G such that the vi,j with λj + 1 − 2i > 0

are weight vectors for T . Then T ⊂ P . Choose a Borel subgroup B of G

with T ⊂ B ⊂ P . Next let γ(C∗) ⊂ T be the one-parameter subgroup of G

given by

γ(z).vi,j = zλj+1−2ivi,j

for z ∈ C∗. Then L := ZG(γ) is a Levi subgroup of P , which contains T .

Now, γ defines a cocharacter associated to e and therefore ZG(e, γ) defines

a Levi subgroup of ZG(e). Moreover, P is the Jacobson-Morozov parabolic

associated to e and γ.

For s ∈ E ∪ O ∪ {1}, define Ls to be the subgroup of G that preserves

the subspace spanned by the vectors

vi,j with λj + 2− 2i = s

and is the identity on all other vi,j. Then when s > 1, Ls ≃ GLds(C) where

ds = σ(s)− σ(s + 1) = #{j | λj ≥ s, λj ≡ s}.

On the other hand, L1 is of the same type as G, but acting on a vector space

of dimension #{j |λj ≡ 1}. Then

L ≃
∏

s∈E∪O∪{1}

Ls.
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For s ∈ E ∪O, define a character χs of T such that for t ∈ T , we have

χs(t) =
∏

λj+2−2i=s

ti,j,

where t.vi,j = ti,jvi,j . This character gives rise to the one-dimensional rep-

resentation of L (and P ) which is trivial on Lk for k 6= s and yields the

determinant representation of Ls ≃ GLds(C). Let Ξ be the elements of

E ∪ O such that σ(s) is not equal to n in type Bn and is not equal to n

or n − 1 in type Dn. Then for s ∈ Ξ, we have that ̟σ(s) is the weight

of a character of T , relative to our choice of B. Moreover, χs = ̟σ(s) for

s = max(E ∪ O) and χs = ̟σ(s) − ̟σ(s+1), otherwise. Note that χs is

conjugate under W to ̟ds .

For s ∈ Ξ let πs be the projection of L onto Ls. Then πs(ZH(e, γ))

equals

∏

m≡s,m≥s

Sprm(C) when s ≡ ǫ and (3.1)

∏

m≡s,m≥s

Orm(C) when s 6≡ ǫ,

where rm is the number of parts of λ equal to m. Each factor on the right

above sits in Ls as a subgroup preserving the vectors vi,j with λj+2−2i = s

and m = λj . It follows that πs(Z
◦
H(e, γ)) consists of matrices of determinant

one, sitting in Ls ≃ GLds(C). Consequently, each one-dimensional represen-

tation of Ls, and hence each χs, when viewed as a representation of P trivial

on UP , is trivial on Z◦
H(e) = Z◦

G(e) and thus descends to a representation of

A(e).

In type Cn, we add a part equal to zero as the last part of λ and then

in all types we define kmax to be the largest element of B(λ) (so λkmax
= 0

in type Cn). Define B̃(λ) = B(λ)− {kmax}. For k ∈ B̃(λ), set

b̃k = bkbk′

where k′ is minimal for the property that k′ ∈ B(λ) and k < k′ and we set

bkmax
to be the identity in type C. Then the images of the b̃k, for k ∈ B̃(λ),

give a basis of A(e) over F2.
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Let S ⊂ B̃(λ) and denote by χ̄S the one-dimensional representation of

A(e) given by

χ̄S(b̃k) = −1 if k ∈ S
(3.2)

χ̄S(b̃k) = 1 if k 6∈ S,

allowing b̃k to also stand for its image in A(e). In this way, the characters

of A(e) are parametrized by the subsets of B̃(λ).

Proposition 3.1. Let e be a nilpotent element in types Bn, Cn,Dn with

partition λ. Given S ⊂ B̃(λ), let

χS :=
∑

j∈S

χλj
.

Then χS is a lifting to P of χ̄S . This lift is of minimal length.

Proof. By the above discussion, each χs for s ∈ Ξ descends to a character

of A(e). Next, it is clear from (3.1) that for s ≡ ǫ that χs is trivial on

A(e). Also this holds for s ≤ λkmax
. For other s, we have χs = χλk

where

λk′ < s ≤ λk for k′, k ∈ B(λ). Moreover for j ∈ B̃(λ) it is clear that χλj

restricts to χ̄{j}. This completes the proof except for the claim of minimal

length.

In the usual inner produce on weights of G, the χs are mutually or-

thogonal. They also generate the lattice of one-dimensional characters of

L, together with possibly one additional weight (in type B, when there is

exactly one odd λj) and up to two additional weights (in type D, when there

are at most two odd λj ’s). These additional weights descend to A(e) and are

trivial (this will also follow from results in the next section). The additional

weight(s) can be chosen to be orthogonal to all χs (and to each other). The

orthogonality of these basis elements of the lattice then implies that the χS

are minimal lifts. ���

3.2. Liftings for simply-connected type in the classical groups

It remains to treat the case of the spin groups, which are 2-fold covers

of the groups G from the previous section in types B and D. Fix G of type

Bn (n ≥ 2) or Dn (n ≥ 3) from the previous section. Let G̃ denote the
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spin group covering of G with isogeny f : G̃ → G. Let L̃ = f−1(L) and

P̃ = f−1(P ). The kernel of f is a group of order 2 generated by an element

c in the center of G̃. Clearly, f(G̃e) = Ge and f(G̃◦
e) = G◦

e and so f induces

a surjection of

AG̃(e) := G̃e/G̃
◦
e

onto AG(e) with a kernel that is either trivial, or non-trivial and generated

by the image of c.

From [7] (see also [10]), the kernel is non-trivial if the odd parts of the

partition λ of e occur with multiplicity one. To that end, let e be a nilpotent

element with partition λ such that ri ∈ {0, 1} when i is odd. Note that in

type D such an element e could be very even. Retain the notation of the

previous section. Let m = |B̃(λ)|+ 1. Then |AG̃(e)| = 2m.

Proposition 3.2. In type Bn the representation V̟n of L̃ of highest weight

̟n has dimension 2
m−1

2 . When lifted to P̃ , it descends to an irreducible

representation of AG̃(e). Together with the 2m−1 characters of P in Propo-

sition 3.1 that descend to AG(e), these form a complete set of irreducible

representations of AG̃(e).

Proof. Let ΦJ be of type

Aa1 × · · · ×Aak ×Bq

where 2q + 1 is the sum of the odd parts of λ and the even parts of λ are

[a1 + 1, a1 + 1, . . . , ak + 1, ak + 1].

Assume that the factors of ΦJ sit in G in the order written above.

Take e1 ∈ gJ so that e1 is regular in the type A factors and has partition

in the Bl factor consisting of the odd parts of λ. Then e1 is distinguished

in the Levi subalgebra gJ . The Dynkin element h1 in gJ is given by (in the

standard basis for coweights)

(a1, a1−2, . . . ,−a1+2,−a1, . . . ak, ak−2, . . . ,−ak+2,−ak, y1, . . . , yl,

m−1

2︷ ︸︸ ︷
0, . . . , 0)

where yi are positive even integers listed in nonincreasing order. We can

conjugate h1 to be dominant using an element w ∈ W which flips all signs



✐

“BN13N32” — 2018/1/30 — 14:53 — page 310 — #18
✐

✐

✐

✐

✐

310 ERIC N. SOMMERS [September

of the negative elements in h1 and then permutes the nonzero elements of

h1 into nonincreasing order.

We can now apply Proposition 1.2 to show that V̟n is trivial on G̃◦
e.

First observe that V̟n restricts to give the spin representation of f−1(L1),

a spin group of type Bm−1

2

. Hence the representation is 2
m−1

2 -dimensional

and all weights are WL-conjugate. Therefore, it is enough to check that

the weight ̟n is trivial on a maximal torus of G̃◦
e. Next, write ̟n in the

standard basis for weights in Bn as ̟n = (12 , . . . ,
1
2). Then w−1(̟n) equals

(

a1+1

2︷ ︸︸ ︷
1

2
, . . . ,

1

2
,

a1+1

2︷ ︸︸ ︷
−
1

2
, . . . ,−

1

2
, . . . ,

ak+1

2︷ ︸︸ ︷
1

2
, . . . ,

1

2
,

ak+1

2︷ ︸︸ ︷
−
1

2
, . . . ,−

1

2
,

l︷ ︸︸ ︷
1

2
, . . . ,

1

2
,

m−1

2︷ ︸︸ ︷
1

2
, . . . ,

1

2
).

Twice this weight lies LJ . Hence V̟n descends to a representation of AG̃(e).

Now the weights of V̟n are not weights of G; hence they take the value

−1 on the central element c of G̃. So c acts by −1 on V̟n . Now for x ∈ AG̃(e)

with x 6= 1, c, we have that x and xc are conjugate in AG̃(e) by [7] (see also

[11, Proposition 26]). It follows that

tr(x, V̟n) = tr(xc, V̟n) = − tr(x, V̟n)

and so tr(x, V̟n) = 0 for x 6= 1, c. Therefore the inner product of the

character of V̟n with itself is computed just on 1, c ∈ AG̃(e), yielding

1

|AG̃(e)|
((2

m−1

2 )2 + (−2
m−1

2 )2) =
1

2m
2m = 1,

which shows that V̟n is an irreducible representation of AG̃(e). Finally, the

sum of the squares of the dimensions of the distinct irreducible representa-

tions of AG̃(e) that we have constructed equals

1 · (2
m−1

2 )2 + 2m−1 · (12) = 2m−1 + 2m−1 = 2m,

which shows that we have found them all. ���

To obtain a weight of minimal length for the extra representation, we

can subtract off the fundamental weight for the the largest nonzero node i

of the weighted Dynkin diagram with i ≤ n− 1, if such a node exists.
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Proposition 3.3. In type Dn when m ≥ 2, the representations V̟n, V̟n−1

of P̃ are both of dimension 2
m
2
−1 and descend to give irreducible representa-

tions of AG̃(e). Together with the 2m−1 irreducible representations of P in

Theorem 3.1 which descend to AG(e), these form a complete set of irreducible

representations of AG̃(e).

Proof. In this case L1 is of type Dm
2
and V̟n , V̟n−1

restrict to give the two

half-spin representations of f−1(L1), which are of dimension 2
m
2
−1. In case

m = 2, we think of D1 as the center of G̃ and the half-spin representations

are one-dimensional representations which are non-trivial on c.

As in type B, the weights of these representations are WL-conjugate and

so a similar argument yields that G̃◦
e acts trivially and that c acts by −1.

Next, the center of AG̃(e) coincides with the image of the center of G̃ and

is of order 4. Moreover for x ∈ AG̃(e), with x not in the center of AG̃(e),

the elements x and xc are conjugate in AG̃(e) [7] (see also [11, §4]). Thus

the character of these representations are zero away from the four central

elements of AG̃(e) and the images of central elements of G̃ act by scalars

since V̟n−1
and V̟n are irreducible representations of f−1(L). The scalars

must be roots of unity and so the inner product of the character of either

representation with itself is equal to 1 For the last statement we have the

sum of the squares of the known irreducibles is

2(2
m
2
−1)2 + 12(2m−1) = 2m−1 + 2m−1 = 2m

as desired. ���

For the case where m = 1, that is, when e is very even, either V̟n−1

or V̟n will give the desired one-dimensional representation, depending on

which node of the weighted Dynkin diagram is nonzero.

To obtain a weight of minimal length for the two extra representations,

we can subtract off the fundamental weight for the the largest nonzero node

i of the weighted Dynkin diagram with i ≤ n− 2, if such a node exists.

3.3. Type A

Let G be the special linear group SLl(C). Let λ := (λ1 ≥ λ2 ≥ · · · ≥ λk)

be a partition of l and let d be the greatest common divisor of λ1, λ2, . . . , λk.
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Let e be a nilpotent element corresponding to λ. Then A(e) ≃ Z/dZ. Let

q = l
d . It is easy to check that for ̟jq fulfill the conditions of Theorem 1.1

for 0 ≤ j ≤ d− 1 and that these weights are of minimal length.

4. Applications

4.1. Special pieces

We refer to [8] for definitions. Assume here that G is of adjoint type.

Let Osp = O ∪ O′ be a special piece in an exceptional group such that

A(e) ≃ S2 for e in the special orbit O. Let λ be a minimal lift to P of the

sign representation of A(e) as in Theorem 1.1. Let µ be the dominant weight

that is W -conjugate to λ and let V be a representation of G of highest weight

µ. Consider the G-orbit Z of (e, v) ∈ g⊕ V , where v ∈ V is a weight vector

of weight λ. Then the stabilizer of (e, v) in G equals G◦
e and thus Z ≃ G/G◦

e.

Let Z be the closure of Z in g⊕ V .

From the tables in [3], one observes that there is a transverse slice S in

O to a point e′ ∈ O′ that is isomorphic to the closure of the minimal orbit

Xmin in a symplectic group of type Cn. Let p : Z → O be the restriction to

Z of the projection of g⊕ V onto the first factor.

In work in progress with Fu, Juteau, and Levy, we checked that

Proposition 4.1. The pre-image p−1(S) is isomorphic to C2n and p−1(S)

identifies with the affinization of the universal cover of Xmin.

The proof amounts to checking that when V is restricted to a certain

reductive centralizer of e′ (which happens to contains a simple factor of type

Cn), the vector v lies in a subrepresentation isomorphic to the defining rep-

resentation of Sp2n(C). A consequence of Proposition 4.1 is that p−1(Osp) is

smooth and satisfies the desired properties of C† from [8, §0.6]. A statement

similar to Proposition 4.1 is expected to hold for the other special pieces in

the exceptional groups.

4.2. Module structure of sections of local systems

In [6] Jantzen gives an exposition of results in McGovern [9] and Graham

[4], results we propose to generalize, and we refer there for definitions. Let
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Õ := G/G◦
e denote the universal cover of O, which carries a left action of

G and a right action of A(e). The C∗-action on O lifts compatibly to Õ so

that the regular functions C[Õ](n) of degree n on Õ are a G×A(e)-module.

Let Â(e) refer to the isomorphism classes of irreducible representations of

A(e). We can write

C[Õ](n) ≃
⊕

(π,V )∈Â(e)

V ⊗ Γn
V ,

where Γn
V are the degree n sections of the vector bundle G ×Ge V → O

corresponding to a lift of V to Ge, which is trivial on G◦
e. We note that

the grading is such that Γ1
trivial = 0 and Γ2

trivial is isomorphic to the adjoint

representation.

It is expected that Theorem 1.1 can be used to determine Γn
V as follows.

Let (π, V ) ∈ Â(e). Let (π̃, V ) be a lifting to P as in Theorem 1.1. Let λ

be a lowest weight of π̃ so that |λ| is minimal among lowest weights of all

possible lifts of V . In fact λ can always be taken to be a sum of positive

roots. Let Cλ be the one-dimensional representation of B defined by λ.

Conjecture 4.2. For λ as above, we have

Γn
V ≃ H0(G/B,S(n+〈λ,χ〉)/2g∗≥2 ⊗Cλ) (4.1)

for all n ∈ Z and

H i(G/B,Sng∗≥2 ⊗Cλ) = 0 (4.2)

for i > 0 and for all n.

Here, 〈 , 〉 is the pairing of characters and cocharacters of T , and χ ∈ T is

the cocharacter associated to e and P . It is well-known that in cases where

the conjecture holds that there are explicit formulas for the multiplicity of

a highest weight representation of G in Γn
V using Lusztig’s q-analogue of

Kostant’s weight multiplicity.

We are able to prove a variation of the result, and hence still compute

Γn
V , in the following two situations: (1) when G is of type A and e is any

nilpotent element, or (2) when e is even and V is one-dimensional. In the

variation we may have to replace g∗≥2 by uP ′ , the Lie algebra of the unipotent

radical of a parabolic subgroup P ′ such that e belongs to the Richardson
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orbit in uP ′ . Moreover in case (2), we may have to replace λ by a weight

µ ∈ X∗(P ′) which is W -conjugate to λ and dominant. The proof uses

cohomological statements of the kind proved in [13] and [12]. We finish with

an example that can be treated using results already in the literature.

Example 4.3. Let G of type A5 and e have partition (4, 2). Consider

the weight λ = ̟3 in Theorem 1.1 which corresponds to the non-trivial

representation V of A(e) ≃ Z/2Z. Now 2̟3 equals 1 2 3 2 1 in the basis

of simple roots. For S ⊂ {1, . . . , |Π|}, write uS for the Lie algebra of the

unipotent radical of a parabolic subgroup containing B whose maximal roots

are the −αi for i ∈ S. Now

H i(Snu∗1,3,5 ⊗−2̟3) = H i(Sn−2u∗1,3,5 ⊗ −1−1−1−1−1 )

= H i(Sn−3u∗2,3,5 ⊗ 0 0−1−1−1 )

= H i(Sn−4u∗2,3,4 ⊗ 0 0 −1 0 0 )

= H i(Sn−5u∗2,3,4) = H i(Sn−5u∗1,3,5) (4.3)

for all i ≥ 0 and all n, using the main theorem in [13] five times (we only

need this result for i = 0). By the proof of Proposition 1.4 in [4] it follows

that Γn
V = H0(S(n+5)/2(u∗1,3,5)⊗−̟3).

Similarly, H i(S(n+5)/2(u∗1,3,5)⊗−̟3) = H i(S(n−5)/2(u∗1,3,5)⊗̟3) for all

i ≥ 0 and all n. The latter modules are known to vanish for i > 0 and all n

since ̟3 is dominant. Hence in this case the conjecture itself holds.
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