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Abstract

We prove a rigidity theorem for the Poisson automorphisms of the function fields of

tori with quadratic Poisson structures over fields of characteristic 0. It gives an effective

method for classifying the full Poisson automorphism groups of N-graded connected cluster

algebras equipped with Gekhtman–Shapiro–Vainshtein Poisson structures. Based on this,

we classify the groups of algebraic Poisson automorphisms of the open Schubert cells of the

full flag varieties of semisimple algebraic groups over fields of characteristic 0, equipped

with the standard Poisson structures. Their coordinate rings can be identified with the

semiclassical limits of the positive parts Uq(n+) of the quantized universal enveloping

algebras of semisimple Lie algebras, and the last result establishes a Poisson version of the

Andruskiewitsch–Dumas conjecture on AutUq(n+).

1. Introduction

1.1. Automorphism groups of algebras

The automorphism groups of infinite dimensional (commutative and

noncommutative) algebras are difficult to describe and are known in very

few situations. Before the 70’s, the automorphisms of the polynomial and
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free algebras in two generators, as well as the first Weyl algebra, were deter-

mined. However, the majority of the subsequent results were on the existence

of wild automorphisms: Joseph [23] for the universal enveloping algebra of

sl2, Umirbaev–Shestakov [32] for the polynomial algebra in three variables,

and others. The automorphism groups of these algebras and their natural

generalizations remain unknown.

In the early 2000’s Andruskiewitsch and Dumas [1] posed a conjecture

about a concrete description of the automorphism groups of the positive

parts Uq(n+) of the quantized universal enveloping algebras Uq(g) of split

simple Lie algebras g when q is a non-root of unity. This is a drastically

different behavior from the case of universal enveloping algebras and poly-

nomial algebras (in dimension ≥ 3) whose automorphism groups are very

large and not classifiable with the current methods. This and related prob-

lems were settled in [35, 36], where a general classification method was given

for the automorphisms of N-graded connected quantum cluster algebras. In

the root of unity case (i.e., PI algebras), Ceken, Palmieri, Wang, and Zhang

[7] classified the automorphisms of skew-polynomial algebras using discrimi-

nants. However, the Lie theoretic side, e.g. AutUq(n+) for g of rank at least

2 and q a root of unity remains unknown.

1.2. A rigidity theorem and automorphisms of Poisson cluster

algebras

In this paper we prove a general rigidity theorem for quadratic Poisson

structures on tori over fields of characteristic 0. We design a classification

scheme, based on it, for the Poisson automorphism groups of N-graded con-

nected cluster algebras, equipped with Gekhtman–Shapiro–Vainshtein Pois-

son structures. Many important cluster algebras coming from Lie theory fall

in this class, see the next subsection for details.

Cluster algebras form an axiomatic class of algebras, introduced by

Fomin and Zelevinsky [11]. They are described as the algebras generated by

families of polynomial subalgebras obtained from each other by an infinite

process of mutation, see the expositions [19, 33]. Each cluster (y1, . . . , ym)

of such an algebra A over a field K gives rise to embeddings

K[y1, . . . , ym] ⊂ A ⊂ K[y±1
1 , . . . , y±1

m ] (1.1)
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where the second embedding follows from the Laurent phenomenon [12] of

Fomin and Zelevinsky. A Gekhtman–Shapiro–Vainshtein (GSV) Poisson

structure [18] on A is a Poisson structure {·, ·} which is quadratic in each

cluster; that is

{yj , yk} = λjkyjyk ∀ 1 ≤ k, j ≤ m (1.2)

for some integral skewsymmetric matrix (λjk). The first and third algebras

in (1.1) become Poisson algebras under the natural restriction and extension

of {·, ·}. Denote the K-torus T = SpecK[y±1
1 , . . . , y±1

m ]. Its rational function

field K(T ) is a Poisson field under the canonical extension of the Poisson

bracket {·, ·} which will be denoted by the same symbol.

Now assume that a cluster algebra A is N-graded, A = ⊕n∈NAn, and the

elements y1, . . . , ym of one of its clusters are homogeneous of positive degree.

Here and below N := {0, 1, . . .}. When dimA0 is small (in particular when

A is connected, i.e., dimA0 = 1), the description of the automorphism group

Aut(A, {·, ·}) of the Poisson algebra (A, {·, ·}) boils down to the description

of the subgroup of unipotent automorphisms, defined by

UAut(A, {·, ·}) = {ψ ∈ Aut(A, {·, ·}) | ψ(f)−f ∈ ⊕n>kAn, ∀k∈N, f ∈Ak}.

First we prove that every unipotent automorphism ψ ∈ UAut(A, {·, ·}) has

a canonical extension φ to an automorphism of the Poisson function field

(K(T ), {·, ·}) which is unipotent and bi-integral in the sense that it satisfies

• ψ(yk)− yk ∈ K[T ]>deg yk , 1 ≤ k ≤ m (unipotent condition), and

• ψ(yk), ψ
−1(yk) ∈ K[y1, . . . , ym], 1 ≤ k ≤ m (bi-integrality condition).

This embedding result is proved in Proposition 3.5. The main result of the

paper is the following rigidity property of unipotent, bi-integral automor-

phisms of quadratic Poisson tori.

Theorem A. Let K be a field of characteristic 0 and T be a K-torus, whose

coordinate ring K[T ] = K[y±1
1 , . . . , y±1

m ] is equipped with a quadratic Poisson

structure {·, ·} as in (1.2) and a Z-grading such that deg yk > 0, for all k.

Every unipotent, bi-integral automorphism φ of the Poisson function

field (K(T ), {·, ·}) satisfies

φ(yk)y
−1
k ∈ Z(K[T ]), ∀1 ≤ k ≤ m,
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where Z(K(T )) denotes the Poisson center of (K(T ), {·, ·}).

This is a rigidity result in the following sense. A quadratic Poisson

structure on a torus T arises as the semiclassical structure of the deformation

of the coordinate ring K[T ] to a quantum torus. The theorem proves that the

unipotent, bi-integral automorphisms of the Poisson function field of such

a torus only come from its Poisson center which is precisely the subalgebra

of K[T ] that is deformed to the center of the corresponding quantum torus.

The theorem is proved in Section 2.

The Poisson automorphisms of N-graded cluster algebras A with

Gekhtman–Shapiro–Vainshtein Poisson structures {·, ·} can be classified as

follows. We embed UAut(A, {·, ·}) in the set of unipotent, bi-integral auto-

morphisms of the Poisson function field of a torus T associated to a cluster

of A, and then use the rigidity theorem. In concrete situations dimZ(K[T ])

is much smaller than that of T , and one can fully determine UAut(A, {·, ·})

from the action of the automorphisms on the height one prime ideals of

A that are Poisson ideals. Finally, Aut(A, {·, ·}) is reconstructed from

UAut(A, {·, ·}) from the action of φ ∈ Aut(A, {·, ·}) on A0. Section 3 con-

tains full details on the method and Section 4 contains a concrete realization.

Section 3 also contains further relations to the modular automorphism group

of the cluster algebra A and the group of toric transformations of A.

1.3. Automorphisms of Poisson cluster algebras on unipotent

groups

We apply Theorem A and the method of the previous subsection to

classify the Poisson automorphisms of an important family of cluster algebras

on unipotent groups related to dual canonical bases and total positivity on

flag varieties.

In [28] Lusztig defined a general notion of total positivity in complex

semisimple algebraic groups G. Fomin and Zelevinsky [10] proved that the

nonnegative subset G≥0 has a canonical decomposition obtained by inter-

secting G≥0 with the double Bruhat cells

Gw,u := B+wB+ ∩B−uB−
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where B± is a pair of opposite Borel subgroups and (w, u) is a pair of Weyl

group elements. Berenstein, Fomin and Zelevinsky [3] constructed upper

quantum cluster algebra structures U(Gw,u) on the coordinate rings of Gw,u

that provide a bridge between Poisson structures and total positivity in the

following sense:

(1) The set G≥0 ∩ G
w,u is precisely the totally positive part of Gw,u in the

cluster theoretic sense, i.e., it consists of the points on which all cluster

variables (equivalently, those in one cluster) take positive values.

(2) The double Bruhat cells Gw,u are Poisson submanifolds of G, equipped

with the standard (Sklyanin) Poisson structure Πst, and the induced

Poisson structures on C[Gw,u] are GSV Poisson structures for U(Gw,u).

The push forward of Πst under the projection G→ G/B+ is the standard

Poisson structure πst on the full flag variety G/B+. We restrict πst to the

open Schubert cell B+w◦B+/B+, identified with the unipotent radical U+

of B+ in the usual way, where w◦ is the longest element of the Weyl group

of G. Denote the corresponding Poisson structures by πst:

(U+, πst) ∼= (B+w◦B+/B+, πst) →֒ (G/B+, πst) և (G,Πst).

For a simply laced group G, Geiss–Leclerc–Schröer [16] proved that the

upper cluster algebra U(Gw◦,1) coincides with the corresponding cluster alge-

bra, and when its frozen variables are not inverted, it gives rise to a cluster

algebra structure A(U+) on C[U+]. (There is a minor detail that for the

last relation one passes to the reduced double Bruhat cell Gw◦,1/H where

H := B+ ∩B−.) For a general semisimple group G, these facts were proved

in [21]. The cluster algebras A(U+) have the following properties:

(1) Geiss, Leclerc and Schröer [17] proved that the cluster monomials of

A(U+) belong to Lusztig’s dual canonical basis [26, 30] of C[U+] when

G is simply laced.

(2) The part of the totally nonnegative subset (G/B+)≥0 defined and stud-

ied by Lusztig [29], that is inside the Schubert cell B+w◦B+/B+, is

precisely the nonnegative subset in the cluster theoretic sense for the

cluster algebra A(U+).

(3) The standard Poisson structure πst on U+ is a GSV Poisson structure

for A(U+).
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Denote by {·, ·}st the Poisson bracket on C[U+] associated to πst. The last

result of the paper classifies the Poisson automorphism groups of the cluster

algebras (C[U+], {·, ·}st).

Theorem B. Let G be a complex, connected, simply connected, semisimple

algebraic group which does not have SL2 factors. The automorphism group

of the Poisson algebra (C[U+], {·, ·}st) is isomorphic to

(H/ZG)⋉Aut(Γ),

where H = B+ ∩ B−, ZG is the center of G, Γ is the Dynkin graph of G,

and Aut(Γ) is its automorphism group.

Here H acts on U+ by conjugation and Aut(Γ) acts by permuting a fixed

set of Chevalley generators. The case when G has SL2 factors is excluded be-

cause in that case there are pathological problems coming from the fact that

(C[U+], {·, ·}st) is a tensor product of two Poisson algebras, one of which is a

polynomial algebra with a trivial Poisson bracket. The theorem is proved in

Section 4. We prove a more general form of the theorem for split, connected,

simply connected, semisimple algebraic groups G without SL2 factors over

arbitrary fields K of characteristic 0. It can be viewed as a Poisson analogue

of the Andruskiewitsch–Dumas conjecture [1] on AutUq(n+).

Finally, in Theorem 4.3 we also solve the isomorphism problem for the

family of Poisson algebras of the form (K[U+], {·, ·}st) for split, connected,

simply connected, semisimple algebraic groups G over fields K of character-

istic 0 (allowing SL2 factors).

We will use the following notation. For j ≤ k ∈ Z, denote [j, k] :=

{j, . . . , k}. For n ∈ Z, set Z≥n = {n, n + 1, . . .} and R≥n = [n,∞). The

center of a Poisson algebra (P, {·, ·}) will be denoted by

Z(P) = {z ∈ P | {z, f} = 0,∀f ∈ P}.

Acknowledgments

We would like to thank Ken Goodearl, Sergey Fomin, Jiang-Hua Lu,

Bach Nguyen, Misha Shapiro and Kurt Trampel for helpful discussions and

correspondence. We are also thankful to the referee for helpful suggestions



✐

“BN13N14” — 2018/1/30 — 14:56 — page 105 — #7
✐

✐

✐

✐

✐

2018] RIGIDITY OF QUADRATIC POISSON TORI 105

that improved the exposition of the paper. M.Y. is grateful to Newcastle

University and the Max Planck Institute for Mathematics in Bonn where

part of this work was carried out.

2. A Rigidity Theorem

2.1. Statement of main result

Let K be a field of characteristic 0 and T be an m-dimensional K-torus.

Denote the coordinate ring and rational function field of T by

K[T ] ∼= K[y±1
1 , . . . , y±1

m ], K(T ) ∼= K(y±1
1 , . . . , y±1

m ).

For α = (i1, . . . , im) ∈ Zm, set

yα := yi11 . . . y
im
m .

Let

{δ1, . . . , δm} be the standard basis of Zm, (2.1)

so yδj = yj. The algebra K[T ] is Zm-graded by

deg yα = α, α ∈ Zm. (2.2)

Fix a skewsymmetric additive bicharacter

Ω: Zm × Zm → K

and consider the quadratic Poisson bracket on K[T ] and K(T ) defined by

{yα, yβ}Ω := Ω(α, β)yαyβ, ∀α, β ∈ Zm. (2.3)

It is graded of degree 0 with respect to the Zm-grading (2.2). In coordinates,

this bracket is given by

{yk, yj}Ω = Ω(δk, δj)ykyj, ∀k, j ∈ [1,m].

The Poisson structure {., .}Ω is called quadratic because it comes from the
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quadratic Poisson bivector field

∑

k,j

Ω(δk, δj)ykyj∂yk ∧ ∂yj

on T . The center of the Poisson algebra (K[T ], {·, ·}Ω) is

Z(K[T ]) = Span{yα | α ∈ radΩ}, (2.4)

where

radΩ = {α ∈ Zm | Ω(α, β) = 0,∀β ∈ Zm}.

If β1, . . . , βl is a free generating set of the (free) abelian group radΩ, then

Z(K[T ]) = K[yβ1 , . . . , yβl ] and Z(K(T )) = K(yβ1 , . . . , yβl).

Let D := (p1, . . . , pm) ∈ Zm
>0 be a positive integral vector. The Zm-

grading (2.2) of K[T ] and D define a Z-grading given by

deg yk = pk. (2.5)

In other words, we use the surjective homomorphism Zm → Z,

i1δ1 + · · ·+ imδm 7→ i1p1 + · · · + impm.

The graded components of the Z-grading will be denoted by K[T ]n, n ∈ Z.

Set

K[T ]≥n := ⊕l≥nK[T ]l.

Definition 2.1.

(i) An automorphism φ of the Poisson function field (K(T ), {·, ·}Ω) will be

called bi-integral if

φ(yk), φ
−1(yk) ∈ K[T ], ∀k ∈ [1,m].

(ii) A bi-integral automorphism φ of (K(T ), {·, ·}Ω) will be called unipotent

if

φ(yk)− yk ∈ K[T ]>pk , ∀k ∈ [1,m].
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Remark 2.2.

(i) It is easy to see that, if φ is a unipotent bi-integral automorphism of the

Poisson function field (K(T ), {·, ·}Ω), then φ
−1 has the same property;

in particular,

φ−1(yk)− yk ∈ K[T ]>pk , ∀k ∈ [1,m].

(ii) If φ and ψ are unipotent bi-integral automorphisms of (K(T ), {·, ·}Ω),

then the composition φ ◦ ψ need not have the same property. That

is, the set of unipotent bi-integral automorphisms of the Poisson func-

tion field (K(T ), {·, ·}Ω) does not form a subgroup of the group of all

automorphisms of (K(T ), {·, ·}Ω).

The next result is the main rigidity theorem in the paper.

Theorem 2.3. Let K be a field of characteristic 0, m ∈ Z>0, (p1, . . . , pm) ∈

Zm
>0, and Ω: Zm×Zm → K be a skewsymmetric additive bicharacter. Every

unipotent bi-integral automorphism φ of the Poisson function field

(K(T ), {·, ·}Ω), satisfies

φ(yk)y
−1
k ∈ Z(K[T ]), ∀k ∈ [1,m].

2.2. An equivalent formulation

Theorem 2.3 has an equivalent formulation in terms of automorphisms

of completions of Laurent polynomial rings. The grading (2.5) gives rise to

the valuation of K[T ]

ν : K[T ] → Z ⊔ {∞}, ν(rj + · · · + rk) = j,∀ri ∈ K[T ]i, i ∈ [j, k], rj 6= 0.

The corresponding completion of K[T ] is

K̂[T ] := {un + un+1 + · · · | n ∈ Z, ul ∈ K[T ]l}.

It has the descending Z-filtration, defined by

K̂[T ]≥n := {un + un+1 + · · · | ul ∈ K[T ]l} for n ∈ N.
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The Poisson structure (2.3) has a canonical extension to K̂[T ] which will be

also denoted by {·, ·}Ω.

Theorem 2.4. Let K be a field of characteristic 0, m ∈ Z>0, (p1, . . . , pm) ∈

Zm
>0, and Ω: Zm × Zm → K be a skewsymmetric additive bicharacter. For

every continuous automorphism θ of the Poisson algebra (K̂(T ), {·, ·}Ω), sat-

isfying

(∗) θ(yk)− yk, θ
−1(yk)− yk ∈ K[T ]>pk , ∀k ∈ [1,m],

we have

θ(yk)y
−1
k ∈ Z(K[T ]), ∀k ∈ [1,m].

Theorems 2.3 and 2.4 are equivalent due to the following lemma.

Lemma 2.5. There is a bijection between the set of unipotent bi-integral

automorphisms φ of the Poisson function field (K(T ), {·, ·}Ω) and the set of

continuous automorphisms θ of (K̂[T ], {·, ·}Ω) satisfying the condition (*) in

Theorem 2.4. The bijection is uniquely defined by the condition that

φ|K[T ] = θ|K[T ].

Proof. Let φ be a unipotent bi-integral automorphism of the Poisson func-

tion field (K(T ), {·, ·}Ω). Thus,

φ(yk) = (1 + fk)yk for some fk ∈ K[T ]≥1.

Define

θ(yk) :=φ(yk)=(1+fk)yk, θ(y
−1
k )=(1+fk)

−1y−1
k :=

∞∑

n=0

(−1)nfnk y
−1
k ∈ K̂[T ].

It is easy to see that θ uniquely extends to a continuous automorphism of

(K̂[T ], {·, ·}Ω) which satisfies the condition (∗) in Theorem 2.4.

In the opposite direction, let θ be a continuous automorphism of the

Poisson algebra (K̂[T ], {·, ·}Ω) which satisfies the condition (∗) in Theorem

2.4. Define

φ(yk) := θ(yk), φ(y−1
k ) := θ(yk)

−1 ∈ K(T ).
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It is clear that φ uniquely extends to a unipotent bi-integral automorphism

of the Poisson function field (K(T ), {·, ·}Ω). ���

2.3. Support and cone of unipotent bi-integral automorphisms of

the Poisson function field (K[T ], {·, ·}Ω)

By a strict polyhedral cone in Rm we will mean a cone of the form

C = R≥0X = {r1α1 + · · ·+ rnαn | ri ∈ R≥0, αi ∈ X}

for a finite subset X ⊂ Rm such that α ∈ C ⇒ −α /∈ C for all α ∈ Rm,

α 6= 0. A ray R≥0α in Rm will be called extremal for C if for all α1, α2 ∈ C,

α1 + α2 ∈ R≥0α⇒ α1, α2 ∈ R≥0α.

Given

f =
∑

β∈Zm

cβy
β ∈ K[T ], cβ ∈ K

and α ∈ Zm, set

[f ]α := cα. (2.6)

Definition 2.6.

(i) Define the support of an element f ∈ K[T ] to be the set

Supp(f) = {α ∈ Zm | [f ]α 6= 0}.

(ii) For a unipotent bi-integral automorphism φ of the Poisson function

field (K[T ], {·, ·}Ω), the set

Supp(φ) :=
(
N ·

⋃

j

Supp(φ(yj)y
−1
j − 1)

)
\{0}

will be called the support of φ.

The following fact was proved in [36] in the greater generality of auto-

morphisms of completions of quantum tori.
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Lemma 2.7 ([36], Lemma 3.10). Let φ be a unipotent bi-integral automor-

phism of (K(T ), {·, ·}Ω). Then

Supp(φ−1) = Supp(φ),

and for all α ∈ Zm,

Supp(φ(yα)− yα) ⊂ α+ Supp(φ). (2.7)

Furthermore, if ψ is another unipotent bi-integral automorphism of

(K(T ), {·, ·}Ω) such that φ ◦ ψ has the same property, then

Supp(φ ◦ ψ) ⊆
(
(Supp(φ) ∪ {0}) + (Supp(ψ) ∪ {0})

)
\{0},

recall Remark 2.2 (ii).

Denote the functional

µD : Rm → R, µ(r1, . . . , rm) = r1p1 + · · ·+ rmpm,∀ri ∈ R. (2.8)

Definition 2.8. Define the cone of a unipotent bi-integral automorphism φ

of (K(T ), {·, ·}Ω) to be the set

Cone(φ) = R≥0Supp(φ) = {r1α1 + · · ·+ rnαn | ri ∈ R≥0, αi ∈ Supp(φ)}.

Since the support of each unipotent bi-integral automorphism of (K(T ),

{·, ·}Ω) satisfies

Supp(φ) ⊂ {α ∈ Zm | µD(α) ≥ 1}

and p1, . . . , pm ∈ Z>0, we obtain the following:

Corollary 2.9. The cone of each unipotent bi-integral automorphism φ of

the Poisson function field (K(T ), {·, ·}Ω) is a strict polyhedral cone. Further-

more, the set Cone(φ)\{0} is contained in the strict half-space

{α ∈ Rm | µD(α) > 0}.
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2.4. Restrictions of unipotent bi-integral automorphisms to

extremal rays

The following proposition will play a key role in the proof of Theorem

2.3. For a subset X ⊂ Rm and f ∈ K[T ], denote

f |X :=
∑

β∈X∩Zm

[f ]βy
β,

using the notation in (2.6).

Proposition 2.10. Assume that φ is a unipotent bi-integral automorphism

of the Poisson function field (K(T ), {·, ·}Ω) and that R≥0α is an extremal

ray of Cone(φ). Then

φ|R≥0α(y
β) := φ(yβ)|β+R≥0α for β ∈ Zm

>0 (2.9)

uniquely defines a unipotent bi-integral automorphism of (K(T ), {·, ·}Ω). Its

inverse is (φ−1)|R≥0α.

This automorphism of (K(T ), {·, ·}Ω) will be called the restriction of φ

to the extremal ray R≥0α. By its definition,

Supp
(
φ|R≥0α

)
= Supp(φ) ∩ R≥0α.

Proof. It follows from Proposition 3.11 (i) in [36] that (2.9) defines an

automorphism of K(T ). The second part of Proposition 3.11 in [36] implies

that the inverse of this automorphism is (φ−1)|R≥0α. These facts can be

also deduced from Lemma 2.7, we leave the details to the reader. The fact

that φ|R≥0α is unipotent and bi-integral, and the uniqueness statement in

Proposition 2.10 both follow directly. It remains to prove that φ|R≥0α is an

automorphism of Poisson function fields, for which it is sufficient to prove

that

φ|R≥0α : Span{yα | α ∈ Zm
>0} → K[T ]

is a homomorphism of Poisson algebras with respect to the restrictions of

the Poisson structure {·, ·}Ω. Using the fact that the Poisson bracket {·, ·}Ω
has degree 0 in the Zm-grading (2.2), we obtain that for all β, γ ∈ Zm

>0,

{φ|R≥0α(y
β), φ|R≥0α(y

γ)}Ω = {φ(yβ)|β+R≥0α, φ(y
γ)|γ+R≥0α}Ω
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= {φ(yβ), φ(yγ)}Ω|β+γ+R≥0α

= φ({yβ , yγ}Ω)|β+γ+R≥0α

= φ|R≥0α({y
β , yγ}Ω).

In the second equality we also used the assumption that R≥0α is an extremal

ray of Supp(φ) and eq. (2.7) in Lemma 2.7. ���

Let φ be a unipotent bi-integral automorphism of the Poisson function

field (K(T ), {·, ·}Ω) and θ be the continuous automorphism of the Poisson

algebra (K̂[T ], {·, ·}Ω) corresponding to it under the bijection from Lemma

2.5. Then the continuous automorphism of (K̂[T ], {·, ·}Ω), corresponding to

the restriction φ|R≥0α is given by

θ|R≥0α(y
β) := θ(yβ)|β+R≥0α for β ∈ Zm.

2.5. Proof of Theorem 2.3

We will call a continuous automorphism θ of (K̂[T ], {·, ·}Ω) unipotent if

θ(yj)− yj ∈ K̂[T ]>pj
, ∀j ∈ [1,m].

It is easy to see that this is equivalent to saying that

θ(yβ)− yβ ∈ K̂[T ]>µD(β), ∀β ∈ Zm

in terms of the functional in (2.8).

Lemma 2.11. Let α ∈ Z, α /∈ radΩ.

(i) If ∂ is a Zm-graded derivation of the Poisson algebra (K[T ], {·, ·}Ω) of

degree α (with respect to the grading (2.2)), then

∂ = a{yα,−}Ω,

for some a ∈ K.
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(ii) If θ is a unipotent continuous automorphism of (K̂[T ], {·, ·}Ω) with sup-

port contained in Z>0α, then

θ =
∞∏

n=1

exp(an{y
nα,−}Ω) (2.10)

for some a1, a2, . . . ∈ K, where the product is taken in decreasing order

from left to right.

Note that, since the Poisson structure {·, ·}Ω is graded of degree 0 with

respect to the Zm-grading (2.2), the composition in the RHS of (2.10)

. . . exp(a2{y
2α,−}Ω) exp(a1{y

α,−}Ω)

is a well defined unipotent continuous automorphism of (K̂[T ], {·, ·}Ω) for all

an ∈ K.

Proof. (i) Let k ∈ [1,m] be such that Ω(α, δk) 6= 0. Denote

∂(yj) = bjy
α+δj for some b1, . . . , bm ∈ K.

The derivation properties of ∂ with respect to the commutative product and

the Poisson bracket, and the definition of {·, ·}Ω give

∂({yk, yj}Ω) = {∂(yk), yj}Ω + {yk, ∂(yj)}Ω

= (bkΩ(α+ δk, δj) + bjΩ(δk, α + δj)) y
α+δk+δj

and

∂({yk, yj}Ω) = Ω(δk, δj)∂(ykyj) = (bk + bj)Ω(δk, δj)y
α+δk+δj .

This implies that

bj =
Ω(α, δj)

Ω(α, δk)
bk

for all j ∈ [1,m], and thus,

∂ =
bk

Ω(α, δk)
{yα,−}Ω.
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(ii) For j ∈ [1,m], define ∂(yj) ∈ K[T ]α+δj by

∂(yj) := [θ(yj)]α+δjy
α+δj .

Since

Supp(φ(yj)− yj − δ(yj)) ∈ δj + Z≥2α,

and φ an automorphism of the Poisson algebra (K̂[T ], {·, ·}Ω), ∂ extends to

a derivation of (K[T ], {·, ·}Ω). By part (i), ∂ = a1{y
α,−}Ω for some a1 ∈ K.

Hence,

ψ := exp(−a1{y
α,−}Ω)φ

is a unipotent continuous automorphism of (K̂[T ], {·, ·}Ω) whose support is

contained in Z≥2α. In the same way one shows that there exists a2 ∈ K such

that

exp(a2{y
2α,−}Ω)ψ

is a unipotent continuous automorphism of (K̂[T ], {·, ·}Ω), whose support is

contained in Z≥2α. The proof of part (ii) is now completed by induction. ���

Corollary 2.12. Let α ∈ Z, α /∈ radΩ. For every unipotent bi-integral

automorphism φ of the Poisson function field (K(T ), {·, ·}Ω) with Supp(φ) ⊆

Z≥1α, we have

φ(yα) = yα.

The corollary follows from Lemma 2.11 (ii) and the fact that for ev-

ery unipotent bi-integral automorphism of (K(T ), {·, ·}Ω), the continuous

automorphism of (K̂[T ], {·, ·}Ω), corresponding to it under Lemma 2.5, is

unipotent.

Proof of Theorem 2.3. Because of (2.4), the statement is equivalent to

the inclusion

Supp(φ) ⊂ radΩ.

Assume that this is not the case. Since radΩ is the intersection of a subspace

of Rm with Zm, Cone(φ) will have an extremal ray R≥0α such that

α /∈ radΩ. (2.11)
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By rescaling α we can assume that

R≥0α ∩ Zm = Nα.

Denote

ψ := φ|R≥0α.

By the definition of support of φ, there exists k ∈ [1,m] such that

ψ(yk) =
n∑

i=0

aiy
iαyk with ai ∈ K

for some n > 0, an 6= 0. It follows from Proposition 2.10 that ψ is a unipotent

bi-integral automorphism of (K(T ), {·, ·}Ω) and ψ
−1 = φ−1|R≥0α. So,

ψ−1(yk) =

l∑

j=0

a′jy
jαyk with a′j ∈ K

for some l ≥ 0, a′l 6= 0. By applying Corollary 2.12, we obtain

yk = ψψ−1(yk) =

n∑

i=0

l∑

j=0

aia
′
jy

(i+j)αyk.

However, n+ l > 0 and the coefficient of y(n+l)α+δk = y(n+l)αyk in the LHS

of the last equality is 0, while in the coefficient of y(n+l)αyk in the RHS

is ana
′
l 6= 0. This is a contradiction, which completes the proof of the

theorem. ���

3. Poisson Automorphisms of Cluster Algebras

3.1. Poisson clusters and cluster algebras

Definition 3.1. Assume that (P, {·, ·}) is a Poisson algebra over a field K.

We will say that the n-tuple (y1, . . . , ym) of elements of P is a Poisson cluster

of P, if the following three conditions are satisfied:

(1) {yj , yk} = cjkyjyk, ∀j, k ∈ [1,m] for some cjk ∈ K.

(2) y1, . . . , yn generate a polynomial subalgebra of P.

(3) P is contained in the localization K[y±1
1 , . . . , y±1

m ].
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In particular, each Poisson cluster of (P, {·, ·}) gives rise to the embed-

dings of Poisson algebras

K[y1, . . . , ym] ⊆ P ⊆ K[y±1
1 , . . . , y±1

m ]. (3.1)

The first algebra is a Poisson subalgebra of (P, {·, ·}) because of the condition

(1). Every localization of a Poisson algebra has a canonical structure of

Poisson algebra. Hence, the Laurent polynomial ring K[y±1
1 , . . . , y±1

m ] admits

a canonical Poisson algebra structure as a localization of the first algebra.

Because of the embeddings in (3.1), the third algebra is also a localization

of the second, namely,

K[y±1
1 , . . . , y±1

m ] ∼= P[y−1
1 , . . . , y−1

m ]

as Poisson algebras.

Seeds of cluster algebras give rise to Poisson clusters as follows. Assume

that A is a cluster algebra of geometric type [11] with base ring extended

from Z to the field K. Let Σ = (y1, . . . , ym, B̃) be a labeled seed of A, i.e.,

one whose cluster variables y1, . . . , ym are labelled with the integers in [1,m].

Here B̃ is the exchange matrix of Σ; it is an integral matrix of sizem×n whose

principal n × n submatrix B is skew-symmetrizable (i.e., diag(d1, . . . dn)B

is a skewsymmetric matrix for some collection d1, . . . , dn of positive, rela-

tively prime integers). The number n is the number of exchangeable cluster

variables of A. We will assume throughout that yn+1, . . . , ym are the frozen

variables of A. We refer the reader to [11, 19, 33] for details on cluster

algebras.

Definition 3.2 ([4, 19]). Let Λ = (λjk) be a skewsymmetric integral matrix.

The pair (Λ, B̃) is called compatible if the n× n principle submatrix of the

m× n matrix −ΛB̃ = ΛtB̃ equals diag(d1, . . . , dn) and all other entries of it

vanish.

Here and below Xt denotes the transpose of a matrix X. Following

[4, 18], for a mutable index k ∈ [1, n], define the m×m matrix

Ek = (eij), eij =





δij , if j 6= k

−1, if i = j = k

max(0, bik), if i 6= j = k
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where bij, i ∈ [1,m], j ∈ [1, n] are the entries of the exchange matrix B̃. If

(Λ, B̃) is a compatible pair and k ∈ [1, n], then [4, 18] the matrix

Λ′ = Et
kΛEk

has the property that for the seed mutation µk(Σ) = (y1, . . . , yk−1, y
′
k, yk+1,

. . . , yn, µk(B̃)), the pair (Λ′, µk(B̃)) is compatible. (We refer the reader

to [4, Sec. 3] for a detailed study on the properties of compatible pairs.)

Iterating this formula, simultaneously with the seed mutation formulas, one

constructs compatible skewsymmetric integral matrices with all seeds of the

algebra A, and defines the Gekhtman–Shapiro–Vainshtein Poisson structure

of A (associated to Λ) to be given by

{yj, yk} = λjkyjyk, ∀j, k ∈ [1,m]. (3.2)

More precisely, by the Laurent phenomenon [12], A ⊆ K[y±1
1 , . . . , y±1

m ].

It was proved in [18] that A is a Poisson subalgebra of K[y±1
1 , . . . , y±1

m ],

equipped with the Poisson bracket (3.2), and that the Poisson bracket be-

tween the cluster variables in every seed of A is given by the analogues of

(3.2) in terms of the associated Λ-matrix to the (labeled) seed. This formula

implies the following:

Corollary 3.3. Let A be a cluster algebra of geometric type equipped with

a Gekhtman–Shapiro–Vainshtein Poisson structure {·, ·}. For every labeled

seed Σ = (y1, . . . , ym, B̃) of A, (y1, . . . , yn) is a Poisson cluster of (A, {·, ·}).

3.2. Automorphisms of N-graded connected algebras admitting a

homogeneous cluster

Let (P = ⊕n∈NPn, {·, ·}) be an N-graded Poisson algebra. The Poisson

bracket will be assumed to be graded but not necessarily of degree 0. Denote

by Aut(P) the group of automorphisms of the Poisson algebra (P, {·, ·}) and

by

UAut(P) = {φ ∈ Aut(P) | φ(f)− f ∈ P≥n+1, ∀n ∈ N, f ∈ Pn}

the subgroup of unipotent automorphisms of (P, {·, ·}). When dimP0 is small

(especially when P is connected, i.e., dimP0 = 1), it is easy to describe

Aut(P) in terms of UAut(P). Thus, the problem for determining Aut(P)
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reduces to that of determining UAut(P). The latter problem is extremely

hard and has been solved only in very few situations.

Our next result proves that all unipotent automorphisms of N-graded

connected algebras admitting a homogeneous cluster, have a very special

form that depends only on the Poisson center of the associated Laurent

polynomial ring. It can be used to fully describe the automorphism groups

of such algebras; in the next section this is illustrated with the coordinate

ring of the open Schubert cells of all full flag varieties equipped with the

standard Poisson structure.

Theorem 3.4. Assume that (P = ⊕n∈NPn, {·, ·}) is an N-graded Poisson

algebra over a field K of characteristic 0 and (y1, . . . , ym) is a Poisson cluster

of P consisting of homogeneous elements of positive degrees. Then every

unipotent Poisson automorphism φ of (P, {·, ·}) has the property

φ(yk)y
−1
k ∈ Z(K[y±1

1 , . . . , y±1
m ]), ∀k ∈ [1,m],

where Z(·) refers to the center of the Poisson Laurent polynomial ring with

the Poisson structure {·, ·}.

Theorem 3.4 places a very strong restriction on the possible form of

the unipotent Poisson automorphisms of (P, {·, ·}) because in all important

situations the Krull dimension of Z(K[y±1
1 , . . . , y±1

m ]) is much smaller that

that of P, see next section. Furthermore, because of the second embedding

in (3.1), φ is fully determined from the values φ(yk) for k ∈ [1,m].

Assume the setting of Theorem 3.4 and denote by Ω: Zm×Zm → K the

skewsymmetric additive bicharacter given by Ω(δj , δk) := λjk. We have the

isomorphism of Poisson algebras

(K[y±1
1 , . . . , y±1

m ], {·, ·}) ∼= (K[T ], {·, ·}Ω) (3.3)

where the first algebra is equipped with the restricted Poisson structure from

P and the second is the one considered in Section 2. Denote by pk ∈ Z>0

the degree of yk.

Theorem 3.4 directly follows from Theorem 2.3 and the following propo-

sition.



✐

“BN13N14” — 2018/1/30 — 14:56 — page 119 — #21
✐

✐

✐

✐

✐

2018] RIGIDITY OF QUADRATIC POISSON TORI 119

Proposition 3.5. In the setting of Theorem 3.4, we have a group embedding

ι : UAut(P, {·, ·}) →֒ Aut(K[T ], {·, ·}Ω)

whose image is contained in the set of unipotent bi-integral automorphisms

of (K[T ], {·, ·}Ω). For φ ∈ UAut(P, {·, ·}), ι(φ) is the unique automorphism

of (K[T ], {·, ·}Ω) such that

ι(φ)|P = φ.

Proof. Denote K[Am] := K[y1, . . . , ym]. It is a Poisson subalgebra of

(K[T ], {, ·}Ω). Identifying the Poisson algebras in (3.3) and taking into ac-

count (3.1), gives the embeddings of Poisson algebras

(K[Am], {, ·}Ω) ⊆ (P, {, ·}) ⊆ (K[T ], {, ·}Ω). (3.4)

Since the elements y1, . . . , ym are homogeneous, these embeddings are

graded. Fix φ ∈ UAut(P, {·, ·}) and define

Φ: K[Am] → K[T ] by Φ(f) := φ(f) ∈ P ⊆ K[T ], ∀f ∈ K[Am] ⊆ P.

Taking into account that φ is an automorphism of (P, {, ·}) and using the

embeddings in (3.4), we obtain that Φ is a homomorphism of Poisson algebras

with respect to the Poisson structure {·, ·}Ω. Since

Φ(f)− f ∈ P≥n+1 ⊆ K[T ]≥n+1,∀f ∈ K[Am]n ⊆ Pn, n ∈ N, (3.5)

Φ is injective. Thus, it extends to an injective Poisson homomorphism

Φ: (K(T ), {·, ·}Ω) → (K(T ), {·, ·}Ω). Since P is a subalgebra of K[T ], it is an

integral domain. This, the definition of Φ and the fact that P is contained

in the field of fractions of K[Am] imply that

Φ|P = φ. (3.6)

Denote by Ψ: (K(T ), {·, ·}Ω) → (K(T ), {·, ·}Ω) the injective Poisson homo-

morphism obtained in the same way from φ−1 ∈ UAut(P, {·, ·}). It follows

from (3.6) that

ΨΦ(f) = Ψφ(f) = φ−1φ(f) = f, ∀f ∈ K[Am]
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because φ(f) ∈ P. Therefore, Φ is a Poisson automorphism of (K(T ), {·, ·}Ω)

with inverse Ψ, and by (3.5), Φ is a unipotent bi-integral automorphism. De-

fine ι(φ) := Φ. Eq. (3.6) implies that ι : UAut(P, {·, ·}) → Aut(K[T ], {·, ·}Ω)

is injective. We have proved that its image is contained in unipotent bi-

integral automorphisms of (K[T ], {·, ·}Ω). It remains to prove that ι is a

group homomorphism.

Let φ1, φ2 ∈ UAut(P, {·, ·}). Applying (3.6) gives

(
ι(φ1)◦ι(φ2)

)
(f) = ι(φ1)

(
φ2(f)

)
=

(
φ1 ◦φ2

)
(f) = ι(φ1 ◦φ2)(f), ∀f ∈ K[Am]

because φ(f) ∈ P. Since P is contained in the field of fractions of K[Am],

we obtain that ι(φ1) ◦ ι(φ2) = ι(φ1 ◦ φ2), which completes the proof of the

proposition. ���

3.3. Poisson automorphisms of N-graded connected cluster algebras

Theorem 3.4 and Corollary 3.3 imply the following result.

Theorem 3.6. Let A be an N-graded cluster algebra of geometric type over

a field K of characteristic 0, equipped with a Gekhtman–Shapiro–Vainshtein

Poisson structure {·, ·}. Let Σ = (y1, . . . , ym, B̃) be a labeled seed of A such

that y1, . . . , yn are homogeneous of positive degrees. For every unipotent

automorphism φ of the Poisson algebra (A, {·, ·}),

φ(yk)y
−1
k ∈ Z(K[y±1

1 , . . . , y±1
m ])

where the center is computed with respect to the induced Poisson structure

on the localization K[y±1
1 , . . . , y±1

m ] = A[y−1
1 , . . . , y−1

m ].

There are two important subgroups of the automorphism group of the

Poisson cluster algebra (A, {·, ·}): the subgroup of the modular Poisson au-

tomorphisms and the subgroup of toric transformations. For a labeled seed

Σ of A, denote by y1(Σ), . . . , ym(Σ) the cluster variables in it, by B̃(Σ)

its exchange matrix, and by Λ(Σ) the compatible integral skewsymmetric

m ×m-matrix. As before, we will assume that yn+1(Σ), . . . , ym(Σ) are the

frozen variables of A.
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(1)The group of toric transformations of (A, {·, ·}) was introduced by Gekhtman–

Shapiro–Vainshtein in [18] as follows. For a labeled seed Σ of A, denote the

lattice

ΘΣ := KerB̃(Σ)t ∩ Zm

where B̃(Σ)t is the transpose of the matrix B̃(Σ). In [4, Proposition 3.3]

it was proved that the assumption that (Λ(Σ), B̃(Σ)) is a compatible pair

implies that rankB̃(Σ) = n, so rankΘΣ = m− n. Denote by TA, the m− n-

dimensional K-subtorus of (K∗)m generated by

(al1 , . . . , alm) for (l1, . . . , lm) ∈ ΘΣ, a ∈ K∗.

It was proved in [18, Lemma 2.2] that the action of TA on K[y1(Σ)
±1, . . .,

ym(Σ)±1], given by

(a1, . . . , am) · yk(Σ) := akyk(Σ), ∀k ∈ [1,m], (a1, . . . , am) ∈ TA

preserves A and that, for any other labeled seed of A, the two tori and

the corresponding actions are canonically isomorphic. The action of TA

obviously preserves {·, ·} for homogeneity reasons, so, we have an embedding

TA ⊂ Aut(A, {·, ·}).

The group TA is called [18] group of toric transformations of (A, {·, ·}).

(2) The modular group of a cluster algebra A of geometric type was defined

in [2, 9, 13] (a more general construction for quasiautomorphisms in the

presence of coefficients in semifields was introduced in [14]). We use the

term modular Poisson group for the subgroup of the former that preserves

the Poisson structure {·, ·}.

A modular Poisson automorphism of A is defined to be any automor-

phism φ ∈ Aut(A) that has the property that there is a cluster (y1, . . . , ym)

of A satisfying the conditions:

(1) (φ(y1), . . . , φ(ym)) is a cluster of A and φ(yj) = yj for j ∈ [n+ 1,m],

(2) {φ(yk), φ(yj)} = φ({yk, yj}) for all k, j ∈ [1,m],

(3) φ commutes with mutations in the sense that φ(µk(yk)) = µk(φ(yk)) for

all k ∈ [1, n].
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It is easy to check that this implies that every cluster of A will possess the

same properties.

Recall that an m × n matrix B̃ is called indecomposable if there is no

nontrivial partition [1,m] = P1 ⊔ . . . ⊔ Pj such

(1) Pj ∩ [1, n] 6= ∅ for all j and

(2) B̃ becomes a block-diagonal matrix with respect to this partition (with

blocks of rectangular size).

It is well known that, if the exchange matrix of one seed of A is indecom-

posable, then this is true for any other seed of A. Analogously to [2, Lemma

2.3], one proves:

Lemma 3.7. If the exchange matrix on one (and thus any) seed of A is

indecomposable, then an automorphism φ ∈ Aut(A) is a modular Poisson

automorphism if and only if there is a labeled seed Σ = (y1, . . . , ym, B̃) of A

satisfying the following condition:

Either ((φ(y1), . . . , φ(ym)), B̃) or ((φ(y1), . . . , φ(ym)),−B̃) is a labeled

seed of A and the corresponding compatible Λ-matrix is Λ(Σ).

Once again, it is easy to check that if one seed of A satisfies the condition

in Lemma 3.7, then every labeled seed of A will satisfy it too. Denote

by Mod−Aut(A, {·, ·}) the group of modular Poisson automorphisms of

(A, {·, ·}). The subgroup of those φ ∈ Aut(A) satisfying the condition that

((φ(y1), . . . , φ(ym)), B̃) is a labeled seed of A, will be called the group of

strong modular Poisson automorphisms of (A, {·, ·}) in analogy with the

terminology of [13] for cluster algebra automorphisms without the presence

of Poisson structure.

Finally, note that Mod−Aut(A, {·, ·}) normalizes TA. Thus, we have

the subgroup

TA ⋉Mod−Aut(A, {·, ·}) ⊆ Aut(A, {·, ·}).

The group Mod−Aut(A, {·, ·}) is of combinatorial nature and one can hope

that it can be fully determined from the exchange pattern of the cluster al-

gebra A. It has been described for acyclic cluster algebras [2] and for cluster

algebras of finite mutation type [5, 6, 22] in terms of the transjective compo-

nent of the Auslander–Reiten quiver of the corresponding cluster category
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and the mapping class group of the associated surface, respectively. The

group TA is a torus that is described explicitly. However, the full automor-

phism group Aut(A, {·, ·}) is extremely hard to determine explicitly. This

gives rise to the following natural question:

Problem 3.8. Let A be a cluster algebra of geometric type over a field K,

equipped with a Gekhtman–Shapiro–Vainshtein Poisson structure {·, ·}. De-

termine how much bigger the full Poisson automorphism group Aut(A, {·, ·})

is compared to its canonical subgroup

TA ⋉Mod−Aut(A, {·, ·}).

In the next section we present a solution of this problem for the impor-

tant case of the cluster algebra structures on all open Schubert cells in full

flag varieties of complex simple Lie groups. We expect that Theorem 3.6 will

be helpful in fully resolving the above problem for all N-graded connected

cluster algebras.

4. Applications to Poisson Automorphisms of Schubert Cells

4.1. Standard Poisson structures on flag varieties

Let K be a field of characteristic 0 and G be a split, connected, simply

connected, semisimple algebraic group over K. Let g be its Lie algebra and

W its Weyl group. Denote by {α1, . . . , αr} the set of its simple roots and

by {s1, . . . , sr} ⊂W the corresponding set of simple reflections.

Let B± be a pair of opposite Borel subgroups of G, H := B+ ∩ B−

be the corresponding maximal torus, and U± be the unipotent radicals of

B±. Set b± := Lie (B±), n± := Lie (U±), and h := LieH. Let {ei, fi} be

a set of Chevalley generators of g such that {ei} and {fi} generate n+ and

n−, respectively. Set hi := [ei, fi]. Consider the representatives of si in the

normalizer NG(H) of H in G

ṡi := exp(fi) exp(−ei) exp(fi).

They are extended (in a unique way) to Tits’ representatives of the Weyl

group elements w ∈ W in NG(H) by setting ẇ := v̇ṡi if w = vsi and

ℓ(w) = ℓ(v) + 1 where ℓ : W → N is the length function. Denote by ∆+ the
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set of positive roots of g. For w ∈ W and i ∈ [1, r] such that w(αi) ∈ ∆+,

denote the root vectors

ew(αi) := Adẇ(eαi
) and fw(αi) := Adẇ(fαi

). (4.1)

Let 〈·, ·〉 be the invariant bilinear form on g, normalized by ‖αi‖
2 = 2 for

short roots αi.

The standard r-matrix for g is the element

rst :=
∑

β∈∆+

‖β‖2

2
eβ ∧ fβ ∈ ∧2g. (4.2)

It gives rise to the Poisson bivector field

πst := −χ(r) ∈ Γ(G/B+,∧
2T (G/B+)), (4.3)

called the standard Poisson structure of the full flag variety G/B+. Here,

χ : g → Γ(G/B+, T (G/B+)) denotes the infinitesimal action of g associated

to the left action of G on G/B+, and its extension to

∧•g → Γ(G/B+,∧
•T (G/B+)). Alternatively, the Poisson structure π can be

defined as the push-forward under the projection G 7→ G/B+ of the standard

(Sklyanin) Poisson structure on the group G. The Schubert cell partition of

G/B+

G/B+ =
⊔

w∈W

B+wB+/B+

is a decomposition into Poisson submanifolds. Denote by w◦ the longest

element of the Weyl group W and consider the open Schubert cell of G/B+

B+w◦B+/B+
∼= U+

where the isomorphism (of affine spaces) is given by u+∈U+ 7→u+w◦B+/B+.

Denote by πst the induced Poisson structure on U+ and by {·, ·}st the corre-

sponding Poisson bracket on K[U+]. (Note that πst is not the restriction of

the standard Poisson structure of G to U+; even more, U+ is not a Poisson

submanifold of G with respect to it.) Elek and Lu proved [8, Theorem 6.1]

that the Poisson structure πst is defined over Z, see the next subsection for

details.
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Let Uq(g) be the corresponding quantized universal enveloping algebra

[27] and Uq(n−) be its negative part. The Poisson bracket {·, ·}st is pre-

cisely the induced Poisson bracket for the specialization of an integral form

of Uq(n−)op at q = 1 (identified with the nonrestricted integral form on

the quantized coordinate ring of the open Schubert cell B+w◦B+/B+), [34,

Lemma 4.3]. Here (·)op refers to the opposite algebra structure.

The automorphism group Aut(Γ) of the Dynkin graph Γ of g acts on G,

G/B+ and U+ (via its action on the fixed choice of Chevalley generators of

g). It is clear that this action is Poisson with respect to πst. The definition of

πst also implies that the conjugation action of H on (U+, {·, ·}st) is Poisson.

Thus, we have the embedding

(H/ZG)⋉Aut(Γ) →֒ Aut(K[U+], {·, ·}st) (4.4)

where the semidirect product is formed with respect to the action of Aut(Γ)

on H permuting the elements {hi} and ZG denotes the center of G. By

abuse of notation, we will identify (H/ZG) ⋉ Aut(Γ) with its image in

Aut(K[U+], {·, ·}st).

Theorem 4.1. For all fields K of characteristic 0 and split, connected, sim-

ply connected, semisimple algebraic groups G which do not have SL2 factors,

the group of Poisson automorphisms of the coordinate ring of the open Schu-

bert cell (B+w◦B+/B+, πst) ∼= (U+, πst) is given by

Aut(K[U+], {·, ·}st) ∼= (H/ZG)⋉Aut(Γ).

For all semisimple Lie groups G, Berenstein, Fomin, and Zelevinsky con-

structed in [3] an upper cluster algebra structure onK[U+] with a Gekhtman–

Shapiro–Vainshtein Poisson structure equal to {·, ·}st. In the case when G is

simply laced, Geiss, Leclerc and Schröer proved in [16] that K[U+] coincides

with the corresponding cluster algebra A(U+). For all semisimple Lie alge-

bras this was done by Goodearl and the second author in [21]. Theorem 4.1

solves Problem 3.8 for this class of cluster algebras. It also has the following

immediate corollary for the Poisson modular automorphism groups of the

cluster algebras A(U+):
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Corollary 4.2. For all fields K of characteristic 0 and split, connected, sim-

ply connected, semisimple algebraic groups G which do not have SL2 factors,

the Poisson modular automorphism group of the cluster algebra structure

(A(U+), {·, ·}st) on K[U+] is isomorphic to Aut(Γ).

Theorem 4.1 and Corollary 4.2 are not valid in the case when the

semisimple algebraic group G has SL2 factors because the Poisson struc-

ture πst vanishes in the case of G = SL2. This leads to a slightly larger

automorphism group in the case of one factor and to pathological problems

in the case of multiple factors. In the latter case the Poisson algebra in

question is a tensor product of two algebras, one of which is a polynomial

algebra with a trivial Poisson bracket.

Since the category of Poisson algebras in Theorem 4.1 is closed under

tensor products, we have the following application of Theorem 4.1 that solves

the isomorphism problem for this family of Poisson algebras. For a split,

connected, simply connected, semisimple algebraic group G, we will denote

by U+(G) the unipotent radical of a Borel subgroup of G and by {·, ·}st the

corresponding standard Poisson structure on K[U+]. The Poisson algebra

(K[U+(G)], {·, ·}st) is independent (up to isomorphism) on the choice of Borel

subgroup of G.

Theorem 4.3. Let G1 and G2 be split, connected, simply connected, semi-

simple algebraic groups over a field K of characteristic 0. The Poisson alge-

bras

(K[U+(G1)], {·, ·}st) and (K[U+(G2)], {·, ·}st)

are isomorphic, if and only if G1 and G2 are isomorphic.

Theorem 4.3 does not assume that the semisimple groups do not have

SL2 factors, like Theorem 4.1. Theorem 4.1 is proved in §4.2−4.5 and The-

orem 4.3 in §4.6.

4.2. Generators for the Poisson algebra (K[U+], {·, ·}st)

Fix a reduced expression of the longest Weyl group element

w◦ = si1 . . . siN (4.5)
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where N := dimn+. For k ∈ [1, N ], set

(w◦)<k := si1 . . . sik−1
∈W.

The positive roots of g are expressed as

βk = (w◦)<k(αik), k ∈ [1, N ]

and, using (4.1), we have the parametrization

U+ = {exp(xβ1eβ1) . . . exp(xβN
eβN

) | xβk
∈ K}.

It gives rise to the isomorphism

K[U+] ∼= K[xβ, β ∈ ∆+]. (4.6)

These are the coordinates in which the Poisson structure {·, ·}st has integer

coefficients, [8, Theorem 6.1]. It also satisfies the semiclassical analogue of

the Levendorskii–Soibelman straightening law

{xβj
, xβk

}st = 〈βj , βk〉xβj
xβk

+ qjk where qjk ∈ K[xβj+1
, . . . , xβk−1

] (4.7)

for all j < k ∈ [1, N ], [8, Proposition 5.12]. (We use the opposite Poisson

structure to that in [8], resulting in a sign difference.)

Denote by Q+ = Nα1 + . . .+Nαr the positive part of the root lattice of

g and by ht: Q+ → N the principal grading

ht(n1α1 + · · · + nrαr) := n1 + · · ·+ nr.

The algebra K[U+] is Q+-graded by setting degxβ := β for β ∈ ∆+. (One

can equivalently define the grading by using the characters of the conjugation

action of H on K[U+].) By (4.3), the Poisson structure {·, ·}st is graded of

degree 0.

Remark 4.4. Since K[U+]αi
= Kxαi

for i ∈ [1, r], changing the reduced

expression of w◦ only results in rescaling of the coordinate functions xαi
.

Proposition 4.5. The Poisson algebra (K[U+], {·, ·}st) is generated by xαi

for i ∈ [1, r].
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Proof. The ordering β1, . . . , βN of the positive roots of g is convex in the

sense that, if α, β, α + β ∈ ∆+, then α+ β appears between α and β.

Denote by P the Poisson subalgebra of K[U+] generated by xαi
for i ∈

[1, r]. We prove by induction on n ∈ Z≥1 that xβ ∈ P for β ∈ ∆+ with

ht(β) = n. This is clear for n = 1. Assume its validity for some n ∈ Z≥1

and consider γ ∈ ∆+ with ht(γ) = n+1. Then γ = β+αi for some β ∈ ∆+,

ht(β) = n. Since {·, ·}st is graded of degree 0 with respect to the Q+-grading

of K[U+],

{xαi
, xβ}st = axγ + q

where a ∈ K and q is a polynomial in xβ′ with β′ ∈ ∆+, ht(β
′) ≤ n. The

inductive assumption implies that q, {xαi
, xβ}st ∈ P, so it suffices to prove

that

a 6= 0. (4.8)

Let j, k ∈ [1, N ] be such that βj = αi and βk = β. By the convexity of

the ordering of the roots β1, . . . , βN , γ = βl for some l between j and k.

Denote m = min{j, k} and M := max{j, k}. A formula for the coefficient a

was obtained in [8, Theorem 4.10, Eq. (41)]. Eq. (41) in [8] expresses a as

a product of 1’s and a nonzero rational number coming from the αil-string

through the root

sil−1
. . . sim−1(αim)− αil = sil−1

. . . siM−1
(αiM ) ∈ ∆+.

The last identity follows from the equality γ = β +αi and the definitions of

l,m and M . This completes the induction step. ���

4.3. Poisson clusters of the algebra (K[U+], {·, ·}st)

Denote by {̟1, . . . ,̟r} the fundamental weights of G. Given a domi-

nant integral weight λ of G and u, v ∈W , one defines the generalized minors

∆uλ,vλ ∈ K[G]

as follows. Let L(λ) denote the irreducible highest weight G-module with

highest weight λ. Fix a highest weight vector bλ of L(λ) and a vector ξλ in
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the dual weight space, normalized by 〈ξλ, bλ〉 = 1. Define

∆uλ,vλ(g) := 〈ξλ, u̇
−1gv̇bλ〉, g ∈ G.

As in the previous subsection, we fix a reduced expression (4.5) of w◦ and

define

∆k := ∆(w◦)<k̟k,w◦̟k
∈ K[U+] for k ∈ [1, N ]. (4.9)

(The minors are considered as elements of K[U+] by restriction.) Clearly,

for all i ∈ [1, r],

∆̟i,w◦̟i
= ∆k where k := min{l ∈ [1, N ] | il = i}.

Proposition 4.6. For each reduced expression of w◦, the elements ∆1, . . .,

∆N ∈ K[U+] form a Poisson cluster of (K[U+], {·, ·}st) and satisfy

{∆j ,∆k}st = −〈((w◦)<j + w◦)̟ij , ((w◦)<k − w◦)̟ik〉∆j∆k, ∀j<k∈ [1, N ].

(4.10)

Proof. Denote the successor function for the reduced expression (4.5)

s : [1, N ] → [1, N ] ⊔ {∞}

given by

s(k) =

{
min{l > k | il = ik}, if ∃ l > k such that il = ik

∞, otherwise.

The fact that ∆1, . . . ,∆N form a polynomial subring of K[U+] and the

inclusion

K[U+] ⊂ K[∆±1
1 , . . . ,∆±1

N ]

follow from the expansion

∆k = ∆s(k)xβk
+qk for some qk ∈ K[xβk+1

, . . . , xβN
], ∀k ∈ [1, N ] (4.11)

where ∆∞ := 1 and qN = 0. It is proved analogously to its quantum

counterpart [15, Proposition 3.3].
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The Poisson structure {·, ·}st on the open Schubert cell B+w◦B+/B+

equals the canonical Poisson structure on the specialization at q = 1 of the

nonrestricted integral form of the quantized coordinate ring of B+w◦B+/B+,

see [34, pp. 274-276]. The same arguments show that the minors ∆1, . . . ,∆N

are equal to the specializations of the corresponding set of quantum minors

in [20, Theorem 9.5] for the case of w = w◦. The formula for Poisson brackets

(4.10) is an immediate consequence of the commutation relations between

the quantum minors in [20, Eq. (9.29)], with a sign contribution from the

antihomomorphisms in [20, Theorem 9.2]. ���

For each i ∈ [1, r], −w◦(αi) is a positive simple root of g. Denote the

involution τ of [1, r], given by

ατ(i) := −w◦(αi). (4.12)

Let O1 ⊂ [1, r] be the set of its fixed points and O2 be a set of representatives

of its 2-element orbits.

Proposition 4.7. For each reduced expression of w◦, the Poisson center of

the Laurent polynomial ring of the Poisson cluster in Proposition 4.6 is given

by

Z(K[∆±1
1 , . . . ,∆±1

N ])=K[∆±1
̟i,w◦̟i

, (∆̟l,w◦̟l
∆̟τ(l),w◦̟τ(l)

)±1, i∈O1, l∈O2].

Proof. It follows from (4.10) that the Poisson center of the Laurent poly-

nomial ring Z(K[∆±1
1 , . . . ,∆±1

N ]) is given in terms of the radical of the form

Ω on ZN

Ω(δj , δk) := −〈((w◦)<j + w◦)̟ij , ((w◦)<k − w◦)̟ik〉, j < k ∈ [1, N ]

by (2.4). (Recall the notation (2.1).) By [20, Eq. (9.29)] the radical of the

same form computes the center of the quantum torus generated by the quan-

tum counterparts of this sequence of minors. The center of that quantum

torus was described in [36, Lemma 4.7]. The proposition follows from it and

(4.9). ���
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4.4. Proof of Theorem 4.1 in the unipotent case

Consider the principal grading of the algebra K[U+], defined by

deg xβ = ht(β) for β ∈ ∆+. (4.13)

The grading is connected, i.e., K[U+]0 = K.

We prove Theorem 4.1 in two steps. In this subsection we prove it in the

case of unipotent automorphisms, using the rigidity theorem from Section

2 and the embedding result for unipotent automorphisms on the basis of

Poisson clusters in Proposition 3.5. In the next subsection we reduce the

general case to the unipotent one (with respect to the principal grading of

K[U+]).

For the needs of the proofs in the next subsection, we derive a stronger

result for unipotent automorphisms concerning all specializations of the

Q+-grading on K[U+] to N-gradings. Denote the set of dominant integral

coweights of G:

P∨
+ = {n1̟

∨
i + · · · + nr̟

∨
r | n1, . . . , nr ∈ N}

where ̟∨
i , . . . ,̟

∨
r are the fundamental coweights of G. Each λ ∈ P∨

+ gives

rise to the specialization of the Q+-grading of K[U+], defined by

degxβ := 〈λ, β〉. (4.14)

Proposition 4.8. Let K be a field of characteristic 0 and G be a split,

connected, simply connected, semisimple algebraic group. For all dominant

integral coweights λ of G, the group of unipotent Poisson automorphisms of

the coordinate ring of the open Schubert cell (B+w◦B+/B+, πst) ∼= (U+, πst)

with respect to the grading (4.14) is trivial

UAut(K[U+], {·, ·}st) = {id}.

For this proposition it is not necessary to require that G has no SL2

factors.

Proof. Since the scheme theoretic intersection of opposite Schubert varieties

is reduced [31, Theorem 3.5] and Schubert varieties are linearly defined [24,
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Theorem 3(i)], the vanishing ideal of the irreducible subvariety

U+ ∩ U−siB+w◦
∼= B+w◦B+/B+ ∩B−siB+/B+

of U+ is the principal ideal (∆̟i,w◦̟i
). Because K[U+] is a polynomial ring,

the elements ∆̟i,w◦̟i
∈ K[U+] are prime. Clearly, they are not associates

of xαl
for any l ∈ [1, r].

Let φ ∈ UAut(K[U+], {·, ·}st) with respect to the grading (4.14). Fix

i ∈ [1, r]. First we show that

φ(xαi
) = (1 + fi)xαi

for some

fi ∈ K[∆̟j ,w◦̟j
,∆̟l,w◦̟l

∆̟τ(l),w◦̟τ(l)
, j ∈ O1, l ∈ O2]≥1. (4.15)

Recall the setting of Proposition 4.7 and the definition (4.12) of the involu-

tion τ of the Dynkin graph Γ. Keeping in mind Remark 4.4, we choose a

reduced expression (4.5) of w◦ such that iN = τ(i). So, βN = w◦(sτ(i)ατ(i)) =

w◦(−ατ(i)) = αi. By Proposition 4.6, the N -tuple (∆1, . . . ,∆N ) is a Poisson

cluster of (K[U+], {·, ·}st). In addition, it follows from (4.11) that

∆N = xβN
= xαi

.

We apply Proposition 3.5 to obtain a unipotent bi-integral automor-

phism ι(φ) of (K[∆±1
1 , . . . ,∆±1

N ], {·, ·}st). The rigidity result in Theorem 2.3

and the classification of the Poisson center of this cluster from Proposition

4.7 give that

φ(xαi
) = φ(∆N ) = ι(φ)(∆N ) = (1 + fi)xαi

with

fi ∈ K[(∆̟j ,w◦̟j
)±1, (∆̟l,w◦̟l

∆̟τ(l),w◦̟τ(l)
)±1, j ∈ O1, l ∈ O2]≥1.

However, ∆̟j ,w◦̟j
is a prime element of K[U+] for all j ∈ [1, r] which is not

a multiple of xαi
. Hence,

fi ∈ K[∆̟j ,w◦̟j
,∆̟l,w◦̟l

∆̟τ(l),w◦̟τ(l)
, j ∈ O1, l ∈ O2]≥1

which proves (4.15). Since fi is in the Poisson center of (K[U+], {·, ·}st) and
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K[U+] is generated as a Poisson algebra by xαi
, i ∈ [1, r] (Proposition 4.5),

φ(∆̟i,w◦̟i
) = ∆̟i,w◦̟i

r∏

l=1

(1 + fl)
mil , ∀i ∈ [1, r]

where mil ∈ N are the integers given by

̟i − w◦̟i =
∑

l

milαl.

Because ∆̟i,w◦̟i
is a prime element of K[U+] and φ is an automorphism of

K[U+],
r∏

l=1

(1 + fl)
mil = 1, ∀i ∈ [1, r].

We also have fl ∈ K[U+]≥1. Taking into account the fact that for each

l ∈ [1, r] there exists i ∈ [1, r] such that mil 6= 0, we obtain that all fl = 0.

This completes the proof of the theorem. ���

4.5. Reduction of Theorem 4.1 to the case of unipotent automor-

phisms

Proposition 4.9. Let K be a field of characteristic 0 and G be a split, con-

nected, simply connected, semisimple algebraic group which does not have

SL2 factors. Then, for every φ ∈ Aut(K[U+], {·, ·}st) there exists ψ ∈

(H/ZG) ⋉ Aut(Γ) such that φψ−1 ∈ UAut(K[U+], {·, ·}st) with respect to

the principal grading.

Unless otherwise noted, all results in this section refer to the princi-

pal grading (4.13) of K[U+]. First we show that every automorphism of

(K[U+], {·, ·}st) is increasing with respect to this grading:

Lemma 4.10. In the setting of Theorem 4.1, every automorphism φ of

(K[U+], {·, ·}st) satisfies

φ(f) ∈ K[U+]≥n, for all f ∈ K[U+]n, n ∈ N.
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Proof. Since K[U+] is generated as a Poisson algebra by xαi
, i ∈ [1, r]

(Proposition 4.5) and {·, ·}st has degree 0, it is sufficient to prove that

φ(xαi
) ∈ K[U+]≥1. (4.16)

The definition of xαi
does not depend, up to a scalar, on the choice of reduced

expression of w◦ (Remark 4.4). Because G does not have SL2 factors, there

exists a simple root αl such that 〈αi, αl〉 6= 0. Recall the definition (4.12) of

the involution τ of the Dynkin graph Γ. Choose a reduced expression of w◦

ending with sτ(l)sτ(i) ∈ W , i.e., an expression (4.5) such that iN−1 = τ(l)

and iN = τ(i). Thus, βN = w◦(sτ(i)ατ(i)) = w◦(−ατ(i)) = αi, βN−1 =

w◦(sτ(i)sτ(l)(ατ(l))) = w◦(−sτ(i)ατ(l)) = siαl and

〈βN−1, βN 〉 = 〈si(αl), αi〉 = −〈αl, αi〉 6= 0.

By (4.7),

{xβN−1
, xαi

}st = −〈αl, αi〉xβN−1
xαi

.

Let φ(xβN−1
) = f + g with f ∈ K[U+]n, f 6= 0 and g ∈ K[U+]>n for some

n ∈ N. Assume that (4.16) does not hold. Then φ(xαi
) − a ∈ K[U+]≥1 for

some a ∈ K∗. The term of minimal degree in the RHS of the equality

{φ(xβN−1
), φ(xαi

)}st = −〈αl, αi〉φ(xβN−1
)φ(xαi

)

has degree n and equals −〈αl, αi〉af 6= 0, while the term of degree n in the

LHS equals {f, a}st = 0. This is a contradiction, which proves (4.16) and

the lemma. The last step of the proof is a Poisson analogue of the argument

of [25, Proposition 3.2]. ���

We will call an automorphism φ of (K[U+], {·, ·}st) linear if

φ(K[U+]n) = K[U+]n, ∀n ∈ N, i.e., φ(xαi
) ∈ K[U+]1, ∀i ∈ [1, r]

with respect to the principal grading. The following result classifies those

automorphisms.

Proposition 4.11. In the setting of Theorem 4.1, the group of linear auto-

morphisms of (K[U+], {·, ·}st) is isomorphic to (H/ZG)⋉Aut(Γ).
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For the proof of this fact we consider the presentation of (K[U+], {·, ·}st)

as a factor of a free Poisson algebra. Recall that K[U+] is generated by

xαi
as a Poisson algebra (Proposition 4.5). Denote by (FG, {·, ·}) the free

Poisson algebra on xαi
and by IG the kernel of the canonical projection of

Poisson algebras (FG, {·, ·}) → (K[U+], {·, ·}st). Consider the Q+-grading

of FG, given by deg xαi
:= αi, i ∈ [1, r]. The projection is Q+-graded.

Thus, IG is homogeneous with respect to the Q+-grading and its principal

specialization.

Denote by (cij) the Cartan matrix of G.

Lemma 4.12. The degree 3 component of the ideal IG is spanned by

xαl
{xαi

, xαj
}, {xαl

, {xαi
, xαj

}} (4.17)

for l, i, j ∈ [1, r] such that cij = 0 and

{xαi
, {xαi

, xαj
}} − 〈αi, αj〉

2x2αi
xαj

(4.18)

for i, j ∈ [1, r] such that cij = −1.

Proof. Fix i 6= j ∈ [1, r]. Consider a reduced expression (4.5) of w◦ such

that i1 = i and i2 = j.

If cij = 0, then β2 = αj and by (4.7),

{xαi
, xαj

}st = 〈αi, αj〉xαi
xαj

= 0

in K[U+]. This implies that the elements in (4.17) belong to IG.

If cij = −1, then β2 = si(αj) = αi + αj and by (4.7),

{xαi
, xαi+αj

}st = 〈αi, si(αj)〉xαi
xαi+αj

= −〈αi, αj〉xαi
xαi+αj

(4.19)

in K[U+]. Eq. (4.8) and the fact that K[U+]αi+αj
= Kxαi

xαj
+ Kxαi+αj

imply

{xαi
, xαj

}st = 〈αi, αj〉xαi
xαj

+ axαi+αj

for some a ∈ K∗. Expressing xαi+αj
from here and substituting it in (4.19)

shows that the elements of the type (4.18) are in the ideal IG. Finally, the

property that (IG)γ = 0 for the other γ ∈ ∆+ with ht(γ) = 3 follows from



✐

“BN13N14” — 2018/1/30 — 14:56 — page 136 — #38
✐

✐

✐

✐

✐

136 JESSE LEVITT AND MILEN YAKIMOV [March

the isomorphism K[U+] ∼= K[xβ1 , . . . , xβN
] by comparing the dimensions of

the degree 3 components of FG and K[U+]. ���

The next lemma provides important restrictions on the possible form of

linear automorphisms of (K[U+], {·, ·}st) coming from the degree 3 compo-

nent of the ideal IG.

Lemma 4.13. Let φ be a linear isomorphism of (K[U+], {·, ·}st), given by

φ(xαi
) =

r∑

l=1

ailxαl
(4.20)

for some ail ∈ K. Denote the support of each row of this matrix

Supp(i) := {l ∈ [1, r] | ail 6= 0}.

For all i, j ∈ [1, r] such that cij = −1, we have the following:

(i) Supp(i) ∩ Supp(j) = ∅,

(ii) |Supp(i)| = 1, and

(iii) for k ∈ Supp(i),m ∈ Supp(j), ckm = −1.

Proof. Our strategy for the proof of this result is similar to that of the proof

of [36, Lemma 4.7]. Denote by φ̂ the automorphism of the free Poisson alge-

bra FG, given by the same formula (4.20) as φ. Since φ is an automorphism

of K[U+], φ̂(IG) = IG.

(i) Assume that l ∈ Supp(i) ∩ Supp(j). The degree 3αl-component of the

image of (4.18) under φ̂ is

−〈αi, αj〉
2a2ilajlx

3
αl
.

It belongs to IG because IG is a graded ideal of FG with respect to its

Q+-grading. This is in contradiction with Lemma 3.4 which proves (i).

(ii) Now assume that k 6= l ∈ Supp(i) and m ∈ Supp(j). By part (i),

k, l,m ∈ [1, r] are distinct. The degree (αk + αl + αm)-component of the

image of (4.18) under φ̂ is a nonzero scalar multiple of

{xαk
, {xαl

, xαm}}+ {xαl
, {xαk

, xαm}} − 2〈αi, αj〉
2xαk

xαl
xαm .
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This expression belongs to IG because IG is Q+-graded, but once again this

contradicts Lemma 3.4 since (IG)3 does not contain elements of this form.

This proves (ii).

(iii) The degree (2αk +αm)-component of the image of (4.18) under φ̂ gives

that

{xαk
, {xαk

, xαm}} − 〈αk, αm〉2x2αk
xαm ∈ IG.

Lemma 3.4 implies that ckm = −1. ���

Proof of Proposition 2.4. Eq. (4.4) is an embedding of (H/ZG)⋉Aut(Γ)

in the group of linear automorphisms of (K[U+], {·, ·}st). We need to show

that this embedding is an isomorphism. Two simple (positive) roots of G

will be called adjacent if they are connected in the Dynkin graph Γ.

Let φ be a linear automorphism of (K[U+], {·, ·}st). Applying Lemma

3.6 to φ and φ−1, we obtain that there exists a permutation σ ∈ Sr and

a1, . . . , ar ∈ K∗ such that:

(i) σ maps the connected components of Γ of type B2 and G2 to connected

components of type B2 or G2, preserving the direction of arrows. Its

restriction to the union of connected components of Γ that are not of

type B2 and G2 is an isomorphism.

(ii) If αi is the short simple root of a connected component of Γ of type Bt

for t > 2, then

φ(xαi
) = aixασ(i)

+ bixσ(j)

where αj is the second adjacent simple root to the only simple root of

Γ adjacent to αi. (Note that by (i), the restriction of σ to a connected

component of Γ of type Bt for t > 2 is an isomorphism.)

(iii) For all other simple roots αi of G,

φ(xαi
) = aixασ(i)

.

Taking into account the property (iii), we see that σ ∈ Sr cannot take a

connected component of Γ of type B2 to a connected component of type G2

because in that case a restriction of φ will provide an isomorphism between

the Poisson spaces (K[U+], {·, ·}st) for groups G of type B2 and G2. This
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cannot happen because the corresponding unipotent radicals U+ have dif-

ferent dimensions. Therefore, σ is an automorphism of the Dynkin graph Γ.

This implies that the map

φσ,a(xαi
) := aixασ(i)

, i ∈ [1, r]

is a linear automorphism of (K[U+], {·, ·}st) coming from (H/ZG)⋉Aut(Γ).

It remains to show that the scalars bi in property (ii) vanish, i.e., φ = φσ,a.

Consider the dominant integral coweight

λ = n1̟
∨
1 + · · · + nr̟

∨
r

where ni = 1 if αi is the short simple root of a connected component of Γ of

type Bt for t > 2 and ni = 2 otherwise. It follows from properties (ii)−(iii)

that φ ◦ φ−1
σ,a is a unipotent automorphism of (K[U+], {·, ·}st) for the grading

(4.14). Proposition 4.8 implies that φ◦φσ,a = id completing the proof of the

proposition. ���

Proof of Proposition 4.9. Consider the principal grading of K[U+]. Let

φ be an automorphism of the Poisson algebra Aut(K[U+], {·, ·}st). Lemma

2.3 implies that for every f ∈ K[U+]n, n ∈ N, there exists a unique φ0(f) ∈

K[U+]n such that

φ(f)− φ0(f) ∈ K[U+]>n.

This defines a map φ0 : K[U+] → K[U+] which is a linear automorphism of

(K[U+], {·, ·}st) because {·, ·}st has degree 0 and φ0 ◦ (φ
−1)0 = id. It follows

from Proposition 2.4 that φ0 ∈ (H/ZG)⋉Aut(Γ), and clearly,

φφ−1
0 ∈ UAut(K[U+], {·, ·}st).

So, choosing ψ := φ0 proves the desired property. ���

Proof of Theorem 4.1. Proposition 4.9 implies that for every φ ∈

Aut(K[U+], {·, ·}st), there exists ψ ∈ (H/ZG) ⋉ Aut(Γ) such that φψ−1 is a

unipotent automorphism of the Poisson algebra (K[U+], {·, ·}st) with respect

to the principal grading of K[U+]. Proposition 2.4 implies that φψ−1 = id.

Thus, φ = ψ which proves the theorem. ���
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4.6. Proof of Theorem 4.3

Fix a Poisson algebra isomorphism

η : (K[U+(G1)], {·, ·}st)
∼=
−→ (K[U+(G2)], {·, ·}st). (4.21)

The map φ := η ⊗ η−1 is an automorphism of the Poisson algebra

(K[U+(G1)], {·, ·}st)⊗ (K[U+(G2)], {·, ·}st) ∼= (K[U+(G1 ×G2)], {·, ·}st).

(1) In the case when G1 and G2 do not have SL2 factors, Theorem 4.3 follows

at once by applying Theorem 4.1 to the automorphism φ.

(2) Now consider the case of arbitrary split, connected, simply connected,

semisimple algebraic groups G1 and G2. Let

Gi
∼= Gi × SL×mi

2 ,

where Gi are algebraic groups of the same type without SL2 factors and

mi ∈ N. We have the isomorphisms

(K[U+(Gi)], {·, ·}st) ∼= (K[U+(Gi)], {·, ·}st)× (K[U+(SL
mi

2 )], {·, ·}st).

Denote by ∆i,sl
+ and ∆i,nsl

+ the subsets of positive simple roots of Gi that

come from the factors SLmi

2 and Gi, respectively. Consider the principal

gradings of the Poisson algebras (K[U+(Gi)], {·, ·}st). For the isomorphism

in (4.21) and k ∈ Z≥−1, define the linear maps

ηk : K[U+(G1)]1 → K[U+(G2)]1+k so that η|K[U+(G1)]1 =
∑

k≥−1

ηk.

The definition of the Poisson structures πst implies that K[U+(SL
mi

2 )] ⊂

Z(K[U+(Gi)]), where Z(·) stands for the center of a Poisson algebra as

before. Thus,

Z(K[U+(Gi)]) ∼= Z(K[U+(Gi)])⊗K[U+(SL
mi

2 )].

For degree reasons, it follows from Proposition 4.7 that

η0(xα) ∈ K[U+(SL
m2
2 )]1, ∀α ∈ ∆1,sl

+ . (4.22)
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Consider the N-gradings of the algebras (K[U+(Gi)], {·, ·}st) given by

deg xα =

{
0, for α ∈ ∆i,sl

+ ,

1, for α ∈ ∆i,nsl
+ .

With respect to these gradings K[U+(Gi)]0 ⊂ Z(K[U+(Gi)]) and by an anal-

ogous argument to the one in the proof of (4.16), we obtain that

η−1(xα) = 0, η0(xα) ∈ K[U+(G2)]1, ∀α ∈ ∆1,nsl
+ . (4.23)

It follows from (4.22)−(4.23) and Proposition 4.5 that the restrictions of η0
to K[U+(G1)]1 and K[U+(SL

m1
2 )]1 uniquely extend to graded Poisson algebra

isomorphisms

(K[U+(G1)], {·, ·}st)
∼=

−→ (K[U+(G2)], {·, ·}st)

and

(K[U+(SL
m1
2 )], {·, ·}st)

∼=
−→ (K[U+(SL

m2
2 )], {·, ·}st).

The second isomorphism implies that m1 = m2. The first isomorphism and

part (1) imply that G1
∼= G2. Thus, G1

∼= G2, which completes the proof of

the theorem. ���

Remark 4.14. In a similar fashion one can apply Theorem 3.6 to the iso-

morphism problem for the class C of N-graded connected cluster algebras of

geometric type over a field K of characteristic 0, equipped with Gekhtman–

Shapiro–Vainshtein Poisson structures. This class of Poisson algebras is

closed under tensor product with respect to the canonical cluster structure on

the tensor product of cluster algebras. If η : (A1, {·, ·}1)
∼=

−→ (A2, {·, ·}2) is an

isomorphism between two Poisson algebras in the class C, then φ := η⊗ η−1

is an automorphism of their tensor product (A1 ⊗ A2, {·, ·}) where {·, ·}

denotes the tensor product extension of {·, ·}1 and {·, ·}2. One can then

study the possible forms of φ by passing to the unipotent automorphisms of

(A1 ⊗A2, {·, ·}) and applying Theorem 3.6.

References

1. N. Andruskiewitsch and F. Dumas, On the automorphisms of U+
q (g), In: Quantum

groups, 107–133, IRMA Lect. Math. Theor. Phys., 12, Eur. Math. Soc., Zürich, 2008,
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