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Abstract

We classify the simple modules for the rational Cherednik algebra H0,c that are irre-

ducible when restricted to W , in the case when W is a finite Weyl group. The classification

turns out to be closely related to the cuspidal two-sided cells in the sense of Lusztig. We

compute the Dirac cohomology of these modules and use the tools of Dirac theory to find

nontrivial relations between the cuspidal Calogero-Moser cells, in the sense of Bellamy,

and the cuspidal two-sided cells.

1. Introduction

1.1 In this paper, we classify the simple modules for the rational Cherednik

algebra H0,c, c arbitrary, that are irreducible when restricted to W , in the

case when W is a finite Weyl group. We call these modules one-W -type

modules. We find that such modules exist when W is of type Bn, Dn, G2,

F4, E6, and E8, but not in type An−1 (as expected from [14]) or in type E7.

The classification result is Theorem 3.5.

In [12], we introduced a Dirac operator and the notion of Dirac co-

homology in the setting of the graded Hecke algebras defined by Drinfeld,

extending in this way the construction from [2] for Lusztig’s graded affine
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2 DAN CIUBOTARU [March

Hecke algebras [21]. In particular, the constructions in [12] apply to rational

Cherednik algebras. The Dirac cohomology of one-W -type modules turns

out to be easy to compute and yet it yields a good amount of nontrivial in-

formation. The results of this paper can be viewed as the rational Cherednik

algebra analogues of the results of [3, 13] concerning one-W -type modules

for the graded affine Hecke algebra, where the motivation comes from the

study of isolated unitary representations of reductive p-adic groups.

The main application of this method is that it gives a direct relation

between the cuspidal components in the partition of IrrW coming from

considering certain fibers over the Calogero-Moser (CM) space Xc(W ) =

Spec(H0,c) (see for example [14], [19], [18]), and the cuspidal two-sided cells

in IrrW , in the sense of Lusztig [20]. The CM partition of Irr(W ) is expected

(see [19]) to be related to the one into two-sided cells (or families) of rep-

resentations, in the sense of Lusztig [20] for real reflection groups, and [24]

for complex reflection groups. At least when W is a real reflection group,

the conjecture is that the two partitions coincide. This is known to hold

in several cases, for example in type A [14], and for the class of complex

reflection groups G(m,d, n) by [19], [4], [22], and [7]. See also [9] for more

details as well as for a refinement of this conjecture.

The two notions of cuspidal that we refer to in this paper are as follows:

(1) In the case of Lusztig’s two-sided cells [20], the cuspidal ones are the

building blocks of all cells via truncated induction and tensoring with

the sign representation, see Definition 4.4.

(2) In the case of the Calogero-Moser space, let

Θ : Irr(W ) → Xc(W )

be the morphism defined by [18], more details are in the body of the

paper. The CM cells (or families) are, by definition, the fibers of this

map. Following [4], we call a CM cell cuspidal if its image under Θ is

a zero-dimensional leaf of Xc(W ). (See [10], [4] for the relevant results

about the Poisson variety structure of Xc(W ), particularly [10, Theorem

3].)
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2018] ONE-W -TYPE MODULES AND CUSPIDAL TWO-SIDED CELLS 3

To see that the one-W-type modules are necessarily related to cuspidal CM

cells, recall from [4, Theorem 1, Corollary 1] that if M is a simple Hc(W )-

module whose central character is not a cuspidal point in Xc(W ), then as

a W -representation M must be parabolically induced from a representation

of a proper parabolic subgroup of W . Since an irreducible W -representation

is not proper parabolically induced (section 4.3), we conclude that every

irreducible W -representation that can be lifted to an H0,c-module belongs

to a cuspidal CM cell. For the same reason, the one-W-type modules, under

the name rigid modules, were also considered independently by Bellamy and

Thiel [7] for the infinite families of complex reflection groups.

1.2. Assume now that the rational Cherednik algebra has equal parameters.

In Theorem 4.6, using the approach via the Dirac operator and one-W -types,

we find nontrivial relations between the cuspidal CM cells and Lusztig’s

cuspidal families. More precisely, recall that cuspidal families exist only for

Bn, n = d2 + d, Dn, n = d2, G2, F4, E6, E7, and E8, and in each of these

cases there exists only one such family, which we denote by Fcusp(W ). For

example, when W = E8, there are 17 representations in Fcusp(W ).

It turns out, see Theorem 3.5, that H0,1 admits one-W -type modules

if and only if W has a cuspidal two-sided cell except when W = E7, in

which case H0,1 does not have one-W -type modules. When one-W -type

modules for H0,1 do exist, they correspond to the same point in X1(W )

which we denote 0. The point 0 must be a zero-dimensional leaf of X1(W )

in these cases as explained above. For uniformity of notation, let us denote

0 = Θ(512′a) in the case of E7. (512′a is one of the two irreducible W -

representations in the cuspidal two-sided cell of E7.)

Theorem 1.1 (also Theorem 4.6). Let W be a simple finite Weyl group and

let H0,1 be the rational Cherednik algebra with equal parameters. Suppose W

has a cuspidal two-sided cell. If W 6= E8, then

Fcusp(W ) ⊆ Θ−1(0).

When W = E8, then

Fcusp(E8) \ {4480y} ⊆ Θ−1(0).
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4 DAN CIUBOTARU [March

The notation for W -representations is as in [20]. The proof of Theorem

1.1 uses only Theorem 3.5 and elements of Dirac cohomology. While the

method of the proof is uniform, certain details, such as decomposition of

tensor products, have to be checked case by case. The idea is very simple.

The Dirac cohomology theory of these one-W -modules implies that if σ is an

irreducible W -representation that can be extended to a one-W-type module

ofH0,c, then every irreducible constituent of σ⊗∧ hmust be in the same CM-

cell as σ. The method also applies to unequal parameter cases, and possibly

to complex reflection groups as well, but we do not consider those analogues

of Theorem 1.1 here beyond Remark 4.8. (The classification of one-W -type

modules, Theorem 3.5, is obtained for arbitrary unequal parameters though.)

Remark 1.2. The results of Bellamy-Thiel [7] imply that in fact

Fcusp(W ) = Θ−1(0)

ifW is of type Bn or Dn. For exceptional Weyl groups, our methods also give

that Fcusp(W ) = Θ−1(0) for G2, F4, E6, E7, but only the weaker statement

that

Θ−1(0) ⊆ Fcusp(E8) ∪ {2100y}

for E8.

Of course, the expectation is that for E8 as well, Fcusp(W ) = Θ−1(0),

but this does not follow from this calculation of one-W -types. See Remark

4.7 for more details about this case, in particular for an explanation why

the statement Fcusp(W (E8)) = Θ−1(0) becomes equivalent to proving that

{2100y} is a singleton CM-cell.

2. The Dirac Operator for Rational Cherednik Algebra

In this section, we recall from [12] the definition of Dirac cohomology for

rational Cherednik algebra modules and the basic properties. For the pur-

pose of this paper, we only need to consider the rational Cherednik algebra

at t = 0.
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2.1. Rational Cherednik algebra at t = 0

As before, let h be a dimensional C-vector space, denote by h∗ its dual,

and V = h + h∗. Let 〈 , 〉 : V × V → C be the bilinear symmetric pairing

defined by

〈x, x〉 = 0, 〈y, y〉 = 0, 〈x, y〉 = 〈y, x〉 = x(y), (2.1.1)

for all x ∈ h∗ and y ∈ h. Let W ⊂ GL(h) be a complex reflection group

with set of pseudo-reflections R acting diagonally on V . The form 〈 , 〉 is

W -invariant.

For every reflection s ∈ R, the spaces im(IdV −s)|h∗ and im(IdV −s)|h
are one-dimensional. Choose αs and α∨

s nonzero elements in im(IdV −s)|h∗
and im(IdV −s)|h, respectively. Then there exists λs ∈ C, λs 6= 1 a root of

unity, such that

s(α∨
s ) = λsα

∨
s , s(αs) = λ−1

s αs. (2.1.2)

(In the case when W is a finite reflection group, λs = −1.) For every

v ∈ V such that 〈v, v〉 6= 0, denote by sv the reflection in the hyperplane

perpendicular to v. The reflection sv is given by:

sv(u) = u− 2

〈v, v〉 〈u, v〉v, u ∈ V.

Let
√
λs be a square root of λs. Notice that s = svssv′s ∈ O(V ), where

vs =
√
λsα

∨
s + αs and v′s = α∨

s +
√
λsαs.

Definition 2.1. The rational Cherednik algebraH0,c associated to h,W and

the W -invariant parameter function c : R → C is the quotient of T (V )⋊W

by the relations:

(1) [y1, y2] = 0, [x1, x2] = 0, for all y1, y2 ∈ h, x1, x2 ∈ h∗;

(2) [y, x] = −
∑

s∈R

cs
〈y, αs〉〈α∨

s , x〉
〈α∨

s , αs〉
s, for all y ∈ h, x ∈ h∗.

Let {yi} be a basis of h and {xi} the dual basis of h∗. Define the element

ΩH = 2
∑

i

xiyi − 2
∑

s∈R

cs
1− λs

s ∈ Z(H0,c). (2.1.3)
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2.2. The Clifford algebra

Let C(V ) be the complex Clifford algebra defined by V and 〈 , 〉. In

terms of the basis xi, yi’s the relations in C(V ) are:

xi · xj = −xj · xi, yi · yj = −yj · yi, xi · yj + yj · xi = −2δi,j . (2.2.1)

Since V is even dimensional, C(V ) has a unique complex simple module S.

The spin module S is realized on the vector space
∧

h with the action:

y · (y1 ∧ · · · ∧ yk) = y ∧ y1 ∧ · · · ∧ yk, y ∈ h;

x · (y1 ∧ · · · ∧ yk) = 2
∑

i

(−1)i〈yi, x〉y1 ∧ · · · ∧ ŷi ∧ · · · ∧ yk.
(2.2.2)

2.3. Pin cover of W

Following [12, §2.3], for every s ∈ S, define

τs =
1− λs

2〈α∨
s , αs〉

αsα
∨
s + 1 ∈ C(V ). (2.3.1)

By [12, Lemma 4.6], the map s 7→ τs extends to a group homomorphism

τ : W → C(V )×. (2.3.2)

Define τw to be the image in C(V )× of w ∈ W under this map.

Since C(V ) acts on S, we get an action of τ(W ) on S.

Lemma 2.2 ([12, Lemma 4.8]). The action of τ(W ) on S preserves each

piece
∧ℓ

h of S, where it acts by the dual of the natural action, i.e.:

τs · (y1 ∧ · · · ∧ yℓ) = deth(s) s(y1) ∧ · · · ∧ s(yℓ). (2.3.3)

2.4. The Dirac element

The Dirac element in H0,c ⊗ C(V ) is:

D =
∑

i

xi ⊗ yi +
∑

i

yi ⊗ xi. (2.4.1)
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We denote by

∆ : C[W ] → Ht,c ⊗ C(V )

the linear map that extends the assignment w 7→ w ⊗ τw.

Proposition 2.3 ([12, Proposition 4.9]). The Dirac element has the follow-

ing properties in H0,c ⊗ C(V ):

(1) D is invariant with respect to the conjugation action of ∆(W ).

(2) The square equals:

D2 = −ΩH ⊗ 1−∆(ΩW,c), (2.4.2)

with ΩH ∈ Z(H0,c) given by (2.1.3) and

ΩW,c =
∑

s∈R

2cs
1− λs

s ∈ C[W ]W . (2.4.3)

2.5. Dirac cohomology

Let X be a finite dimensional H0,c-module. The Dirac operator of X

(and S) is

DX : X ⊗ S → X ⊗ S, (2.5.1)

given by the action of the Dirac element D. The Dirac cohomology of X

(and S) is
HD(X) = kerDX/ kerDX ∩ imDX . (2.5.2)

If nonzero, HD(X) is a finite dimensional W -representation.

The state now the main results about Dirac cohomology applied to this

setting. Recall that the center Z(H0,c) is nontrivial.

Theorem 2.4 ([12, Theorem 3.5 and Theorem 3.8]). For every z ∈ Z(H0,c)

there exists a unique element ζ0,c(z) ∈ C[W ]W and an element a ∈ (H0,c ⊗
C(V ))W such that

z ⊗ 1 = ∆(ζ0,c(z)) +Da+ aD in H0,c ⊗ C(V ). (2.5.3)

Moreover, the assignment ζ0,c : Z(H0,c) → C[W ]W is an algebra homomor-

phism.
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Consider the dual morphism

ζ∗0,c : Irr(W ) = SpecC[W ]W → Spec(Z(H0,c) = Xc(W ). (2.5.4)

The space Xc(W ) in the image of ζ∗0,c is the generalized Calogero-Moser

space [14].

Theorem 2.5 ([12, Theorem 3.14]). Let X be a finite dimensional H0,c-

module and assume that Z(H0,c) acts on X via the central character χ ∈
Spec(Z(H0,c)). Suppose HD(X) 6= 0. If σ ∈ Irr(W ) is such that

HomW [σ,HD(X)] 6= 0,

then

χ = ζ∗0,c(σ).

By [14], the center Z(H0,c) contains the subalgebra m := S(h)W ⊗
S(h∗)W and it is a free m-module of rank |W |. The inclusion m ⊂ Z(H0,c)

induces a surjective morphism

Υ : Xc(W ) → h∗/W × h/W. (2.5.5)

Let m+ be the augmentation ideal of m and define similarly S(h)W+ and

S(h∗)W+ . Then [12, Theorem 5.8] says that the algebra homomorphism from

Theorem 2.4 factors through Z(H0,c)/m+:

ζ0,c : Z(H0,c)/m+ → C[W ]W ,

and so the dual morphism is

ζ∗0,c : Irr(W ) → Υ−1(0). (2.5.6)

Following [18], let us consider the “baby Verma modules” forH0,c.Define

H̄0,c = H0,c/m+H0,c

This is a finite dimensional algebra of dimension |W |3, isomorphic to S(h∗)W

⊗S(h)W⊗C[W ] as a vector space, where we denote by S(h)W = S(h)/S(h)W+
the graded algebra of coinvariants and similarly for S(h∗)W .
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For every (σ, Vσ) ∈ Irr(W ), let

M̄(σ) = H̄0,c ⊗S(h)W⋊C[W ] Vσ (2.5.7)

be the baby Verma module induced from σ. Here S(h)W acts by 0 on Vσ.

Theorem 2.6 ([18, Proposition 4.3]).

(1) For every σ ∈ Irr(W ), the module M̄(σ) is indecomposable and it has a

unique simple quotient L̄(σ).

(2) The set {L̄(σ) : σ ∈ Irr(W )} gives a complete list of non isomorphic

simple H̄0,c-modules.

As a consequence ([18, §5.4]), the map

Θ : Irr(W ) → Υ−1(0) = SpecZ(H̄0,c), (2.5.8)

given by mapping M̄(σ) to its central character, is surjective.

Corollary 2.7 ([12, Corollary 5.10]). The morphism ζ∗0,c : Irr(W ) → Υ−1(0)

from (2.5.6) is the determinant dual of the morphism Θ from (2.5.8), i.e.,

Θ(σ) = ζ∗0,c(σ ⊗ det), for all σ ∈ Irr(W ).

Remark 2.8. The partition of Irr(W ) according to the fibers of the map

Θ is called the Calogero-Moser (CM) partition. By Corollary 2.7, we know

that this partition is the same as the Dirac partition, i.e., the one given by

ζ∗0,c. This allows us to use Theorem 2.5 in order to study the CM partition.

3. Classification of One-W-type Modules

In order to apply Theorem 2.5, we construct modules for H0,c for which

the Dirac cohomology is easy to compute.

3.1. Definition

Let (π,X) be a simpleH0,c-module. We consider simple modulesX such

that the restriction of X to W is an irreducible W -representation. In the
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setting of graded affine Hecke algebras, this type of modules were introduced

and classified in [3], and studied further in [13].

Given an irreducible W -representation (σ,Uσ), the question is how to

define the action of h and h∗ in such a way that the commutation relations in

H0,c are preserved. Suppose (π,X) is a one-W -type H0,c-module extending

σ. As in [13, Appendix], consider the space

h · Uσ = {π(y)u : y ∈ h, u ∈ Uσ}.

Since w · y · w−1 = w(y), the space h · Uσ is W -invariant. Moreover, it is

a constituent of the W -representation refl ⊗ σ, where refl is the reflection

representation of W on h. Since the restriction of X to W is irreducible,

either h · Uσ = 0 or else h · Uσ
∼= Uσ as W -representations. The latter case

implies that

HomW [σ, σ ⊗ refl] 6= 0. (3.1.1)

A similar analysis applies to h∗ · Uσ.

Remark 3.1. When W is a finite Weyl group, [13, Appendix] determines all

W -types σ that satisfy condition (3.1.1). When the long Weyl group element

w0 is central in W , an easy argument implies that no such σ exists. When w0

is not central, i.e., types An−1, D2n+1, or E6, there exist representations σ

satisfying (3.1.1). However, in the setting of the rational Cherednik algebra

(unlike that of the graded affine Hecke algebra) we already know that for

example in type A, no one-W -type modules can exist [14].

From now on, we assume that W is a finite Weyl group. In light of

Remark 3.1 and the discussion preceding it, we make the following definition.

Definition 3.2. A simpleH0,c-module (π,X) is called a one-W -type module

if

(1) the restriction of X to W is irreducible, and

(2) π(y) = 0 = π(x) for all y ∈ h, x ∈ h∗.

Condition (2) is automatic when w0 is central in W .
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3.2. Criterion

We determine which irreducible W -representations give rise to one-W -

type modules in the sense of Definition 3.2. Let R ⊂ h∗ denote the set

of roots, R+, the set of positive roots, Π the set of simple roots. Let R∨,

R+,∨, and Π∨ denote the corresponding coroots in h. If α ∈ R is a root,

let α∨ be the corresponding coroot normalized such that 〈α,α∨〉 = 2. The

(renormalized) basic commutation relation in H0,c becomes

[y, x] = −
∑

α>0

cα〈y, α〉〈α∨, x〉sα, y ∈ h, x ∈ h∗. (3.2.1)

Lemma 3.3. An irreducible W -representation σ extends to a one-W -type

H0,c-module if and only if

∑

α>0

cα〈y, α〉〈α∨, x〉σ(sα) = 0, (3.2.2)

for all y ∈ h and x ∈ h∗.

Proof. This is straightforward by Definition 3.2 and formula (3.2.1). ���

In order to carry out the computations effectively, we adapt a reduction

criterion from [3, Proposition 2.4].

Proposition 3.4. Suppose y ∈ h and x1, x2 ∈ h∗ are such that

(a) W · y spans h (modulo the W -invariants), and

(b) {x1, ZW (y) · x2} span h∗.

The W -type σ extends to a one-W -type module (π,X) if and only if equation

(3.2.2) holds for the pairs (y, x1) and (y, x2).

Proof. Without loss of generality, assume R spans h∗. Suppose π([y, x1]) =

0 and π([y, x2]) = 0. Let y′ ∈ h and x′ ∈ h∗ be arbitrary and we want to

show that π([y′, x′]) = 0. For every w ∈ W , we have

[w(y′), w(x′)] = w · [y′, x′] · w−1.

Since π([y, x2]) = 0 it follows from this that π([y,w(x2)]) = 0 for all w ∈
ZW (y). From (b), it follows that π([y, x′]) = 0 for all x′ ∈ h∗. But then also
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π([w(y), x′]) = 0 for all w ∈ W and x′ ∈ h∗, and the conclusion follows from

(a). ���

3.3. Classification

To describe the classification result, let us recall first the parameteri-

zation of irreducible W -representations. If W = Sn is of type An−1, the

W -types are parameterized by partitions λ of n; we write (λ) for the corre-

sponding representation. In this notation, (n) denotes the trivial represen-

tation and (1n) the sign representation. We also denote by λt the transpose

partition to λ.

If W is of type Bn (equivalently Cn), then Wn = Sn ⋉ (Z/2Z)n and the

irreducible W -representations are parameterized by bipartitions (λ, µ) of n

via Mackey induction. We denote by (λ)× (µ) the W -type

(λ)× (µ) = IndSn

Sn−k×Sk×(Z/2Z)n ((λ)⊗ (µ)⊗ triv⊗(n−k) ⊗ sgn⊗k).

If R is of type Dn, W (Dn) is an index 2 subgroup of W (Bn) and the irre-

ducible W (Dn)-representations are obtained by restriction from W (Bn). If

λ 6= µ, then (λ)×(µ) and (µ)×(λ) restrict to the sameW (Dn)-representation,

which we denote again by (λ) × (µ). When λ = µ, the restriction of the

W (Bn)-type (λ) × (λ) to W (Dn) splits into a sum of two equidimensional,

non isomorphic representations, denoted (λ)× (λ)I and (λ)× (λ)II .

When W is of exceptional type, we will use the notation of Kondo for

F4 and Frame for E6, E7, E8, see [20], and Carter’s notation for G2 [11].

If the parameter function c for the rational Cherednik algebra H0,c is

identically zero, then every W -type extends trivially to an H0,c-module. We

assume this is not the case from now on. Thus, without loss of generality,

we may assume c is identically 1 if the root system is simple and simply-

laced. If the simple root system R has two root lengths, we denote by cs
the parameter on the short roots and by cℓ the parameter on the long roots.

When the algebra if of type B/C, this convention refers to the type Bn root

system.

Theorem 3.5. Let R be a simple root system. The irreducible W -

representations that extend to a one-W -type H0,c-module in the sense of

Definition 3.2 are:
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(1) An−1 or E7: none;

(2) Bn: the W -representations of the form (λ) × (0) and (0) × (λt), where

λ is a rectangular partition of n of the form λ = (d, d, . . . , d
︸ ︷︷ ︸

k

) with

k − d = cs/cℓ;

(3) Dn: the W -representations of the form (λ)×(0) where λ is a rectangular

partition of n of the form λ = (d, d, . . . , d
︸ ︷︷ ︸

d

) (so n = d2);

(4) E6: the representation 10s;

(5) E8: the representations 168y and 420y;

(6) G2:

(a) φ′
1,3, φ

′′
1,3, and φ2,2 when cs/cℓ = 1;

(b) φ1,0, φ1,6, and φ2,1 when cs/cℓ = −1;

(7) F4:

(a) 41 for all values of the parameters cs, cℓ;

(b) 12, 13, 61, 43, 44 when cs/cℓ = 1;

(c) 11, 14, 62, 42, 45 when cs/cℓ = −1;

(d) 21, 22 when cℓ = 0;

(e) 23, 24 when cs = 0;

In the rest of the section, we present the proof of Theorem 3.5.

3.4. Classical types

We write the roots of root system of classical types in the standard

coordinates. For simplicity, we work with the algebra of type gl(n) in type

A. Let {ǫ1, . . . , ǫn} be the standard coordinates for h∗ and {ǫ∨1 , . . . , ǫ∨n} the

dual coordinates for h. The positive roots are denoted as follows:

(1) An−1: ǫi − ǫj, 1 ≤ i < j ≤ n;

(2) Bn: ǫi ± ǫj, 1 ≤ i < j ≤ n, and ǫi, 1 ≤ i ≤ n;

(3) Dn: ǫi ± ǫj , 1 ≤ i < j ≤ n.
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In the notation of Proposition 3.4, we choose in all cases

y = ǫ∨1 , x1 = ǫ1, x2 = ǫ2. (3.4.1)

Suppose σ is a W -type that can be extended to a one-W -type module. The

two conditions from Proposition 3.4 imply in type An−1:

n∑

i=2

σ(sǫ1−ǫi) = 0 and σ(sǫ1−ǫ2) = 0. (3.4.2)

But clearly the second condition is impossible, so there are no such Sn-

representations.

Suppose that we are in type Bn now. The two conditions become

cℓ

n∑

i=1

(σ(sǫ1−ǫi) + σ(sǫ1+ǫi)) + 2csσ(sǫ1) = 0;

cℓ(−σ(sǫ1−ǫ2) + σ(sǫ1+ǫ2)) = 0.

(3.4.3)

If cℓ = 0, the two conditions imply that csσ(sǫ1) = 0, which is impossible

unless cs = 0. So suppose cℓ 6= 0, and set c = cs/cℓ. The second condition

implies that σ(sǫ1−ǫ2) = σ(sǫ1+ǫ2) and by conjugation that

σ(sǫi−ǫj) = σ(sǫi+ǫj) = σ(sǫj )σ(sǫi−ǫj)σ(sǫj ),

for all i < j. But this means that every σ(sǫj) preserves with the restriction

of σ to Sn, and since σ is irreducible, it must be of the form (λ) × (0) or

(0)× (λt).

The two cases are dual to each other via tensoring with the sign rep-

resentation, so it is sufficient to treat the first one. If σ = (λ) × (0), then

σ(sǫi) = Id for all i and σ(sǫi−ǫj ) = (λ)(sǫi−ǫj). The condition is then one in

Sn:
n∑

i=2

(λ)(sǫ1−ǫi) + c · Id = 0. (3.4.4)

A similar condition appears in [3] in the setting of the graded Hecke algebra

of type A, see the proof of Theorem 3.15, particularly (3.18) in [3]. One can
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compute it using the realization of Sn-representations in harmonic polyno-

mials and the result is that (3.4.4) holds if and only if λ is a rectangular

partition λ = (d, . . . , d
︸ ︷︷ ︸

k

) satisfying

c = k − d.

In type Dn, the two necessary and sufficient conditions are:

n∑

i=1

(σ(sǫ1−ǫi) + σ(sǫ1+ǫi)) = 0;

− σ(sǫ1−ǫ2) + σ(sǫ1+ǫ2) = 0.

(3.4.5)

The discussion in this case is identical with the case Bn with cℓ = 1 and

cs = 0.

3.5. Exceptional types

For the exceptional simple root systems, we would like to use characters

of representations (rather than the representations themselves), so we need

to adapt Proposition 3.4. The idea is the same as in [3, Proposition 4.1]. If

σ is a W -representation, let χσ denote its character.

Proposition 3.6. Let σ be an irreducible W -representation and y, x1, x2 as

in Proposition 3.4. Suppose that the parameters c are real. Then σ extends

to a one-W -type H0,c-module if and only if

χσ([y, xi]
2) = 0, i = 1, 2.

Proof. We need to show that σ([y, x]) = 0 if and only if χσ([y, x]
2) = 0. We

can realize σ(sα) as a symmetric real-valued (in fact, rational) matrix for

every α > 0. This means that σ([y, x]) is also a real-valued symmetric matrix

and therefore, it is diagonalizable and has real eigenvalues νi, i = 1,dimσ.

But then χσ([y, x]
2) =

∑

i ν
2
i = 0 if and only if νi = 0 for all i. ���

The explicit calculations are as follows. For each exceptional simple root

system, we choose y, x1, x2 and compute [y, xi], i = 1, 2, as combination of

sα, α > 0. Next we compute the squares [y, xi]
2 which are linear combination

of terms sαsβ. For the character computation in Proposition 3.6, the only

important feature is which rank 2 root subsystem every such pair α, β forms.
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Thus we need to count all the occurrences of a given rank 2 subsystem in

this combination. We used the computer algebra systems “Mathematica”

to carry out these straightforward, but tedious root calculations and GAP

version 3.4 [15] with the package “chevie” [17] to compute the characters.

It turns out that in all cases, except in F4, if there exists aW -type σ such

χσ([y, xi]
2) = 0, i = 1, 2, then necessarily the parameters c are real (and are

very restrictive). Since the condition in Proposition 3.6 is clearly necessary

even when the parameters are complex, it follows that in those cases, we

don’t need to check the nonreal parameters separately. In F4, there exists

two cases when χσ([y, xi]
2) = 0, and there we do a different calculation.

We summarize the calculations next. We will denote by wA2
, w

Ã2

, w2A1
,

wA1+Ã1
, wB2

, wG2
representatives of the conjugacy classes of the correspond-

ing rank 2 root subsystems.

3.5.1. G2

Let R be of type G2. We choose the coordinates for the simple roots:

αs = (2/3,−1/3,−1/3), αℓ = (−1, 1, 0), (3.5.1)

and

y = (1, 1,−2), x1 = (1/3, 1/3,−2/3), x2 = (0, 1,−1). (3.5.2)

Then [y, x1] and [y, x2] have 5 and 4 terms, respectively. Calculating the

quantities in Proposition 3.6, we find that σ extends to a one-W -type module

if and only if χσ vanishes on

3(c2ℓ+c2s)1+(2cℓcs)wA1+Ã1
+3(c2ℓ+c2s)wA2

+(10cℓcs)wG2
, and

5(c2ℓ+c2s)1+(2cℓcs)wA1+Ã1
+4(c2ℓ+c2s)wA2

+(16cℓcs)wG2
.

(3.5.3)

Using the character table for G2 (in GAP), we verify Theorem 3.5 for G2.

3.5.2. F4

Let R be of type F4. We choose the following coordinates for the simple

roots:

α1 = ǫ1 − ǫ2 − ǫ3 − ǫ4, α2 = 2ǫ4, α3 = ǫ3 − ǫ4, α4 = ǫ2 − ǫ3 (3.5.4)

and
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y = ǫ∨1 , x1 = ǫ1, x2 = ǫ1 + ǫ2 + ǫ3 + ǫ4. (3.5.5)

Then [y, x1] has 15 terms and [y, x2] has 9 terms. Calculating the squares,

we find that σ extends to a one-W -type module if and only if χσ vanishes

on

(c2ℓ+c2s)1+(c2ℓ+c2s)w2A1
+(4cℓcs)wA1+Ã1

+(4c2ℓ )wA2
+(4c2s)wÃ2

+(8cℓcs)wB2
;

(c2ℓ+c2s)1+(2c2ℓ )wA2
+(2c2s)wÃ2

+(6cℓcs)wB2
. (3.5.6)

Using GAP, we extract the character table of W (F4) for these conjugacy

classes, and verify Theorem 3.5 in this case. It turns out that in this case if

cs/cℓ = ±
√
−1, then also 121 and 161 have the property that χ([y, xi]

2) = 0.

Since the characters of both 121 and 161 vanish on the reflections, it follows

that in fact χ([y, xi]) = 0 as well. In order to settle this case, we compute

[y, x1] explicitly using matrix realizations1 of 121 and 161 and we find that

(3.2.2) does not hold for these two representations for any values of cs, cℓ.

3.5.3. E6

Let R be of type E6. We assume the parameters equal to 1. The simple

roots are

α1 =
1

2
(1,−1,−1,−1,−1,−1,−1, 1), α2 = ǫ1 + ǫ2, α3 = −ǫ1 + ǫ2,

α4 = −ǫ2 + ǫ3, α5 = −ǫ3 + ǫ4, α6 = −ǫ4 + ǫ5.
(3.5.7)

Let ωi, ω
∨
i be the fundamental weights, respectively coweights. We choose

y = ω∨
2 , x1 = ω2, x2 = sα2

(x1). (3.5.8)

Then [y, x1] has 21 terms and [y, x2] has 12 terms. Calculating the squares,

we find that σ extends to a one-W -type module if and only if χσ vanishes

on

1 + 5w2A1
+ 10wA2

and 1 + w2A1
+ 6wA2

. (3.5.9)

Using GAP, we extract the character table ofW (E6) for the conjugacy classes

1, 2A1 and A2, and find that the only W -type whose character vanishes is

10s.

1We used J. Adams’ matrix models of Weyl group representations that can be found at
http://www.liegroups.org/weyl/integral/ .

http://www.liegroups.org/weyl/integral/
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3.5.4. E7

Let R be of type E7. We assume the parameters equal to 1. The simple

roots are

α1 =
1

2
(1,−1,−1,−1,−1,−1,−1, 1), α2 = ǫ1 + ǫ2, α3 = −ǫ1 + ǫ2,

α4 = −ǫ2 + ǫ3, α5 = −ǫ3 + ǫ4, α6 = −ǫ4 + ǫ5, α7 = −ǫ5 + ǫ6.
(3.5.10)

We choose

y = ω∨
1 , x1 = ω1, x2 = sα1

(x1). (3.5.11)

Then [y, x1] has 33 terms and [y, x2] has 18 terms. Calculating the squares,

we find that σ extends to a one-W -type module if and only if χσ vanishes

on

1 + 10w2A1
+ 16wA2

and 2 + 5w2A1
+ 20wA2

. (3.5.12)

Using GAP, we extract the character table ofW (E7) for the conjugacy classes

1, 2A1 and A2, and find that no W -characters vanish on these elements.

3.5.5. E8

Let R be of type E8. We assume the parameters equal to 1. The simple

roots are

α1 =
1

2
(1,−1,−1,−1,−1,−1,−1, 1), α2 = ǫ1 + ǫ2, α3 = −ǫ1 + ǫ2,

α4 = −ǫ2+ǫ3, α5 = −ǫ3+ǫ4, α6 = −ǫ4+ǫ5, α7 = −ǫ5+ǫ6 α8 = −ǫ6+ǫ7.

(3.5.13)

We choose

y = ω∨
8 , x1 = ω8, x2 = sα8

(x1). (3.5.14)

Then [y, x1] has 57 terms and [y, x2] has 30 terms. Calculating the squares,

we find that σ extends to a one-W -type module if and only if χσ vanishes

on

1 + 21w2A1
+ 28wA2

and 1 + 6w2A1
+ 18wA2

. (3.5.15)

Using GAP, we extract the character table ofW (E8) for the conjugacy classes

1, 2A1 and A2, and find that the only W -characters that vanish on these

elements are 168y and 420y .
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4. Dirac Cohomology and Cuspidal Two-sided Cells

We retain the notation from sections 2 and 3.

4.1. One-W -type modules

The Dirac cohomology of a one-W -type module can be computed easily.

Proposition 4.1. Let (π,X) be a one-W -type H0,c-module that extends the

irreducible W -representation σ. Then HD(X) = σ ⊗∧h.

Proof. Since X is a one-W -type module, every x ∈ h∗ and y ∈ h act by 0

on X. Since D =
∑

i xi ⊗ yi +
∑

i yi ⊗ xi, it follows that D also acts by 0 on

X ⊗ S, and so kerDX = X ⊗ S while imDX = 0. Thus HD(X) = X ⊗ S as

W -representations and the claim follows. ���

Recall the partition of IrrW into Calogero-Moser cells, i.e., the fibers of

the map Θ from (2.5.8). If σ, σ′ ∈ IrrW , denote by

σ ∼CM σ′ if Θ(σ) = Θ(σ′) ∈ Υ−1(0). (4.1.1)

Denote also by [σ]CM the Calogero-Moser cell containing σ.

Corollary 4.2. Let σ be an irreducible W -representation that can be ex-

tended to a one-W -type module. If σ′ ∈ IrrW is such that HomW [σ′, σ ⊗
∧
h] 6= 0, then σ ∼CM σ′.

Proof. If HomW [σ′, σ ⊗ ∧h] 6= 0, then HomW [σ′ ⊗ sgn, σ ⊗ ∧h] 6= 0 be-

cause
∧

h ⊗ sgn =
∧

h. It follows from Proposition 4.1 that HomW [σ′ ⊗
sgn,HD(X)] 6= 0. (In particular, this applies for σ too.) By Theorem 2.5,

ζ∗0,c(σ ⊗ sgn) = ζ∗0,c(σ
′ ⊗ sgn). Corollary 2.7 then says that Θ(σ) = Θ(σ′). ���

4.2. Cuspidal two-sided cells

We restrict to the case when the parameters c are equal to 1 and recall

the necessary definitions from [20].

If σ ∈ Irr(W ), let a(σ) ≥ 0 denote the (integer) exponent of the smallest

power of q that appears in expansion of the formal degree of the Hecke
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algebra representation corresponding to σ. (See [20, (4.1.1) and §3.1].) Let

b(σ) denote the smallest nonnegative integer such that σ occurs in the i-th

symmetric power of the reflection representation. A result of Lusztig says

that a(σ) ≤ b(σ) always, and a representation σ is called special if equality

holds.

Before discussing the partition of IrrW into double cells, we record the

following remarkable result that will be needed later in connection with the

formula for D2 from Proposition 2.3. This fact was noticed empirically by

Beynon-Lusztig [8] and proved uniformly by Opdam [23].

Theorem 4.3. ([8, Propositions A and B],[23, Corollary 9]). Let W be a

finite reflection group and σ an irreducible W -representation. The element

ΩW,1 =
∑

α>0 sα acts in σ by

N(σ) = a(σ ⊗ sgn)− a(σ). (4.2.1)

If W ′ is a parabolic subgroup of W and µ ∈ IrrW ′, define the truncated

induction ([20, (4.1.7)]):

JW
W ′(µ) =

∑

σ

〈µ, σ〉W ′σ, (4.2.2)

where the sum ranges over all σ ∈ IrrW such that a(σ) = a(µ). (If 〈µ, σ〉W ′ 6=
0, then necessarily a(σ) ≥ a(µ).)

Following [20, §4.2], define inductively a partition of IrrW into families

(or two-sided cells) of representations. If W = {1}, then there is only one

family consisting of the trivial representation. Assume that W 6= {1} and

that we have defined families for all parabolic subgroups W ′ 6= W . Then

two W -representations σ and σ′ are in the same family for W if there exists

a sequence of W -representations

σ = σ0, σ1, . . . , σm = σ′,

such that for every i, 0 ≤ i ≤ m − 1 there exists a parabolic subgroup

Wi 6= W and Wi-representations µ′
i, µ

′′
i in the same family for Wi such that

either

〈µ′
i, σi−1〉Wi

6=0, a(µ′
i)=a(σi−1) and 〈µ′′

i , σi〉Wi
6=0, a(µ′′

i )=a(σi), (4.2.3)
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or

〈µ′
i, σi−1 ⊗ sgn〉Wi

6= 0, a(µ′
i) = a(σi−1 ⊗ sgn) and

〈µ′′
i , σi ⊗ sgn〉Wi

6= 0, a(µ′′
i ) = a(σi ⊗ sgn).

(4.2.4)

From the definition one sees that if F is a family in IrrW then so is F ⊗ sgn.

Moreover, from Theorem 4.3, we see that the scalars N(σ) are constant as

σ varies in a fixed family.

The description of the families for each irreducible Weyl group is made

explicit in [20, Chapter 4]. In the case of classical groups other than type

A, the characterization of families is in terms of certain symbols, see [20,

§4.5-§4.7]
We also recall that each family contains a unique special representation.

Definition 4.4 ([20, §8.1]). A family F ⊂ IrrW is called non-cuspidal if

there exists a proper parabolic subgroup W ′ of W and a family F ′ ⊂ IrrW ′

such that either

(a) JW
W ′ establishes a bijection between F ′ and F or

(b) JW
W ′ establishes a bijection between F ′ and F ⊗ sgn.

A family F ⊂ IrrW is called cuspidal if it is not non-cuspidal.

Theorem 4.5 ([20, §8]). The classification of cuspidal families is as fol-

lows.

(1) Type An−1: no cuspidal families.

(2) Type Bn: only when n = d2 + d for some d ≥ 1 and then there is a

unique cuspidal family for which the special representation is in biparti-

tion notation (1, 2, . . . , d)× (1, 2, . . . , d) and the symbol is

(

0 2 4 · · · 2d

1 3 · · · 2d−1

)

.

(3) Type Dn: only when n = d2 for some d ≥ 2 in which case there

is a unique cuspidal family for which the special representation is in

bipartition notation (1, 2, . . . , d) × (1, 2, . . . , d − 1) and the symbol is
(

0 2 4 . . . 2d− 2

1 3 5 . . . 2d− 1

)

.
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(4) Type G2: the family {φ2,1, φ2,2, φ
′
1,3, φ

′′
1,3};

(5) Type F4: the family {121, 92, 93, 12, 13, 41, 43, 44, 61, 62, 161};
(6) Type E6: the family {80s, 60s, 90s, 10s, 20s};
(7) Type E7: the family {512′a, 512a};
(8) Type E8: the family {4480y, 3150y, 4200y, 4536y, 5670y, 420y, 1134y,

1400y, 2688y, 1680y , 168y, 70y, 7168w, 1344w, 2016w, 5600w , 448w}.

For the exceptional types, the first representation listed in the family is the

special one.

Denote by Fcusp(W ) the unique cuspidal family ofW if this exists. (Oth-

erwise, Fcusp(W ) = ∅.)

4.3. Induced representations

As mentioned in the introduction, the reason one-W -type modules are

intrinsically related to cuspidal Calogero-Moser points is Bellamy’s result [4,

Corollary 1] combined with the known fact that an irreducible Weyl group

representation is not induced from a proper parabolic subgroup. I do not

know a uniform proof of this fact.2 Recall that the complex linear span

R(W )Ind of all induced characters from proper parabolic subgroups can also

be identified with the space of class functions on W that are zero on the

elliptic conjugacy classes. An element w ∈ W is called elliptic if w has no

nonzero fixed points in the reflection W -representation.

If the longest Weyl group element w0 is central in W , then w0 is el-

liptic. In this case, for every irreducible W -representation σ, χσ(w0) =

(−1)d dimσ 6= 0, where d is the lowest harmonic degree of σ. In particular,

σ /∈ R(W )Ind, hence it is also not proper parabolically induced.

But when w0 is not central, this argument fails. For example, in type

An−1, the only elliptic conjugacy class is the n-cycles and it is well known

2For irreducible complex reflection groups (except maybe for W (E6) = G35), this is verified in [7,
Theorem 4.2], via a case-by-case argument too.
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that for a Young representation λ,

χλ((1, 2, . . . , n)) =

{

(−1)m, λ = (n−m, 1, . . . , 1),

0, otherwise.
(4.3.1)

Hence all irreducible Sn-representations, other than the wedges of the reflec-

tion representation, are in R(Sn)Ind.

Similarly, in type E6, there are 5 elliptic conjugacy classes and one can

verify that there are two irreducible characters of W (E6) that vanish on all

of them: 81p and 81′p.

Thus to complete the verification of the fact, we need certain ad-hoc

arguments. For An−1, one may see easily from the Littlewood-Richardson

rule that a proper parabolically induced representation is never irreducible.

For Dn (in fact, we only need n odd), again the corresponding variant of the

Littlewood-Richardson rule works. For E6, we can check the fact by a direct

computation with GAP/chevie or by consulting the induction/restriction

tables of Alvis [1]. It is entertaining to remark that IndE6

D5
((311) × 0) =

81p + 81′p.

4.4. Cuspidal Calogero-Moser points

Assume the parameter c of the rational Cherednik algebra is identically

equal to 1 (equivalently, any constant). Denote by H0,1 this equal parameter

algebra. IfH0,1 has one-W -type modules, then in these modules every x ∈ h∗

and y ∈ h act by zero. Let

0 ∈ Υ−1(0) ⊂ Xc(W ) (4.4.1)

be the corresponding point in the Calogero-Moser space. We now combine

Corollary 4.2 with the classification of one-W -type modules from Theorem

3.5.

Theorem 4.6. Let H0,1 be the equal parameter rational Cherednik algebra

(at t = 0) for a simple finite Weyl group W .

(1) If W is of type Bn and n = d2 + d, then Θ−1(0) ⊇ Fcusp(Bn).

(2) If W is of type Dn and n = d2, then Θ−1(0) ⊇ Fcusp(Dn).
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(3) If W is of type G2, F4, or E6, then Θ−1(0) = Fcusp(W ).

(4) If W is of type E8, then Fcusp(W ) \ {4480y} ⊆ Θ−1(0) ⊆ Fcusp(W ) ∪
{2100y}.

Proof. Let σ be an irreducible W -representation that affords a one-W -type

module. Then Corollary 4.2 implies that every irreducible constituent of

σ ⊗ ∧ h is contained in Θ−1(0). We discuss each case as in Theorem 3.5,

when the parameters are equal.

Type Bn. Let n = d2 + d consider σ = (d, . . . , d
︸ ︷︷ ︸

d+1

)× (0). The other case

is just σ ⊗ sgn so it gives the same result. We need to decompose σ ⊗∧ h.

The wedge representations in type Bn are

∧ℓ
h = (n− ℓ)× (ℓ) = Ind

W (Bn)
Sn−ℓ×Sℓ×(Z/2Z)n((n − ℓ)⊗ (ℓ)⊗ 1⊗(n−ℓ) ⊗ ǫ⊗ℓ),

where we denote by 1 and ǫ the trivial and sign Z/2Z-representations, re-

spectively. Then

(λ)× (0)⊗
∧ℓ

h = Ind
W (Bn)
Sn−ℓ×Sℓ×(Z/2Z)n((λ)|Sn−ℓ×Sℓ

⊗ 1⊗(n−ℓ) ⊗ ǫ⊗ℓ)

If we vary ℓ it follows that

(λ)× (0) ⊗
∧

h =
n∑

ℓ=0

∑

µ,ν

cλµ,ν(µ)× (νt), (4.4.2)

where the interior sum is over all partitions µ of n − ℓ and ν of ℓ, and cλµ,ν
is the Littlewood-Richardson coefficient.

Since λ is a rectangular partition, it follows from the Littlewood-

Richardson rule that if ν = λ \ µ, then cλµ,ν 6= 0. Here we regard µ as a left

justified decreasing partition sharing the same upper left corner as λ and

ν is the left justified decreasing partition obtained by rotating by 180◦ the

complement of µ in λ.

We claim that every bipartition (µ)×(νt) where ν = λ\µ is in Fcusp(Bn).

Write µ in the form

µ = (0, . . . , 0
︸ ︷︷ ︸

i0

, 1, . . . , 1
︸ ︷︷ ︸

i1

, . . . , d, . . . , d
︸ ︷︷ ︸

id

)
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where ij ≥ 0 and i0 + i1 + · · ·+ id = d+1. Then νt = (b1, b2, . . . , bd), where

bj = i0 + i1 + · · ·+ ij−1.

The symbol of (µ) × (νt) is obtained by adding in order 0, 1, . . . , d to the

entries of µ (for the first row of the symbol) and 0, 1, . . . , d− 1 to the entries

of νt (for the second row). It follows that the first row of the resulting symbol

is

0, 1, . . . , b1 − 1, b1 + 1, b1 + 2, . . . , b2, b2 + 2, b2 + 3, . . . , b3 + 1, . . . ,

bd + (d− 2), bd + d, . . . , 2d,

while the second row is

b1, b2 + 1, b3 + 2, . . . , bd + (d− 1).

Clearly the two rows are disjoint and their union equals {0, 1, 2, . . . , 2d}.
By the characterization of families in type Bn, these are precisely all the

W -types in Fcusp(Bn).

Type Dn. Here n = d2 and σ = (d, . . . , d
︸ ︷︷ ︸

d

)×(0). The proof is completely

analogous to type Bn and we skip the details.

For the exceptional cases, we compute directly using GAP, the decom-

position of the tensor product σ ⊗∧ h.

Type G2. The relevant σ are φ′
1,3, φ

′′
1,3, and φ2,2. The wedge represen-

tations are (in order): φ1,0, φ2,1, and φ1,6. We find

φ′
1,3 ⊗

∧

h = φ′′
1,3 ⊗

∧

h = φ′
1,3 + φ′′

1,3 + φ2,2;

φ2,2 ⊗
∧

h = 2φ2,2 + φ2,1 + φ′
1,3 + φ′′

1,3.
(4.4.3)

It follows that Fcusp(G2) ⊆ Θ−1(0). Notice that in fact φ2,2 is sufficient for

this conclusion.

Type F4. The relevant σ are 12, 13, 41, 61, 43, and 44. The wedge

representations are (in order): 11, 42, 62, 45, and 14. We find

12 ⊗
∧

h = 13 ⊗
∧

h = 12 + 43 + 61 + 44 + 13; (4.4.4)
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41 ⊗
∧

h = 2 · 41 + 62 + 2 · 161 + 121 + 61; (4.4.5)

61 ⊗
∧

h = 3 · 61 + 2 · 43 + 2 · 44 + 2 · 161 + 12 + 13 + 41 + 92 + 93; (4.4.6)

43 ⊗
∧

h = 44 ⊗
∧

h = 2 · 43 + 2 · 44 + 12 + 92 + 2 · 61 + 161 + 13 + 93.

(4.4.7)

Taking the union of all the irreducible representations that occur in these

decompositions, it follows that Fcusp(F4) ⊆ Θ−1(0).

Type E6. The relevant σ is 10s. The wedge representations are (in

order): φ1,0, φ6,1, φ15,5, φ20,10, φ15,17, φ6,25, and φ1,36, in Carter’s notation

[11]. We find

10s ⊗
∧

h = 3 · 10s + 4 · 60s + 3 · 90s + 20s + 80s. (4.4.8)

It follows that Fcusp(E6) ⊆ Θ−1(0).

Type E8. The relevant σ are 168y and 420y . The wedge representations

are (in order): φ1,0, φ8,1, φ28,8, φ56,19, φ70,32, φ56,49, φ28,68, φ8,91, and φ1,120,

in Carter’s notation [11]. We find

168y ⊗
∧

h =3 · 168y+4 · 1344w+3 · 420y+3 · 1134y+2 · 3150y+2 · 448w
+2 · 2016w+2 · 5600w+70y+1400y+1680y+2688y+4200y ;

420y ⊗
∧

h =5 · 420y+6 · 1344w+4 · 2016w+3 · 168y+4 · 1134y+3 · 2688y
+4 · 3150y+3 · 4200y+2 · 448w+4 · 5600w+2 · 7168w+70y

+1400y+1680y+4536y+5670y .

(4.4.9)

It follows that Fcusp(W ) \ {4480y} ⊆ Θ−1(0).

For the opposite inclusions, suppose that a W -type τ is contained in

Θ−1(0) = (ζ∗0,1)
−1(0). In particular, by Proposition 2.3, we have

σ(ΩW,1) = −〈ΩH0,1
,0〉 = 0, (4.4.10)

where 〈ΩH0,1
,0〉 denote the natural evaluation pairing between Z(H0,1) and

SpecZ(H0,1) = X1(W ). But then Theorem 4.3, implies that

a(F) = a(F ⊗ sgn), (4.4.11)
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where F is the family containing σ. For exceptional Weyl groups G2, F4, and

E6, one can immediately see that the only families that have this property

are the cuspidal ones.

In E8, Fcusp is not the only family with the property that F = F ⊗ sgn.

The other family with this property is a singleton, {2100y}. Hence, this

argument implies that Θ−1(0) ⊆ Fcusp(E8) ∪ {2100y}. ���

Remark 4.7. The method of one-W -type modules doesn’t yield any direct

results for type E7. The last part of the proof of Theorem 4.6 applies however

to E7 too and it gives

{512′a} ⊆ Θ−1(0) ⊆ {512′a, 512a} = Fcusp(E7). (4.4.12)

A known necessary condition for a Calogero-Moser cell to be a singleton

{σ} is that the the fake degree fσ∗(t) must divide the Poincaré polynomial

PW (t) [6, Lemma 3.3]. One can verify that this is not the case for 512′a and

therefore we must have Fcusp(E7) = Θ−1(0).

One can try to apply the same trick to E8. In this case f4480y(t) does

not divide PE8
(t), but f2100y(t) does. Again by the a-value argument in the

last part of the proof of Theorem 4.6, the consequence is that there are only

three possibilities:

(1) Θ−1(0) = Fcusp(E8) and {2100y} is a CM-cell;

(2) Θ−1(0) = Fcusp(E8) \ {4480y} and {4480y , 2100y} is a CM-cell;

(3) Θ−1(0) = Fcusp(E8) ∪ {2100y}.

The expectation is that the first possibility is the correct one. Notice that

its verification is now equivalent with proving that {2100y} is a singleton

CM-cell.

Remark 4.8. When the root system is not simply-laced (Bn, F4, G2), The-

orem 3.5 together with the same method as above can be used to construct

nontrivial (cuspidal) Calogero-Moser cells. For example, in the case of F4,

the fact that the W -type 41 extends to a one-W -type H0,c-module for all

parameters c implies that for all parameters c = (cℓ, cs), the cuspidal CM

cell Θ−1(0) contains the set

{41, 61, 62, 161, 121}. (4.4.13)
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In fact, for all but finitely many lines in this two-dimensional parameter space

(see Theorem 3.5 for the list of non-generic values of (cℓ, cs)), Θ
−1(0) equals

the set in (4.4.13). One can see that (4.4.13) matches in fact a Lusztig two-

sided cell as defined for the Hecke algebra with generic unequal parameters

by Geck [16, Table 2].
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