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Abstract

This article explores weighted laws of large numbers, namely exact laws, for indepen-

dent Pareto distributions with infinite mean. It contains not only exact weak laws but also

exact strong laws. Moreover, we give a simple example of the exact strong law applying

the algorithm of Adler and Wittmann (1994).

1. Introduction

1.1. Notation

For positive sequences {an} and {bn} ⊂ R symbols an ∼ bn and an =

o(bn) stand for lim an/bn = 1, lim an/bn = 0, respectively. The indicator

random variable is defined by 1A(ω) = 1 if ω ∈ A, and 0 if ω 6∈ A for

each event A. We redefine the natural logarithm as the meaning of log x :=

max{ln(x), 1}, where lnx denotes the ordinary natural logarithm. Moreover,

the symbol ⌊x⌋ for x ∈ R denote the integer part ⌊x⌋ = max{k ∈ Z : k ≤ x}.

1.2. Exact weak law of large numbers

Letting {Xn} be independent and identically distributed (i.i.d.) random

variables with common distribution P(X1 = 2k) = 2−k for k = 1, 2, . . ., we
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see E(X1) = ∞, which is known as the St. Petersburg game (see Chapter

X.4 in [8]). In his textbook, Feller wrote

lim
n→∞

n
∑

k=1

Xk/(log n/ log 2)
P
= 1,

where ‘P ’ denotes the convergence in probability. In general, for indepen-

dent random variables {Xk} when there exist constant sequences {ak} and

{bn} satisfying that limn→∞

∑n
k=1 akXk/bn = 1, it is said to be an exact

law of large numbers. More precisely, we call an exact weak law when the

convergence is in probability, and an exact strong law when it is almost sure

(see page 142 of Adler [1]). We discuss the exact weak law in this subsection,

and the exact strong law in the next subsection.

Giving some examples, Adler and his collaborators investigated exact

weak laws for i.i.d. random variables (see [1] and references therein). These

studies are based on the efficient application of the degenerate convergence

criterion (see Theorem 10.1.1 of [7]). When they are no longer identically

distributed, the calculation requires careful handling. Hence Adler [2] in-

vestigated the exact weak law for independent random variables {Xn} with

P(Xn ≤ x) = 1− (x+n)−1. For convenience, we use the following terminol-

ogy which is not so ordinary.

Definition 1.1. For h ≥ 1, a distribution of a nonnegative random variable

X is said to be Pareto with parameter h, if the law is characterized by

P(X ≤ x) = 1− 1

x+ h
for x > 0 and P(X = 0) =

h

1 + h
. (1)

Let us note that the probability density function of Equation (1) is

1/(x+ h)2 for x > 0.

Theorem 1.1 (Theorem 1 of [2]). Suppose that {Xj} are independent and

Pareto with parameter j, respectively. Then we have

lim
n→∞

∑n
j=1(1/j)Xj

log n log log n

P
= 1. (2)

This result is naturally extended as follows.
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Theorem 1.2 (Theorem 3.1 of [10]). Suppose that {Xj} are independent

and Pareto with parameter hj , respectively. If

aj := 1/hj , An :=

n
∑

j=1

aj, lim
n→∞

An = ∞, (3)

then we have

lim
n→∞

∑n
j=1 ajXj

An logAn

P
= 1. (4)

Note that Adler [4] recently extends Theorem 1.1 by considering P(Xj >

x) = {log(x+ j)}α/(x+ j) for α > −1.

1.3. Exact strong law of large numbers

Let us consider nonnegative i.i.d. random variables {Xk} with E(X1) =

∞. In this case, it is known that there does not exist bn such that

limn→∞

∑n
k=1Xk/bn

a.s.
= 1, where ‘a.s.’ denotes the almost sure conver-

gence. When choosing a suitable weight {ak} and {bn}, we can obtain

limn→∞

∑n
k=1 akXk/bn

a.s.
= 1, namely the exact strong law, under some con-

ditions. For example, the exact law for the distribution of the St. Petersburg

game was given in Example 7 of [1].

It is known that for i.i.d. cases if the common tail function x 7→ P(X1 >

x) is regularly varying with any exponent except −1, then the exact strong

law fails (see page 142 of [1]). Therefore the distributions which have the

regularly varying tail with exponent −1 deserve more than a passing notice.

The independent Pareto random variables with parameter n may be con-

sidered as one of the easiest distributions with this property which are not

identically distributed.

Now, for Theorems 1.1 and 1.2 let us examine the almost sure conver-

gence. Theorem 2 of [2] and Remark 3.1 of [10] tell us

lim sup
n→∞

∑n
j=1 ajXj

An logAn

a.s.
= ∞, (5)
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when aj = j−1. Adler recently showed that if Equation (3) and

∞
∑

n=1

an
An logAn

= ∞ (6)

are satisfied, then Equation (5) follows (see Theorem 2 of [3]). To obtain

Equation (5) we may use the following statement rather than Equation (6).

Proposition 1.1. Let us suppose Equation (3). If

an ≥ an+1, (7)

then Equation (5) follows.

From this, the exact strong law naturally fails when assuming Equations

(3) and (7). Although Theorem 1.2 may be considered as a natural extension

of Theorem 1.1, Equation (3) is not nice for the exact strong law. Here, to

obtain the exact strong law, we propose a wider condition including Equation

(3).

1.4. Our contribution

Theorem 1.3 (exact weak law). Suppose that {Xj} are independent and

Pareto with parameter hj , respectively. For positive sequences {aj} and {bn}
with

lim
n→∞

b−1
n

n
∑

j=1

aj = 0, (8)

if there exists 0 < A < ∞ which satisfies

lim
n→∞

b−1
n

n
∑

j=1

aj log

(

1 +
bn
ajhj

)

= A, (9)

then we have

lim
n→∞

∑n
j=1 ajXj

bn

P
= A. (10)

Remark 1.1. Let us observe the case that {aj} and {bn} satisfy Equation

(3) and bn = An logAn. Then Equations (8) and (9) with A = 1 follow.
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Therefore Theorem 1.3 may be considered as an extension of Theorem 1.2.

We note that if Equation (3) is fulfilled, then the antilogarithm part in

Equation (9) does not depend on j.

Corollary 1.1. Let us suppose the assumptions of Theorem 1.3.

(i) If
{

hj = jα for 0 ≤ α < 1,

aj = (log j)b−2/j, bn = (log n)b for b > 0,
(11)

then we have

lim
n→∞

∑n
j=1 ajXj

bn

P
=

1− α

b
. (12)

(ii) If

hj = j, aj = (log j)b−1/j, bn = (log n)b(log log n) for b > 0, (13)

then we have

lim
n→∞

∑n
j=1 ajXj

bn

P
=

1

b
. (14)

Theorem 1.4 (exact strong law). Suppose that {Xk} are independent and

Pareto with parameter hk, respectively. For positive sequences {an} and {bn}
with

∞
∑

n=1

an
bn

< ∞, (15)

if there exists 0 < B < ∞ which satisfies

lim
n→∞

b−1
n

n
∑

k=1

ak log

(

1 +
bk

akhk

)

= B, (16)

then we have

lim
n→∞

∑n
k=1 akXk

bn

a.s.
= B. (17)

Corollary 1.2. Let us suppose the assumptions of Theorem 1.4. If Equation

(11) holds, then we have

lim
n→∞

∑n
k=1 akXk

bn

a.s.
=

1− α

b
. (18)
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Unfortunately, Theorem 1.4 cannot apply to the case of Equation (13),

since
∑

∞

n=1 an/bn = ∞. When hj = j, we can also obtain the exact strong

law making use of the algorithm of Adler and Wittmann [5]. However,

parameters {ak} and {bn} for this law are so complicated, because the con-

struction procedure of them is not so straightforward. Actually, no examples

were given in [5]. Here, we have the following statement.

Proposition 1.2. Suppose that {Xk} are independent and Pareto with pa-

rameter k, respectively. Let us put

an = k−5e−100k4 for nk−1 < n ≤ nk, k ≥ 1, (19)

bn =

n
∑

k=1

ak(rk − rk−1) for n ≥ 1, (20)

where

nk =

{
⌊

ee
100k

4
⌋

+ 1 if k ≥ 1,

0 if k = 0,
(21)

rn =

{

log n log log n if n ≥ 1,

0 if n = 0.
(22)

Then we have

lim
n→∞

n
∑

k=1

akXk/bn
a.s.
= 1. (23)

The plan of the article is as follows. In Section 2, we calculate the

first and the second moments of the truncated Pareto random variable. In

Section 3, we give all proofs of Propositions 1.1, 1.2, Theorems 1.3, 1.4 and

Corollaries 1.1, 1.2, respectively.

2. Preliminary

Lemma 2.1. Suppose that X is Pareto with parameter h ≥ 1. For a > 0

we have

E(X1{X ≤ a}) = log
(

1 +
a

h

)

− a

h+ a
(24)

and

E(X21{X ≤ a}) = a− 2h log
(

1 +
a

h

)

+
ah

h+ a
< a. (25)
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Proof. It is easy to see that

E(X1{X ≤ a}) =

∫ a

0

tdt

(t+ h)2
= log

(

1 +
a

h

)

− a

h+ a

and

E(X21{X ≤ a}) =

∫ a

0

t2dt

(t+ h)2
= a− 2h log

(

1 +
a

h

)

+
ah

h+ a
< a.

The fact that log(1 + x) > x/(x+1) for x > 0 and some estimates yield the

last inequality. ���

3. Proofs

3.1. Proof of Proposition 1.1

The proof is based on Lemma 6.18 of [11]. The mean value theorem

implies
∫ An

An−1

dx

x log x
= (An −An−1)cn = ancn for n ≥ 2, (26)

where

1

An logAn
≤ cn ≤ 1

An−1 logAn−1
. (27)

It follows that
∫

∞

A1
dx/(x log x) = ∞ by simple calculation. Therefore, Equa-

tion (26) and limn→∞An = ∞ yield
∑

∞

n=1 ancn = ∞. Consequently, Equa-

tion (6) holds because

∞ (27)
=

∞
∑

n=2

an
An−1 logAn−1

=
∞
∑

n=1

an+1

An logAn

(7)
≤

∞
∑

n=1

an
An logAn

.

The rest proof from Equation (6) to Equation (5) is the same one of Theorem

2 of [3].

3.2. Proof of Theorem 1.3

The proof is based on Theorem 2.1 of [10]. Equation (8) implies that

{aj} and {bn} satisfy Equation (4) with α = 1 in Lemma 2.2 of [10]. More-
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over, since it follows that

EXj1 {|Xj | ≤ bn/aj}
(24)
= log

(

1 +
bn
ajhj

)

− bn
ajhj + bn

for 1 ≤ j ≤ n,

we have

b−1
n

n
∑

j=1

ajEX1

{

|X| ≤ bn
aj

}

= b−1
n

n
∑

j=1

aj log

(

1 +
bn
ajhj

)

−
n
∑

j=1

aj
ajhj + bn

.

The first term converges to A as n → ∞ because of Equation (9). The

second term converges to 0 since Equation (8) yields

0 ≤
n
∑

j=1

aj
ajhj + bn

≤ b−1
n

n
∑

j=1

aj → 0 as n → ∞.

Hence, applying Theorem 2.1 of [10], we have Equation (10).

3.3. Proof of Corollary 1.1

1. Equation (8) follows because
∑

∞

n=1 an/bn =
∑

∞

n=1 1/{n(log n)2} < ∞
and the Kronecker lemma (Lemma A.6.2 of [9]). Since

b−1
n

n
∑

j=1

aj log

(

1 +
bn
ajhj

)

= (log n)−b
n
∑

j=1

(log j)b−2j−1 log
(

1 + (log n)bj1−α(log j)2−b
)

∼ (1− α)(log n)−b
n
∑

j=1

j−1(log j)b−1 ∼ 1− α

b
,

we have Equation (9) with A = (1− α)/b. Therefore, Theorem 1.3

implies Equation (12).

2. Applying Theorem 3.2 of [10] with δ = 0 and γ = b − 1, we can prove

the desired result.

3.4. Proof of Theorem 1.4

The proof is based on Theorem 1 of [1]. For convenience, let us put
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ck = bk/ak. Then it follows that

∑n
k=1 akXk

bn
= b−1

n

n
∑

k=1

ak {Xk1(Xk ≤ ck)− EXk1(Xk ≤ ck)} (28)

+b−1
n

n
∑

k=1

akXk1(Xk > ck) (29)

+b−1
n

n
∑

k=1

akEXk1(Xk ≤ ck). (30)

Equation (28) converges to 0 almost surely. In fact, since it turns out that

∞
∑

k=1

a2k
b2k

EX2
k1(Xk ≤ ck)

(25)
≤

∞
∑

k=1

1

ck

(15)
< ∞,

this conclusion holds by using the Khinchine-Kolmogorov convergence the-

orem (Theorem 5.1.1 of [7]) and the Kronecker lemma.

Equation (29) also converges to 0 almost surely. In fact, since

∞
∑

k=1

P(Xk > ck) =
∞
∑

k=1

1

ck + hk
≤

∞
∑

k=1

1

ck

(15)
< ∞,

we have P(Xk > ck, infinitely often) = 0 by the first Borel-Cantelli lemma.

Equation (30) converges to B by the following reasons. It is computed

as

b−1
n

n
∑

k=1

akEXk1(Xk≤ck)
(24)
= b−1

n

n
∑

k=1

ak log

(

1+
bk

akhk

)

−b−1
n

n
∑

k=1

bk
hk+ck

.(31)

Then the first term converges to B by Equation (16), and the second term

converges to 0 by also applying the Kronecker lemma to
∑

∞

n=1 bn/{bn(cn +

hn)} ≤
∑

∞

n=1 1/cn < ∞.

3.5. Proof of Corollary 1.2

Equation (15) holds, because of
∑

∞

n=1 an/bn =
∑

∞

n=1 1/{n(log n)2} <
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∞. Since it follows that

b−1
n

n
∑

k=1

ak log

(

1 +
bk

akhk

)

= (log n)−b
n
∑

k=1

(log k)b−2k−1 log
(

1 + k1−α(log k)2
)

∼ (1− α)(log n)−b
n
∑

k=1

k−1(log k)b−1 ∼ 1− α

b
,

we have Equation (16) with B = (1− α)/b. Therefore, Theorem 1.4 implies

Equation (18).

3.6. Proof of Proposition 1.2

Firstly, let us quote the following theorem.

Theorem 3.1 (Adler and Wittmann [5]). Let {Yk} be independent random

variables. If limn→∞

∑n
k=1 Yk/rn

P
= 1 for some constants {rn}, then there

exist {ak} and {bn} which satisfy limn→∞

∑n
k=1 akYk/bn

a.s.
= 1.

The proof tells us an algorithm for the construction of {ak} and {bn}
from {Yk} and {rn}. We apply it to Theorem 1.1. For convenience, let us

assume the following.

{

Let {Xk} be independent and Pareto with parameter k, respectively,

Yk := Xk/k, Sn :=
∑n

k=1 Yk.

(32)

Note that Theorem 1.1 implies limn→∞ Sn/rn
P
= 1 for rn defined by Equation

(22). We use the following three lemmas to construct {ak} and {bn}.

Lemma 3.1. Under Equation (32) we have

P

(∣

∣

∣

∣

Sn

log n
− log log n

∣

∣

∣

∣

> x

)

≤ 10

x
for x ≥ 25 and n ≥ 25. (33)

Proof. This proof is based on Lemma 1 of [6]. First of all, we show

(∑n
k=1 µkn − rn

log n

)2

≤ 2x for x ≥ 25 and n ≥ 25, (34)
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where

µkn = µkn(x) := E(Zkn) = E(Yk1{Yk ≤ x log n}),
Zkn := Yk1{Yk ≤ x log n}, Wkn := Yk1{Yk > x log n} for 1 ≤ k ≤ n

and rn is defined by Equation (22). It is easy to see that

1 ≤ Hn

log n
≤ 1 +

1

log n
, (35)

where Hn =
∑n

k=1 1/k. Using this, we calculate the left hand side of Equa-

tion (34) as follows.

(LHS of Equation (34))

=

{

1

log n

(

n
∑

k=1

1

k
E(Xk1{Xk ≤ kx log n})

)

− log log n

}2

(24)
=

{

Hn

log n

(

log (1 + x log n)− x log n

1 + x log n

)

− log log n

}2

=

[

Hn

log n

{

log x+

(

1− log n

Hn

)

log log n+log

(

1+
1

x log n

)

− x log n

1+x log n

}]2

≤
[

Hn

log n

{

log x+

(

1− log n

Hn

)

log log n+ log

(

1 +
1

x log n

)}]2

(a)

≤
{

Hn

log n
log x+

(

Hn

log n
− 1

)

log log n+
Hn

x(log n)2

}2

(b)

≤
{(

1 +
1

log n

)

log x+
log log n

log n
+

1

x log n

(

1 +
1

log n

)}2

(c)

≤
{(

1 +
1

log n

)√
x+

log log n

log n
+

1

x log n

(

1 +
1

log n

)}2

(d)

≤ (1.32
√
x+ 0.4)2 ≤ (

√
2x)2

Inequality of (a) follows because log(1 + x) ≤ x for x > 0. Inequality of (b)

follows from Equation (35). Inequality of (c) follows since log x ≤ √
x for

x ≥ 25. Finally, inequality of (d) follows from n ≥ 25 and x ≥ 25.

On the other hand, we have

σ2
kn := E((Zkn − µkn)

2) ≤ E(Y 2
k 1{Yk ≤ x log n})

=
1

k2
E(X2

k1{Xk ≤ kx log n})
(25)
≤ x log n

k
.
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Hence Equation (35) yields

n
∑

k=1

σ2
kn ≤ x(1 + log n)log n ≤ 2x(log n)2. (36)

Now, using the subadditivity and the Chebyshev inequality, we obtain

P

(∣

∣

∣

∣

Sn

log n
− log log n

∣

∣

∣

∣

> x

)

= P

(
∣

∣

∣

∣

∣

n
∑

k=1

Zkn +
n
∑

k=1

Wkn − rn

∣

∣

∣

∣

∣

> x log n

)

≤ P

(
∣

∣

∣

∣

∣

n
∑

k=1

Zkn − rn

∣

∣

∣

∣

∣

> x log n

)

+ P

(

n
∑

k=1

Wkn > 0

)

≤ E
(

(
∑n

k=1 Zkn − rn)
2
)

x2(log n)2
+

n
∑

k=1

P (Wkn > 0) . (37)

Since (a+ b)2 ≤ 2(a2 + b2), the first term of Equation (37) is bounded by

E
(

(
∑n

k=1 Zkn − rn)
2
)

x2(log n)2
=

E
(

{∑n
k=1(Zkn − µkn) +

∑n
k=1 µkn − rn}2

)

x2(log n)2

≤
2
{

∑n
k=1 σ

2
kn + (

∑n
k=1 µkn − rn)

2
}

x2(log n)2

(36)
≤

2
{

2x(log n)2 + (
∑n

k=1 µkn − rn)
2
}

x2(log n)2

(34)
≤ 2

(

2

x
+

2

x

)

=
8

x
.

Since n ≥ 25, the second term of Equation (37) is bounded by

n
∑

k=1

P (Wkn > 0) =
n
∑

k=1

P (Yk > x log n) =
n
∑

k=1

P (Xk > kx log n)

=
n
∑

k=1

1

k(1 + x log n)

(35)
≤ 1 + log n

1 + x log n

<
1 + log n

x log n
=

1

x log n
+

1

x
≤ 2

x
.
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Hence Equation (33) follows. ���

Lemma 3.2. Let us put εn = (log log n)−1/2. Then εnrn is increasing to

infinity, and limn→∞(Sn − rn)/(rnεn)
P
= 0.

Proof. It is clear that εnrn = (log n)
√
log log n is increasing to infinity. By

Equation (33), it follows that

P

(∣

∣

∣

∣

Sn − rn
rnεn

∣

∣

∣

∣

>
x√

log log n

)

≤ 10

x
for x ≥ 25 and n ≥ 25. (38)

Let us fix δ > 0. Then we see x = δ
√
log log n ≥ 25 for sufficiently large n.

Inserting this to Equation (38), we have

0 ≤ P

(∣

∣

∣

∣

Sn − rn
rnεn

∣

∣

∣

∣

> δ

)

≤ 10

δ
√
log log n

n→∞→ 0. (39)

���

Recalling {nk} defined by Equation (21), we have the following lemma.

Lemma 3.3. If m ≥ nk, then

P(|Sm − rm| > εmrm) < k−2 (40)

and rnk+1
> 2rnk

for k ≥ 1.

Proof. Equation (21) yields log log nk ≥ 100k4, whence 10/
√
log log nk ≤

k−2. Applying Equation (39) with δ = 1 to this, we have Equation (40). It

is clear that rnk+1
> 2rnk

because of rnk
∼ 100k4e100k

4

. ���

Proof of Proposition 1.2. If ank
= k−5e−100k4 , then ank

rnk
∼ 100/k.

Therefore it is decreasing to 0 as k → ∞ and
∑

∞

k=1 ank
rnk

= ∞. Since

the rest proof is followed by the argument of page 181 of [5], the proof is

completed.
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