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Abstract

Let G be a connected reductive group defined over a finite field F,. We give a
parametrization of the irreducible representations of G(F;) in terms of (twisted) categorical
centres of various monoidal categories associated to G. Results of this type were known

earlier for unipotent representations and also for character sheaves.

0. Introduction

0.1. Let k be an algebraic closure of the finite field with p elements. Let G be
a connected reductive group over k. We denote by Fj, the subfield of k with
exactly g elements; here ¢ is a power of p. Let F' : G — G be the Frobenius
map for an Fj-rational structure on G. We fix a prime number [ different
from p. Let Irr(GT) be the set of isomorphism classes of irreducible repre-
sentations (over Q) of the finite group G¥' = {g € G; F(g) = g} = G(F,).
In [7] I gave a parametrization of Irr(GF) in terms of the group of type dual
to that of G. (For “most” representations in Irr(G¥') this has been already
done in E]) For the part of Irr(G') consisting of unipotent representa-
tions in a fixed two-sided cell of W (with G assumed to be Fy-split) the
parametrization was in terms of a set M (I") where I is a certain finite group
associated to the two-sided cell and M (T") is the set of simple objects (up to
isomorphism) of the category Vecr(I') of I'-equivariant vector bundles on T’
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(here I" acts on I" by conjugation). In the early 1990’s, Drinfeld pointed out
to me that the category Vecr(I') can be interpreted as the categorical centre
of the monoidal category of finite dimensional representations of I". (The
notion of categorical centre of a monoidal category is due to Joyal, Street,
Majid and Drinfeld.) This suggested that one should be able to reformulate
the parametrization of Irr(GY) in terms of categorical centres of suitable
monoidal categories associated with G. This is achieved in the present pa-
per, except that we must allow certain twisted categorical centres instead
of usual categorical centres. Note that in our approach the representation
theory of G(F,) cannot be separated from the theory of character sheaves
on G which appears as the limit of the first theory when ¢ tends to 1; in
particular we also obtain the parametrization of character sheaves on G in

terms of categorical centres (no twisting needed in this case).

Earlier results of this type were known in the following cases:

(i) the case E] of character sheaves on G (with centre assumed to be con-
nected and with k replaced by C);

(ii) the case ﬂﬂ] of unipotent character sheaves on G;
(iii) the case ﬂﬁ] of unipotent representations of G*';

(iv) the case ﬂﬂ] of not necessarily unipotent character sheaves on G.

The papers @], ﬂﬂ] were generalizations of in different directions; the
present paper is a common generalization of [20], [21]; the methods used in
(ii), (iii), (iv) and the present paper are quite different from those used in

(i) which relied on techniques not available in positive characteristic.

Let B be a Borel subgroup of G and let T be a maximal torus of B. In
this subsection we assume that F'(B) = B, F(T) = T. Let W be the Weyl
group of G with respect to T. Let s be an indexing set for the isomorphism
classes of Kummer local systems (over Q;); note that W acts naturally on s.

Let A = Z[v,v"!] where v is an indeterminate. A key role in this
paper is played by an A-algebra H (without 1 in general) which has A-
basis {Tyy1y;w € W, A\ € s} and multiplication defined in 1.5 (see also ﬂl_AI,
31.2]). This is a monodromic version of the usual Hecke algebra of W, closely
related to an algebra defined in ﬂﬂ], it contains the usual Hecke algebra as a
subalgebra. Now H has a canonical basis, two-sided cells and an asymptotic

version H* (introduced in ﬂﬁ], ﬂﬂ]) which generalize the analogous notions
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for the usual Hecke algebra, see B], E], the two-sided cells form a partition
of W x s and we have H® = ®.HZ° as rings (c runs over the two-sided
cells and each HZ® is a ring with 1). For any ¢, HZ° admits a category
version (for which H* is the Grothendieck group) which is a semisimple
monoidal category C¢ with finitely many simple objects (up to isomorphism)
indexed by the elements of c, see §5. (In the case where ¢ C W x {1}, this
reduces to the monoidal category defined is ﬂﬁ]) Now C€ has a well defined
categorical centre which is again a semisimple abelian category. Note that F’
acts naturally on s and on W hence on W X s; this induces an action of F' on
the set of two-sided cells. If ¢ is a two-sided cell such that F'(c) = ¢ then F'
defines an equivalence of categories C¢ — C¢ and one can define the notion
of F-centre of C¢ (see 5.5) which is a twisted version of the usual centre; it
is a semisimple abelian category. We denote by [c] the set of isomorphism
classes of simple objects of this category (a finite set).

Our main result is that Irr(GF") is in natural bijection with U.[c] (disjoint
union over all F-stable two-sided cells ¢). (See Theorem 7.3.) In the case
where ¢ C W x {1}, this reduces to the main result in [20].

The fact that the asymptotic Hecke algebra H plays a role in the
classification is perhaps not surprising since its non-monodromic versions
appeared implicitly in the arguments of ﬂa], through the traces of their canon-
ical basis elements in their various simple modules (the algebras themselves
were not defined at the time where 6] was written).

Many arguments in this paper follow very closely the arguments in ﬂﬂ],
we generalize them by taking into account also the arguments in [20]. We
have written the proofs in such a way that they apply at the same time
in the case of character sheaves on a connected component of a possibly
disconnected algebraic group with identity component G. In this case, the
classification involves twisted categorical centers, unlike that for the charac-

ter sheaves on G.

We plan to show elsewhere that the parametrization of Irr(G* ) given in
H] can be deduced from the main result of this paper.

0.2. Notation. Let N* = {n € Z — pZ;n > 1}. Let T be a torus over k.
For n € N* let T), = {t € T;t" = 1}; we have #(7,,) = n®™7T. For n,n’ in
N* such that n’/n € Z we have a surjective homomorphism N[LLI T — Ty,
t — t"/". Hence we can form the projective limit 7 of the groups 7T}, with
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n € N* (a profinite abelian group). Then for any n € N*, T, is naturally a
quotient of 1.

All algebraic varieties are over k. We denote by p the algebraic variety
consisting of a single point. For an algebraic variety X we write D(X) for the
bounded derived category of constructible Q;-sheaves on X. Let M(X) be
the subcategory of D(X) consisting of perverse sheaves on X. For K € D(X)
and i € Z let H'K be the i-th cohomology sheaf of K and let K* be the i-th
perverse cohomology sheaf of K. Let ©(K) be the Verdier dual of K. For
any constructible sheaf £ on X let &, be the stalk of £ at x € X. If X has a
fixed Fj-structure X, we denote by D,,(X) what in H, 5.1.5] is denoted by
Db (X0, Q); let M,,(X) be the corresponding category of mixed perverse
sheaves. In this paper we often encounter maps of algebraic varieties which
are not morphisms but only quasi-morphisms (as in @, 0.3]). For such maps

the usual operations with derived categories are defined as in [20, 0.3].

Note that if K € D,,(X) then K can be viewed as an object of D(X)
denoted again by K. If K € M,,,(X) and h € Z, we denote by gr,(K) the
subquotient of pure weight h of the weight filtration of K. If K € D,,(X)
and i € Z we write K (i) = K[i](i/2) where [i] is a shift and (i/2) is a Tate
twist; we write K1} = gri(K%)(i/2). If K is a perverse sheaf on X and A
is a simple perverse sheaf on X we write (A : K) for the multiplicity of A
in a Jordan-Holder series of K. If C' € D,,(X) and {Cy;i € I} is a family of
objects of D,,(X) then the relation C' < {C;;i € I} is as in ﬂﬂ, 0.2].

Let : A — A be the ring homomorphism such that v™ = v~ for any
m e Z. If f € Qu,v™! and j € Z we write (j; f) for the coefficient of v/ in
I

Let B be the variety of Borel subgroups of G. For any B € B let Up
be the unipotent radical of B. In this paper we fix a Borel subgroup B of
G and a maximal torus T of B. Let U = Ug. Let v = dim U = dim B,
p=dmT, A =dimG =2v+ p.

For any algebraic variety X let £ = £y = Q; € D(X) where « :
X x T — X is the obvious projection. When X and T are defined over F,
£ is naturally an object of D,,(X).
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Unless otherwise specified, all vector spaces are over Q;; in particular,
all representations of finite groups are assumed to be in (finite dimensional)

Ql—vector spaces.

1. The Monodromic Hecke Algebra and Its Asymptotic Version

1.1. Let NT be the normalizer of T in G, let W = NT/T be the Weyl group
and let k : NT — W be the obvious homomorphism. For w € W we set
Gw = U H(w)U so that G = UyewGuy; let O = {(xBa~ 1, yBy 1)z €
G,y € G,xz7'y € Gy} so that B x B = UyewOy. For w € W let G, be
the closure of G, in G; we have G, = Uy<wGy for a well defined partial
order < on W. Let O, be the closure of O,, in B x B. Now W is a (finite)
Coxeter group with length function w — |w| = dim O,, — v and with set of
generators S = {0 € W;|o| = 1}; it acts on T by w : t — w(t) = wtw™!

where w € k71 (w).

1.2. Let R C Hom(T,k*) be the set of roots of G with respect to T. Now W
acts on R by w : a — w(a) where (w(a))(t) = a(w'(t)) for t € T. Let RT
be the set of & € R such that the corresponding root subgroup is contained
in U. For a: T — k* we denote by & : k* — T the corresponding coroot
and by o, the corresponding reflection in W. For any o € S let U, be the
unique root subgroup of U with respect to T such that U, := wU,w ! ¢ U
for some/any w € k7 1(0). Let a, : T — k* be the root corresponding to
Uy,; then the coroot &, : k* — T is well defined.

For any o € S we fix an element & € U, — {1}; there is a unique
¢ € U, — {1} such that &,&.&, = £ ¢6,¢ € k(o) C NT; the two sides of
the last equality are denoted by . We have x(¢) = o and 62 = ¢, (—1). For
any w € W we definew € NT by w = 6103 ...0d, where w = 0109 ...0, with
r = |w|,o; € S; note that, by a result of Tits, w is well defined. Let NyT
be the subgroup of N'T generated by {5;0 € S}. This is a finite subgroup
of NT containing w for any w € W. Let kg : NgT — W be the restriction
of Kk :NT - W.

1.3. For n € N* let 5, = Hom(T,,Q}); we have f(s,) = n’. For n,n’
in N* such that n’/n € Z, the surjective homomorphism N[LL' : T, — T,,
t — t"/" induces an imbedding s, C §,/, A — )\Ng/. Hence we can form the
union s, = UpeN+§, (a countable abelian group). Then for any n € N*,
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5y, is a subgroup of s,,. Note also that s, is the group of homomorphisms
T — QZ‘ which factor through T, for some n € N*. For any A € s
there is a well defined local system Ly on T such that for some/any n € N*
for which A € s, Ly is equivariant for the T-action ¢; : ¢ — ¢t on T and
the natural T,, action on the stalk of Ly at 1 is through the character A.
For \,\ € s, we have canonically Ly ® Ly = Lyy; for A € 55, we have
canonically L} = Ly-1; here ()* denotes the dual local system.

The W-action on T restricts to a W-action on T,, for any n € N*. This
induces a W-action on T, a W-action on s, for any n € N*; for A\ € s,,
w € W and t € T, we have (w(\))(t) = A(w~'(¢)). There is a unique
W-action of s,, which for any n € N* restricts to the W-action on s, just
described. We set I = W X so; for w € W, \ € s, we write w - A instead of
(w, A).

1.4. If o € R, the coroot & : k* — T restricts to a homomorphism k; —
T, for any n € N* and by passage to projective limits, this induces a
homomorphism &> : k* — T (notation of 0.2). Let A € so,. We say that
a € Ry if the composition k™ AN LSRN Q} is identically 1 or equivalently
if &* L), = Qq as local systems on k*. Note that for w € W we have w(R)) =
Ry v Let R;\L = R\NRT, Ry = Ry — R;\r. Let W) be the subgroup of
W generated by {on;a € Ry}. We have Wy = Wy-1. Let W5 = {w €
W;w(X) = A}. We have Wy C Wy. As in ﬂﬁ, 5.3], there is a unique Coxeter
group structure on W) with length function Wy — N, w — |w|y = {a €
Ri;w(a) € Ry }; note that, if w € Wy and w = 0103 ..0, is any reduced

expression of w in W, then

|w|y = card{i € [1,7];0,...0i410:0541 ...0, € W)}.

1.5. For n € N* we set I, = {w- X € I;)\ € 5,}. Asin ﬂl_AI, 31.2], let H,,
be the associative A-algebra with generators T,,(w € W), 15(A € s,) and

relations:
LIy = Gy v 1y for A, N € sp;
TwTyw = Ty if w,w' € W and |ww'| = |w| 4+ |[u'];
Tyl = 1y Tw for w € WA € sp;
T2 = v*Ty + (0* = 1) Yosca,oew, Lol for o € S;
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= Z AEsn Lx.
The algebra H,, is closely related to the algebra introduced by Yokonuma
ﬂﬂ] (It specializes to it under v = ,/g,n = ¢ — 1 where ¢ is a power of a
prime; this is shown in ﬂﬁ, Sec.35].) Note that T} is the unit element of H,,.
In ﬂﬁ, 31.2] it is shown that {Ty1y;w -\ € I,} is an A-basis of H,,. (In ﬂﬂ,
1.7] we write H instead of H,,, but here we shall not do so.)

Now, for o € S, T, is invertible in H,,; indeed, we have

T, =0T+ (1—v ) (> 1)
AESp;0€W
It follows that T, is invertible in H,, for any w € W. As shown in ﬂl_él,
31.3], there is a unique ring homomorphism H,, — H,,, h + h such that
T_w:Tuj,l1 for any w € W and fly = fl, for any f € A, A € 5,. It is an

involution called the bar involution.

If n,n’ € N* and n'/n € Z, then I,, C I,y and the A-linear map jy, , :
H, — H,, given by T,,1, — Ty, 1) for w- X € I, is an A-algebra imbedding
which does not necessarily preserve the unit element. Let H be the union of
all H,, for various n € N* according to the imbeddings j,, ,,, above. Then H is
an A-algebra without 1 in general; it has an A-basis {T},1) = Loy Twiw-A €
I}. If n € N*, then H,, is the A-submodule of H with basis {T},1y;w -\ €
I,}; it is an A-subalgebra of H. The algebra H,, has been studied in ﬂﬁ]
and ﬂﬂ, 1.7]. We shall often refer to loc.cit. for properties of H which in
loc.cit. are stated for H,, with n fixed and which imply immediately the

corresponding properties of H.

We show that, if n,n’ € N* and n'/n € Z, then j,,» : H, — H,, is
compatible with the bar-involution on H,, and H,,. It is enough to show
that ji, . (€) = m for E =1y, €5, 0or £ =T,, 0 € S. The case where
¢ =1\, A\ € 5, is immediate. For o € S we have j, (T,,) = T, ZAesn 1y,

hence

jn,n’ (T_cr) = jn,n’(v72T0 + (1 - '072)( Z 1)\))
AEsp;0€W

= '072T<7 Z I+ (1 - ’072)( Z 1>\):T;1 Z 1)\:jn,n’(T0)a

AEsp, AEsp;0€Wy AEsp,
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as desired. It follows that there is a unique ring homomorphism H — H,
h + h, whose restriction to H,, (for any n € N*) is the bar involution. This

has square 1 and is again called the bar involution.

The A-linear map H — H, h — h given by T, 1) — Tyly-1 forw-Ael
is an algebra involution. The A-linear map H — H, h — h’, given by
Twly — 1)T,,—1 is an involutive algebra antiautomorphism. (See ﬂa, 32.19].)

1.6. As in ﬂﬁ, 34.4], for any w - A € I there is a unique element ¢, € H
such that

Cw-x = Z Pyrwav” YT, 1y
yeW

where py.wa € v1ZT if y # w, Pwrwr = 1 and ¢y = cy.n. For
A€ So0, ¥, w in Wy let P;‘/,w/ be the polynomial defined in B] in terms of
the Coxeter group Wjy; let

P = v BHIRY (2 € 7o)

Let w- A e I. From ﬂa, 1.9(i)] we see that wW), contains a unique element z
such that |z| is minimum; we write z = min(wW)); we have w = zw’ with

w’ € Wy. We have

A ant
(a) o — Z Py ¥ |Zy|sz/1)\.
y eWy

See ﬂﬂ, 1.8(a)]. From (a) we see that
A 2\ _ ro
Py zw' X = py’,w’(v ) if y=zy,y €Wy,

Pyrzw-x = 0if y & 2W).

In particular we have py.» .0 € N[v™!]. From ﬂﬂ, 1.8] for w- A € I we have

— b o
Cy\ — Cw_A—l,Cw.)\ = Cw—l_w()\).

1.7. Now H can be regarded as a two-sided ideal in an A-algebra H' with

1 as follows.
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Let [soc] be the set of formal A-linear combinations )y, cxly with
cx € A; this is an A-module in an obvious way. We regard [so] as a (com-

mutative) A-algebra with multiplication

(Y- b)Y Al =) adl.

AESoo AESco AESo

This algebra has a unit element 1 =), . 1.

Let H' be the A-algebra with generators Tp,(w € W) and ¢ € [ss] and

relations:
TwTy = Ty if w,w' € Wand |ww'| = |w| + |0’
T; =T + (V¥ = VT (X scor wew, 1n) for o € 5;
Two = ¢'T, for ¢ = Y aese AL, ¢ = Y aesa Co—ty1a in 5], w € W

the map [so0] — H', £ — & respects the algebra structures.

It follows that H' is a free left [soo]-module with basis {T},;w € W} and a
right free [so]-module with basis {T,; w € W}. Note that the algebra H' has
a unit element ), . 1. Now H can be identified with the two-sided ideal
of H' which as an A-submodule is free with basis {T},1) = Ly Tw; we A € I}.

1.8. Let W\ss be the set of W-orbits on so,. For any 0 € W\s,, we set
I, ={w-\ € ;) € o}. This is a finite set. We have I = U,I,, H= ®,H,
where H, is the A-submodule of H spanned by {Tiy1x = 1\ Tw;w - A € I}
(thus, H, is a free A-module of finite rank). If 0,0’ are distinct in W\s,
then clearly H,H, = 0. Thus, each H, is a subalgebra of H; unlike H, it
has a unit element ), 1x. It is stable under h h and under h — h’.
Moreover, h — h is an isomorphism of H, onto H,-1. For any w- X € I, we
have ¢,y € Hy; moreover, {c,.n;w -\ € I,} is an A-basis of H,.

1.9. For 4,4 in I we write cijc;y = Y o; hi v jc; (product in H) where h; ;v ; €

jel
A. Let j < i (resp. j < i) be the preorder on I generated by the relations
left

hy ;; # 0 for some ¢ € I, resp. by the relations
hiij # 0 or hy;; # 0 for some i' e I.

We say that i ~ j (resp. i ~j)ifi < jand j < i (resp. i < j and j < i).
left left left
This is an equivalence relation on I; the equivalence classes are called left
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cells (resp. two-sided cells). Note that any two-sided cell is a union of left
cells. Since for 0 € W\s.,, H, is closed under left and right multiplication
by elements in H, we see that

hiwj # 0,1 € I, implies i, j € Io; hi; # 0,3 € I, implies i,j € I,.
It follows that j <4, € I, implies j € I,. In particular, j ~ 4,7 € I, implies
j € I,. Thus any two-sided cell is contained in I, for a unique o.

For i =w- -\ eI we set

Note that i — 4" is an involution of I preserving I, for any o.

If ¢ is a two-sided cell and i € I, we write i < ¢ (resp. ¢ =< 7) if i < ¢
(resp. ' < i) for some i' € ¢; we write i < ¢ (resp. ¢ < i) if i < ¢ (resp.
c=i)and i ¢ c. If ¢, ¢’ are two-sided cells, we write ¢ < ¢’ (resp. ¢ < ¢’) if
i =<1 (resp. i <4 and i £ ¢) for some i € c,i’ € .

Let j € I. We can find an integer m > 0 such that h, ;s ; € v="Z[v] for

all 7,4'; let a(j) be the smallest such m. For i,4’,j in I there is a well defined
integer h; such that

higjt = hiy v ~4() + higher powers of v.

Note that

#+0,1 € I, impliesi',j € I,; h¥., . #0,i' € I, implies i,j € I,.

z g
Let D be the set of all w- A € I where w is a distinguished involution of the
Coxeter group W), see ﬂg] We have D = L,(D No).

By ﬂﬂ, 1.11], the following properties hold:

1,1,

QL. If j € D and 4,i" € I satisfy h}, ; # 0 then i’ = ¢*.

Q2. If i € I, there exists a unique j € D such that h;“ £ 0.
Q3. If ¢/ < i then a(i’) > a(i). Hence if i’ ~ i then a(d’ ) a(i).
Q4. If j € D, iEIandhﬁ“#Othenhﬁuzl

Q5. For any 4,4,k in I we have h} ., = h¥

5,k = Y5k,

Q6. Letz,],klnlbesuchthath*JkaéO Then i N] ‘71f k', ko~ i
t

left
Q7. If ¢/ < i and a(i') = a(i) then i o i
eft

left
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Q8. If ' < and a(i') = a(i) then ¢’ ~ 4.
Q9. Any left cell I' of I contains a unique element of j € D. We have
hY .. =1foralliel.
1 727]
Q10. For any i € I we have i ~ i'.

Note that h;;, € N for all 4, j,k in I, see ﬂﬂ, 1.11].

Let H* be the free abelian group with basis {t;;i € I}. We define a
Z-bilinear multiplication A% x A% — A by

tity = Y BTy aty.
jel

For any 0 € W\sy, let H® be the free abelian subgroup of H* with basis
{ti;i € I,}. We have H® = @©,HS°; moreover, if 0,0" are distinct in W\s,
then H°HZ? = 0. Thus each H® is a subalgebra of H; unlike H>, Hg° has
a unit element ), . ti. The Z-linear map H>* — H™, h — R’ defined
by t'; =t, for all 7 € I is a ring antiautomorphism preserving each H;°. We
define an A-linear map ¢ : H - A ® H*> by

P(e) = Z hi,j,i’ti’ forall7 e I.
i'el,jeD;i ~j

(This last sum is finite. We have i € I, for some o. If h; ; # # 0 then we have
i’ € 0,j € 0. Thus 7,7 run through a finite set.) By , 1.9, 1.11(vi)], ¥ is
a homomorphism of A-algebras. For any o, 1 restricts to a homomorphism
of A-algebras 9, : H, = A ® H° which takes 1 to 1.

We set H' = Qv)o4H, J = Q ® H*>; for any o we set H) =

Q(v)®aH,, J, =
phism ¥? : H? = Q;(v) ® J,; hence v induces an algebra isomorphism
®J

¥ HY S Qu(v)

Q®4H°. For any o, ¢ induces an algebra isomor-

We define a group homomorphism t : H>* — Z by t(¢;) = 1 if i € D,
t(t;) =0ifie I —D. Asin ﬂﬂ, 1.9(a)], the following can be deduced from
Q1,Q2,Q4.

(a) Fori,j € I we have t(tit;) =1 if j =i and t(tit;) =0 if j #i'.
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1.10. For n € N* we set H. = Q;®4H,,; this is a Q-algebra with 1. It is
the algebra with generators T,,(w € W), 1x(\ € s,,) and relations:

Iyly = Gy v 1y for A, N € sp;

TwTy = Ty for w,w’ € W,

Twly = 1y Tw for w e W, \ € s,,;

= ZAEsn Lx.

It has a basis {T,,1x;w -\ € I,,}. Let H' = Q@ 4H. This is a Q;-algebra
without 1 in general. As a vector space it has basis {T,,1\,w - A € I}. It
contains naturally H. as a subalgebra for any n € N*. For any 0 € W \s,, we
set H! = Q@ 4H,; this is a Q;-algebra with 1. It has a basis {T,,1x;w- A €
I,}. We have H' = @,H.. Now ¢ in 1.9 induces an algebra isomorphism
Pl HY 5 J; for any o, 1, in 1.9 induces an algebra isomorphism 1} :
H! = J, taking 1 to 1.

1.11. Let n € N*. Consider the group algebra Q;[WT,] where WT,, is the
semidirect product of W and T,, with T,, normal and W acting on T,, by
w st w(t). Now w(t) — > \c,, At)T,1, defines a Qg-linear isomorphism
up : Q[WT,] & H. which is in fact an algebra isomorphism taking 1 to 1.

Now let n,n’ € N* be such that n//n € Z. We define a Q;-linear
imbedding Ay, v : Q[WT,] — Q;[WT,] by

I (wE) = (n/n')? Y~ wt.

/€T, 5t/m /n=t

We show that h,, s is compatible with multiplication, that is, for w,w" in W

and t,t in T,, we have

((n/n'y > wh(n/) Y W)

feT, i /n=t FeT, i In=t/

_ (n/n/)p Z wwltN//,

f"GTn/ ;g//n’/n:w/—l (O
or equivalently

((n/n/)p Z w/—l (E)E/ Z 7g//) ,
()

LEET, iin! /n=t, it =t/ T, ! nmayr =1
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which is easily verified.

Let j! ,: H) = H!, be the specialization of j, , (see 1.5) at v = 1.
We have w, hy nr = Jpn/tn; equivalently for w € W,t € T, we have

(n/n)? > A Twly = D AH)Twly.

VET, ;! /n=t AES/ A€Esp,

(It is enough to show that for any \ € s,,,

(/) > AW) =AW

t'ET, st/ /n=t

is equal to A(t) if A € s, and to 0 if A ¢ s,. This is immediate: we use
that the kernel of the surjective homomorphism T, — Ty, t' — t'*/™ has
exactly (n’/n)? elements.)

We can form the union U,en+Qi[WT,] over all imbeddings hy, s/ as
above. This union has an algebra structure whose restriction to Q;[WT,]
(for any n € N*) is the algebra structure of Q;[WT,]. Moreover, there is a
unique isomorphism of algebras U,en+Q;[WT,] = H! whose restriction to
Q[WT,] (for any n € N*) is u,, : Q[WT,] = H..

1.12. For 0 € W\s,, H} is a semisimple Q;-algebra. Let Irr(H}) be a set
of representatives for the isomorphism classes of simple H}-modules.

1.13. We have H*® = & HZ°, J = @®J¢, where c runs over the two-sided
cells in I, HY is the A-submodule of H* with basis {¢;;i € c} and J. is
the Q;-subspace of J with basis {t;;i € c}. Each HY is an A-subalgebra of
H with unit ZiEDc t; where D, = D Nec. Each J¢ is a Q;-subalgebra of J
with the same unit as H2°. Moreover if ¢, ¢’ are distinct two-sided cells in [
we have JcJo = 0. Recall from 1.9 that any two-sided cell in [ is contained
in I, for a unique 0 € W\sy. It follows that for any 0o € W\s,, we have
Jo = @ecr,Je. Hence, if E € Irr(H}) then there is a unique two-sided cell
cg such that J. acts as zero on E* for any ¢ C I, with ¢ # cg. Thus E*®
can be viewed as a simple J.,-module. We define ag € N to be the constant

value of the restriction of ¢ : I — N to cg.

1.14. If ¢ is a two-sided cell of I then its image ¢ under I — I, w-\ + w-\""
is a two-sided cell of I. (See , 1.14]) As noted in 1.9, we have ¢ C I, for a
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unique o; from the definitions we have ¢ C I,-1. Moreover, the value of the
a-function on ¢ is equal to the value of the a-function on c¢. From Q3,Q10
in 1.9, we see that a(i') = a(i) for i € I.

1.15. For 4,7 in I we show:

(a) If 1 o i', then for some u € I, ty appears with # 0 coefficient in t,t;.
eft

(b) If 4 o i"*, then for some u € I, ty appears with # 0 coefficient in tit,.
eft

(¢) If i ~ i, then for some u,u’ in I, t;y appears with nonzero coefficient in
tutit].
(d) Ifi~d, then titjty # 0 for some j € I.

The proof is along the lines of that of ﬂE, 18.4]. Let J* = > rer Nty We
will use repeatedly that J*J+* c JT.

Let 4,7 beasin (a). Let d,d’ € D be such that hy,,#0and by, . #0.

Then i ~ d, i ~ d. Hence d ~ d. By Q9 in 1.9 we have d = d’ and
left left left

hiig =1 Moy g =1. Hence tt; =t + JT, tinty = tg+ JT, tatg = tg; it

follows that t;t;t,nty € tgtqg+ JT =ty + J+. In particular, t;t,n # 0. Thus,

R # 0 for some u € I. Using Q5 in 1.9 we deduce that h} . ... # 0 hence
1,7 u Uy,

ty appears with # 0 coefficient in ¢,t;. This proves (a). Now (b) follows
from (a) using the antiautomorphism of H* such that ¢, +— ¢, for all u € I.

Let i1,49,i3 in I be such that iy ~ iy ~ i3. If the conclusion of (c)
holds for (i,i") = (i1,42) and for (i,i') = (i2,43) then clearly it holds for
(i,7") = (i1,43). Applying this repeatedly, we see that it is enough to prove

(¢) in the case where 4,7’ satisfy either i o i’ or ' o i'. In these cases the
eft eft

desired result follows from (a),(b).

Let 4,7 be as in (d). Then i ~ 4"'. By (c), we have tt;t, € at;n + J*
for some u,u’ € I and some a € Z~g. Hence t, t;t,ty € at;nty + JT. Since
t;nty has some coefficient 1 and the other coefficients are > 0, it follows that
tytityty # 0. Thus, t;t,ty # 0. This proves (d).

2. The Group G

2.1. In this paper (except in 2.2) we fix a group G containing G as a
subgroup, such that G /G is cyclic of order m < oo with a fixed generator.
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For s € Z let G be the inverse image of the s-th power of this generator
under the obvious map G — é/G. For v € G, the map G — G, g — ~vgy
is denoted by Ad(7).

We shall always assume that we are in one of the two cases below (later

referred to as case A and case B).

(A) We have m = oo and one of the following two equivalent conditions are
satisfied (¢ denotes a fixed power of p):
(i) for some v € G, Ad(y) : G — G is the Frobenius map for an

F,-rational rational structure on G}

(ii) for any s > 0 and any v € G, Ad(7) : G — G is the Frobenius map
for an Fys-rational rational structure on G.

(B) m < oo and G is an algebraic group with identity component G.

We show the equivalence of (i), (ii) in case A. Clearly, if (ii) holds then
(i) holds. Conversely, assume that (i) holds for y € Gy. If v/ € G with s > 0,
then we have v/ = g17° where g1 € G. By Lang’s theorem applied to Ad(~*) :
G — G, which is the Frobenius map for an Fjs-rational structure on G, we
have g1 = g, 'Ad(7%)(g2) for some gy € G hence v = g5 ' Ad(y*)(g2)7" =
g5 'v°g2 and Ad(y') = Ad(g2) "' Ad(v*)Ad(ga). Since Ad(gs) : G — G is an
isomorphism of algebraic varieties, it follows that Ad(vy') : G — G is the
Frobenius map for an Fys-rational structure on G. Thus (ii) holds.

Let s € Z. In case B, G, is naturally an algebraic variety. In case A,
we view Gy as an algebraic variety using the bijection ¢ gy where 7 is
fixed in Gy; this algebraic structure on Gy is independent of the choice of
v. For s = 0 this gives the usual structure of algebraic variety of G. For
s € Z,s € Z, the multiplication G x Gy — és+s/ is obviously a morphism
of algebraic varieties in case B, but is only a quasi-morphism in the sense of
@, 0.3] in case A. Similarly, for s € Z, Gy — G_,, v — 77! is a morphism
of algebraic varieties in case B, but is only a quasi-morphism in case A.

Note that in case A with s # 0, the conjugation action of G on Gy
is transitive. (If s > 0, this follows from as above using Lang’s theorem,
while if s < 0 this follows using the bijection Gy — G_, v — 1, which
commutes with the G-actions.) Moreover in this case for any v € G, the
stabilizer of « for this G-action is finite. (This stabilizer is the fixed point
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set of Ad(y) : G — G which is a Frobenius map relative to an Fys-structure

if s > 0 or the inverse of a Frobenius map if s < 0.)

We show:

(a) If v € G5 and B € B then Ad(y)(B) € B, Ad(v)(Up) = Una(p and
Ad(v) : B — B is a bijection.

In case A with s = 0 and in case B, (a) is obvious. In case A with s > 0, (a)

follows from (ii); in case A with s < 0, (a) follows from (ii) applied to v~ 1.

2.2. Here are some examples in case A.

(i) Let F': G — G be the Frobenius map for an Fj-rational structure on G.
Let G = G x Z regarded as a group with multiplication (g,s)(¢,s’) =
(gF*(¢'),s + §'). Define a homomorphism G — Z by (g,s) — s. Its
kernel {(g,s) € G;s = 0} can be identified with G. Note that G and
G — Z are as in case A; we have (1,1) € G and Ad(1,1) : G — G is
just F : G — G. Moreover, any G and G — Z as in case A is obtained

by the procedure above.

(ii) In the case where G is adjoint we define G for s € Z~q to be the set
of Frobenius maps G — G with respect to various split Fs-rational
structures on G; we define Gy for s € Z g to be the set of maps G — G
whose inverse is in G’_s and we set Go = @G. Then G = I_Jsezé’s is as in
case A. (This case has been considered in ﬂﬁ])

(ili) Let V be a finite dimensional k-vector space. For any s € Z let GL(V),
be the set of all group isomorphisms 7' : V' — V such that T'(zz) =
2T (z) for all z € k,z € V; in particular we have GL(V), = GL(V).

D e g

Then GL(V) := UgezGL(V), is a group under composition of maps; it
is of the form G (as in case A) where G = GL(V).

(iv) Let V be a finite dimensional k-vector space with a nondegenerate

P

symplectic form (,) : V x V — k. For any s € Z let Sp(V'), be the set
ofall T € CE\(;)S such that (T'(z),T(2")) = (z,2")9" for all z, 2" in V;
in particular we have S/]_)\(/V)O = Sp(V). Then S?)(T/) = usez%s is
a group under composition of maps; it is of the form G (as in case A)

where G = Sp(V).
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2.3. In the rest of this paper we fix T € Gy such that TBr—! = B,7Tr ! =
T. and such that for any o € S, Ad(T) carries & € U, — {1} to &, €
U, — {1} for some o’ € S.

Note that such 7 exists.

We define a group homomorphism e : G — G by e(y) = 97!, We
have e(Gy) = G, for all s € Z, e(T) = T, e(B) = B (hence e(U) = U),
e(NT) = NT; thus e induces an automorphism of W denoted again by e
which preserves the Coxeter group structure. If B € B then e(B) € B and
B+ e(B), B — B is an automorphism in case B and is the Frobenius map
for an Fg-rational structure on B in case A. We definee: Bx B — B x B
by e(B,B’') = (e(B),e(B’)). For w € W we have e(Gy) = Ge() and
e(Ow) = Oe(w)-

The set {¢;0 € S} of NT is stable under e : NT — NT. For w € W
we have (e(w)) = e(w). Hence NyT is stable under e : NT — NT.

Now for n € N*, e : T — T restricts to an isomorphism e : T,, — T,
and this induces an isomorphism e : s, — s,, by A — e(\) where (e(\))(t) =
Me 1(t)) for t € T,,. Let e : $50 — So0 be the isomorphism whose restriction
to s, is e : 5, — 5, as above for any n € N*.

We shall fix a Frobenius map ¥ : G — G relative to some sufficiently
large finite subfield Fjy of k such that B, T are W-stable, ¥ acts on ¢ by
t+— 7 (hence it acts as the identity on W) and such that ¥e = e¥ : G — G

and ¥(w) = w for any w € Ny'T; in case B we also require that ¥(7™) = 7™.

For any s € Z we define an F-rational structure on G, with Frobenius
map ¥ : Gy — G by the requirement that ¥(g7%) = ¥(g)7* for any g € G;
in case B, this rational structure depends only on Gy not on s.

Now for any n € N* we have ¥(T,) = T,; hence we can define ¥ :
Sp — 5, by (WA)(t) = AM(¥L(t)) for t € Ty, A € s,. There is a unique
bijection W : 55, — S5, Whose restriction to s, is as above for any n € IN*.
Now V¥ induces Fy/-rational structures on various varieties that will appear
in the sequel. When we consider D,,() or M,,() for such varieties, we will
refer to these specific Fiy-structures.

2.4. We define a bijection e : I — I by e(w - A) = e(w) - e(A). The A-linear
map e : H — H defined by e(Tyy1)) = Tew)le(r) for w- A € I is an algebra
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isomorphism commuting with™: H — H. It follows that e(c;) = ce(;) for all
i € I and that e : I — I maps any left (resp. two-sided) cell of I onto a left
(resp. two-sided) cell of I. It also maps any W-orbit in s, onto a W-orbit

in $.

Let 0 € s5 and s € Z be such that e*(0) = 0. The A-linear map
e’ : H — H restricts to an A-algebra isomorphism e : H, — H,; this gives
rise by extension of scalars to a Q-algebra isomorphism e® : H! — H! and
to a Q(v)-algebra isomorphism e : HY — HY; moreover the Q;-linear map
e’ 1 J, = J given by ¢; > tes(;) for i € I, is an algebra isomorphism and
YYHY S Quv) ® J,, 9l HY 5 J, are compatible with the action of e®.

Let Irry(H.) be the set of all E € Irr(H}) with the following property:
there exists a linear isomorphism e, : £ — FE such that for any w- A € I,

and any e € F we have

es((Twlx)(€))) = (Tes (w)les(r)) (€s(e))-

(Such ey is clearly unique up to a nonzero scalar, if it exists.) We assume
that for any F € IrrS(Hi)7 an e; as above has been chosen; we can assume
that e, has finite order (since e® : I, — I, has finite order); moreover, when
s = 0 we have Irrs(H}) = Irr(H}) and for any F in this set we can take
es = 1. If £ € Irr(H}!) we can view E as a simple J,-module via 1}; we
denote this J,-module by E>°. Moreover we can view Q;(v)® E™ as a simple
H{-module via 1J; we denote this Hj-module by E". If in addition we have
E € Tirg(H]}), then e, can be viewed as a Q;-linear isomorphism E> — E>
(denoted again by e,) and as a Q;(v)-linear isomorphism EV — EV (denoted
again by ey).

Note that for any & € J,, e € E> we have es({(e)) = e°(£)(es(e)); for
any & € H,, € € EV we have e4(£'(¢')) = e°(&')(es(€)).

2.5. For s € Z let
FP={w-AeLwA)=e* )}
For any two-sided cell ¢ of I we set

c=I°Nec.
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‘We show:

(a) Ife’(c) =c andi € c, j € I satisfy tytjtesy # 0, then j € c°.
(b) If €%(c) = c, then c® # .

We prove (a). Let i = w- A\, j = z- ). From our assumption we have
tzxtes(wyes(n) 7 0 (which implies N = e*(w(A))) and t, -1, )tz # 0
(which implies w(\) = z(X\)). We deduce that z(\) = e ¥(\) so that
Jj € I°. Since tyt; # 0 and i' € ¢ we must have j € c¢. Thus we have
j € I Ncand (a) is proved.

We prove (b). Let i € c. By assumption we have e®(i) € ¢; by Q10 in
1.9 we have i' € c. Using 1.15(d) with 4, replaced by i',e°(i) we see that
for some j = z- X' € I we have t;t;tes(;) # 0. Using (a) we deduce that
j € ¢® and (b) is proved.

3. Sheaves on B2
3.1. Let B = G/U. We have B2 = Uypew O, where
Oy = {(zU,yU) € B% a2 ly e Gyl

The closure of O, in B2 is éw = Uyew;ygw@y- For we W and w € K:O_l(w)
we define G, — T by g — g, where g € Uwg,U, g, € T. We define
§¥ : O — T by j*(2U,yU) = (z~'9),. For X € so we set LY = (j¥)*Ly, a
local system on O,,. Let L;‘\)ﬁ be its extension to an intersection cohomology
complex on 6w viewed as a complex on B2, equal to 0 on B2 — (ZQw. We
shall view L{ as a constructible sheaf on B2 which is 0 on B? — @w. Let

Ly = L‘;\)ﬁ (lw| 4+ v + 2p), a simple perverse sheaf on 2.

(a) In the remainder of this section we fix a two-sided cell ¢ of I and
we set a = a(i) for some/any i € c. We define o € W\s by c C I,. We
denote by n the smallest integer in N* such that o C s,. We shall assume
that W in 2.8 acts as 1 on the finite subset {t € T;t"™ € TN NyT} of T.

In particular, ¥(¢) = ¢ for any t € T,, (hence ¥(\) = A for any X € s5,,).

Now, if w € W,w € ﬁ:o_l(w),)\ € s,, then L‘;\’\@w, L“;ﬁ and LY can be

regarded naturally as objects in the mixed derived category of pure weight

w

zero. Moreover, L§|5 = (resp. L)\ﬁ, LY) is (noncanonically) isomorphic to
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LY| 5, (resp. L;‘fﬁ, LY) in the mixed derived category. (It is enough to show
that if t,¢/ € T,t" =t = ww™! and hy : T — T is translation by t’, then ¢
defines an isomorphism A}, Ly — Ly; see ﬂﬂ, 1.15))

We define b : B2 — B2 by (2U,yU) — (yU,zU).

We define an action of G x T? on B? (resp. on T) by

(9,t1,t2) : (2U,yU) = (gt7U, gyt5 U)

(resp. by (g,t1,t2) Lt wL(t) D). For any w € W, the G X T2-
action leaves stable O,, and its restriction to O,, is transitive; moreover, j*
is compatible with actions of G x T2 on O,, and T.

If A € 5, then Ly is a G x T?-equivariant local system on T hence Lﬁ} is
a G x T2-equivariant local system on O,,. By ﬂﬂ, 2.1], the following holds.

(c) For fized w € W,w € kg (w), the local systems LY with X € s, form a
set of representatives for the isomorphism classes of irreducible G x T?-

equivariant local systems on Oy .

3.2. We define po1 : B3 — B2, p1o: B3 = B2, pge : B> — B2 by
po1(zU,yU, 2U) = (2U,yU),p12(2U,yU, zU) = (yU, zU),
po2(zU,yU, 2U) = (22U, 2U).

For any L € D(B?), L' € D(B?), we set

Lo L' = poa(piy L ® pioL') € D(B?).

This defines a monoidal structure on D(2). Thus, if ‘L € D(B) for i =
1,...,k then 'Lo?Lo...0FL € D(l’;’) is well defined. Note that, if L €
Dn(B?), L' € D,,,(B?) then Lo L' is naturally in D,,(B?).

3.3. Now assume that w,w’ € W, w € kgt (w),w’ € Ky (W), \, N € 5.
From ﬂﬂ, 2.3] we see that:
(a) if w'(N) # X, then LY o LY, = 0.

3.4. Now assume that w,w’ € W, w € ky ' (w),w’ € ky't(w'), M, N €
Soo. Let = be the set of all (zU,yU, 2U) € B? such that 2~y € UwtU,
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y~ 'z € Uw't’'U for some t,¢' in T (which are in fact uniquely determined).
Define ¢ : 2 — T x T by c¢(zU,yU,2U) = (t,t') where 271y € UwtU,
y~'2z € Uu't'U. Define p, : £ — B2 by (2U,yU, 2U)  (2U, 2U). From

the definitions we see that
(a) {0 LY = phu(c*(Ly K Ly)).

‘We show:

(b) If w'(N) = X and [ww'| = |w|+|w'|, then we have canonically LY o LY, =
LY @ £, with £ as in 0.2.

Let Y = {(2U,2U,t,t') € Bx Bx T x T;27 'z € UwtUw't'U}. We define
Z = Y by (2U,yU,2U) — (2U,2U,t,t') where ¢,¢ in T are given by
vty € UwtU, y~ 'z € Uu/'t'U. This is an isomorphism since |ww'| =
|w|+|w'|. We identify 2 =Y through this isomorphism. Then¢: = — TxT
becomes ¢ : Y — T x T, (U, 2U,t,t') — (t,t'). We define h: T x T — T

by h(t,t') = w'~1(t)t'. We have
Y = {(zU,2U,t,t') e Bx Bx T x T;27 2 € Uuw'h(t,t')U}.

Define j : Y — Oy by (zU, 2U,t, ') — (zU, 2U). Let j' = j**" : Opuy —

T. Using (a) and the cartesian diagram

y 2 .7mxT

we see that
Yo LY = jic*(La R Ly) = j*hi(Ly X Ly).

Since L$¥ ® £ = j*(Ly ® £), we see that to prove (b) it is enough to show
that h(Ly X Ly) = Ly ® £ (assuming that w'(\) = ). This is proved as
in the last paragraph of [21, 2.4].

3.5. Let 0 € S and let w € k5" (0), N € $00. Define 4, : U, — {1} — T by
& tgl where t¢ € T is given by wlelw e Uwilth; let £ =05L%,. Let
8" : U, — {1} — p be the obvious map. From the definitions we see that:
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(a) 0 € =0if o & Wy; 1€ < {Qu(-2), Qu[-1]} if o € Wiy

Consider the diagram T & (U, — {1}) 2 T where k - (t, &) — tgl and

he(t,6) = tt; ' We show:

(b) Let N € 500 If o ¢ Wi, then hik* Ly = 0. If 0 € Wy then hik*L%, <
{Qi(-2), Ql-1]}.

We have k*L%, = QX E. Now h = h'y where y : T x (U, — {1}) —
T x (U, —{1}) is (t,£) — (ttgl,f) and i/ : Tx (Uy—{1}) = Tis (£, &) — L.
Clearly, y(Q; X &) = Q; X E. It remains to note that h(Q; X &) is 0 if
o ¢ Wy and is = {Q; (—2),Q;[—1]} if 0 € W). (This follows from (a).)

We show:

(c) Assume that \ € s satisfies 0 € Wy and that w € {5,671}, Then we
have canonically LY = L‘;\’_l.

Define ( : T — T by t — w?t. It is enough to show that (*Ly = L,
canonically. For ¢t € T we have (C*Lx); = (La)w2e = (La)a, (-1) @ (La)e-
Hence it is enough to show that we have canonically (Ly)a, (1) = Q- It is
also enough to show that &)Ly = Q. This follows from a, € R).

3.6. Now assume that w =w' =0 € S, w € Iio_l(O'), M\, N € s are such
that o(\') = A. In this subsection we show:

(a) If o & Wy, then LY o LY, = L}, (—2) @ £.
(b) If o € Wy, then

Yo% o {LL(—2)® £ L% (—2) ® £, LY [—-1] ® £}

(Note that the conditions 0 € W) and ¢ € Wy are equivalent.) With the

notation of 3.4, we have
2={(2U,yU,2U)eB> s lye UuwtU,y t2€ Uu#'U for some t,t’ in T}.

If (zU,yU, zU) € Z then 'z € UwUw™tw'~1(#)#'U; in particular we have
2712 € BUBWB. Thus, = can be partitioned as B! U B! where

B! = {(#U,yU,2U) € Z;2~ 2 € B}



2017]NON-UNIPOTENT REPRESENTATIONS AND CATEGORICAL CENTRES 227
is a closed subset and
B = {(2U,yU, 2U) € E;27 12 € BuB}
is an open subset. The map pf, : £ — B2 (see 3.4) restricts to maps
phy : B = Oy, plh - BT = O;
using 3.4(a) we deduce
{0 L8 < {ph(e"(La R L)), pih(c’ (La B Ly))}
We show:
() Poa(¢ (LAR Ly)) = Ly, ® £(~2).

‘We have

B = {(zU,yU,2U) ¢ [;’3;afly e UwtU,y 12 e Uu U

for some t,t in T,z 'z € B},
or equivalently
B'={(zU,yU, 2U)e Bz 1y e UwtU, 2" 2€ Uo(t)t'U for some t,t' in T}.

Let Y = {(zU,2U,t,t') € Bx Bx T x T;z" 'z € Uo(t)'U}. We define
d: Bl =Y by (2U,yU, 2U) — (2U, 2U,t,t') where ¢, in T are as in the
last formula for B!. The fibre of d at (U, 2U,t,t") € Y can be identified
with {yU;y € 2UwtU}, an affine line. Thus, d is an affine line bundle. We

have a cartesian diagram

~ jI
(91 —_— T

wherec! 1 Y — TxTis (zU, 2U,t, ') — (¢, 1), i : Y — Oy is (2U, 2U, t, ')
= (2U,2U0), j1 =310y 5 T, h: Tx T — Tis (t,t') — o(t)t'. Asin 3.4
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we have h(Ly X Ly) = Ly ® £ (since o(X') = A). It follows that

GOU) (LaB Ly) = () (LA ® L) = (§')* Ly ® £.
Hence

Pl (¢ (LB L)) = (i)™ ()" (LB L) = (i) ) (LA R L) (-2)
= (V' Ly®L(-2) =L}, ©£(-2).

This proves (c). Next we show that
(d) pth(c*(LAR Ly)) is 0 if c¢ Wy and is = {LY, (-2), L% [—1]} if o€ Wy,

We have

B = {(2U,yU,:U) € B2z 'y € UutU,y 'z € Uw U
for some t,t' in T,z 'z € Uwt; U for some t; € T}.

Let (2U,2U) € O,. We can write uniquely z = z&wtiuq where & € Uy,
t; € T, ug € U. The fibre ® of pl} at (zU, 2U) can be identified with

{yU € G/UU;z 'y € UwtU,y 1z € Uu™1H'U}
= {yU € G/UU;z 'y € UwtU,y 'zéowtiu; € Uw U}

Setting 'y = fwtu’ where € € U,, we can identify

d = {(t,t',6) e T x T x Upyu/ "t w e gt € Uuw U}
= {(t,t,) e Tx T x Uy;w ¢ 1w € Uwto(t)t't; UL
= {(t,t,6) € T x T x (Uy — {&})ite-1¢, = o)t}

where for & € U — {1} we define t¢, € T by w™'¢; 'w € Uw™ ', U. Let

Y = {(2U,2U,t,t', &) € BxBxTxTx (U, —{1});
v~ 'zeUwa(t)t'te, U},
Y] = {(2U,2U,1},&) €BxBxTx (U, —{1}); 27"z € Upwtity,' U}.

We see that B/ may be identified with Y’. (The identification is via

(2U, 2U, L, 1, &) = (U, 2606 'wtU, 2U)
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where & € U, is given by 27!z € wTU.) Under this identification, péé
becomes the composition fj/! where j/7: Y’ — Y] is

(2U,2U0,t,1', &) = (2U, 20, s(t)t', &)
and f:Y] = O, is
(U, 2U, 1), &) = (2U, 2U0);

moreover, the local system ¢*(Ly X Ly/) on BT becomes the local system
(") (LxX Ly) on Y’ where ¢! : Y — T x Tis (2U, 2U, t, ', &) > (£, 1),
We have a diagram with cartesian squares

eI

Y —— T xT

Al

Zr 1T

T x (U, — {1}) «L1— v] -2 T
d 7|
T <—i— O,

where j/1 1 Y] = T is (2U,2U,t},&) — t], j' : Oy — Tis j¥, j' : Y] —
T x (U, —{1}) is (U, 2U,#],&) — (t],&), h: TXT — Tis (t,t') — o(t)t’
and A/ is as in 3.5.

Let L' = (j11)*Ly (alocal system on Y{). Let L” = j'*Ly, = LY, (alocal
system on O,). Define f : Y{ — T by (zU, 2U, ¢, &) — tgll. Let L = f*Ly
(a local system on Y{). The stalk of L" at (2U,2U,#],&) € Y] is (Ly)y.
The stalk of f*L"” at (U, 2U,t},&) € Y] is (L)\/)t,ltg_l = (Lx)y ® (Ly)

~ 1
Thus we have L' = f*L" @ L*.

As in 3.4 we have hy(LyX Ly) = Ly ® £ (since o(X') = A). Using the

cartesian diagrams above, we see that

—1.
t£1

Pon( (AR Ly)) = fisl (") (La® Ly) = fisil" (") (Ly R Ly)
= LG (AR Ly) = [T (Ly @ £)
= flYeL=f(f1leol)et=1L" L)@
= L" @ fij "k (L) = L' ® fij " k* (L)
= L@ mk* (L) = L" @ j*mk*(L})).
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Here k is as in 3.5. Using 3.5(b) we see that this is 0 if o ¢ Wy and is
< {L"(=2),L"[-1]} if o € Wy,. This proves (d). Now (a),(b) follow from
(c),(d).

3.7. Now assume that w € W, 0 € S, w € {6,67'}, 0’ € kgt (w), \, N € 500
are such that w(\') = A, |ow| < |w|. We show:

(a) If o ¢ Wy, then LY o L, @ £ = [$¥ (—2) @ £® £.
(b) If o € Wy, then

YoI{ @L< {LY (—2) L@ L LY (—2) L@ &, LY [-1]© £® £}

Using 3.4(b), we have LY, ® £ = L&,y o L4, Hence L§ o L§ @ £ =
LY o L‘{Jo;j)(x) o L4, We now apply 3.6(a),(b) to describe LY o LE“UZ)(X). If

o ¢ Wy, we obtain
KoLy @ = Lipww) o L (-2 @ &
By 3.4(b) this equals L% (—2) ® [®2 proving (a). If o € W), we obtain

$oLY ® £ {Li,yy o L (-2) ® £,
—1 ’ —1 /
Ly o L5 (=2) @ £, L, )y 0 L5 [-1] @ £},

— v

(We have used that L% (WA

(cw)N see 3.5(c).) We now substitute

Lluy o L = ¥ © £, L)y o L8 = 1§ © £,

see 3.4(b); we obtain
YoI¥ @ Lo {15 (—2) 0 L@ L, LY (-2) @ £® £, LY [-1] © £® £}
This proves (b).

3.8. Let D*32 be the subcategory of D([;’2) consisting of objects which are
restrictions of objects in the G x T2-equivariant derived category. Let M*®B2
be the subcategory of D*®B2 consisting of objects which are perverse sheaves.
Let M=B? (resp. M=B?) be the subcategory of M*B? whose objects are
perverse sheaves L such that any composition factor of L is of the form L)\“" for
some w- A < ¢ (resp. w-A < ¢). Let DZB? (resp. D=B?) be the subcategory
of D®*B2 whose objects are complexes L such that L7 is in M=B2 (resp.
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M=B?) for any j. We write D,,() or M,,() for the mixed version of any
of the categories above. Let C®*B2 be the subcategory of M*B2 consisting
of semisimple objects. Let CO*BZ be the subcategory of M?,LBQ consisting
of objects of pure of weight zero. Let C°B2 be the subcategory of M* 52
consisting of objects which are direct sums of objects of the form Lf' with
w-\ € c. Let Cgéz be the subcategory of Co*éz consisting of those L € CO*BQ
such that, as an object of C*B2, L belongs to C°2. For L € CO*Z’;’2 let L be
the largest subobject of L such that as an object of C*B2, we have L € C<B2.

3.9. Let r > 1. Let w = (wy,...,w,) € W', w = (w1,ws,...,w,) be such
that w; € rg ' (w;) for i =1,...,7 and A = (A1, A, ..., \,) € 57, We set

(w| = Jwi] + |wa| +- - + Ja, .
For J C [1,r], let

Ol = {(xU,21U,...,2,U) € B,
xi:lla:iU € Gy, Vi € J, x;}lxi € Gy, Vie[l,r]—J}.

Define ¢ : O% — T" by
c(xoU, 1 U,... 2, U) = ((xo_lxl)wl, (a:l_lxg)w, . (x;_lla:r)wr).

Let MY € D, (B be the local system ¢*(Ly, X...K Ly, ) on O extended
by 0 on B+t — OV For J C [1,7] we set

MY = p'Lop L ®. .. @pi_y, L € Dy (B,

Ly? = pon M’ (wl) ='Lo®Lo...o"L(|w]) € Dy(B?),

where ‘L is Ly @i for i € J and L"JZ for i ¢ J. Note that M")@ = MY.
Moreover, from ﬂﬂ 2.15] we have:
(a) M‘;’J is the intersection cohomology complex of (5;,]‘, with coefficients in
MY,
A

Consider the free T"!-action on B"*! given by

(Tl,TQ, . ,Tr—l) : (JJQU,JZlU, A ,a:r_lU,er) —
(.%'oU, .%‘1T1U, Ce ,xr_lTr_lU, .%‘T»U).
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Note that O, is stable under this T"!-action. We also have a free T7~!-

action on T" given by

(7’1,’7’2,... ,’7'7«,1) : (tl,tg,... ,tr) —

(t171, w;l(Tfl)thg, w?:l(T;l)thg, .. ,w;ll(Trilz)tr,lTr,l, wr_l(T;ll)tr).

Let ‘Bt = T"=N\B"*1. Let 'O = T""1\OZ (a locally closed subvariety
of /B™t1). Let "T" = T"~'\'T". Note that 'O = T"-1\O? is an open dense
smooth irreducible subvariety of ‘OZ. Now ¢ : O% — T is compatible with
the T" -actions on OY | T" hence it induces a map ‘c : 'O% — '"T". The
homomorphism ¢ : T" — T given by

(t1,t2,. .. tr) = trwa(t2)wows(t3) . .. waws . .. wy(ty)

is constant on each orbit of the T"~!-action on T" hence it induces a mor-
phism "T" — T whose composition with c is denoted by ¢ :’O% — T. Let
’M;”w be the local system & Ly, on’O% extended by 0 on 'B"+1 —’OV . Let
’M;”J € D,,('B"t1) be the intersection cohomology complex of ‘O with
coefficients in ’M;”@ extended by 0 on ‘Bt —'OJ. Let po, : 'Ol — B? be
the map induced by po, : (5;,{, — B2. We define ’L‘;\”J € D,?Léz as follows:

if A\p = w1 (Mga1) for k=1,2,...,7—1, we set ’L‘;\"J = ﬁOT!’M;"J (lwl);

otherwise, we set ’L‘:\"J =0.
3.10. For L, L' € C§B?* we set
Lol = (Lo Lo} e c¢B2.

(For the notation ¥} see 0.2.) By , 2.24], L, L' — LoL’ defines a monoidal
structure on 685’2. Hence if L,%L,...,"L are in 685’2 then 'Lo%Lo...o"L €
CSB? is well defined.

3.11. Let w- A € I,, and let w € k' (w),s € Z. We show that we have

canonically:

(a) () L§ = LIS, (e")'Ly = Lg_.(5).

It is enough to prove the first of these equalities. Let £ = (2U,yU) € B2.
We have 71y € Ue *(w)tU with ¢ € T hence e*(z) te®(y) € Uwe®(t)U.
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The stalk of (e®)*L{ at £ is equal to the stalk of Ly at e®(t) hence to the
stalk of (€®)* L) at t. The stalk of Lg:ig“;)) at € is equal to the stalk of Le-s(y)
at t. It remains to show that (e”)*Lx = Le-s(y). This follows from the

definitions.

4. Sheaves on 7,

4.1. In this section we firx s € Z.

Now T acts on B2 by t : (U, yU) — (2tU, ye*(t)U). Let T\B? be the set
of orbits. Let

Z, ={(B,B',2Up); B € B, B' € B,yUp € G,/Up;yBy" = B'}.

We define €, : B2 — Z, by €, : (2U,yU) — (zBz~!,yBy !, yr*Uz™).
Clearly, €, induces a map T\SB2 — Zs. We show:

(a) €5 induces an isomorphism T\ B% — Z,.

We show only that our map is bijective. Let (B,B’,v) € B x B x G,
be such that yBy~' = B’. We can find # € G such that B = zBx~!.
We set y = yo77% € G. Then ¢4 carries the T-orbit of (zU,yU) to
(B,yBy~',y2Uxz"') = (B, B’,yUp); thus our map is surjective. Now as-
sume that z,2’, 1,1y’ in G are such that

(xBx_l, yBy_l, yTSUx_l) = (x’Bx'_l, y'By'_l, y'TSUx'_l).

To complete the proof of (a) it is enough to show that ' = ztu, y' = ye*(t)u’
for some u, v’ in U and some t € T. Since 2712’ € B we have 2/ = xtu for
some u € U and some ¢ € T. We have y/75Uu"t" 127! = y7*Uz~! hence
y' = ye*(t)u’ for some «' € U. This completes the proof of (a).

For w € W let Z¥ = {(B,B’,yUg) € Zs;(B,B') € O,}. The closure
of Z¥ in Z, is Z¥ = {(B,B',gUp); (B,B') € Oy, g € G,gBg~! = B'}. We
have €;1(Z%) = Oy, € 1(Z¥) = O,.

Let w € #y ' (w) and let A € s be such that w- A € I*. We have a
diagram T % B2 &, Z where € is the restriction of €5 and j* is as in 3.1.
The T-action on B? described above is compatible under j* with the T-
action on T given by ¢ : ¢/ — w1 (¢t~ 1)t'e*(t). From ﬂﬂ, 28.2] we see that Ly
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is equivariant for the T-action on T given by ¢ : ¢/ +— w™ (e™*(t;))t't; . (We
use that w-\ € I®.) Using the change of variable t; = e*(t)~!, we deduce that
Ly is also equivariant for the T-action on T given by ¢ : #' +— w=L(t~1)t'e%(t).
It follows that (j¥)*L) is T-equivariant, so that there is a well defined local
system L5 ; of rank 1 on Z{ such that (e')*LY , = (j*)"Ly = L§. Let E‘;\’fis
be its extension to an intersection cohomology complex of Z¥, viewed as a
complex on Z, equal to 0 on Zs — Z¥. We shall view £‘3\’7 < as a constructible
sheaf on Z; which is 0 on Z5 — Z. Let

$o=L5 (wl+v+p),

a simple perverse sheaf on Z.

In the remainder of this subsection we assume that s # 0 and that we

are in case A.

Let w € W and let X¥ = {B € B;(B,e*(B)) € Oy}. When s > 0, X%
coincides with the variety X, defined in [3] in terms of the Frobenius map
e’ : ¢ = G; when s < 0, X}V can be identified with the variety Xg-s(,-1)
defined in E] in terms of the Frobenius map e™® : G — G. Note that the
finite group G = {g € G;e*(g) = g} acts by conjugation on X¥.

Let X = {2U € G/U;z 'e’(x) € Gy}. We define ¢ : X¥ — X¥
by 2U +— zBz~!. This is a principal T-bundle with T acting on X;:” by
t: 2U — xtU. We define j/, : X¥ — T by j,(2U) = (z7'e*(x))s.
Now let A € 5o be such that w - A € I®. Then there is a well defined
local system .7-"}38 on XY such that ¢* ;fjs = (j0,)*Lx. (This is in fact
the restriction of E;is to X* under the imbedding X* — Z¥, zBz~!
(xBz~ !, e*(x)Be®(z~ 1), 7°2Uz71).) The local system ]:;fjs on XY is of the
type considered in [3]. Note also that .7-"}3 ; has a natural G -equivariant
structure. (It is the restriction of the G-equivariant structure of Egi o) It
follows that for j € Z, HL (XY, }\”s) is naturally a G® -module. (This rep-
resentation of G® is one of the main themes of [3].) Let X¥ = {B ¢
B;(B,e*(B)) € O,}. Then X¥ is open dense smooth in X and G acts
by conjugation on X¥. Hence for j € Z, the intersection cohomology space
THI (XY, ;\“S) is naturally a G® -module.

If r,r’ are G® -modules and r is irreducible we denote by (r : r') the
multiplicity of r in r’. Let Irr(G®") be the set of isomorphism classes of
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irreducible representations of G¢. From B, 7.7] it is known that for any
r € Irr(G®)

(i) there exists w - A € I® such that (r: @ng(X;“, w)) #0.
From ﬂa, 2.8] we see using (i) that for any r € Irr(G®")
(ii) there exists w - A € I* such that (r : &;TH7 (XY, F{,)) # 0.

By B, 6.3], any r € Irr(G®") determines a W-orbit 0 on s,: the set of all
A € 54 such that (r: EBng(X;”,f;‘.js)) # 0 for some w € W with w -\ € I®
or equivalently (see ﬂa, 2.8]) such that (r : @&, IH7 (XY, )\'78)) # 0 for some
w € W with w - A € I*; we have necessarily e®(0) = 0. For any 0 € W\s4
such that e®(0) = o, let Irr,(G®") be the set of all r € Irr(G®") such that
the W-orbit on s., determined by r is 0. With notation in 1.14 we have the

following result:

(b) There exists a pairing Irre(G®") x Irrs(HY) — Qu, (v, E) w by g such
that for any r € Irro(G®"), any z- X € I* N I, and any j € Z we have

(0: THI(XZFE)) = (17— |2l > brptr(escan, BY).
Eclrrs (H}

In the case where G has connected centre, (b) is just a reformulation on ﬂa,
3.8(ii)]. A proof similar to that in loc.cit. applies without the hypothesis on

the centre.

4.2. In the remainder of this section let c,a,0,n,V be as in 3.1(a).

The G x T%-action on B? defined in 3.1 commutes with the T-action on B2 in
4.1; hence it induces a G x T?-action on T\ ,B%. We define a G' x T?-action
on Zg by

(9.t1,t2) : (B, B',7Up) + (gBg ™', gB'g™ ", gywoe® (t; ")t zy g7 Uypy-1)

where x( is any element of G such that zoBx I = B. (The choice of zy does

not matter; to see this, it is enough to show that for b € B we have

'yxoes(t;")t?xalUB = 'yxobes(t;")t?bflxalUB
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which is immediate.) In this G x T? action, the subgroup {(1,¢1,t2) €
G x T?;t; = e%(ty)} acts trivially. Note that the bijection T\ B2 — Z in
4.1(a) is compatible with the G x T?-actions.

Let we Ww e K:O_l(w). Since the G x T2-action on O, is transitive, it
follows that the G x T%-action on Z¥ is transitive. We show :

(a) Let L be an irreducible G x T2-equivariant local system on Z¥. Then L
is isomorphic to LY . for a unique X\ € s, such that w -\ € I°.

The local system (€)*£ on O,, is irreducible and G' x T?-equivariant hence,
by 3.1(c), is isomorphic to LY for a well defined X € s,,. Now the restriction
of (€¥)*L to any fibre of €? is Q;. On the other hand, the restriction of LY to
the fibre of € passing through (U,wU) is (under an obvious identification
with T) the inverse image of Ly under the map T — T, ¢t — w=!(t"1)e’(t),
hence it is Ly,(y-1)e-s(x) Which is Q, if and only if w(\) = e *\. We see that
we must have w(A) = e"*(A). We have (e')"L = (ef')" L5, (both are L)
hence £ = £ .. This proves (a).

We define b : Z, — Z_, by (B, B',gUg) + (B',B,g 'Up/). Note that
hes = e_4h: B2 — Z_, with h as in 3.1. For L € D, (Z_,) we set LT = h*L.

4.3. Let

I =1I,NI°.
Note that if w -\ € I and w € kg ' (w), then LY |zw, LY ; can be regarded
naturally as objects in the mixed derived category of pure weight zero. More-

over, LY |zw (resp. LY ) is (noncanonically) isomorphic to Ei slzw (resp.
LY ,) in the mixed derived category.

We define &, : D(Zs) — D(B?), & : Dy(Zs) — Dyn(B?) by

From the definition we have
*Ewﬁ _ wﬁ ~ w LUJ
€shns — Ly Esly s = Ly

Let D®Z, be the subcategory of D(Zs) consisting of objects which are re-
strictions of objects in the G x T?-equivariant derived category. Let M*Z,
be the subcategory of D®Z, consisting of objects which are perverse sheaves.
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Let M=Z, (resp. M=Z,) be the subcategory of D*Z, whose objects are
perverse sheaves L such that any composition factor of L is of the form IL&"” s
for some w - A € I such that w- A < ¢ (resp. w-\ < c). Let D=Z, (resp.
D~Z,) be the subcategory of D*Z, whose objects are complexes L such that
LI is in M=Z, (resp. M~Z;) for any j. We write D, () or M,,() for the
mixed version of any of the categories above.

Let C* Z, be the subcategory of M* Z, consisting of semisimple objects.
Let C:Zs be the subcategory of M%ZS consisting of objects of pure of weight
zero. Let C°Z, be the subcategory of M®Z, consisting of objects which are
direct sums of objects of the form L}‘;’,S with w - A € ¢®. Let C§Z, be the
subcategory of CO*ZS consisting of those L € CO*ZS such that, as an object
of C*Z,, L belongs to C°Z,. For L € C:Zs let L be the largest subobject of
L such that as an object of C*Z,, we have L € C¢Z,.

From 4.2(a) we see that, if M € M®*Z,, then any composition factor of
M is of the form L;ﬁ  for some w - A\ € I;. From the definitions we see that
M s é,M is a functor D*Z, — D*B2 and also D,?IZS — Daéz; moreover,
it is a functor M*Z, — M*B? and also M#®Z, — M*B2. From the
definitions we see that for M € M*Z,

(a) we have M € M=Z, if and only if E,M € M=B?; we have M € M=Z,
if and only if E,M € M=B2.

Note that if X € D(Z;) and j € Z, then
(b) (€2 X))/ = (X)) p].
Moreover, if Y € M,,(Z;) and j' € Z then

(c) grj(&Y) = &(gryY).

For w - A\ € I,, we show:
(d) We have w- X € If if and only if w=' - w(A\71) € ;5.

We must show that we have w(\) = e~%()\) if and only if A\™! = e®(w(A71)).
In other words, we must show that A(w~=1(t)) = A\(75t7~%) for all t € T,
if and only if (') = Mw ™ (r=%t'7*)) for all ' € T,. Setting t' = 75t77%,
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Sis a

we have w™!(t) = w™!(r7%¢'7%) and it remains to use that ¢ + 75¢7~
bijection T,, — T,,.

For w - A € I we show:
—1
()‘_1)773.
and with
-1

(A1 =

(e) Let w € ky*(w). We have canonically (LCX),S)T =LY

(The equality in (e) makes sense in view of (d).) By ﬂﬂ, 2.2(a)]
notiition of 3.1 we have canonically G*Lj’ = Lz{;,l) Hence €* LY
€* H*LY = b*e;LY so that €_SL3E;,1) = h*& LY and (e) follows.
4.4. Let r, f be integers such that 0 < f <r — 3. Let
Y ={((xU,n1U,...,2,U),7) € B+ x Gy € 2y 13Uz},
v € tzBTsx]T}rl}.
Define ¥ : Y — B! by ((zU,z,U,...,z,U),y) = (20U, z,U,..., z,U)
For ¢/, y" € W let

{(zU,z,U,...,z,U) e B+, x}lxﬂ_l € Gy/,xJIj_Qqu_g € Gy}

ar+1
B[y’yy”]_
We show:
(a) Let € € lg[ry‘fy,,}. If e(y') # y" then v71(&) = 0. If e’(y/) = 4" then
971(e) = W
We set & = (20U, 21U,...,z,U). If 971(€) # 0 then a;'zyyy € Gy,
x;i2xf+3 € Gy and ($f+3UTs.%';1) N (JZerQBTs.%';il) # (). Hence for
some u € U, b € B we have

UTsxjjleH = x;igforngs € TGy NGyn7*
so that e*(y’) = y”. If we assume that e*(y’) = ¢”, then ¥~1(£) can be
identified with

{yeGyye ﬂ:f+3U7'5x]71,7 € xf+2B7'5x]7J1r1}

hence with

{(u,b) € U x B; UTS.%;le+1 = x;i3xf+gb7's}.
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We substitute x]?igxﬂ_g = upe® (¢ )touy, x;lxﬂ_l =uy't1u}, where tg € T,
ug, ufy, uy, uy €U. Then 9~1(€) is identified with {(u,b) € U xB;ursuiy/tu)
= upe® (¢ )toupbr®}. The map (u, b) + uy ‘ue®(u;) identifies this variety with
Une(y)Be* ()"t = k¥ ¥, This proves (a).

Now T? acts freely on ) by

(tl, tg) : ((JJQU, z1U,... ,.’L'TU), 'y) —
((.’E()U, .’131U7 s 7fo7 .’EerltlU, xf+2t2U7 .’Ef+3U, s 7xTU)7 ’Y)

Let

!y = T\{((xOUaxan s ,er),'Y) € BT+1 X é877 € xf+3UTsx;1a
v E xf+2UTsx;J1r1}

where T acts freely by

L ((xOUaxan s ,er),'Y) =
((l’oU, 71U, ... afoa xf—l—leis(t)U’ .If+2tU, $f+3U, cee axTU)a 7)

Note that the obvious map 3 : 'Y — T2\ is an isomorphism. We define
' 'Y — Zg by

((xU, 21U, ...,2,U),y) = es(x 541U, 2542U).

We define 7 : J) — 'Y as the composition of the obvious map ) — T2\Y
with =1, Let n = 'nt : ) — Z,. We have

n((zoU, 21U, ..., 2,U),7) = €5(zp41t U, z515t' ' U)

-1

where ¢,t' in T are such that v € xf+2t'*1UTstxf+1.

4.5. Let z- A e . Let P = n*ﬁiﬁs. Let p;; : B! — B2 be the projection

to the ij coordinates. We have the following result:

* —(y * > * ;—1
(2) V1P < {p] p1 Los () @D 1,2 LY @D 40, paa L) 2lyl — 20) sy € W,
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Define e : Bt — B4 by
(U, 21U, ..., 2,U) = (27U, 241U, x512U, z513U).

Then (a) is obtained by applying e* to the statement similar to (a) in which
{0,1,...,r} isreplaced by {f, f+1, f+2, f+3}. Thus it is enough to prove
(a) in the special case where r = 3, f = 0. In the remainder of the proof we

assume that r =3, f = 0.

For any v/, y" in W let 9,/ ,» : 9~ (B? — B* be the restriction of

vy

9. Let PY¥" be the restriction of P to 9~ (B*) Clearly, we have

vy
WP = {(Dy WPV Y5 (v ") € W2

Since 0*1(3@;;”}) = () when e*(y’) # y”, see 4.4(a), we deduce that

NP = {(Josiyy 1 1PS Wy e W

yt

Hence to prove (a) it is enough to show for any y € W that
—5 (. 3 o—1
Uy Py = PSlLE—sE?\)) ®P>1K2L§jj ®P§3LZ(,\) 2ly| —2v),

where we write 9/, P, instead of Jg—s(y) 1, P W Using 2(\) = e5()\)
(@) ~(¥)

we can replace pang:z (i) by ple‘;( N Thus it is enough to show for any
y € W that

* (y * 2 * j—1
(b) Uy Py = P01L§(,\)(y) ®1912L§jj ®P23Lz(,\) 2ly| —2v).

We have a cartesian diagram

b
—_—

&
:c-\J' — :c-\J'l

b
—7
where

Vy = {(2zoU, 21U, 25U, 23U) 634; xalxl S Ge—s(y),xflxg G,

x5 23€ Gy},
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Vy = T\{(z0U, 21U, 25U, 23U) € l§4;x61x1 S Ge—s(y),xflxg € G,

zy ' mg € Gy1,€° (2 1) es(y)) = (25 22)y}

with T acting (freely) by
t:(xoU, 21U, 22U, 23U) — (2oU,z1e °(t)U, 229t U, z3U),
V, = 9~1(V,) and

f/y = T\{((zoU,z2,U,2,U,z23U),7) € B* x G’S;xo_lxl eGefs(y),xl_leEGz,
x5t € Gy-1,7 € ngTsxal,v € Uz}
with T acting (freely) by
t: ((zoU, 21U, 22U, 23U).y) — ((2oU,z1e *(t)U, 229t U, 23U), 7);
we have
b(zoU, 21U, 22U, 23U) = T — orbit of (zqU, z1tU, 22t'U, 23U)
where ¢,¢ in T are such that es((xalxlt)efs(y)) = (w3 zat’)y,

b((zoU, 21U, 25U, 23U),7) = T — orbit of ((zoU, z1tU, 22t'U, 23U), )

where ¢, in T are such that vy € xot’ UTstflxl_l; the vertical maps are the
obvious ones. We also have a cartesian diagram

~ B/ ~
/ /
Vy Vy

Lo

b/
/ /
Vy Vy

where \7?;,)}?;, V,,V, are defined in the same way as Vi, Yy, ViV, but the
condition .731_1.732 € (@, is replaced by the condition xl_lxg € G,; the maps
V', b are given by the same formulas as b, b; the vertical maps are the obvious

ones.

Let 5: Vy' — B* be the inclusion. It is enough to show that

» » —s(r " . " .1
0Py = 5 i Ly @ Pl @ pisLl) {2yl —20)
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By definition, P|;, is the inverse image of Eiﬁ ; under the composition of v
y b

with 1}; -V, . 7, where the first map is the obvious one and
'y (20U, 21U, 20U, 23U) = e,(2,U, 25 U).

Hence P ’Vy’ is the inverse image of £§\ﬁ , under the composition of 7, := !nyb’
with the obvious map ¥, : Vy’ — V. Since ¥, is an affine space bundle with
fibres of dimension v — |y, it follows that j*0,1 P, = nl’;ﬁiﬁs (2ly] —2v). Thus

it is enough to show that

—s

* pZ . * y : 1
L, = 0 L @ pia L @ piy LY )

Since 7, is smooth as a map to ZZ%, we see that n?jﬁi?s is the intersection
cohomology complex of V; with coefficients in the locial system (n))* s 0N
Vy; here 772 : Vy — ZZ is the restriction of n, : V] — ZZ. By 3.9(a),

—S8

k% / * 2 * =1
J (p01L§(,\)(y) ®P12L§jj ®P23LZ(,\))

is the intersection cohomology complex of VZ with coefficients in the local

system

~ —s . —1

L= j*(p&Lj(A)(y) ® pT2L§\ ® p§3LZ(>\))
on V,. Tt is then enough to show that [ = (172)* js

Let £ = (20U, 21U, 22U, 23U) € V,,. From the definition of 772 we see

that the stalk ((n))* 3.s)¢ is equal to
( §75)63($1t1_17$2t2_1) = (Lk)to
where tg € T, t; € T, to € T are such that tg = (tlxl_lxgtgl)z-,
e*((zg w1t] ems(y) = (25 w2ty )y,
We can choose t1,t5 so that
(xalxltfl)e_s(y) =1, (xglxgtgl)y =1;

thus we can assume that t; = (xo_lxl)efs(y), ty = (a:glxg)y =1.
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The stalk Lg is (Lo, @ (La)gy, ® (Ly(n) )y, where
t) = (xalxl)e—s(y) € T,th = (xy ) € T, th = (x5 xg) —1 € T.
It is enough to show that () is)g = Lg, or that
(o aaty ) = 27 (#)thy ™ (th)

where t1,t9,t],t),t5 are as above. We have ¢; = ¢} and a:glxg e Uyt,U,

hence

x5 tey € Uty 'y~ U = Uy~ y(t, U,
so that t5 = y(t; ) and ;! = y~(t4). We have
tizy oty t € U Uty = Uzz ™ (ty)tht, ' U,
so that
(taytaaty ): = 27ttty T = 27 (1))t~ (25),

as required. This completes the proof of (b) hence that of (a).

4.6. Let
(W1, W3y« oo, Wy Wi, Wiidy -y wy) € W2
()\1,)\2, ce ,)\f,)\f+2,)\f+4, .. -7)\7") S 5:;_2.

We set z = wpia, A = Apyo. We assume that z(A\) = e *()). Let P be as in
4.5. Let

P' = ®icli {41, /42543301, L\ Ve D, (B,

P=P® 9P €D,y,(Y). For any y € W we set
Wy = (’U)l,U)Q, s awfaeis(y)’wf+2ay71awf+4a' .. awT) € Wra
Wy = (’Li)l,’lj}Q, s 7wfaeis(y‘)afu‘)f+27yilawf+47' .- 7wT)7

Ay - ()\17 )\27 v 7)‘f7eis()‘f+2)7 )‘f+27y()‘f+2)7 )‘f+47 v 7)‘7“) € 5;'
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We set 2 = ﬂ!p. We have:

() = o {Mye UL o1y — 20 iy e W)

Yy

in D,,(B"t1). This follows immediately from 4.5(a) since & = P’ ® 9(P).

4.7. We preserve the setup of 4.6. Let § = I_Jw/(’jgv, where the union is over
all w' = (w],...,w).) € W" such that w, = w; fori ¢ {f +1, f +3}. This is
a locally closed subvariety of B!, For y € W let R, be the restriction of
M;\dy”’w to @gvy extended by 0 on § — @gvy (a constructible sheaf on S). From
the definitions we have

Mwy7[1’r}7{f+17f+3}’3 — R

Ay v

From 4.6(a) we deduce Z|s < {R, (2|ly| —2v);y € W}. We now restrict
further to @E’Vy (for y € W); we obtain
E’@g)vy = {Ry/ <2‘y,‘ — 2V> ’@g)vy,y, € W}

In the right hand side we have R,/ (25| —2v) |50 = 0 if ¥/ # y. It follows
wy
that Z|50 = R, (2ly| —2v) |50 . Since Ry|5p s a local system we deduce
WX wy wy

for y € W the following result.

(a) Let h € Z. If h = 2v — 2|y| then H'=
h#2v —2Jy|, then H'E|5 = 0.
Wy

o, = Buloy, (lyl —v). If

4.8. We preserve the setup of 4.6. We set

(a) k=3v+(r+1p+ Z |w;].
ie[lvr]f{f+17f+3}

For y € W we set

Ky = My IS |y (4 1)),

Ky = My (jwy| + v+ (r + 1)p)
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From 4.6(a) we deduce:

(b) = (k) < {Kyiy € W),

We show:

(c) For any j > 0 we have (2 (k))? = 0. Equivalently, =7 = 0 for any j > k.

Using (b) we see that it is enough to show that for any y € W we have
(K,)? =0 for any j > 0. Now f(y is a (simple) perverse sheaf hence for any
j we have dim suppH/ f(y < —j. Moreover K, is obtained by restricting f(y
to an open subset of its support and then extending the result (by zero) on
the complement of this subset in B"t1. Hence suppH’ K, C supp’H,if(y SO
that dimsuppH'K, < —j. Since this holds for any j we see that (K,) =0
for any j > 0.

4.9. We preserve the notation of 4.6. We show:

(a) Let j € Z and let X be a composition factor of =/.  Then
X M;’,’[l’r} (JW'|+ v+ (r+1)p) for some

w' = (wi,wh, ..., w.) €W XN =LA, ... \) esh
such that w, = w;, N, = X\; fori e [1,7r] —{f+ 1, f + 3} and such that

/f+1 = w;‘+2()‘}+2)= )‘}+2 = w}+3()\}+3)-
Here w' = (w}, ), ..., w.).

T

From 4.6(a) we see that, for some y € W, X is a composition factor of

(LA (g1 o))

Y

where w,, Ay are as in 4.6. Using this and ﬂﬂ, 2.18(b)] we see that
X = MO (W v+ (r 4 1)p)
for some

w = (Wi, wh,...,w) e W XN =(N,\,,...,\) €s),
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such that w, = w;, X, = X\ for i« € [1,7r] — {f + 1,f + 3}; here

w' = (W], wh,...,w.). It remains to show that we have automatically

)‘/f+1 = w}+2( f+2) )‘f+2 = wf+3( /f+3)-

L] —{f+1,7+3
(M;’yy[ |-{f+1.f }<2|y| _

To see this we note that 2v)) is equivariant for

the T2-action

(tl, tg) . (.%'oU, xlU, e ,.%‘T»U)
— (JJQU, U, ... ,fo, .%‘f+1t1U, .73f+2t2U, .’L‘f+3U, R ,.’L‘T»U)

hence so are its composition factors and this implies that the equalities above
for Ny 1, N}, do hold.

4.10. From 4.8(c) we see that we have a distinguished triangle (2, 2, ZF[—k])
where ' € D,,(B"*1) satisfies (/) = 0 for all j > k. We show:

(a) Let j € Z and let K be one of =,Z/,Z'. For any w' € W" and any
heZ, ’HhK|(,~)@ is a local system.

We prove (a) for K = Z or K = Z7. Using 4.6(a), we see that it is enough to
show that H"( wyy’[l SRNCAR f+3})\ 5, is a local system for any h and that

th(( ‘*’57[17] {f+1f+3}))

follows by an argument entlrely similar to that in the proof of ﬂﬂ 3.10].

Now (a) for K = Z’ follows from (a) for =
exact sequence for cohomology sheaves of (Z',Z, Z%[~k]) restricted to O .

|5 5, is a local system for any h and any j. This

and =F[—k] using the long

‘We show:

(b) Let (y,y") € W2, j =2v —|y| — |y'|. Let

_ / "n—1 r
Wy g = (W1, w2, ., we Y Wi, Y W3, wye) € W
The induced homomorphism H'Z| 50 — HI7E(EF)]| 50 is an iso-
y// wy/’y//
morphism.

We have an exact sequence of constructible sheaves

HIZ| 50

W
vy

= j—k(=ky| . =Ll
HJH|Ova/,y// - HJ (H )|O@ - H] - |O@

Wyl .y Wyl y!!
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Hence it is enough to show that #/'Z/| 0 = 0if 5/ > j. Assume that

HI'E |50 # 0 for some j' > j. Since HJ Z'| 50 is a local system
y/ y// W / y//

(see (a)), we deduce that OY is contained in supp(HJlE’ ). We have

w /y//
2k - ])7 = 0 for any j > 0 hence dim supp(#/"Z/[k — 1]) < —j” for any
j". Taking 7" = 7/ — k + 1, we deduce that

dim O, , , <dimsupp(H/'E) <~ +k—1<—j+k—1

ol
hence

Wy | v+ (r+1)p < —j+k—1.
We have |wy | + v+ (r+1)p = —j + k hence —j +k < —j+k—1,

contradiction. This proves (b).

4.11. For (v, y") € W? we set

Wyt gyt = (wlaw2a"'awfay/awf-l—Qay”_lawf-i—?)a'"awr) € Wra
)‘y’,y” = ()\1,)\2,.. ,)\f,e_s()\f+2),)\f+2,y"()\f+2),)\f+4,...,)\r) Eﬁ;,
w, /s 11y @

Ky/7y// = MAy/ y” <|Wy/7y//| + v+ (r + 1)p> c Mm(BT’+1)’

~ w///[lr

Ky/7y// = M)\y/ y” <‘Wy/7y//‘ + v+ (r + 1)p> c Mm(BTJrl).

Note that when 3 = e *(y),y" =y, Wy y, Wy, Ay v and f(y/,yu become
W, Wy, Ay, (see 4.6) and K, (see 4.8). We show that we have canonically

(a) gro(E"(k/2)) = Byew K,y

Since gro(Z¥(k/2)) is a semisimple perverse sheaf of pure weight zero, it is
a direct sum of simple perverse sheaves, necessarily of the form described in
4.9(a). Thus we have canonically

gT'Q( k/2)) = @(y’,y”)EWQ Vy/’y// X R’y/7y//

where Vv are mixed Q;-vector spaces of pure weight 0. By H, 5.1.14], Z is
mixed of weight < 0 hence =¥(k/2) is mixed of weight < 0. Hence we have
an exact sequence in Mm(BT+1):

(a) 0 — WH(EN(k/2)) = EF(k/2) = gro(E*(k/2)) —
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that is,
0— W_l(Ek(k‘/Q)) — Ek(k‘/Q) — @(y’,y”)EWQVy’,y” &® f{y’,y” — 0.

(Here W~1(?) denotes the part of weight < —1 of a mixed perverse sheaf.)

Hence for any (¢, 7") € W? we have an exact sequence of (mixed) cohomol-

ogy sheaves restricted to (’)wy, ” (where h = 2v — |if| — 7| — k):

(b)  H'WTHE" (k/2)HME(K/2)) = Dy ymewsVyyr @ H Ky y7)
— HMH W LR (k/2))).

Moreover, by 4.10(b), we have an equality of local systems on ol

W~ /y//

//|

H (2N (k/2)) = HIHER/2)) = 1 WV (E(k/2)

and this is Ry(k/2 + |y| —v) if ¢ = e *(y), 7" = y (see 4.7(a)) and is 0 if
7 # e %(¢") (see 4.4(a)) hence is pure of weight —k —|7'| — |§”|+v = h. On
the other hand, H"(W~1(Z*(k/2))) is mixed of weight < h — 1; it follows

that a in (b) must be zero.

Assume that H"(K, ) 1s not 1dentlcally zero on O Then, by

W~ /y//
4.10(a), O? o is contained in suppH"(K v ) Which has dimension < —h
(resp. < —h if (y',y") # (#,4")); hence —h = dim OY is < —h (resp.

W =/ y// _
< —h); we see that we must have (v/,y") = (7, §") and we have H"(K,/ ) =
Hh(Ky’,y”) on OW g g "

Assume that H" 1 (W~=1(Z¥(k/2))) is not identically 0 on (’)w o n- Lhen,
by 4.10(a), OY is contained in suppH" 1 (W1 (Z¥(k/2))) Wthh has di-

W~ /y//
mension < —h — 1; hence —h = dim o)

IS < —h — 1, a contradiction. We
sY

see that (b) becomes an isomorphism of local systems on OW o
Y

0= Vygn @Ky gnife’(y) #7",

Ryr(=h/2) = Vi gr @ HM(Ky ) it () = §".

When e*(7') = § we have H"(Ky g1) = Ry (—h/2) as local systems on
0Y It follows that Vi g is Q, if e¥(7') = ¢" and is 0 if (%) # 7.

W~ lyll

This proves (a).
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4.12. Let h € [1,r]. Let ;D3B! (resp. ,D=B"*!) be the subcate-
gory of DBt consisting of objects K such that for any j € Z, any com-
position factor of K7 is of the form My (1] (lw|+v+ (r+1)p) for some
w = (wy,...,w,) € W', X = (A, A\,...,A) € s/ such that wy - A\, < ¢
(resp. wp, - Ap < ¢). (Here w = (wy,wa, ..., w,).)

Let , M2B"! be the subcategory of , D3B! consisting of perverse
sheaves. Let , M=<B"t1 be the subcategory of , D<B"t! consisting of perverse

sheaves.

If K € M,,(B"t!) is pure of weight 0 and is also in ,D=B"+!, we denote
by K the sum of all simple subobjects of K (without mixed structure) which
are not in ,D=B"1.

4.13. Let Z, » Y % B be as in 4.4 with r = 3,f = 0. We define
b:D(Z,) = D(B?) and b : D,,(Zs) — D, (B?) by

b(L) = pozhn* L.

‘We show:

(a) If L € D3(Z,) then b(L) € D=B2.

(b) If L € D(Z,) then b(L) € D*B2.

(¢) If L € M=(Zs) and h > 5p + 2v + 2a then (b(L))" € M=B2.

We can assume that L = Li,s where z- XA € I, z- X\ < c. Applying 4.5(a)
with P = n*ﬁiﬁs we see that

b(L3,) = (L3 P (=l = 2w) sy e W,

hence
b(LY,) = (L 05 B (v +p) sy e W)

To prove (a) it is enough to show that for any y € W we have

e *(¥),%, '717{2} =1R2
Loy € DB

When z-\ € c this follows from ﬂﬂ, 2.10(a)]. When z-X < c this again follows
from ﬂﬂ, 2.10(a)], applied to the two-sided cell containing z - A instead of c.
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The same argument proves (b). To prove (¢) we can assume that z - A € ¢;

it is enough to prove that for any y € W we have

(Lot ™ v+ o) e MOB?

if h > 5p + 2v 4 2a or that

78(')72.:7'717{2} j ~2
(Les(ygey ) € MTB

if j > 6p+ v + 2a. This follows from ﬂﬂ, 2.20(a)]. This completes the proof
of (a), (b), (c).
We define b : C$(Zs) — C§(B?) by

b(L) = grsprave2a((b(L))PF27424) ((5p + 20 + 2a) /2).

We show:
(d) Let z- X ec®. Ife*(c) =c, then

. —S () . n—1
b( is) = @yEW;y-/\ECL;SEg))gLing(A)'

If e*(c) # c, then Q(}Lis) =0.

We shall apply the method of ﬂﬁ, 1.12] with @ : D,,,(Y1) — D;,(Y2) replaced
by pogi : D (B*) = D,,,(B?) and with D3(Y7), D3(Y3) replaced by o D= (B?),
2D3(B*), see 4.12. We shall take X in loc.cit. equal to 79!77*L§75~ The
conditions of loc.cit. are satisfied: those concerning X are satisfied with ¢ =
2v+43p. (For h > |z|+3v +4p we have 2" = 0 that is (X[~|z| —v—p])* = 0,
with = as in 4.8(c). Hence if j > 2v + 3p we have X’/ = 0.) The conditions
concerning pos) are satisfied with ¢ = 2p+2a. (This follows from ﬂﬂ, 2.20(a)])
Since b(Lis) = pozrX and ¢+ ¢ = 5p + 2v + 2a, we see that

B(L3 o) = gr2p2a(Pos (9720430 (D" L5 )* ) (20 + 3p)/2)))*F2) (p+a).

Using 4.11(a), we see that (with = as in 4.11(a) and k = |z| 4+ 3v + 4p) we

have

grav3p(D° L5 )* %) ((2v + 3p) /2)
= gravssp(E (|2 + v+ p))* ) ((2v + 3p) /2)
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= gro(E (k/2) = Byew M. 150 S aly| + 2] + v + 4p).
= grol\= — Dyew iy s()\))\y()\ Yy z v P

Hence

B(L3,0) = graps2a (@gew (pusn Mg (500 1 (2l 2l +044p)) ) (p+a)

= grapraa(@yew (Le . 30 02 4 49)/2)) (0 + @)

Using ﬂﬂ, 2.26(a)], we see that in the last direct sum, the contribution of
y € Wis O unless y- A € c and e *(y) - e *(\) € c. We see that the last
direct sum is zero unless e*(c) = c. If €°(c) = c, for the terms corresponding
to y such that y - A € ¢, we may apply ﬂﬂ, 2.24(a)]. Now (d) follows.

4.14. We set Z, = {s' € Z;e* (c) = c}. This is a subgroup of Z. In the

remainder of this section we assume that s € Z,.

Let Zy <= 'Y be as in 4.4 with r = 3,f = 0. Let 'B* be the space of

orbits of the free T2-action on B given by
(t1,t2) : (xoU, 21U, 22U, 23U) = (20U, 2111 U, 22t2 U, 23U);

let "9 : 'Y — 'B* be the map induced by 9. We define b’ : D(Z,) — D(B?)
and b’ : D,,,(Zs) — D (B?) by

b'(L) = pozi''n* L.

(The map 'B* — B2 induced by pos : B* — B2 is denoted again by pos.) Let
7:Y — 'Y beasin 4.4 (it is a principal T2-bundle). We have the following
results.

(a) If L € D3(Z,), then b'(L) € D=B2.

(b) If L € D¥(Z,), then b'(L) € D=<B>.

(¢) If L € M=(Z,) and h > p + 2v + 2a, then (0'(L))" € M=B2.

We can assume that L = LiS where z- A € I}, z- A = c. A variant of the
proof of 4.5(a) gives:

b'(5E,) < (L0 B (e - 2w) sy e W,
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hence

3 —S (. 727'—17
b,(L)\?s) = {,Ls—s%\)),,\i@){z} (—v+p)yeWh

To prove (a) it is enough to show that for any y € W we have

e—s(')727'—1’{2} <132
Loy € PTB

When z-\ € c this follows from ﬂﬂ, 2.10(c)]. When z-\ < c this again follows
from ﬂﬂ, 2.10(c)], applied to the two-sided cell containing z - A instead of c.
The same argument proves (b). To prove (c¢) we can assume that z - A € ¢;
it is enough to prove that for any y € W we have

e 5(9),2,9" 1, h 5
(L™ v b e) e Mo

if h > p+ 2v + 2a or that (’Lg:zggiza)&}y e M=B%if j > 2p+v + 2a.

This follows from ﬂﬂ, 2.20(c)]. This completes the proof of (a), (b), (c).
We define b’ : C§(Zs) — CS(B?) by

V(L) = grpraviaa((6/(L)"2772) ((p + 2v + 2a) /2).

In the remainder of this subsection we fix z - A € ¢ and we set L = Li .
We show:

(d) We have canonically b'(L) = b(L).

The method of proof is similar to that of ﬂﬂ, 2.22(a)]. It is based on the
fact that

b(L) =b'(L) ® £22

which follows from the definitions. We define R; ; for i € [0,2p + 1] and P; ;
for i € [0,2p] as in ﬂﬂ, 2.17], but replacing L?,’L” r,§ by b(L),b'(L), 3, 2p.

In particular, we have
Pij = Xap—ili — 2p) © (0'(L)) ™" for i € [0, 2p]

where Xy,_; is a free abelian group of rank (zip ) and Xy, = Z. We have for
any j an exact sequence analogous to ﬂﬂ, 2.17(a)]:

(€ =2 Pij1 = Riyrj = Rij = Pij = Rivajer = Rijra = -,
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and we have
Roj = (0(L)),  Poj = (b'(L)) " (~2p).

‘We show:

(f) If i €[0,2p + 1] then R;; € MZB2.
(g) Ifi€[0,2p+1], j >6p—i+v+2a then R;; € M=B2.

We prove (f), (g) by descending induction on i as in ﬂﬂ, 221]. fi=2p+1
then, since Ro,41,; = 0, there is nothing to prove. Now assume that ¢ €
[0,2p]. Assume that X' - w is such that LY, is a composition factor of R, ;
(without the mixed structure). We must show that w -\ =< ¢ and that,
if 5 > 6p—i+v+2a, then w- )\ < c. Using (e), we see that LY, is a
composition factor of R;y1 ; or of P; ;. In the first case, using the induction
hypothesis we see that w -\ =< ¢ and that, if j > 6p — i + v + 2a (so that
j >6p—i—14+v+2a), then w- XN < c. In the second case, Lf/ is a
composition factor of (b'(L))~#+*i. Using (a),(c), we see that w -\ < ¢
and that, if j > 6p —i + v + 2a (so that —4p + i+ j > v + 2p + 2a), then
w - X < ¢. This proves (f),(g).

We show:
(h) Assume that i € [0,2p + 1]. Then R; ; is mized of weight < j —i.

We argue as in ﬂﬂ, 2.22] by descending induction on i. If i = 2p + 1 there is
nothing to prove. Assume now that i < 2p. By Deligne’s theorem, b’(L) is
mixed of weight < 0; hence (b’(L))~#+*J is mixed of weight < —4p + i+ j
and Xy, (i—2p)®(b' (L)) =+ is mixed of weight < —4p+i+j—2(i—2p) =
J — 1. In other words, P;; is mixed of weight < j — 4. Thus in the exact
sequence Rii1; — Ri; — P;; coming from (e) in which R;;1; is mixed of
weight < j —i—1 < j — ¢ (by the induction hypothesis) and P; ; is mixed
of weight < j — 7, we must have that R; ; is mixed of weight < j — 4. This
proves (h).

We now prove (d). From (e) we deduce an exact sequence
97j(Ra5) = 97§ (Ro,j) = 975(Poj) = 97§ (Ra,j41)-

By (h) we have grj(R1,;) = 0. We have gr;(Ro ;) = grj(b(L)j), grj(~7307j) =
gri((b'(L))~4%3(=2p)). Moreover, by (g) we have R 11 € D=B? since
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j+1>6p—1+v+2a. It follows that gr;(Ry 1) € D=<B2. Thus the exact

sequence above induces an isomorphism as in (d).

Let p;j : B3 — B2 be the projection to the ij-coordinate, where ij is 12,
23 or 13. Let

R=T\{(zoU, U, 2,U,25U,~) € B* x G ;v € JJQUTSJZl_l}
where T acts freely by
t: (xoU, 21U, 25U, 25U, 7) — (20U, z1e *(t)U, 29t U, 25U, 7).
We have cartesian diagrams

R —M .y 1y y B2
cll sll
B P, B2« 32

R -2, B2xry

czl szl
B P B2 x B2

where

dy(zoU, 21U, 22U, 23U, v) = (20U, 21 U, 22 U, yzo7 °U,7),
(yror U, 23U)),
do (20U, 21U, 25U, 23U, 7) = ((2U, v tz37°U),
(v la3m°U, 21U, 25U, 23U, 7)),
c1(zoU, 21U, 22U, 23U, y) = (2o U, vaxor °U,23U),
co(zoU, 21U, 25U, 23U, ) = (xoU,'yflngsU, z3U),

P = (PlasPh3)s  s1=po3'0 x 1, so=1xpe3'V.

It follows that p/*s1) = epnd?t, p'*so = cads. Now let L € D(Z,), L' € D(B?),
L' € D(B?), We have n*LR L' € D('Y x B2, I’ X n*L € D(B? x'Y). We
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have

P b (L) @ phs™ L' = p*sy(n* LR L) = epndj(n" LR L) = ey (ef LK ) * L),

Pho" L @ pha*t' (L) = p'*son(L' M n*L) = eqdy(L' Wn*L) = co(eh*L Key* L),
where

e1 : R— Zsis (xoU, 21U, 22U, 23U, 7) — €5(x1U, 25U),
¢ : R— B?is (xoU, 21U, 25U, 23U, ) — (yzo7 U, 23U0),
ey : R— B%is (xoU, 21U, 25U, 23U, 7) = (20U, v ta37°U).

Applying p/ 4 we see that
W' (L)o L' =&(ej LK ey L), L ob'(L) = &(eh* LK e, * L),

where ¢ : R — B2 is (2U, 21U, 25U, 23U, 7) — (20U, 23U).
We define e : B2 — B2 by e(2U,yU) = (e(2)U, e(y)U). We show:

(i) If in addition L' € M(B?) is G-equivariant, then we have canonically
b'(L)o L' = (e™*L') o b'(L).

We take L' = e**L'. Tt is enough to show that é&(efL X e|* L) = é(ey* L' X
eiL). Hence it is enough to show that we have canonically ¢}*L' = ej*IL/
that is, €/ *L' = eJ*L’ where €} = e°¢}, : R — B2. We identify G, with G
by v +— g where v = g7°. Then €} : R — B2 is (xoU, 21U, 25U, 23U, ) —
(ge*(x0)U,23U), e : R — B2 is (20U, 21U, 22U, 23U, 7) — (e*(x)U,
g '23U). The equality ¢}*L' = e* L’ follows from the G-equivariance of L'.
This proves (i).

We show:

(G) If LECSZs, L' €C°B?, then we have canonically b(L)oL' = (e**L')ob(L).

By (d), it is enough to prove that b'(L)oL’ = (e**L')ob/(L). Using (i)
together with (a), (b), (c) and results in ﬂﬂ, 2.23], we see that both sides

are equal to

97 pevs3a(@(€1L © 4" L)) (o + v + 3)/2)
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= grasa(EiL ® € L)) (0 4+ v+ 3a) /2).

4.15. Let
3. = {(20U, 21U, 20U, 23U),7) € B x Gy;v € 2Bz}

Define 9 : 3, — B* by (20U, 21U, 20U, 23U),7) — (20U, 21U, 22U, z3U).
Let

'V ={((20U, 21U, 22U, 23U, 24U),7) € B x G5y € 23Ut
vy E xQBTS.IIl}’
"V ={((2oU,21U, 22U, 23U, 24U),7) € B’ x Gy € 24 Ur’ary

v € 23BTx, .
Define "9 : 'Y — B, "9 : "y — B® by
((xoU, 21U, 29U, 23U, 24U),7) — (20U, 21U, 25U, 23U, 24U).
We have isomorphisms ‘c : 'Y = 3,, "¢ :"Y 5 3, given by

‘e ((woU, 21U, 25U, 23U, 24U),7) = ((2oU, 21U, 22U, 24U),7),
"¢ (20U, 21U, 22U, 23U, 24U),7) — (20U, 22U, 23U, 24U), 7).

Define 'd : B> — B%,"d : B5 — B* by

'd : (20U, 21U, 22U, 23U, 24U) = (20U, 21U, 22U, 2,U),
"d . (20U, 21U, 25U, 23U, 24U) = (20U, 22U, 23U, 2,U).

We fix w,u in W and A\, \ in s,. We assume that w - A € I3. The smooth

subvarieties

U = {(zU, 21U, 22U, 23U, 2,U), ) € 'Vsa7 ' 23 € Gy, 25 ' 4 € Gos(uy )
u = {((xOUaxanx2Uax3U)57) € 33;$I1$2 € Gwaxalg_lx?) S Gu}a
U = {(2U, 21U, 25U, 23U, 2,U),7) € "V; 25 w3 € G, 25 11 € G},
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of 'Y, 3,"Y correspond to each other under the isomorphisms’Y — 3, < ").
Moreover, the maps ‘o :'U — Zs, 0 : U — Zg, "o : "U — Z, given by

(U, 21U, 22U, 23U, 24U),7) = e5(21U, 22U),
(($0U,$1U,$2U,$3U),’7) = Es(xanxZU)a
(($0U,$1U,$2U,$3U,$4U),’7) = ES(Z'QU,Z':;U),

correspond to each other under the isomorphisms 'Y 53 s Sy,

Also, the maps ‘6 : 'U — @es(u), o:U — @es(u), given by

((xoU, 21U, 22U, 23U, 24U), ) — (23U, z4U),
((zoU, 21U, 22U, 23U),7) = (yxor *U,z23U)

correspond to each other under the isomorphism 'Y — 3, and the maps

51:U — Oy,"5 :"U — O, given by
((zoU, 21U, 25U, 23U),7) = (20U,v 'a37°0),
((xU, 21U, 22U, 23U, 24U), ) — (20U, z,U),

correspond to each other under the isomorphism 3, < ”Y. It follows that

the local systems ’o* 3\” . f o U*L')\“'i , correspond to each other under

the isomorphisms 'Y X 3 <N—c "Y; the local systems ’5*L22?))\,), 5*Lzzg2)
correspond to each other under the isomorphism 'Y B 3s; the local systems
a1L%, "6*LY, correspond to each other under the isomorphism 3, Lo V.
Moreover, by the G-equivariance of LK,, we have as in the proof of 4.14(i):
FLEN) = G1(LE).

Let 'K, K,” K be the intersection cohomology complex of the closure of
'U,U,"U respectively with coefficients in the local system
'U*Eﬁis ® /&*Lig?)v o* Sis ® &*Lszg?) =o" Sis ® o7 ( %)’ //U*Eﬁis ®"5* ﬁ,,
on 'U,U,"U (respectively), extended by 0 on the complement of this closure
in 'Y, 3s,"Y. We see that 'K, K,” K correspond to each other under the

isomorphisms 'Y -5 3, <% Y. Hence we have 'o('K) =K ="¢("K). Using
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this and the commutative diagram

/ "

Y s 3, —— Y

R

B5 'd B "d Jz&

we see that
(a) /d!l,ﬂ!(/K) — ”d!”ﬂ!(”K).
(Both sides are equal to ¥,K.)

4.16. In this subsection we study the functor ’d! : Dy (B°) = Dy (BY). Let

w = (wl,wg,wg,w4) A= (A1, A, A3, 0) € w = (wl,wg,wg,w4) (with

wZ € kg H(w;)). Assume that wy - Ay < c. Let K My <]w] +5p+v) €
D, (B%). As in ﬂﬂ 3.16], properties (a), (b), (c), (d) hold:

(a) If h > a+ p then (diK)" € ' M=(B*). Moreover,

1
gra-i—p((,dK)a—’—p)((a + p)/2) = 69y’eVV'y’*l~>\4ECHOHICC[S‘2 (L‘1>/\4 7L‘3\)33,9L(3\)j)

®M‘)‘\’1177;)227)?\J4 11,3] <|w1| + |w2| + |y/| Y ap+ V>.

(b) If K € 4D3(B%) then 'd\(K) € 4D (BY).
(c) If K € 4D=(B%) then 'd\(K) € 4D=(BY).
(d) If K € 4M=(B°) and h > a + p then ('d\(K))" € 4JM7(BY).

4.17. In this subsection we study the functor ”d! : D (B°) — Dy, (BY). Let

w = (wl,wg,wg,w4), A= (A, 03,\y) €57, w= (wl,wg,wg,(,u4) (with

wl € kg H(w;)). Assume that wy - A\; < c. Let K My <|W| +5p+v) €
D, (B®). As in ﬂﬂ 3.17], properties (a), (b), (c), (d) hold:

(a) If h > a+ p then ("dK)" € 'M=(B*). Moreover,

grasp("AK)™ ) (a4 p)/2) = @yewyrgecHompes (LY, LToLS)

1,3
ML (sl + fwal + 1y +4p +v)

(b) If K € {D3(B%) then "d|(K) € 1D=(B*).
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(c) If K € {D*(B®) then "d)(K) € 1D=(B%).
(d) If K € \M=Z(B%) and h > a + p then ("d(K))" € ;1M=(BY).

4.18. Let w-A € I8, u- X € c. We shall apply the method of [19, 1.12]
with @ : D,, (Y1) — D, (Yz) replaced by 'dy : D,,(B%) — D,,(B*) and with
D3(Y1), D3(Y3) replaced by 4D=(B°), 4D=(B*), see 4.15. We shall take X
in loc.cit. equal to E ="9,(K) as in 4.15, (we,ws) = (w,e*(u)), (A2, \g) =
(A, e*(\)). The conditions of loc.cit. are satisfied: those concerning X are
satisfied with ¢ = k = |w| + |u| 4+ 3v 4 5p (see 4.8(c)); those concerning ®
are satisfied with ¢ = a + p (see 4.16). We see that

Irarprk((d"O(E) ™) ((a +p+ k) /2)
= grasp((dgra (9 K)") (k/2))**) ((a + p)/2).

Using 4.11(a), we have:

1
gri( 0 K)")(k/2) = Syew M- (( )) 7;)\)76 (( . 2ly|+|w|+|ul+5p+v)

= gri("0\('K))* (k/2).

Hence, using 4.16(a), we have

grarp((dgri((D(K))*)(k/2)")((a + p)/2)
-1 u
= Dyew Byewy-tes(vyee Homeeg (LY. ) LY oL )

s y 7'7'/717 173
®M:,S((§;7§QZ(A,)[ Flyl + ol + [y +4p +v) .

Since ¢/ 1 - e¥(\) € c, €(u) - e*(X) € c (recall that e’c = c), for y € W we
have

;- es(i) | _
Homee . (Lgsw)’ LineLen) =0

unless e*(\) = y/(\) (see ﬂﬂ 4.6(b)]) and y~1 - y(\) € c (see ﬂﬂ, 2.26(a)])
or equivalently, y - )\ € c. Thus we have

(a) Irarprr(( 'O K)) ™) (a + p+ k) /2)

o/ —1 5—1 S (2
= Dyew;y-rec 69y’eW'y’—l-y/(A)Ec HomCCBQ (Ly/()\)a Lz(A)QLgsgzg))

SME DT B (1t ] +1yf| +4p+ ).
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4.19. In the setup of 4.18 we shall apply the method of ﬂﬁ, 1.12] with
® : D, (Y1) = Dp(Ya) replaced by "dy : D,,,(B°) — D,(B*) and with
D3(Y7), D3(Ya) replaced by 1D (B%), ;D3 (BY), see 4.15. We shall take X in
loc.cit. equal to 2 ="9("K) as in 4.15, (w1, ws3) = (u,w), (A1, A3) = (N, \).
The conditions of loc.cit. are satisfied: those concerning X are satisfied with
d =k =|wl+|ul +3v+5p (see 4.8(c)); those concerning ® are satisfied
with ¢ = a + p (see 4.17). We see that

gratper(("d" 0 ("K))" ) ((a + p + k) /2)
= gratp(("digrr(("0("K))*) (k/2))*"*)((a + p) /2).

Using 4.11(a), we have:

w1
grie("0("K))F)(k/2) = @y EWM/ s(fj))j%;/y,(k)’“"” 2|y |+ [w|+|u| +5p+v)

= gri("0\("K))* (k/2).

Hence, using 4.17(a), we have

gra+p(("digri(("91("K))*)(k/2)" ) ((a + p) /2)

= @y/EW @y1€W'y1 ‘e~ s(\)ec HomCCB’? (Lyl—S( A) K./QLE—SE?){)))

b, 1,3
Mgls(ﬁ )\y[()\] (lyr] + lw| + || + 4p + v).
Since u - N € ¢, for 3y’ € W we have

/OL S(y)) 0

Hom e 0 (L?(ﬂ es(\)

e—s()\) )

unless e*(\) = 3/ () (see ﬂﬂ 4.6(b)]) and y'(\) = e*(\) (see ﬂﬂ, 2.26(a)]).

Thus we have

ratper(("d" 0 ("K)) ) ((a + p + k) /2)

= @y’éW'g“)xEC @ylew.yl,e—s( A)ec HomCCBQ(LyI_ S(A) g/QLg_sg)))

Mé“’s(;g)\y (A <‘y1’ + ‘w‘ + ’y ’ +4P+V>

Setting y; = e ®y and using that e %y - e *(\) € c if and only if y - A € c,



2017)NON-UNIPOTENT REPRESENTATIONS AND CATEGORICAL CENTRES 261

we can rewrite this as follows:

(@) grarprr(("d"0("K) ) (a+ p+ k) /2)

= Byew;y rec Dyew;y-ree Hochgg(Le:s?A) el Sg)))

@MEHET ) 4wl + [y |+ 4p + v)

4.20. Let y1-A\1 € ¢, y2- A2 € ¢, y3-A3 € c. From ﬂﬂ, 3.20] we see that:

(a) we have canonically
y_1 . . .
Homccgg(Lyz(h),Lyl(}\ 2 Ly3) Homge g (LY, L oL32).

In the setup of 4.18, we apply 4.18(a), 4.19(a) to w- A, u- X and we use
the equality

Irarper((d B K) ™) ((a + p+ k) /2)
= grarpsh(("d" (")) ) ((a + p + k) /2)

which comes from 'd)/9,('K) ="d)"9,("K), see 4.15(a); we obtain

1 s
(b) Byew sy ree Byewsy ree Homeegn (LY v (A) L%)—Les%)

S 1 3
DM, sg))xy(x ! ]<|y| + Jwl + ||+ 4p + v)
= @y/EW;y/.)\Gc @yeW;y.)\ec HOIHCCI,S.Q(LE:S?)\)7 )\/QLE:SE:;/\)))

®M sé;ﬂ;\yy (N o <|y| + |w| + |y’| +4p+ V>‘

4.21. We assume that w - A\, u - X in 4.18 satisfy in addition w - A € c. We
apply post and (N) for some N to the two sides of 4.20(b). (Recall that
pos : B — 32) We obtain
Hom e e (L) LY oLe W oL W oLy oLy, |
Byewiy-rce By ewiy-ace Homee (L, 1), Ly ) 0Ligs (1)) O L (y oL oLy, )
- EByGVV'y-)\ec 69y’EW'y/-)\Ec HomCCB2 (Lg:s%\y )\’QLefsE)\)))

SLE Ly o T8 oLy
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Applying (){2@=)} to both sides and using ﬂﬂ, 2.24(a)] we obtain

1 * () W) rw gt
Dyewsy-rec Dy ewsy-ree Homeega (L, ), Ly(A)OLES(K’))(gLe s(g)OLQQLz/(A)

= Dyewiy-ree Dyew;y e Homepeo (LE:S%/\)’ /\’gLe*SEA)))
y-/—l
SL- (LRl .
or equivalently

1
Dyew;y-reclio- E ))OL,\ OLy( )OLesE,\2)

/—1
= ®y'€W;y/~>\€CLX9Le—sE)\))QLYQLZ/(A)o
Using 4.13(d), this can be rewritten as follows:
(a) B(LY oLy = Lob(Ly,).

Another identification of the two sides in (a) is given by 4.14(j) with L = LY,
L' = L% (note that b(L) = b/(L) by 4.14(d)). In fact, the arguments in 4.13-
4.20 and in this subsection show that

(b) these two identifications of the two sides of (a) coincide.
4.22. Let §',8" € Z. Let

V= {(B07BlaB27’YUBQ7’}/UBl);
(B()thBQ) € 8377 € és'afyl € és"a’YBO’Y_l = Bl,"}/Bl"}/—l - BQ}

Define Po1 - V — ZSI7 P12 - V — ZSII7 Po2 : V — Z8’+5” by

01 - (BOaB1>B2a7UBoa7/UBl) — (BOaBla’yUBo)a
12 : (Bo, B1, B2, gUp,,7'Up,) — (B1,B2,7'Up,),
02 : (Bo, B1, B2,7UBy,7'Up,) — (Bo, B2,7'7Ug,).

For L € D(Zy), L' € D(Zg) we set
Le L' =poa(poi L ® pisL’) € D(Zyys)-

This operation defines a monoidal structure on UyczD(Zy). Hence if 'L €
D(Zs,),2L € D(Z,),...,"L € D(Z,,), then ' Le%Le... 0" € D(Zs y..1s,)
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is well defined. Note that, if L € D,,(Zy),L,, € D(Zs) then we have
naturally L e L' € D,,,(Zss). We show:
(a) For L € D(Zy),L" € D(Zg) we have canonically €, ,,(Le L") = €%(L)o

e (L).
Let

Y = {(2U,yU,yU,g,—1);2U € B,yU € B;y € Gy }.

Define j: Y — B2, j1:Y — Zy, jo: Y — Zg by

J(@U,yU,yU,g,1) = (2U,yU),
jl(anyUafyUa}Bl‘fl) = (xBx_laPyxBx_lfy_lafyUazBJ,‘*l%
22U, yU,AU,gp1) = (yaBa iyt yBy 1 yUrs+ a1y,

From the definitions we have
par(L o L) = ji(G(L) @ J3(L)) = €4(L) o (L)
and (a) follows.

4.23. Let s € Zc. Let L € D®Z,, L' € D*Z,. We show:

(a) If L € D=Zs or L' € D=Zy then Le L' € D>Z,,y. If L € D*Z, or
L' e D7Zy then Le L' € D~Z .

For the first assertion of (a) we can assume that L = LY , L' = L%
with w- A € I5,w' - N € I? and either w- X < c or w’'- XN < c. Assume

that w1 - A\ € Ifﬁ'sl and L;l\’ll ots

L";\”ll — €s+S/L§\U11 51 18 @ composition factor of

, is a composition factor of (L e L')/. Then

Cops (Lo LY (p) = (€ryu(Lo L) (p/2) = (iL o€ L) *(p/2)
= (exL{p) o €x L {p))’*(=p/2) = (L} o LK Y ~"(p/2).
From ﬂﬂ, 2.23(b)] we see that w; - A\; < ¢. This proves the first assertion of
(a). The second assertion of (a) can be reduced to the first assertion.
We show:

(b) Assume that L € M*Z,, L' € M*Zy and that either L € D>Z, or
L'eD3Zy. Ifj>a+p—v then (LeL') € M=Z 4.
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We can assume that L =LY, L' = }LS\"’;S, with w- A € I5,w'- X € I} and

either w- X €cor w' -\ €c. Assume that w; -\ € IfLJ“S/ and that ]L;”ll s’

is a composition factor of (L e L’)/. Then as in the proof of (a), Lﬁ\ull is a
composition factor of

Esvs (L@ L/)j = ( 1>1\} © Lq){}’l)j_p(_p/z)-

Since j — p > a — v we see from , 2.23(a)] that wy - A\; < c. This proves
(b).

4.24. Let s’ € Zc. For L € C§Zs, L' € C§Zs we set

Lel! = (Le L)t~} e CSZ,\ o,

Using 4.23(a),(b) we see as in ﬂﬂ, 2.24] that for L € C§Zs, L' € C§Zy,L" €

C;5Zs» we have

L:(L/:L//) — (L:L,)!L” — (L ° L/ .Ll/){2a+2p—21/}.

We see that L,L' ~— LeL' defines a monoidal structure on Ugez, C§Zy .
Hence if 'L € CSZSI,QL € C§Zsy,...,"L € C§Zs,, then 11e%Le...0"[ €
C§Zsy+-+s, is well defined; we have

(a) 'Le’Le...o'L=("Le%Le.. o L)ir=Dlatr=1)}

For L € C§Z,, L' € CSZy we have é,L,éy L/ € C$B2. We show:
(b) ¢orw(Lol)) = (ED)o(enl).
It is enough to show that

e (gro((L e L) P7)((a+ p —v)/2))[pl(p/2)
= gro((e5L[pl(p/2) o € L'[p](p/2))* ™" )((a — v)/2))).

The left hand side is equal to

gro(ey o (Lo L)) ((a + p = v)/2))lp)(p/2))
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hence it is enough to show:

Coro (Lo L)) ((a+ p—1v)/2))[pl(p/2)
= (esLlpl(p/2) o s L p)(p/2))" " ((a — v)/2))

that is,
€ars (Lo L)"P7")[p] = (e;Llp] o € L'[p])*,

or, after using 4.3(b):

(€L @ L™ = (&L 0 e Ly,
It remains to use that ¢}, (L e L') = efLoe} L', see 4.22(a).
4.25. In the setup of 4.14 let
*Y=T\{((zoU, z,U, 25U, 23U),v) € B* x Gg; y € 23U 2y Ly €20 U '}
where T? acts freely by

(t1,t2) : (xoU, 21U, 22U, 23U), ) — ((xot1U, 21t2U, 22t U, 256, U), ).

We define °n : °Y — Zs by

((xoU, 21U, 25U, 23U), 7) — €5(x1 U, 25U).
We define d : °Y — Zg by

((xoU, 21U, 25U, 23U), ) — €5(xoU, 23U).
We define b” : D(Zs) — D(Zs) and b” : D, (Zs) — Dp(Zs) by

b"(L) = di(°n)"L.

From the definitions it is clear that
(a) b'(L) = €ib”(L).

Using (a) we see that 4.14(a),(b),(c) imply the following statements.
(b) If L € D3(Zy), then b"(L) € D=Z,. If L € D*(Z) then b"(L) € D~ Z,.
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(¢) If L € M=(Z,) and h > 2v + 2a then (b (L))" € M=B2.
We define b” : C§(Zs) — C§(Zs) by

(L) = grav2a((0"(L)* ) (v + a).

Using results in 4.3 we see that, if L € C§Z,, then

(d) b'(L) = &(b"(L)).

5. The monoidal category C¢B>

5.1. In this section, c,a,0,n,V are as in 3.1(a).

Define ¢ : B — B2 by U — (2U,zU). For w- \ € ¢ we set
By = H- @ (L)) (—a + [w])/2).

By , 4.1] we have
(a) dim By =1if w- A € D¢, dim B,y =0 if w- A ¢ De.
We set

1 = @grep, B, ® Li € CSB2.

Here 3}, is the vector space dual to Sg.x.

5.2. For L € D,,(B8%) we set Lt = h*L where b : B2 — B2 is as in 3.1. By
ﬂﬂ, 4.4(b)], we have:

(a) If L € CSB? then ®(LT) € C$B2. If L € C°B? then D(LT) € C°B2.

5.3. The bifunctor C§B% x C§B*> — CSB%, L, L' + LoL' in 3.10 gives rise
to a bifunctor C<B2 x CB% — C°B? denoted again by L,L' — LolL' as
follows. Let L € C°B%, L' € C°B?; by replacing if necessary ¥ by a power,
we choose mixed structures of pure weight 0 on L, L', we define LoL’ as in
3.10 in terms of these mixed structures and we then disregard the mixed
structure on LoL'. The resulting object of C¢B2 is denoted again by LoL';
it is independent of the choice of W which defines the mixed structures.

Similarly for s,s" in Z, the bifunctor C§Zs X C§Zy — C§Zs+s, L, L' —
Lel/ in 4.24 gives rise to a bifunctor C°Zs x C°Zy — CZs, o denoted again
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by L,L' +— LeL'. Moreover, b : C$Z, — C$B? in 4.13 can be also viewed as
a functor b : C°Z, — C<B2.

The operation LeL’ (resp. LoL') makes Li,ez,C°Z, (resp. C°B?) into a
monoidal abelian category (see 4.24, 3.10). By ﬂﬂ, 4.5(a)], we have:

(a) For L,L' in C°B? we have canonically

HOchl’S’Q (1,7 LQL,) - HOmCCBQ (9 (L,T)7 L)

5.4. We set
(a) 1= @d-)\GDcﬁd-)\ & L§71 & 085’2

Here fg. is as in 5.1. By [21, 4.7(g)],
(a) 1 =1'is a unit object of the monoidal category C°BB2.

By ﬂﬂ, 4.8], this monoidal category has a natural rigid structure.

5.5. In the remainder of this section we fiz s € Zc.

In this case, (e®)* defines an equivalence of categories C°B% — C°B2; this
follows from 3.11(a).

By analogy with @, 6.2] and slightly extending a definition in ﬂﬂ,
3.1], we define an e*-half-braiding for an object L € C°B2, as a collection
er = {es(L); L € C°B?} where eg(L) is an isomorphism (e*)*(L)oL = Lol
such that e (1) = Idy and such that (i), (ii) below hold:

(i) If L 2 I’ is a morphism in C°B? then the diagram

eﬁ—(L)> Lol

(es)*(t)gll : 1,%

e L/
L( ) C [/
1s commutative.

(i) If L, L € C°B? then ey (Lol’) : (e%)*(LoL')oL — Lo(LoL') is equal to

the composition
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(L)l

loes (L")
=

(e*)"(L)o(e”)" (L)L (e°)*(L)oLol! ““25 LoLol.

(When s = 0 this reduces to the definition of a half-braiding for £ given in
(22, 3.1])

Let ZS: be the category whose objects are the pairs (£, er) where L is
an object of C°B? and e, is an e*-half-braiding for £. For (L, er), (£, err)
in Zg. we define Homze, ((£,er), (L', ecr)) to be the vector space consisting
of all ¢ € Hom e 5. (£, L") such that for any L € C¢B? the diagram

ec(L)

(e*)"(L)eL LoL

lot tgll

(e*)*(L)or’ L rror)

is commutative. We say that Z; is the e®-centre of C¢B2. By a variation of a
result of ﬂﬂ], M] (which concerns the usual centre), the additive category ZS.
is semisimple, with finitely many isomorphism classes of simple objects. By
a variation of a general result on semisimple rigid monoidal categories in [4,
Proposition 5.4], for any L € CB2 one can define directly an es-half-braiding
on the object

T,(L) = ) (LY)oLoLl . = L MNoroL?

s( ) = @y-)\EC(e ) ( )\)9 o y(\) = Dy-rec e*s(y)g o y(\)

of C¢B? such that, denoting by Z, ( ) the corresponding object of ZS., w

have canonically

(a) Homcp (L, L) = Homze (Z(L), L)

for any L'eZ (We use that for y- A € c, the dual of the simple object Ly
is Ly()\), see ﬂﬂ, 4.4(c)]; we also use 3.11(a).) The e®-half-braiding on Zs(L)

can be described as follows: for any X € C°B? we have canonically
(€*)*(X)eZs(L)
. 1
— ®yacele”) (X)e(e") (Li)oLoLl
. . . -1
= ®y.aec,-vecHompe o ((e)" (L)), (es)*(Xng\)) ® (es)*(Li,)ngLz(A)

. . . .1
= @y-)\éc,z-)\’EcHomcchQ (Lih XQLZ)/\) ® (es)*(Li’)QLQLZ()\)
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. 1
= Dy-rec,z )\’EcHomccB2 (L ( ) LZ(}\/) ®X)® (e ) ( il)ngLz()\)
(The fourth equality uses 4.20(a); we have also used 3.11(a).) We show:
(b) If z- X € ¢ and (L) # 0 then z - X € c*.

For some y - X' € ¢ we have L ,SE‘Z, oL # 0 (hence e *(\) = z(I)) and

z(1
Ling&) # 0 (hence A = X). It follows that z(\) = e *(\) and (b) is

proved.
5.6. By 4.13(d), for z- A € ¢® we have canonically

(a) b(L5 0) = Zs(L3)

as objects of C¢B2. Here b : C°Z, — C¢B? is as in 5.3. Now Is(Li) has a
natural e®-half-braiding (by 5.5) and Q(Li, ;) has a natural e®-half-braiding
(by 4.14(j)). By 4.21(b),

(b) these two e°-half-braidings are compatible with the identification (a).

In view of (a), (b) we can reformulate 5.5(a) as follows.

Theorem 5.7. For any z- A € c®, L' € Z¢

o5, we have canonically

(a) HOHICCBQ( 5 L,) = HOmZSS (b(L§,3)7 L,)

where b(L5 ) is Q(}Lis) viewed as an object of ZSs with the e®-half-braiding
given by 4.14(j).

5.8. We set
1y = Garen.Bin ® LYo € C°Z.

From the definitions we have €y1j, = 1’. Since 1’ = 1, we have also €y1f, = 1.
We show:

(a) For L€ C°Z_g, L' € C°Zs we have

Hom vz, (10, LeL') = Hom gz, (D(L'T), L).
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We can assume that L =1L} __ L' = ]Lgf’,’s where w-\ € ¢c%, w' -\ € .

Using the fully faithfulness of & : M(Zy) — MB?, é_, : M(Z_,) —
MB2, and the equality €91, = 1, we see that it is enough to prove that

Hom ¢ 2 (1, é(LeL')) = Hom (f_s(D(L'T)), é_s(L)).

=1 =1

From 4.3 we have é_4(L) = LY, &(L) = LY, E-s(Loyan,—s) = Liyrovy:
From 4.3(e) we have

~ ~ w - 11)/_1 11)/_1
(D) = e (@ Lip 1) —o)) = E=s(Lip ) ) = Livw)-

=1

(We have use that D(L¥, | ):}L“’,(_X) _, which follows from ﬂﬂ, 4.4(a)])

w/(N—1),—s w

Using 4.24(b), we have
éo(LeL') = (¢-,L)o(¢,L') = Ly oLy,
Hence it is enough to prove
Hom (1, LYoLy) = HomMBQ(Lg;&), LY).

This follows from ﬂﬂ, 4.5(a)].

6. Truncated induction, truncated restriction,

truncated convolution

6.1. In this section we fix s € Z.

Let Z, = {(B,B',7) € Bx B x Gg;yBy~! = B’}. We have a diagram
(a) 7z, L 7,5 G,

where f(B,B’,v) = (B,B',vUg), n(B,B’,7) = . Note that G acts on
Zs by g : (B,B',vUp) = (9Bg~",gB'g™" 979 'Uypy—1), on Zs by g :
(B, B',v) = (9Bg~',9B'g"",gvg™"), on Gs by g : v = gvg™"

and 7 are compatible with these G-actions. We define x : D(Z;) — D(Gs)
by

; moreover, f

X(L) = mf*L.
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For any w - A € I we define 9%3‘;’73 e D(G,), Ris € D(G,) by
Vo= xX(LY ), Ry = x(LYE), if w- A€ I,
Y =0,RY =0ifw-\¢I°

Assume now that s # 0 and that we are in case A. In this case, the
conjugation G-action on G, is transitive, see 2.1, and the stabilizer of 75 for
this G-action is the finite group G¢ = {g € G;e*(g) = g}.

With the notation of 4.1, for w € W we have isomorphisms

XY S a )N fHZE), XY S e ()N fTHZY)

given by B — (B,e*(B),7%). Using this, and the transitivity of the G-
action on Gy, we see that for w- X € I°® and for j € Z, (RY,)7[~A] (resp.
(RY,)[—A]) is the G-equivariant local system on G whose stalk at 7° is
HgiA(Xj,f;‘.js)[A] (resp. THI=A(XZ, ]:;fs)[A]) with the G -action consid-
ered in 4.1.

We return to the general case. We say that a simple perverse sheaf A

on Gy is a character sheaf if the following equivalent conditions are satisfied:

(i) there exists w - A € I such that (4 : &;(RY,)7) # 0;
(ii) there exists w -\ € I such that (A : (R}is)j) # 0.

In case A with s # 0, if A satisfies either (i) or (ii), then it must be G-
equivariant, hence A[—D] must be a G-equivariant local system whose stalk
at 7° viewed as a G® -module is irreducible, so that in this case the equiv-
alence of (i),(ii) follows from the equivalence of (i), (i) in 4.1. In case A
with s = 0 the equivalence of (i),(ii) follows from [11, 12.7]; a similar proof
applies in case B (see also ﬂﬂ, 28.13]).

A character sheaf A determines a W-orbit 0 on so: the set of A €
Soo such that (A : @;( 1;;’78)j) # 0 for some w € W (or equivalently (A :
®;( )\“"78)j) # 0 for some w € W); we have necessarily e*(0) = 0. In case A
with s # 0 this follows from 4.1. In case A with s = 0 this follows from ﬂﬂ,
11.2(a), 12.7]; a similar proof applies in case B.
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We now fix 0 € W\sy such that e®(0) = 0. We say that A is an o-
character sheaf if the W-orbit on s, determined by A is 0. Let CS, s be a
set of representatives for the isomorphism classes of o-character sheaves on
Gs. In case A with s # 0 we have a natural bijection CS, ¢ ¢ Irry(G®")
(notation of 4.1); to A € C'S, s corresponds the stalk of the G-equivariant
local system A[—A] at 7%, viewed as an irreducible G® -module.

Let 0 € W\ss be such that e®(0) = 0. With notation in 2.4 we have
the following result.

(b) There exists a pairing CS,s x Irrs(HY) — Q, (A, E) = ba g such that
forany A€ CS, s, any z- X € I with A € 0 and any j € Z we have

(A: (RR)) = ("2 = A~z Y bastr(escan EY)).
EcTrrs(HY)

Assume first that z - A € I®. In case A with s # 0, (b) follows from 4.1(b).
In case A with s = 0, (b) is a reformulation of ﬂﬂ, 14.11], see ﬂﬂ, 5.1]. In
case B, (b) can be deduced from ﬂa, 34.19] and the quasi-rationality result

, 39.8]. (In loc.cit. there is the assumption that the adjoint group of G is
simple, which was made to simplify the arguments.)

Next we assume tha z-\ € I —I®. Then the left hand side of (a) is zero;
hence it is enough to show that tr(esc,.y, E¥) = 0 for any E € Irr,(H.). We
have a direct sum decomposition EY = @yes 1y EY. It is enough to show
that for N € s we have esc,.\(1yEY) C 1y EY where N € 65, N # N.
We can assume that \' = X. We have

eScZ.A(b\E”) - es(lz(A)E“) = 1es(z()\)Ev

It is enough to show that e®(z(\)) # A that is, z(A) # e~ *(A); this follows
from z -\ ¢ I°.

Given A € CS,, there is a unique two-sided cell c4 of I such that
ba,r = 0 whenever F € Irrs(Hl) satisfies cp # c4. In case A with s # 0
this follows from results in ﬂa under the assumption that the centre of G is
connected; but the argument in [6] extends to the general case. In case A
with s = 0 this follows from ﬂﬂ 16 ﬁaln case B this follows from ﬂﬂ §41].

We have necessarily c4 C I,. As in 41.8], 44.18], we see that:
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(c) We have (A: ®;(R;,)7) #0 for some z -\ € ca; conversely, if z- X € I
is such that (A: &;(R5 ,)7) #0, then ca < z- \.

Let a4 be the value of the a-function on c4. If z- X € I, E € Irrs(H})

satisfy tr(esc,.n, EV) # 0 then cg < z - A; if in addition we have z - A € cg

then from the definitions we have

v § : agp—h
tr(escz-)\aE ) = Cz-\,E,h,sV B
h>0

where ¢, gns € Qq is zero for large h, c,.\ pos = tr(est,.r, E®) and ag is
as in 1.13. Hence from (b) we see that for A € CS, s and z- X € I,, j € Z,
the following holds:

(d) We have (A : (Ris)j) =0 unless ca = z-A; if z- XA € ca, then

(A:(R{)) = (=172 —A—]z; > b, EC2 B0 ")
EcTrs(H});cp=ca;h>0

which is 0 unless j — A — |z| < aa.

In the remainder of this section let c,a,n,V be as in 3.1(a). We assume
thatw-A€c = A €o.

Note that x can be also viewed as a functor x : Dy, (Zs) — Dy, (Gs).

Let M=Gy (resp. M~G,) be the category of perverse sheaves on G
whose composition factors are all of the form A € C'S, s with c4 < ¢ (resp.
ca < c¢). Let D=G, (resp. D=G,) be the subcategory of D(Gs) whose
objects are complexes K such that K7 is in M=Gy (resp. M=G) for any j.
Let DZGy (resp. DiGs) be the subcategory of D,,(G) whose objects are
also in D=G (resp. D=Gy).

Let z- X € I,. From (d) we deduce:

(e) If z- X < c, then (Ris)j e M2G, for all j € Z.
(f) Ifz-X€cand j > a+ A+ |z| then (Ris)j € M=G,.
(g) If z- A < c then (Ris)j e M=G, for dll j € Z.

6.2. Let CS. s = {A € CS,s;ca =c}. For any z- X € I we set

n, =a(z) + A+ |zl
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Let A€ CS¢s and let z - A € c. We have

(a) (A: (B )™) = (=1 Y7 baptr(est.n, B).
EcTrrs (HY)

Indeed, from 6.1(b) we have

(A:(R5)"™) = (—1)*th Z ba,p(a;tr(esc..n, E))
EcTrrs (HY)

and it remains to use that (a;tr(esc..x, EV)) = tr(est,.n, E*°). We show:

(b) For any A € CSes there exists E € Irrg(HY) such that bar # 0 hence
Cgp = C.

Assume that this is not so. Then, using 6.1(b), for any z - A € I, we have
(A: ®;(R5,)7) = 0. This contradicts the assumption that A € C'S, ;. We

show:
(c) For any A € CS¢ s there exists z - X € ¢ such that (A : (Ris)"z) # 0.

Assume that this is not so. Then, using (a), we see that

Z bA,Etr(estz.A,Eoo) =0
Eelhrs(HY)cg=c

for any z- A € c. If z- X € I, — ¢ then the last sum is automatically zero

since t,.) acts as 0 on £ for each E in the sum. Thus we have

Z bA,Etr(estz.A,Eoo) =0
Eehrs(HY)cg=c

for any z - A € I,. In the last sum the condition cg = c is automatically
satisfied if b4 g # 0. Thus we have

Z bA,Etr(estz.A,Eoo) =0
EcTrrs (HY)

for any z - A\ € I,. By a general argument (see for example ﬂa, 34.14(e)]),
the linear functions ¢,.) + tr(est,.n, E*), J, — Q; (for various E as in the
last sum) are linearly independent. It follows that b g = 0 for each E as in
the last sum. This contradicts (b).
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We show:

(d) Let z- X € c be such that (R; )" #0. Then z- A o
’ eft
ee’(z71) - e*(z(\) and z- A ~
left
ees(z71) - A
Using (a) we see that there exists E € Irrg(H.) such that tr(egt..\, E>) #

0. We have E*® = @4, eDnotar, 2. We define d - \; € D No by the
condition that z - A o~ d-Ai. We define d’ - A} € DNo by the condition that
eft
271 z2(N) o d - N|. Now t,. : E°° — E* maps the summand t4.), E into
eft
the summand ¢4y, E> and all other summands to zero. Moreover, e; maps
tar.x B°° Into tos(gr).es(n) £ Hence egt,. : E°° — E°° maps the summand
ta.x E°° into the summand tes(gr).e5( X, yE£>° and all other summands to zero.
Since tr(est..n, E*°) # 0 it follows that {4, E™ = tes@).es(x)E™ # 0.
Since e°(d') - €*(\]) € D No, it follows that d- Ay = e*(d’) - e*(\]). Since
e’(z71)-e*(z(\)) o e’(d')-e*(\]), we see that z- A ~ e’(z71)-e*(z())). To
eft eft
complete the proof, it remains to note that e*(z(\)) = A that is z - A € I°.
This follows from the fact that (R} )" # 0.
We show:
(e) If CSecs # 0 then €°(c) = c.
Using (c¢) and the hypothesis we see that there exists z - A € ¢ such that
(R3 )" # 0. Using (d), we see that €*(27")-e*(2(\)) € c. Since 27 "2(\) € ¢
(see Q10 in 1.9) we have also e*(271)-e®(z(\)) € e*(c). Thus, cNe®(c) # 0.
It follows that e®(c) = c.

6.3. Until the end of 6.7 we assume that s € Z.

We show:

(a) If L € D=Z, then x(L) € D2Gy. If L € D=Z, then x(L) € D=G.
(b) If L € M=Z, and j > a+ v then (x(L))) € M=G,.

It is enough to prove (a),(b) assuming in addition that L = Lj _ where
z-A€I°, z- XA < c. Then (a) follows from 6.1(e), (g). In the setup of (b) we

have
(X(L30)) = (R 2((12] + v 4 p) /2)

and this is in M~G since j + |z| + v+ p > a + A + |z], see 6.1(f).
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6.4. Let C*G, be the subcategory of M(és) consisting of semisimple ob-
jects. Let CO*G’S be the subcategory of Mm(é's) consisting of objects of pure
of weight zero. Let C°Gy be the subcategory of ./\/l(és) consisting of objects
which are direct sums of objects in C'S¢ . Let Cgés be the subcategory of
CO* G, consisting of those K such that, as an object of C*G,, K belongs to
C°G,. For K € Co*és let K be the largest subobject of K such that as an
object of C*CNJS, we have K € C¢G.

6.5. For L € C§Z, we set
X(L) = (L) ((a +v)/2) = (L)) € C5Gs.

(The last equality uses that 7 in 6.1 is proper hence it preserves purity.) The
functor x : C§Zs — Cgés is called truncated induction. For z -\ € ¢® we

have

(a) X(LA ) = (B5,0)"™ (1n2/2).

X3y = (@) ((a+v)/2) = (L3 (2] + v+ p) ™ ((a+v)/2)
= (LT NFTR (2] + a+ A)/2) = (L) (n2/2)
= (R}.)"™ (n:/2).

Using (a) and 6.2(d) we see that:

(d) If z- X € ¢® is such that X(Li,s) # 0 then z - A lwﬁees(zfl) A

6.6. For z- \, 2’ - X in ¢® we show:

(a) dim HOIHCCGS (K( i,s)’ X( i’,s)) = Zt(tu*1~u()\1)tZ'>\tes(u)-es()\1)tz’*l~z’()\’))
u-A1€C

where t : H*® — Z is as in 1.9.

Let ()* : Q; — Q be a field automorphism which maps any root of 1 in Q;
to its inverse. The field automorphism Q;(v) — Q;(v) which maps v to v
and = € Q; to 2* is denoted again by *.
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Let Ny (resp. Na) be the left (resp. right) hand side of (a). Using 6.5(a)
and the definitions we see that

(b) Ni= D (A:(R5)"™)(A: (BF)"™).

A€ECSe

Using 6.2(a) and the analogous identity for (A : (R, )™') in which the field
automorphism ()‘ : Q; — Qq is applied to both sides (the left hand side is
fixed by ()®), we deduce that

Ny = (—1)|z|+‘ZII Z Z bA7Ebz’E,tr(estz.>\,Eoo)tr(estz/_)\/,E'oo)*.
E7E/€II'I'S(H(1,) AECSc,s

In the last sum we replace ZAECSCS bA,Ebz g by 1if B/ = E and by 0 if
E' # E. (In case A with s # 0 we use , 39(1)] which assumes that the
centre of GG is connected, but a similar proof applies without assumption on
the centre. In case A with s =0 and in case B we use ﬂﬁ, 35.18(g)].)

We see that

Ni= (—1FHE ST (et B)tr(estux, B)4.
Eclrrs(HY)

We now use the equality (for E € Irrs(H})):
tr(estz/.x, EOO)‘ = tr(tzlfl,z/(x)esfl, EOO)
which can be deduced from ﬂﬁ, 34.17]. We see that

Ny = (=DFFET N tr(etan, E®)tr(t-1.v)es ' E™).
Eclrs(HY)

This is equal to (—1)1#I1='l times the trace of the linear map

§ > toae’ (€)1 from J, to Jo; hence it is equal to

(—1)=H= Dttty teates@yes () tar-1.2(v)) = (—1)FHEFING,
u-A1€0

(In the last sum, the terms with u - A; € 0 — ¢ contribute 0.) Thus, N; =
(—1)‘Z‘+|2/‘NQ. Since N7 and Ny are natural numbers it follows that N = Ns.
This proves (a).
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The proof above shows also that dimHomgeq (x x(L3 ) (]Lj, ) =0

whenever (—1)\Z\+|Z’\ - 1

Replacing in (a) u - A; by e *(y) - € *A\; (recall that €® : ¢ — c is a

bijection) we can rewrite (a) as follows:

dimHoché (X( z )X( Z )):Z t(te_s(y_l)-e_s(y()\l))tZ~)\ty~>\1tz/—1-z’()\/))'
y-A1E€EC

Since Nj (in the form (b)) is symmetric in z - A, 2" - X', we have also

dlmHomcc (X( )’X(Lil’,s))zz t(tE*S(y*1)~e*5(y()\l))tz/-)\’ty-)\ltz*1~z()\))'
Yy-A1EC

Replacing y- A1 by ¥y~ -y(A1) (recall that - Ay — 5~ -y(A1) is an involution

¢ — ¢) we can rewrite this as follows:

(c) dimHochés(z( )X( it ))
= D tltergremsantraty1yonttam)-
y-A1€C
We show:

(d) There exist z - X € c® such that X(Li,s) # 0.

Let k = u-A; € c. Then e*(k) € ¢, k' € c hence by 1.15(d) we have
titjtes(ry # 0 for some j € I. From 2.5(a) we deduce that j € c¢®. We
can find j = 2/ - X € c such that t;; appears with nonzero coefficient in
tptjtes(ny- It follows that t(ttjtesyt;n) # 0. Since t(£€) = t(£€) for
§,§' € H*® we deduce that t(tesytjntpt;) # 0. In particular we have
tes(kytjnty # 0. Applying the antiautomorphism ¢, ~ ¢, of H* we deduce
titjtes sty # 0. Using again 2.5(a) we deduce that j' € ¢®. Ifi€c, j €[
satisfy t;it tes;) # 0 then j € . Since t(ttjtesn)t;n) € N for any h € ¢
and t(tptjtesytjn) # 0, we see that D, t(tptjtesn)t;n) € Nso. Using
this and (a), we see that

dim Hom e (X(IL5 ) (LX )) € Nso.

This proves (d).
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The following converses to 6.2(e) is an immediate consequence of (d):

(e) We have CSe s # 0.

6.7. Let L € C$Zs. We show that D(L) € C§Z,. (Here € is as in 1.14.) Tt is

enough to note that for w - A € ¢® and w € x; '(w) we have
(a) (a) Q(LU){,S) = Lc;\)*l,s'
We show:

(b) For L € C§Zs we have canonically x(D(L)) = D(x(L)) where the first x
is relative to ¢ instead of c.

Let 7, f, Zs be as in 6.1. By the relative hard Lefschetz theorem H, 5.4.10]
applied to the projective morphism 7 and to f*L (v) (a perverse sheaf of

pure weight 0 on Z s) we have canonically for any j € Z:

(c) (mf*L{v)™ = (mf*L ) (j).

We have used the fact that f is smooth with fibres of dimension v. This also
shows that

(d) D(X(D(L))) = x(L) (2v) .
Using (d) we have

Dx(®(L)) = 2(

Hence using (c) we have
D(x(D(L))) = (x(L) ()*"(a/2) = (X(L)*™ ((a +v)/2) = x(L).
This proves (b).

6.8. We define ¢ : D(G,) — D(Z,) and ¢ : Dy (Gs) — Din(Zs) by ((K) =
fit* K where Z d Z, <& Gy is as in 6.1(a). We show:

(a) For any L € D(Zs) or L € Dy,(Zs) we have 6" (L) = ¢(x(L)).
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We have ((x(L)) = fir*mf*(L). We have

Zy x & Zs = {((Bo, B1, B2, Bs),y) € B* x Gy;7Boy ™" = B3, §B1§~ " = Ba}.

We have a cartesian diagram

Z ——

where ﬁl((BOaBlaB2>B3)a7) = (BOaB357)7 ﬁ2((BOaB1aB2aB3)a7) = (Bla
Bs, 7). It follows that 7*m = 71175. Thus,

C(x(L)) = firnms f(L) = (fR )i (f72)*(L).
Define 7} : Zs Xa. Zs — Zs, 7h: Zs Xa, Zs — Zs by

ﬂ-ll((BO?BlaBQ?B?))?’Y) = (B07B377UBQ)7
Wé((BOaBlaB2aB3)a'7) = (BlaB2a7UBl)'

Then 7] = f71, my = fmp and ((x(L)) = 7},m5*(L). Let °Y be as in 4.14.
We have an isomorphism °) — ZS Xa, ZS induced by

((xoU, 21U, 25U, 23U), ) — ((xonal, xlel_l, .732Bf132_17 ngxgl), v)-

We use this to identify °Y = Z, Xa, Zs. Then 7}, ™ become d,°n of 4.25.
We see that (a) holds.

6.9. In the remainder of this section we assume that s € Zic.

Let z- A € 0. Weset ¥ = e;‘C(RiS) (2v+ |2|) € D(B?). Let j € Z. We
show:

(a) If z- A < c, then ¥/ € M=B2.

(b) If z- X < c, then ¥ € M=B>.

(¢) If z-N€cand j > v+ 2p+2a, then ¥J € M=B2.

If z- X\ ¢ I°, then ¥ = 0 and there is nothing to prove. Now assume that
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z- A€ I°. Using 4.9(a), we have
S = e (L5,)) (v + [2]) = 0'(L5F) (20 + |2]) = 0'(L3 ) (v — p) -

Now (a),(b) follow from 4.14(a),(b); (c) follows from 4.14(c). (If 7 > v +
2p + 2a, then j+v —7r > 2v+ p+ 2a.)

6.10. We show:

(a) If K € D2Q,, then ((K) € D2Z,.

(b) If K € DG, then ((K) € D~ Z,.

(c) If K € DGy and j > v + a, then (((K)) € M=Z,.

We can assume in addition that K = A € CS¢ 4 for a two-sided cell ¢’ such
that ¢’ < ¢. Assume first that ¢/ = ¢. By 6.2(c) we can find 2 - X € ¢
such that (A : ( ;\75)"2) # 0. Then A[—n,| (without mixed structure) is a
direct summand of the semisimple complex Ri o Hence €;C(A)[—n.] is a
direct summand of ejC(Ris) and €:C(A)[—n.+2v+|z]] is a direct summand
of ¥ (in 6.9), that is, €((A)[—a — p] is a direct summand of ¥. By 6.9,
if j € Z (resp. j > v+ 2p+ 2a) then ¥/ € M=B? (resp. ¥/ € M=B?)
hence (e£C(A)[—a — p])) € MZB? (resp. (¢:¢(A)[—a — p])! € M=B?), that
is, (e5C(A)) %P € MZB? (resp. (¢:C(A))~%" € M=B?). We see that if
j' € Z (resp. j' > v+ p+a) then (¢¢C(A)) € MZB2 (resp. (e2¢(A)) €
M=B?), so that (((A))T' 7 € MZZ, (resp. (C(A)) P € M=Z,); here we
use 4.3(a). We see that if j € Z (resp. j >v+a,sothat j+p>v+p+a),
then (C(A)) € M=Z; (resp. (¢(A))! € M=Z). Thus the desired results
hold when ¢’ = c.

Assume now that ¢’ < ¢. Applying the above argument with ¢ replaced
by ¢/, we see that the desired results hold.

6.11. For K € Cgés we set

C(K) = (CE)*H e c 2.

We say that ((K) is the truncated restriction of K.

6.12. Let L € C§Zs. We show:
(a) We have canonically ¢(x(L)) = b"(L).
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We shall apply the method of ﬂﬁ, 1.12] with @ : D,,,(Y1) — D, (Y2) replaced
by ¢ : Di(Gs) = Dp(Zs) and with D (Y;), D=(Ys) replaced by DGy,
D=Z,. We shall take X in loc.cit. equal to x(L). The conditions of loc.cit.
are satisfied: those concerning X are satisfied with ¢ = a + v, see 6.3. The
conditions concerning ( are satisfied with ¢ = a + v, see 6.10. We see that

(b) (C(X(L)))j =0if j > 2a 4+ 2v
and
(c) gr2a+20 (COL))* ) (a + v) = C(x(L)).

Since ((x(L)) = b”(L), we see that the left hand side of (¢) equals b”(L).
Thus (a) is proved.

Combining (a) with 4.25(d) and 4.14(d) we see that
(b) we have canonically €,((x(L)) = b(L).

6.13. Let K € D(G,) and let L € D*B2. Let L = (e®)*L. In (a) below the
assumption s € Z¢ is not used:

(a) there is a canonical isomorphism Lo €:¢(K) = ¢:¢(K)o L.

Let Y = B2 x G,. Define j : Y — Gy by j(2oU,z,U,~) = 7. Define
g1 : Y = B? by ji(xoU,z,U,5) = (20U,y '217°U). Define jo : ¥ —
B? by ja(2oU,x1U,7) = (yzor*U,z,U). From the definitions we have
Loe*C(K) = ju(j1(L)®j*(K)), €:¢C(K)oL = jor(j5(L)@5* (K)). It remains to
prove that j¥(L) = j5L that is, j,* L = j4 L where j; = e%j; : Y — B2 is given
by 71 (zoU,71U,v) = (%297 *U, 75y 2;U). The equality j1*L = jiL
follows from the G-equivariance of L. This proves (a).

Now let K € C§Gs and let L € CSB%. Since e(c) = ¢, we have (e°)*L €
CSB?, see 3.11(a). We show that

(b) there is a canonical isomorphism (e°)*(L)oés((K) — (€s((K))oL.

We apply the method of ﬂﬁ, 1.12] with @ : D%Z%z — D%BQ, L' — L' oL,
X = &((K) and with (¢,d) = (a — v,v + a), see ﬂﬂ, 2.23(a)], 6.10(c). We
deduce that we have canonically

(¢) ((ECE)) o L) = (£,((K) o L),
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We apply the method of ﬂﬁ, 1.12] with ® : D2B% — D=B2, L/ + (e®)*Lol/,
X = &((K) and with (¢,d) = (a — v,v + a), see ﬂﬂ, 2.23(a)], 6.10(c). We
deduce that we have canonically

(d) (((e*)" Lo (E(K)) I hlem = ((e*)"L o &((K)) .

We now combine (c), (d) with (a); we obtain (b).

6.14. Let &', s” be integers. Let pu : Gy X Ggr — Gy o be the multiplication

map. For K € D(Gy),K' € D(Gg) (resp. K € D,,(Gy), K" € D, (Gyr))

we set K+ K’ = (K X K'); this is in D(Gyg) (resp. in Dy (Gyisn)).

For K € D(Gy,), K’ € D(Gs,), K" € D(Gs,) we have canonically (K =
K+« K" = K x (K' * K") (and we denote this by K x K’ « K). For

K € M(Gy),K' € M(Gg4r) we show:

(a) If K’ is G-equivariant then we have canonically K+K' = ((e=% )*K")%K'.
If K is G-equivariant then we have canonically K « K' = K' % ((e”")*K).

The proof is immediate. It will be omitted. (Compare ﬂﬁ, 4.1].)

6.15. Let s',s” € Z. We show:

(a) For K € D(Gy), L € D(Zg) we have canonically K * x(L) = x(L e
((K))-
Let Y =Gy x Gy x B. Define ¢: Y — Gy X Zgn by

C(’Vla’y%B) = (Vla (Ba72B7£1’72UB));

define d : Y — Gy by d(y1,72, B) = 7172. From the definitions we see
that both K * x(L), x(L e ((K)) can be identified with djc*(K X L). This
proves (a).

Now let L € D(Zy), L’ € D(Zy). Replacing in (a) K, L by x(L), L and

using 6.8(a), we obtain

(b) X(L) * x(L') = x(L" e b"(L)).

6.16. Let s’ € Z¢. Let L € D*(Z,), L' € D*(Zy), j € Z. We show:
(a) If L€ D=>Z, or L' € D=Zy then L' ¢ b"(L) € D=Z¢, o.
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(b) If Le D~Zs or L' € D=Zy then L' ¢ b"(L) € D~ Zs, .
() IfL € M3Z,, L' € M*Zy and j > 3a+ p + v then (L' e b"(L)) €
D=Zy.s.

Now (a), (b) follow from 4.25(b) and 4.23(a). To prove (c) we may assume
that L =LY, L/ =LY, with w- XA € I, w'- N € IJ and w- A < c. We
apply the method of |19, 1.12] with ® : D=Z, — D=Z,,, L1 — L' e L1 and
X = b"(L) and with ¢ = 2v + 2a (see 4.25(¢c)), ¢ = a+ p — v (see 4.23(b)).
We have ¢+ ¢ = v + p+ 3a hence (c¢) holds.

6.17. Let s’ € Zc. Let L € D*(Z,), L' € D*(Zy), j € Z. We show:

(a) If L € D=Z, or L' € DZZy then x(L' @ b"(L)) € DZGy .

(b) If L € D*Z, or L' € D=*Zy then x(L' @ b"(L)) € D=Gy .

(¢c) IfLe M=Z,, L' € M*Zy and j > 4a +2v + p then (x(L' @ b"(L))) €
M=Gyig.

(a), (b) follow from 6.3(a) using 6.16(a), (b). To prove (c) we can assume

that L =LY, L' =LY, withw-X € I, w' - N € I and w- A < c. We

apply the method of [19, 1.12] with ® : DZZ,, v — D3Gy e, L1 — x(L1),

X =L'eb"(L) and with ¢ = v+ p+3a (see 6.16(c)), c = a+v (see 6.3(b)).

We have ¢+ ¢/ = 2v + p + 4a hence (c¢) holds.

6.18. Let s’ € Ze. Let K € D*(G,), K' € D*(Gy). We show:

(a) If K € DG or K' € D=Gy then K « K' € D=Gypy.

(b) If K € D?Gy or K' € D*Gy then K x K' € DGy .

(¢) If K € DGy or K' € D2Gy and j > 2a+p then (K« K') € DGy y.

We can assume that K = A€ CS, s, K'=A" € CS, . Let A” € M(Gs1y)
be a composition factor of (A * A’). By 6.2(c) we can find w -\ € cyg,
w' - X € cq such that (A : (R)\“"’S)"w) #0, (A" : (Rf,:s,)"w’) # 0. Then A
is a direct summand of RA“", <[nw] and A" is a direct summand of RA“",: o]

Hence A x A’ is a direct summand of
RY % RY/ Jla(w- \) +a(w' - X) + [w] + [w'| + 24]
and (A x A’)/ is a direct summand of

(R, % B g [[w] + [w| + 2v + 2p] )/ Folw ) ralel:A)vav
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H ' - Y l_)\l
= (L) * X (LY, oo o2
Using 6.15(b) we see that (A x A’)/ is a direct summand of
(d) (XL o 0 B (L)) Foled a2,

Hence A” is a composition factor of (d). Using 6.17(a) we see that A” €
CSos+s, that c4r < w - X and that c4r < w’' - N. In the setup of (a) we
have w - A < ¢ or w' - X =< ¢ hence cgyr < c. Thus (a) holds. Similarly,
(b) holds. In the setup of (¢) we have w- A < ¢ and w’' - X =< c. Hence
a(w-A) > a, a(w - N) > a. (See Q3 in 1.9.) Assume that cq» = c. Since

A" is a composition factor of (d), we see from 6.17(c) that
jtafw-AN)+alw - N)+2v<4da+2v+p
hence j + 2a + 2v < 4a+2v + p and j < 2a + p. This proves (c).
6.19. Let 8’ € Z¢. For K € C5G, K' € CSGy/, we set
KxK' = (K « K")?4r} e cG .

We say that KxK' is the truncated convolution of K, K’'. Note that 6.14(a)

induces for K, K’ € CSG a canonical isomorphism
(a) KxK' = K's((e*)*K).

Let L € C§Zy, K € CSG’S. Using the method of ﬂﬁ, 1.2] several times, we
see that

Kxx(L) = gri((K = x(L))*)(k/2)

where k = (a +v) + (2a+ p) =3a + v + p and

X(Lo¢(K)) = gr (x(L o C(K)*) (K /2)

where ¥ = (a+v)+ (a+v)+ (a+ p—v) =3a+ v+ p. Using now 6.15(a)
and the equality k = k/ we obtain

(b) Kxx(L) = x(Le{(K)).
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Let L € C§Z,, L' € C§Zy . Using the method of ﬂﬁ, 1.12] several times,

we see that

X(L)xx(L') = gril(u(L) * x(L)") (k/2)

where k = (a +v) + (a+v)+ (2a + p) = 4a + 2v + p and

X(L'eb"(L) = gry (x(L' o b"(L)))¥) (K /2)

where k' = (2a+2v)+ (a+p—v)+ (a+v) = 4a+2v+ p. Using now 6.15(b)
and the equality k = k&’ we obtain

() X(L)xx (L) = x(L'e(b"(L))).

We show (assuming that s, € Z¢ for h = 1,2, 3):

(d) For K € C$Gy,, K’ € C§Gy,, K" € CSGly, there is a canonical isomor-

phism (KxK")xK" = Kx(K'«K").

Indeed, just as in ﬂﬁ, 4.7] we can identify, using the method of ﬂﬁ, 1.12],
both (KxK')xK" and Kx(K'sK") with (K K’ x K")Ue+2e},

6.20. Let §',s" € Z. For K € D(Gy), K' € D(Ggr), we show:
(a) We have canonically ((K * K') = ((K') o ((K).
Let

Y = {(B,"Up,1.,%2); B € B,y € Gyi51, 1 € Gy, 72 € Gsn; 1172 € WUg}.

Define ji : Y = Gy, j2 : Y = Gor by j1(B,AUp,71,72) = 7,
J2(B;7UB,,72) = 72 Define j = Y — Zgyo by j(B,AUp,71,72) =
(B,yBy~1,4Ug). From the definitions we have ((K * K') = ji(ji(K) ®
J3(K')) = ((K') @ ((K); (a) follows.

Let s’ € Z¢. For K € D§(Gs), K' € D§(Gy), we show:
(b) We have canonically ((KxK") = ((K")o((K).
Using the method of ﬂﬂ, 1.12] we see that

((KxK") = gre((C(K * K')")(k/2)
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where k = (a +v) + (2a + p) = 3a + v + p and that

C(K)oC(K) = gr ((C(K) o (KN ) (K /2)

where ' = (a+p—v)+ (a+v) + (a+v) = 3a+ v + p. It remains to use
(a) and the equality k = k'

6.21. Let s’ € Z. Define h: Gy — G_g by v+~ ~y~L. For K € D(é_sz) we
set KT =h*K € D(Gy). We show:

(a) For L € D(Z_y) we have (x(L))" = x (L) with L' as in 4.2.

This follows from the definition of y using the commutative diagram

/

Zs/ Zs/ Ul és/

| ] g

Z*S/ Z‘*S/ il éisl

where f,m are as in 6.1, his as in 4.2 and b : Zy — Z_y is (B, B',7) —
(B', B,y ).
From (a) and 4.3(e) we see that, if w- A € I, °, then

H 1

(b) (VLY )T = XL ).

We deduce that
(c) if A€ CSec s, then Al € CSzs-
From (a), (c¢) we deduce:

(d) For L € C§Z_, we have (x(L))" = x (L") where the second x is relative

to €,07 ! instead of c,o0.

7. Equivalence of C°G, with the e®-centre of C°/32

7.1. In this section (except in 7.8) let c,0,a,n, ¥ be as in 3.1(a).

In this subsection we assume that s € Z.. Let u : CNLS — p be the obvious
map; let ¢ : p — G be the map with image {1}. From ﬂﬁ, 7.4] we see that



288 G. LUSZTIG [September

for K, K’ in M,,G_, we have canonically
(u(K @ K'))” = Hom s (D(K),K'), (u(K®K)) =0if j >0.

We deduce that if K, K’ are also pure of weight 0 then (u)(K @ K'))? is pure
of weight 0 that is, (u(K ® K'))° = gro(u(K ® K'))°. From the definitions
we see that we have u(K ® K') = ¢*(KT « K') where KT € M,,,(G) is as
in 6.21. Hence, for K’ in Cgé_s and K in Cgé_s (so that KT ¢ CS@S, see
6.21(c)) we have

(a) HomM(G’,S)(@(K%K/) _ (¢*(KT % K/))O _ (¢*(KT % K/)){O}_

Using ﬂﬁ, 8.2] with @ : D;LGO — Dimp, K1 — ¢*K1, ¢ = —2a — p (see ﬂﬂ,
6.8(a)]), K replaced by KT s K’ € D,,,(Go) and ¢ = 2a + p, we see that we

have canonically
(¢ (K1xK")) 72070}  (¢* (KT + K')){0.
In particular, if L € C§Z_g, L' € C§Zs, then we have canonically

(¢* (X(L)xx (L) € (¢ (L)) * x (1)1

Using the equality

(&* (L2 (D)) 2977 = ¢* (x(LeC (X(L))))) 2"

which comes from 6.19(b), we deduce that we have canonically

¢ (X(LeC(X(L)))) 727" (6" (x (L) * (L)1,

or equivalently, using (a) with K, K’ replaced by x(L' o, x(L),

¢" (x(Le¢(x(L')))~*7? C Homeeir (D(x(L)'), x(L))

= Hompgeg, (D(x(L)1), x(L))-

Using now ﬂﬂ, 6.9(d)] with L replaced by Le((x(L')) € C§Zy, we have
canonically

" (x(Leg(x(L))))7*~* = Homeez, (15, Le¢(x(L))).
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Thus we have canonically
Homeez, (1, Le¢(x (L)) € Homgeg (D(x (L)1), x(L))
or equivalently (using 5.8(a))
Homeez_, (D(C(X(L)N), L) € Homeeg, (D(x(L)1), x(L')).
Now we have

Homeez_ (D({(x(L')1), L) = Homge,_

hence
Homeez, ((D(L))",¢(x(L"))) € Homeeg (D(X(L)'), x(L'))-
We set 1L =D (L") = (D(L))" € C§Z, and note that
D(x(L)) =D(x(L) = x(D(L) = x('L),
see 6.21(d), 6.7(b). We obtain
(b) Homcez, ('L, ¢(x (L)) € Homeeg (x(*L), x(L'))
for any 1L, L’ in C§Zs. We show that (b) is an equality:
() Homeez, (L, ((x(L"))) = Homeeg (x("L), x(L')).

Let N’ (resp. N”) be the dimension of the left (resp. right) hand side of
(b). Tt is enough to show that N’ = N”. We can assume that 1L = ]Lf\/,75,
L' = Lis where z- A € ¢%, 2’ - N € ¢®. By 6.12(a), N’ is the multiplicity of
1L in b”(L'); by the fully faithfulness of € this is the same as the multiplicity
of &L in &b” (L) = b/(L') = b(L') (the last two equalities use 4.25(d) and
4.14(d)). By 4.13(d), this is the same as the multiplicity of L, in

69yeWyAECL E ))OLAOL o\
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Using now ﬂﬂ, 2.22(c)] we see that N’ is the coefficient of ¢,y in

Z tefs(y),efs(A)tz.)\ty—l,y()\) € H*.
yeW, y-A\ec

Hence if t : H* — Z is as in 1.9, then

N = > tltes(yre—s(nlerty—tyota—tn)-
yeW, y-A\ec

This can be rewritten as

N = Z t(te—s(y)-e_s()\l)tz~>\ty—1-y()q)tz/—l-z/()\/))'
y-A1€C

(In the last sum, the terms corresponding to y - A\; with A\; # \ are equal to
zero.) By 6.6(c) (with z - A, 2" - X interchanged) we have

N" = 3" tte=sgyo—s () teaby-1you)ta—1.00):
y-A1E€C

Thus, N’ = N”. This completes the proof of (c).

7.2. Let s, s’ € Ze. We define a bifunctor C¢G, x C°Gy — C°é5+sz denoted
by K,K' — KxK' as follows. By replacing if necessary ¥ in 7.1 by a
power, we can assume that any A € CSc, and any A € CS; ¢ admits a
mixed structure (defined in terms of W) of pure weight zero. Let K € CeG,,
K' € C°Gy; we choose mixed structures of pure weight 0 on K, K’ with
respect to W (this is possible by our choice of ¥). We define KxK' as in
6.19 in terms of these mixed structures and we then disregard the mixed
structure on KxK’'. The resulting object of C°é5+8/ is denoted again by

KxK'; it is independent of the choice made.

In the same way the functor x : C§Zs; — C§Gs gives rise to a functor
C¢Z, — C°G, denoted again by X; the functor ¢ : Cgés — C§Zs gives rise to
a functor C°G, — C°Z, denoted again by ¢.

The operation KxK' is again called truncated convolution. It has a

canonical associativity isomorphism (deduced from that in 6.19(d)); this

makes U Sezcccé s into a monoidal category.
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From 6.20 we see that under ¢ : usezcccc?s — Usez,C€Zs, the monoidal
structure on usezccccl*s is compatible with the opposite of the monoidal

structure on Ugez, C¢Zs.

If K € C°G then the isomorphisms 6.13(b) provide an e*-half-braiding
for &((K) € C°B? so that €s((K) can be naturally viewed as an object of
Z¢ denoted by €,((K). (Note that 6.13(b) is stated in the mixed category

but it implies the corresponding result in the unmixed category.) Then
K — €((K) is a functor C°Gy — ZS..

Theorem 7.3. Let s € Ze. The functor C°Gy — Z&

ess

K — &((K) is an

equivalence of categories.
From 6.12(a), 4.14(d), 4.25(d) we have canonically for any z - X € c*:

(a) esC(x(L3s) = b(L3 )

as objects of C°B2. From the definitions we see that the e®-half-braiding on
the left hand side of (a) provided by 7.2 is the same as the e®-half-braiding
on the right hand side of (a) provided by 4.14(j). Hence we have

(b) ésC(x(L3,)) = b(L3,)

as objects of Zg. Using this and 5.7(a) with L' = & (X(]Lg\”, )) (where

z-Aw- )\ are in c®), we have

Homgege (L, €C (X (LY 1)) = Homzg, (EC(X(L ), &C (X (LY, ,)))-

Combining this with the equalities

HomCCC:'S(X( i,s)’&( S\b/,s)) = HOchZS(LZ a((X(Lw
= Hompgep (L, &C (X (LY ),

of which the first comes from 6.10(c) and the second comes from the fully

faithfulness of €5, we obtain

Homgeg, (X(L,5), X (LY ;) = Homzg, (EC(xX(L3 ,)), & (x (LY )))-
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In other words, setting

Az-)\,w-)\/ = HomCCGS(X( )\,s)aX(L)\’,s))a
lz-)\,w-)\/ = HOH]Z:S (gSC(X(Liﬁ))’gSQ(X(LK}’ 3)))’

we have

(C) Az-)\,w-)\’ = A/z.)\7w.)\’-

Note that the identification (c) is induced by the functor K > &((K).
Let A = QA wx, Al = @A, wn (both direct sums are taken over all
z-A\,w-X in ¢®). Then from (c) we have A = A’. Note that this identification
is compatible with the obvious algebra structures of A, A’.

For any A € CS¢ s we denote by A 4 the set of all f € A such that for any
z- A\ w- N, the (z- A\, w-\)-component of f maps the A-isotypic component
of X(Li,s) to the A-isotypic component of X(L;{}', ;) and any other isotypic
component of X(Li,s) to 0. Thus, A = ®accs, A4 is the decomposition of
A into a sum of simple algebras. (Each A 4 is nonzero since, by 6.2(c) and

6.5(a), any A is a summand of some x (L5 ,).)

Let & be a set of representatives for the isomorphism classes of simple
objects of ZS.. For any o € & we denote by A’ the set of all f* € A’ such
that for any z-\,w- N, the (z- X, w-\)-component of f" maps the o-isotypic
component of €s§(x(L§'\7s)) to the o-isotypic component of €s£(x(Lq)‘;},’s))) and
all other isotypic components of &,¢ (X(Li,s)) to zero. Then A’ = G esAl
is the decomposition of A’ into a sum of simple algebras. (Each Al is
nonzero since any o is a summand of some €s£(x(Lis)) with z - A € ¢*.
Indeed, we can find z - A € ¢ such that Li is a direct summand of o, viewed
as an object of C°B?; then, by 5.5(a), o is a summand of Z,(L3). If in
addition, z - A € c* then, by 5.6(a),(b), we have Z,(L3) = Q(]Lis) hence
o is a summand of b(IL5 ,) hence, by (a), o is a summand of €((x(L5 ,)),
as required. If z -\ ¢ cs then, by 5.5(b), we have Z,(L5) = 0 which is
a contradiction.) Since A = A’, from the uniqueness of decomposition of

a semisimple algebra as a direct sum of simple algebras, we see that there
is a unique bijection CS¢ s <+ &, A <+ 04 such that Ay = A;A for any
A e CS¢ . From the definitions we now see that for any A € C'S¢ s we have

€s((K) = o4. Therefore, Theorem 7.3 holds.
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Theorem 7.4. We preserve the setup of Theorem 7.3. Let L € C®Zs,
K € C°Gy. We have canonically

(a) HochZS(L,g(K)) = Homccés(x(L),K).

We can assume that L = Li s Where z - A € ¢®. From 7.3 and its proof

we see that

Homge g, (x(L), K)=Homzg, (€:((x(L)), éC(K)) =Homzg, (Z,(L5), € (K)).

Using 5.5(a) we see that

Hom zg, (Zs(L3), &C(K) ) Hom e (LS, ¢ (K)) = Homeez, (L, ¢(K)).

This proves the theorem.

7.5. We preserve the setup of Theorem 7.3. We show that for K € C°G, we

have canonically

(a) D(C(D(K)))) = C(K).

Here the first ¢ is relative to ¢. It is enough to show that for any L € C°Z;

we have canonically
Homeez, (L, D(C(D(K))))) = Homeez, (L, ((K)).
Here the left side equals

Homge; (((D(K)),D(L)) = Homeeg (D(K), x(D(L)))
= Homgeg (D(K),D(x(L)))-

(We have used 7.4(a) for ¢ and 6.7(b).) The right hand side equals
HomccéS (X(L)’ K)= HomccéS (D(K), Q(X(L)))‘

(We have again used 7.4(a).) This proves (a).
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Theorem 7.6. Let s € Ze. Let K € CGy. In CB? we have

AK) = Banceron ot L0

where N(z,\) € N.
In C¢Z, we have
(a) CK) = @anee (L] )PV EN

where N(z,A) € N. If N(2,\) > 0 then

Homgez, (Lis, ((K))#0

[September

hence by 7.4 we have Hom g (X(Li,s)v K) # 0 and in particular X(Li,s) # 0.

Using 6.5(d) we deduce that

N~ oeS(z7) .
(b) = Alefte(z ) A

Thus the direct sum in (a) can be restricted to z - A satisfying (b). We now

apply € to both sides of (a) and use that €SL§78 = Li. The theorem follows.

7.7. Let s € Z.. From 7.3 and 7.6 we see that any object of ZSs, when

viewed as an object of C<B2, is a direct sum of objects of the form Li with

z- A € ¢® such that z - A o eS(z7h) - A
eft

In the remainder of this subsection we assume that G is as in case A

with G simple of type Ay (resp. By or G2). In this case W is generated

by o1,09 in S with relation (¢109)™ = 1 where m = 3 (resp. m = 4 or

m = 6). We assume that c is the two-sided cell of I consisting of all w - 1

where w € W, 1 < |w| < m — 1. We shall write L% instead of L]

GGG

where iji... is 121... or 212.... The objects of C°B? of the form €((K)

with K a simple object of C°G are (up to isomorphism) the following ones:

L' ¢ L? for type As;

L'a L2 L' @ L2212 & L2 L2 & 122 for type B

Ll D L2, Ll D L2 D L121 D L212, L2 D L121 D L212127

Ll D L212 D ]:1121217 L121 D L212 D L12121 D L21212, L121 D L212 for type GQ-
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Note that in type Go, L'?! @ L2 comes from two nonisomorphic objects K
of C°G.

7.8. In this subsection we assume that G is as in case A with G = SLo(k
and p # 2. In this case we may identify T = k* and W = {1,0} with o(t) =
t=! for t € T. We take 7 € G such that e : G — G in 2.3 satisfies e(t) =
for any t € T. Then for A € 5o = k* we have e(\) = A, o(\) = AL,
Let Ag be the unique element of s, such that )\% =1,) # 1. In H we have
cia = Tily for all A, con = v T,1, if A # 1, oy = v T,1 + v 1T,
It follows that the two-sided cells in I = {w - A\;w € W, \ € s} are the
following subsets of I:

cx=cy1={1-N1-A"1o-X\o- A1} with A € 55002 # 1;
C>\0 = {1 . )\070' . )\0};
cp ={o-1}
C1 = {1 . 1}
Let s € Z. The two-sided cells of I which are stable under e® are:
(i) cx = cy-1 where A € 50, A2 # 1, A7 ° = X (note that e® acts as 1 on
this two-sided cell);
(ii) €y = cy-1 where A\ € 55, A2 # 1, XY = A\7! (note that e® acts as

a fixed point free involution on this two-sided cell and that we have
necessarily s # 0);

iii) ¢y, (note that e® acts as 1 on this two-sided cell);
0

iv) ¢} (note that e® acts as 1 on this two-sided cell);
1

(v) c1 (note that e® acts as 1 on this two-sided cell).

For c in (i)-(v), the e®-centre of C°B? has exactly N simple objects (up
to isomorphism) where N = 1 in the cases (i), (ii), (iv), (v) and N =4 in
the case (iii).
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