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Abstract

A theorem of Swan describes the locally free class group of a maximal order in a

central simple algebra over a number field. Swan’s theorem was generalized by Curtis and

Reiner to separable algebras for both number fields and global function fields. The proof

given by Curtis and Reiner uses Algebraic K-Theory. Our motivation is to provide a proof

which works for both number fields and global function fields and which does not rely on

Algebraic K-Theory.

1. Introduction

A more precise title of this article is “Notes on locally free class groups

of orders in separable algebras over global fields”. A theorem of Swan states

that the locally free class group of a maximal order in a central simple al-

gebra over a number field is isomorphic to a restricted ideal class group of

the center; see [11, Theorem 1, p. 56] or Theorem 4. Fröhlich [5] generalized

Swan’s theorem for any separable algebra over a number field using the ade-

les. For separable algebras over global function fields, this result was limited

to those where the Eichler condition is satisfied; see [9, (35.14) Theorem

p. 313]. The Eichler condition in the function field case was removed later

by Curtis and Reiner; see [2, Theorem (49.32), p. 233]. This generalization is

more applicable to integral representations of finite groups. The proof given

by Curtis and Reiner uses Algebraic K-Theory while the original proof of

Swan, which is much shorter, does not. As the statements of Swan’s theorem

and its generalization apparently are not involved with Algebraic K-Theory,
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it is natural to have an Algebraic-K-Theory-free proof as Swan’s proof. This

was the motivation of these notes.

These notes are organized as follows. In Section 2, we introduce the

locally free class group of an R-order Λ in a separable K-algebra, for a

Dedekind domain R with fraction field K. The locally free class groups can

be defined in a more general setting. However, since results discussed here

will be restricted to the case of global fields, we do not attempt to discuss

its definition as general as possible. Instead, we illustrate the essential idea

of this notion.

In Section 3 we discuss the main theorem (Theorem 3) on locally free

class groups due to Curtis and Reiner. We then explain how Swan’s theorem

(Theorem 4) is deduced from the main theorem. The proof of Theorem 3

is given in Section 5, for which we follow closely the original proofs of Swan

and Fröhlich. The strong approximation theorem (SAT) plays the key role

in the proof and we give a short exposition in Section 4.

2. The Cancellation Law

Let us first motivate the notion of locally free class groups by the classical

theorem of Steinitz. Let R be a Dedekind domain with fraction field K and

assume that R 6= K. An R-lattice is a finite torsion-free R-module M ,

that is, M is isomorphic to a finite R-submodule in a (finite-dimensional)

K-vector space. We have the following well-known results concerning the

classification of R-lattices (cf. [1, Theorem (4.13), p. 85]):

(1) Every R-lattice M is R-projective, and M ≃ ⊕n
i=iJi for some non-zero

ideals Ji of R, where n is the R-rank of M .

(2) Two R-lattices M = ⊕n
i=iJi and M ′ = ⊕m

i=iJ
′
i of the form in (1) are

isomorphic if and only if n = m and the products J1 · · · Jn and J ′
1 · · · J

′
n

are isomorphic.

From the statement (2) one can easily deduce the following result: If M

and M ′ are two R-lattices, then we have

M ⊕R ≃ M ′ ⊕R ⇐⇒ M ≃ M ′ (2.1)

The property (2.1) is called the cancellation law.
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As is well known, a useful and easier way of studying rings is to study

their modules, instead of studying their underlying ring structures. Based

on this idea, the cancellation law then allows us to distinguish certain rings

which share the same good properties. For example, consider the quaternion

Q-algebras Bp,∞, which are those ramified exactly the two places {p,∞} of

Q, for various primes p. Choose a maximal order Λ(p) in each Bp,∞, that

is, Λ(p) is not strictly contained in another Z-order in Bp,∞. Then one can

show that the cancellation law for ideals of Λ(p) holds true if and only if

p ∈ {2, 3, 5, 7, 13}. We will also give a proof of this fact (Proposition 5).

Now let Λ be an (not necessarily commutative) R-algebra which is

finitely generated as an R-module. The above example shows that the can-

cellation law for (right) projective Λ-modules need not hold in general. In

Mathematics, we often encounter a situation that a desired nice property

turns out to be impossible. In that situation one usually introduces a more

flexible notion so that the desired nice property remains valid in the slightly

weaker setting. For the present case, one can for example consider the fol-

lowing weaker equivalence relation:

Define M ∼ M ′ if M ⊕ Λr ≃ M ′ ⊕ Λr for some integer r ≥ 0. (2.2)

Then it follows obviously from the definition that the cancellation law holds

true for this new equivalence relation, that is, we have

M ⊕ Λ ∼ M ′ ⊕ Λ ⇐⇒ M ∼ M ′. (2.3)

Two modules M and M ′ satisfying the property (2.2) are said to be stably

isomorphic.

The reader who is familiar with algebraic topology would immediately

recognize that the way of defining a “stable” notion here is similar to that in

the definition of stable homotopy groups. This is also similar to that in the

definitions of stable freeness and stable rationality. These are reminiscent of

the definition of groups K0 and K1 in Algebraic K-theory using an inductive

limit procedure.
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3. Locally Free Class Groups

For the remainder of this article we assume that the ground field K is

a global field; that is, K is a finite extension of Q or Fp(t). Thus, R is

the ring of S-integers of K for a non-empty finite set of places S containing

all archimedean ones, if any. Let A denote a finite-dimensional separable

K-algebra. In other words, A is a finite-dimensional semi-simple K-algebra

such that the center C of A is a product of finite separable field extensions

Ki of K. Recall that an R-order in A is an R-subring of A which is finitely

generated as an R-module and generates A over K. We let Λ denote an R-

order in A. A Λ-lattice M is an R-torsion free finitely generated Λ-module.

Example. Let G be a finite group with charK ∤ |G|. Then the group algebra

A = KG is a separable K-algebra. We can see this by Maschke’s Theorem

(cf. [1, Theorem 3.14, p. 42]): Every finite-dimensional representation of G

over K is a direct sum of irreducible representations. Then by definition

KG is a semi-simple K-algebra. Applying Maschke’s Theorem again to an

algebraic closure K of K, we see that the algebra K ⊗K KG = KG is also

semi-simple. Therefore, A is a separable K-algebra. Clearly, the group ring

Λ = RG is an R-order in A, and any representation M of G over R is a

Λ-lattice.

For any integer n ≥ 1, denote by LFn(Λ) the set of isomorphism classes

of locally free right Λ-modules of rank n. Two locally free right Λ-modules

M and M ′ are said to be stably isomorphic, denoted by M ∼s M
′, if

M ⊕ Λr ≃ M ′ ⊕ Λr

as Λ-modules for some integer r ≥ 0. The stable class of M will be denoted

by [M ]s, while the isomorphism class is denoted by [M ]. By a Λ-ideal we

mean a Λ-lattice in A, that is, it is an R-lattice which is also a Λ-module.

Let Cl(Λ) denote the set of stable classes of locally free right Λ-ideals in A.

The Jordan-Zassenhaus Theorem (cf. [1, Theorem 24.1, p. 534]) states that

LF1(Λ) is a finite set, and hence so the set Cl(Λ) is. We define the group

structure on Cl(Λ) as follows. Let J and J ′ be two locally free Λ-ideals.

Define

[J ]s + [J ′]s = [J ′′]s, (3.1)
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where J ′′ is any locally free Λ-ideal satisfying

J ⊕ J ′ = J ′′ ⊕ Λ (3.2)

as Λ-modules. Such a Λ-ideal J ′′ always exists and we will see this in Sec-

tion 5.

Lemma 1. The finite set Cl(Λ) with the binary operation defined in (3.1)

forms an abelian group.

Proof. By (3.2), the commutativity holds true. We prove the associativity.

Let J1, J2, J3 be three locally free ideals of Λ. Suppose we have [J1]s+[J2]s =

[J ′]s and [J ′]s + [J3]s = [J ′′]s. Then

(J1 ⊕ J2)⊕ J3 ≃ Λ⊕ J ′ ⊕ J3 ≃ J ′′ ⊕ Λ2.

Similarly if [J2]s+[J3]s = [G′]s and [J1]s+[G′]s = [G′′]s, then J1⊕(J2⊕J3) ≃

G′′ ⊕ Λ2. This shows [J ′′]s = [G′′]s and the associativity holds true. ���

Definition 2. The group Cl(Λ) with group law defined as in (3.1) is called

the locally free class group of Λ.

We introduce some more notation. Denote by C the center of A. One

has C =
∏s

i Ki and A =
∏s

i Ai, where each Ai is a central simple algebra

over Ki. For any place v of K, let Kv denote the completion of K at v,

and Ov the valuation ring if v is non-archimedean. We also write Rv for Ov

when v 6∈ S. Let Av := Kv ⊗K A, Cv := Kv ⊗K A and Λv := Rv ⊗R Λ be

the completions of A, C and Λ at v, respectively. By a place w of C we

mean a place w of Ki for some i; we say that the algebra A splits (resp. is

ramified) at the place w of C if Ai splits (resp. is ramified) at the place w.

Let R̂ =
∏

v 6∈S Rv be the profinite completion of R, and let K̂ = K ⊗R R̂ be

the finite S-adele ring of K; one also writes AS
K for K̂. Put Â := K̂ ⊗K A,

Ĉ := K̂ ⊗K C and Λ̂ := R̂⊗R Λ =
∏

v 6∈S Λv.

It is a basic fact that the set LF1(Λ) is isomorphic to the double coset

space A×\Â×/Λ̂×. There is a natural surjective map

LF1(Λ) → Cl(Λ) (3.3)

by sending [J ] 7→ [J ]s. Let NAi/Ki
: Ai → Ki denote the reduced norm

map. It induces a surjective map Ni : Â
×
i → K̂×

i because the norm map
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Ai ⊗Kv → Ki ⊗ Kv is surjective for any finite place v of K. The reduced

norm map N : A =
∏

i Ai → C =
∏

i Ki is simply defined as the product

N = (NAi/Ki
)i. Then we have a surjective map N : Â× → Ĉ×, and it gives

rise to the surjective map (again denoted by)

N : LF1(Λ) ≃ A×\Â×/Λ̂× → N(A×)\Ĉ×/N(Λ̂×). (3.4)

We will see that N(A×) = C×
+,A, where

C×
+,A := {a ∈ C×| r(a) > 0 for all real places r ramified in A }. (3.5)

The main theorem for the locally free class groups is as follows [2, Theorem

(49.32), p. 233].

Theorem 3 (Curtis-Reiner). The map (3.4) factors through LF1(Λ) →

Cl(Λ) and it induces an isomorphism of finite abelian groups

ν : Cl(Λ) ≃ K̂×/C×
+,AN(Λ̂×). (3.6)

We now describe Swan’s theorem on locally free class groups. Assume

that A is a central simple algebra and Λ is a maximal R-order in A. Define

the ray class group ClA(R) of K by

ClA(R) := I(R)/PA(R), (3.7)

where I(R) be the ideal group of R and PA(R) be the subgroup generated

by the principal ideals (a) for a ∈ K×
+,A. Here K×

+,A ⊂ K× is the subgroup

of K× defined as (3.5). In terms of the adelic language, the group ClA(R)

is nothing but the group K̂×/K×
+,AR̂

×.

Theorem 4 (Swan [11]). Let K be a global field and R the ring of S-integers

of K for a non-empty finite set of places S containing all archimedean ones.

Let A be a central simple algebra and Λ a maximal R-order in A. Then

theres is an isomorphism of finite abelian groups Cl(Λ) ≃ ClA(R).

To see Theorem 4 is an immediate consequence of Theorem 3, we just

need to check that N(Λ×
v ) = R×

v for v 6∈ S (Λv here is a maximal Rv-order).

It is known that there exists a maximal subfield E ⊂ Av which is unramified

over Kv . Since any two maximal orders in Av are conjugate, Λv contains
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a copy of the ring of integers OE of E. As E is unramified over Kv, the

successive approximation shows that NE/Kv
(O×

E) = R×
v . It follows that

N(Λ×
v ) = R×

v .

Proposition 5. Let Bp,∞ be the quaternion Q-algebra ramified exactly at

{p,∞}, and Λ(p) a maximal order in Bp,∞ with a prime p. be as in Section 2.

Then the cancellation law for ideals of Λ(p) holds true if and only if p ∈

{2, 3, 5, 7, 13}.

Proof. The cancellation law holds if and only if the map LF1(Λ(p)) →

Cl(Λ(p)) is bijective. By Swan’s theorem, the locally free class group Cl(Λ(p)) ≃

ClBp,∞
(Z) is trivial. Thus, the cancellation law holds true if and only if the

class number h(Λ(p)) = |LF1(Λ(p))| is one. On the other hand we have the

class number formula [3]

h(Λ(p)) =
p− 1

12
+

1

3

(
1−

(
−3

p

))
+

1

4

(
1−

(
−4

p

))
, (3.8)

where
(

·
p

)
denotes the Legendre symbol. From this one easily sees that

h(Λ(p)) = 1 if and only if p ∈ {2, 3, 5, 7, 13}. ���

Remark 6. The cancellation law has been investigated by Vignéras [15]

for general definite quaternion algebras over totally fields F . She showed

that the cancellation law holds only when [F : Q] < 33 and that there

are only finitely many orders can occur. The bound of degree was reduced

significantly to 6 by Hallouin and Marie [6] and they gave a complete list of

all definite Eichler orders that satisfy the cancellation property. The list is

re-examed by Smertnig [10] due to an overlook on Vignéras’ criterion.

For the remainder of this section we give a proof of the following basic

fact.

Lemma 7. Let A is a separable K-algebra and C its center. Then N(A×) =

C×
+,A.

Proof. Since A =
∏

iAi and C×
+,A =

∏
iK

×
i,+,Ai

, it suffices to showN(A×) =

K×
+,A for any central simple K-algebra A. We can use the Hasse-Schilling

norm theorem (the local-global principle for the reduced norm map) to de-

scribe N(A×):

N(A×) = {x ∈ K×;x ∈ N(A×
v ) ∀ v};
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see [9, (32.9) Theorem, p. 275] and [9, (32.20) Theorem, p. 280]. Clearly

N(A×
v ) = K×

v when v is complex, non-archimedean, or a real split place for

A. It remains to show that if v is a real ramified place for A, then one has

v(a) > 0 if and only if a ∈ N(A×
v ). This is given in the next lemma. ���

Lemma 8. Let H be the real Hamilton quaternion and n ∈ N. Then

N(GLn(H)) = R+.

Proof. We give two proofs of this result. One is topological and the other

one is algebraic. The algebraic proof will be given in Lemma 9.

Since GLn(H)) contains the subgroup {diag(1, . . . , a) | a ∈ H×}, one has

N(GLn(H)) ⊃ N(H×) = R+. Thus, it suffices to show the other inclusion

N(GLn(H)) ⊂ R+.

Note that the set GLn(H)ss ⊂ GLn(H) of semi-simple elements is open

and dense in the classical topology. By continuity it suffices to show N(x) >

0 for any x ∈ GLn(H)ss. Since any such x is contained in a maximal commu-

tative semi-simple subalgebra, which is isomorphic to Cn, we have N(x) > 0

for x ∈∈ GLn(H)ss. ���

Lemma 9. Let D be a central division algebra over any field K and n ∈ N.

Then N(GLn(D)) = N(D×).

Proof. We give two proofs of this result. The first one relies on the existence

of the Dieudonné (non-commutative) determinant (cf. [1, p. 165]). As in

Lemma 8, it suffices to show N(GLn(D)) ⊂ N(D×). The reduced norm

map N : D× → K× factors through the map nr : D# → K×, where D# :=

D×/[D×,D×]. Then there is a group homomorphism (called the Dieudonné

determinant)

det : GLn(D) → D#,

such that N(a) = nr(det a), ∀ a ∈ GLn(D). It follows that N(GLn(D)) ⊂

N(D×).

Recall an elementary matrix in Matn(D) is a matrix E = (eij) whose

diagonal entries eii are 1 and off diagonal entries eij (i 6= j) are all 0 except

for one. Let En(D) ⊂ GLn(D) be the subgroup generated by all elementary

matrices. Using the row and column reductions, for any X ∈ GLn(D),

there are elements P,Q ∈ En(D) such that PXQ = diag(a1, . . . , an), where
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ai ∈ D×. It is easy to show that elements diag(a, a−1, 1, . . . , 1) are contained

in En(D). Thus, the group GLn(D) is generated by En(D) and the subgroup

{diag(1, . . . , 1, a) | a ∈ D×}. Since N(En(D)) = 1, we get N(GLn(D)) =

N(D×). ���

Remark 10. One can show a slightly stronger result of Lemma 8 that the

Lie group GLn(H) is connected. The kernel G1 of the reduced norm map

N : GLn(H) → R× is the group of R-points of a connected, semi-simple

and simply connected algebraic R-group. Thus, G1 is connected. Then the

fibers of the reduced norm map N are all connected as they are principal

homogeneous spaces under G1. As the image of the map N is also connected

(Lemma 8), the Lie group GLn(H) is connected.

4. Strong Approximation

In this section we give a short exposition of the strong approximation

theorem, which serves as the key ingredient in the proof of Theorem 3. We

keep the notation of Section 3. In particular K denotes a global field and S

is a non-empty finite set of places of K.

Recall that a connected semi-simple algebraic group G over a field k is

said to be simply connected if there is no finite surjective homomorphism

f : G′ → G whose kernel is non-trivial.

Theorem 11 (The strong approximation theorem). Let G be a connected,

semi-simple and simply connected algebraic group over K. Suppose that

(∗) G does not contain any K-simple factor H such that the topological group

HS :=
∏

v∈S H(Kv) is compact.

Then the group G(K) is dense in G(AS
K).

Proof. See Kneser [7] when K is a number field and Prasad [8] when K is

a global function field. The results were proved based on the validity of the

Hasse principle, i.e. the map

H1(K,G) →
∏

v

H1(Kv, G)
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is injective. The Hasse principle was known to hold for any simply-connected

group at that time except possibly for those of type E8. The last case (type

E8) was finally completed by Chernousov in 1989. ���

The strong approximation theorem is a strong version of “class number

one” result.

Corollary 12. Let G be as in Theorem 11 satisfying the condition (∗) and

assume that S contains all archimedean places of K. Then for any open com-

pact subgroup U ⊂ G(AS
K), the double coset space G(K)\G(AS

K)/U consists

of a single element.

Let A, C and R be as in Section 3. Now we let G and C× denote

the algebraic groups K associated to the multiplicative groups of A and C,

respectively. For any commutative K-algebra L, one has

G(L) = (A⊗K L)×, C×(L) = (C ⊗K L)×.

We denote again by N : G → C× the homomorphism of algebraic K-groups

induced by the reduced norm map N : A → C, and let G1 := kerN denote

the reduced norm-one subgroup. It is easy to see that the base change

G1 ⊗K is a finite product of simple groups of the form SLm, and hence G1

is semi-simple and simply connected.

Recall that A is said to satisfy the Eichler condition with respect to S,

if for any simple factor Ai of A there is one place w of the center Ki over

some place v in S such that the completion Ai,w at w is not a division Ki,w-

algebra. Another way to rephrase the last condition for Ai is that the kernel

of the reduced norm map

NAi/Ki
:
∏

v∈S

(Ai ⊗Kv)
× →

∏

v∈S

(Ki ⊗Kv)
×

is not compact. In other words, the algebra A satisfies the Eichler condition

with respect to S (also denote A=Eichler/R, where R is the ring of S-

integers of K) if and only if the reduced norm-one subgroup G1 satisfies the

condition (∗) in Theorem 11. In particular, we have the following special

case of Theorem 11 for G1.
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Theorem 13. Let A be a separable K-algebra and G1 the associated reduced

norm-one subgroup defined as above. If A satisfies the Eichler condition with

respect to S, then G1(K) is dense in G1(A
S
K).

Theorem 13 is what we use in the proof of Theorem 3. WhenK is a num-

ber field, this is the first case of the strong approximation theorem, proved

by Eichler [4]. Swan [13] gives a more elementary proof of this theorem.

Lemma 14. Suppose that A=Eichler/R, and let U be an open compact

subgroup of G(AS
K) = Â×. Then the induced surjective map

N : G(K)\G(AS
K)/U → N(G(K))\Ĉ×/N(U) (4.1)

is also injective.

Proof. Let ĉ ∈ Ĉ× be an element and ĝ ∈ Â× with N(ĝ) = ĉ. Then the

fiber of the class [ĉ] is

N−1([ĉ]) = G(K)\G(K)G1(A
S
K)ĝU/U. (4.2)

If x1, x2 ∈ G1(A
S
K) be two elements, then

G(K)x1ĝU = G(K)x2ĝU ⇐⇒ G1(K)x1(ĝU ĝ−1) = G1(K)x2(ĝU ĝ−1).

(4.3)

Thus, we get a surjective map

G1(K)\G1(A
S
K)/G1(A

S
K)∩ ĝU ĝ−1 → G(K)\G(K)G1(A

S
K)ĝU/U = N−1([ĉ]).

(4.4)

As we know the source of (4.4) consists of one element (Corollary 12), the

fiber N−1([c]) also consists of one element. ���

5. Proof of Theorem 3

For any integer n ≥ 1 and any ring L not necessarily commutative, let

Matn(L) denote the matrix ring over L, and let GLn(L) denote the group of

units in Matn(L). Let Nn : Matn(A) → C be the reduced norm map, which

induces a surjective homomorphism Nn : GLn(Â) → Ĉ×. For any integer
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r ≥ 1, let Ir ∈ Matr(Z) be the identity matrix. Let ϕr : GLn → GLn+r be

the morphism of algebraic groups which sends

a 7→ ϕr(a) =

(
a

Ir

)
.

Clearly any locally free right Λ-module M of rank n is isomorphic to a

Λ-submodule in An. Therefore, the set LFn(Λ) is in bijection with the set

of global equivalence classes of the genus of the standard lattice Λn in An.

The latter is naturally isomorphic to GLn(A)\GLn(Â)/GLn(Λ̂). If n ≥ 2,

then by Lemma 14 the induced map

Nn : GLn(A)\GLn(Â)/GLn(Λ̂)
∼

−→ Ĉ×/Nn(GLn(A))Nn(GLn(Λ̂)) (5.1)

is a bijection.

Lemma 15. We have

Ĉ×/Nn(GLn(A))Nn(GLn(Λ̂))= Ĉ×/N(A×)N(Λ̂×)= Ĉ×/C×
+,AN(Λ̂×).

(5.2)

Proof. We have seen in Lemma 7 that Nn(GLn(A)) = N(A×) = C×
+,A. We

now prove Nn(GLn(Λv)) = N(Λ×
v ) for v 6∈ S since the statement is local.

The group GLn(Λv) contains as a subgroup the group En(Λv) of elementary

matrices with values in Λv. Since Λv is semi-local, we have a result of Bass

[12, Proposition 8.5] that GLn(Λv) is generated by the subgroup En(Λv) and

the image ϕn−1(GL1(Λv)). Since En(Λv) is contained in the kernel of Nn,

we have Nn(GLn(Λv)) = Nn(ϕn−1(Λ
×
v )) = N(Λ×

v ). ���

For any integer r ≥ 1, we say two locally free right Λ-ideals J and J ′

are r-stably isomorphic if J ⊕Λr ≃ J ′ ⊕Λr as Λ-modules. Let ĉ ∈ Â× be an

element such that ĉΛ = J ; we have ϕr(ĉ)Λ
r+1 = J ⊕ Λr.

The morphism ϕr induces the following commutative diagram:

A×\Â×/Λ̂× ϕr
−−−−→ GLr+1(A)\GLr+1(Â)/GLr+1(Λ̂)

N

y Nr+1

y

Ĉ×/C×
+,AN(Λ̂×)

id
−−−−→ Ĉ×/C×

+,AN(Λ̂×),

(5.3)
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where the reduced norm map Nr+1 is known be a bijection. Two isomor-

phism classes [J ] and [J ′] in A×\Â×/Λ̂× are r-stably isomorphic if and only

if ϕr([J ]) = ϕr([J
′]). As Nr+1 is an isomorphism, this is equivalent to

N([J ]) = N([J ′]). The latter condition is independent of r. Therefore, we

conclude the following statement.

Lemma 16. Let J and J ′ be two locally free right Λ-ideals. The following

statements are equivalent.

(1) J and J ′ are stably isomorphic.

(2) J and J ′ are r-stably isomorphic for some r ≥ 1.

(3) J and J ′ are r-stably isomorphic for all r ≥ 1.

(4) One has N([J ]) = N([J ′]) in K̂×/C×
+,AN(Λ̂×).

Thus, the reduced norm map N induces an isomorphism

ν : Cl(Λ) ≃ Ĉ×/C×
+,AN(Λ̂×). (5.4)

We now check that ν is a group homomorphism. Let J and J ′ be two

locally free Λ-ideals. Let ĉ and ĉ′ be elements in Â× such that ĉΛ = J and

ĉ′Λ = J ′. Put J ′′ := ĉĉ′Λ. We claim that

(a) J ⊕ J ′ ≃ J ′′ ⊕ Λ as Λ-modules;

(b) ν([J ]s)ν([J
′]s) = ν([J ′′]s).

Statement (a) follows from

[
ĉĉ′ 0

0 1

]
· Λ2 = J ′′ ⊕ Λ, and N2

([
ĉĉ′ 0

0 1

])
= N2

([
ĉ 0

0 ĉ′

])

in Ĉ×/C×
+,AN(Λ̂×). Statement (b) follows from

ν([J ]s)ν([J
′]s) = N([ĉ])N([ĉ′]) = N([ĉĉ′]) = ν([J ′′]s).

This completes the proof of Theorem 3.
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15. Vignéras, Marie-France, Simplification pour les ordres des corps de quaternions to-
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