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Abstract

Let G be a reductive connected group over an algebraic closure of finite field. In
this paper we give the classification of character sheaves on G in categorical terms (as
a categorical centre). Previously such a classification was known for unipotent character

sheaves and in the case where the ground field is replaced by the complex numbers.

0. Introduction

0.1. Let k be an algebraically closed field of characteristic p > 0 and let G
be a reductive connected group over k. We fix a prime number [ different
from p. The theory of character sheaves developed in ﬂﬂ] and its sequels as-
sociates to G a collection of simple perverse Q;-sheaves on GG which in many
respects mimic the irreducible representations of the finite Chevalley groups
of the same type as G. The classification of character sheaves was given
in ﬂﬂ] A few years ago, Bezrukavnikov, Finkelberg and Ostrik E] gave a
less computational (and more categorical) approach to the classification of
character sheaves assuming that the centre of GG is connected and that p = 0.
For applications to the study of finite Chevalley groups it was desirable to
include the case when p > 0, but it was not clear how to do that by the
method of E] which relied on certain results on Harish-Chandra modules
that are not available when p > 0. In ﬂ2__4|], I found a way to obtain the
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classification of unipotent character sheaves in categorical terms assuming
that p > 0, using a functor (truncated restriction) whose definition was dif-
ferent from that in E], moreover, in ﬂﬁ], I extended this to a classification of
unipotent representations of a finite Chevalley group in categorical terms. In
this paper I will extend the method of ﬂZ_AI] to obtain the classification of not
necessarily unipotent character sheaves of GG in categorical terms assuming
that p > 0.

0.2. Notation. In the rest of this paper k is an algebraic closure of the finite
field F, with ¢ elements. All algebraic varieties are over k. We denote by p
the algebraic variety consisting of a single point. For an algebraic variety X
we write D(X) for the bounded derived category of constructible Q;-sheaves
on X. Let M(X) be the subcategory of D(X) consisting of perverse sheaves
on X. For K € D(X) and i € Z let H'K be the i-th cohomology sheaf of K
and let K* be the i-th perverse cohomology sheaf of K; if z € X, let HLK
be the stalk of H'K at x. Let ®(K) be the Verdier dual of K. If X has a
fixed F ;-structure Xy, we denote by D,,(X) what in H, 5.1.5] is denoted by
Db (X0, Q).

Note that if K € D,,(X) then K can be viewed as an object of D(X)
denoted again by K. If K € D,,(X) is a perverse sheaf and h € Z, we
denote by gry(K) the subquotient of pure weight h of the weight filtration
of K. If K € D, (X) and i € Z we write K (i) = K[i](i/2) where [i] is a shift
and (i/2) is a Tate twist; we write K1 = gr;(K%)(i/2). If K is a perverse
sheaf on X and A is a simple perverse sheaf on X we write (A : K) for the

multiplicity of A in a Jordan-Holder series of K.

Assume that C' € D,,(X) and that {Cj;i € I} is a family of objects
of D, (X). We shall write C = {Cj;i € I} if the following condition is
satisfied: there exist distinct elements 1,9, ...,7s in I, objects C]’~ € D (X)
(j =0,1,...,s) and distinguished triangles (C}_;,C7,C;;) for j =1,2,...,s
such that Cf = 0, C., = C; moreover, C; = 0 unless i = i; for some j € [1, s].

(See [2d, 32.15].)

Let A = Z[v,v!] where v is an indeterminate. Let : A — A be the
ring homomorphism such that v™ = v=™ for any m € Z. If f € Q[v,v™!]

and j € Z we write (j; f) for the coefficient of v/ in f.
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Let B be the variety of Borel subgroups of G. For any B € B let Ug be
the unipotent radical of B. In this paper we fix B € B and a maximal torus T
of Bjlet U=Ug. Let v =dimU =dim B, p =dim T, A = dim G = 2v+p.

For any algebraic variety X let £ = £x = aQ; € D(X) where « :
X x T — X is the obvious projection. When X is defined over F,, £ is
naturally an object of D,,(X).

Unless otherwise specified, all vector spaces are over Q;; in particular all
representations of a finite group I' are assumed to be in (finite dimensional)

Q-vector spaces. Let ModI" be the category of representations of I'.

0.3. We now discuss the content of various sections in some detail. The
main difference between ﬂﬂ] and the present paper is that the study of G-
equivariant sheaves on B x B is replaced by that of monodromic sheaves that
is, certain G-equivariant sheaves on B2 = G/U x G/U. The role that the
Hecke algebra played in ﬂﬂ] is now played by a monodromic analogue H of
the Hecke algebra which was introduced (as an endomorphism algebra of the
representation of a Chevalley group over F, induced by the unit represen-
tation of a Sylow p-subgroup) by Yokonuma M] in 1967. In Section 1 we
recall from [20] various notions for H that were known earlier for ordinary
Hecke algebras: the canonical basis, the left cells, the two-sided cells, the
a-function, the asymptotic version. (Something close to the canonical basis
of H and its connection to intersection cohomology was already discussed
in ﬂa, Ch.1].) A key role in our discussion is the fact (see [20]) that H is
a matrix ring over an ordinary extended Hecke algebra. In Section 2 we
study the G-equivariant sheaves on B2 with monodromy of finite order di-
viding a fixed number n; we define truncated convolution of such sheaves,
see 2.24. This differs from the non-monodromic case since it now involves
direct images with compact support of non-proper maps, which makes the
analysis more complicated. In this section and in the subsequent ones we
refer several times to two technical lemmas m, 1.12] and m, 8.2] but we
apply them in various cases which, although not explicitly contained in those
references, are proved just as in the references. In Section 3 we define trun-
cated convolution of G-equivariant sheaves on Z = T\B? with monodromy
of order dividing n. Most of this section is concerned with the study of a
functor b (see 3.13) from sheaves on Z to sheaves on B2 and its truncated
version. In Section 4 we discuss the unit object and rigidity of the truncated
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monoidal category C<B?2 of sheaves on B2 associated to a two-sided cell ¢ in
H. In Section 5 we define truncated induction from a certain category of
sheaves C¢Z on Z associated to a two-sided cell ¢ of H to a certain category
of sheaves C°G on G associated to ¢ and we define truncated restriction go-
ing in the opposite direction. We also define truncated convolution in C°G.
In Section 6 we show (Theorem 6.13) that truncated restriction provides an
equivalence of monoidal categories between C°G and the categorical centre
of C°B2. To do this we first prove a weak form of the adjunction between
truncated induction and truncated restriction. The adjunction is proved in
full only as a consequence of Theorem 6.13. Another consequence of Theo-
rem 6.13 is that the character sheaves of G associated to c are in bijection
with the simple objects of the categorical centre of C<B2.

Contents

1. Study of the algebra H.

2. Truncated convolution of sheaves on B2.

3. Sheaves on the variety Z.

4. The monoidal category C<B2 and its centre.

5. Truncated induction, truncated restriction, truncated convolution on G.

6. The main results.

1. Study of the Algebra H

1.1. Let NT be the normalizer of T in G, let W = NT/T be the Weyl
group and let k : NT — W be the obvious homomorphism. For w € W we
set Gy = Br1(w)B so that G = U,Gy; let O = {(zBz~1,yBy 1)z €
G,y € G,x7 'y € Gy} so that B x B = U,O,. For w € W let Gy, be
the closure of G, in G; we have G, = Uy<wGy for a well defined partial
order < on W. Let O, be the closure of O, in B2 Now W is a (finite)
Coxeter group with length function w — |w| = dim O,, — v and with set of
generators S = {s € W;|s| = 1}. Tt acts on T by w : t — w(t) = wtw !
where w € £~ 1(w).
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1.2. Let s € S. Let U be the unique root subgroup of U with respect to
T such that Uy := cUso ! ¢ U for some/any o € k !(s). For any & €
U,—{1} thereis a unique n € Uy —{1} such that {&né = nén € k~1(s) C NT;
we set ¢ = {n§ = n&n. We have O'g = 1. Note that £ — n is an isomorphism
of algebraic varieties Uy — {1} S Uy — {1}.

1.3. Following Tits we define a cross-section W — NT, w — w of K :
NT — W as follows. For each s € S we choose { € Uy — {1}. Let
w € W. We write w = s182...8, where s; € S, r = |w| and we set

W= o0¢, Og, O¢,, ...0¢, € k1 (w). Tt is known that 1 is independent of the

S

choice of s1, 89, ...,s.. Clearly, if w,w’ € W satisfy |ww'| = |w| 4 |[w'], then

(ww') = wu'.

1.4. In this paper we fix an integer n > 1 such that n # 0 in k. Let
T, = {t € T;t" = 1}, s = Hom(T,,Q}). We have 4(T,) = #(s) = n’.
Define ¢ : T — T by t — t"; clearly, 1/Q; is a local system on T, equivariant
for the T-action t; : ¢ — t7t on T, hence T, acts naturally on each stalk of
1Q;. We have 1/Q; = @yesLy, where for any A\ € s, Ly (a local system of
rank 1 on T) is such that T,, acts on each stalk of L) through the character
A

The W-action on T restricts to a W-action on T,, hence induces a W-
action on 5. We shall write Ws instead of W x s (without group structure);
for w € W, \ € s we shall write w - A instead of (w, ). The following result
can be deduced from ﬂﬁ, 28.2(a)].

(a) If w- X € Ws and w(\) = X then Ly is T-equivariant for the T-action
t:t' = wt) Wt onT.

1.5. Let 7 € T. We define g, : T — T by ¢t — 7t. We show that for
A € s, the local systems ¢gFLy, Ly are isomorphic. More precisely, we show
that any 7/ € T such that 7" = 7 defines an isomorphism of local systems
g*Lyx = Ly. The induced map (g:Ly)¢ = (Ly)rt Ty (Ly): on stalks at any
t € T can be described as follows. We have

(La)e = { f 07 (t) = Qus f (tat') = M) f(t1) YVt € 1 (t), ' € Ty},
(L))t = {f 107 1t) = Qi f'(tat)) = ME) [/ (t2)Vts € 1 (78), ¥ € Ty}
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We have ¢,/ 4(f) = f" where for any to € .= (7t) we have f'(t2) = f(7/~t2).

1.6. For any root o : T — k* we denote by & : k* — T the corresponding

coroot and by s, the corresponding reflection in W.

Let A € 5. Let Ry be the set of roots o : T'— k* such that A(d(z)) =1
for all z € k*, 2" = 1. Let W), be the subgroup of W generated by {sq;a €
R\}. We have Wy = W,-1. Let W\ = {w € W;w(\) = A\}. Note that
Wy C WJ{. There is a unique Coxeter group structure on W) with length
function Wy — N, w +— |w|y such that, if w € W) and w = s1s2... s, is any

reduced expression of w in W, then

(a) |w|y = card{i € [1,7]; 8y ... 8i+18iSit1-..Sr € Wi}
See ﬂl_AI, 5.3].

1.7. Asin @, 31.2], let H,, be the associative A-algebra with with genera-
tors Ty(w € W), 1x(\ € s) and relations:

Ixly = Gynly for A, N €5
TwTy = Ty if w,w’ € W and |ww'| = |w| + |w'];
Tyly = 1yoTw for w € WA € s
T? = v*Ty + (v* = 1) Z T,1y for s € W, |s| = 1;

A;seWy
Ty = > 1
AEs

The algebra H,, is closely related to the algebra introduced by Yokonuma
@] (It specializes to it under v = ,/g,n = ¢ — 1.) Since n is fixed, we shall
often write H instead of H,,. Note that 7} is the unit element of H and
that {T\y1x;w - X € Ws} is an A-basis of H. The A-linear map ~: H — H,
Twly — Tyly-1 is an algebra automorphism. The A-linear map H — H,
h— h”, given by T),15 +— 1\T,,-1 is an algebra antiautomorphism. (See @,
32.19].)

1.8. For w € W we set T}, = v~ *IT}, € H. There is a unique ring homo-
morphism : H — H such that 7,15 = le;_lll)\ forany w-\ € Ws, f € A;
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it has square 1. Asin @, 34.4], for any w- A € W there is a unique element
cw-x € H such that
Cy-\ = Z Dy waLyly
yeW
where py.w.a € vZT i y # w, Pwrwr = 1 and Cuox = ¢y.n. Since
—+H— H,": H— H commute, for any w- A € Ws, the element

Cp-\—1 = E py-)\_l,w-)\—lTyl)\
yeW

satisfies the definition of ¢,,.) hence

P

Cyw-A—1 = Cw--

In particular we have py.\-1 ,.-1 = Dy.a-1 .21 for any y - A € Ws.

For /,w’ in Wy let P% , be the polynomial defined in ﬂ] in terms of

! !
y7w

the Coxeter group Wj; let
—|w’ ! 2 -1
Dy = v WAWIAPS (0?) € Z[v ).

Let w-A € Ws. From ﬂﬁ, 1.9(i)] we see that wW), contains a unique element
z such that |z| is minimum; we write z = min(wW)); we have w = zw’ with

w’ € Wy. We show:

A\ N
(a) Cow' X = Z py’,w/sz/l)\-
y' €W

. A . . . . . 71 71 . . .
Since py 18 1if y' = w’ and is in v Z[v™ '] if y' # ', it is enough to show
that

(b) > P Ty 1y s fixed by : H — H.
y' eWy
We can find a sequence si, Sg,..., S, in S such that

2Z(A) = 8182 .. SEA # So . SN FE o F SN FE A

We argue by induction on k. If k = 0 we have z(A\) = A and (b) follows from
the proof of @, 34.7]. Assume now that k£ > 1. We have z(\) # (s12)())
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hence z7's12\ # A. This implies that s;z = min(s;2W)). We have s;2\ =
89...8kA #£ -« #£ s A # \; hence by the induction hypothesis applied to sqz
instead of z we see that

(c) 3" ()T, 21y s fixed by : H - H.
y' €Wy

For 3/ € W) we have sz/b\ = Tsll(SIZ)()\)Tslzy’l)\ (we use again that z(\) #
(512)(N)) and T, 1(5,)(n) is fixed by : H — H (using that z(A) # (s12)()));
we see that (b) follows from (c) by left multiplication with 7%, 1, .y(x). This
completes the proof of (a).

From (a) we see that

p;‘,,w/(vz) ify=2zy,y € Wy,
Py zw'-X = .
0 if y ¢ zW,.

In particular we have py.y .\ € N[v~!]. We show:
(d) 1w()\)cw~>\ = Cw-\-

Using (a) it is enough to show that 1,,( ,\)sz/l = sz/l \ for any 3/ € W,. We
have T, 1, = 1(Zy/)(>\)sz/ and it is enough to show that (zy')(\) = (zw’)(\);
this follows from y'(\) = A, w'(A) = A.

Let w- A € Ws. By (a) we have

Cy-\ = Z Py Aaw ALy lx.

yewWy
Similarly, we have
Cy—lap(N) = Z py-w()\),w*Lw()\)Tylw()\)-
ywalww()\)
It follows that
(Cw_l-w()\))b = Z py-w()\),w_l-w()\)1w()\)Ty—1
yew_lww()\)

= > Prwmartawn Ty Ly
ywalww()\)
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For each y in the last sum we have y = w™'u with uw(\) = w()\) hence
yw(A) = wtuw(\) = wlw(\) = A. Thus, we have

(Cotw)” = D Prautwm D11y
yEw—IWw(A)

~

= Z py—l-w(A),w_l-w(A)Tyl)\-

Yy~ LEwT I Wy,

The condition that y~! € w_lww(/\) is equivalent to y € W,,\yw and also
to y € wWy. Hence

(Cw_l-w()\))b = Z py_l-w()\),w_l-w()\)f’yl)\-
yiycwWy
Note that p,-1.(x),w-1.wy 18 1if y = w and is in v 1 ZvT if y # w. Also,
since™: H — H,” : H — H commute, (Cw—l_wfl()\))b is fixed by : H — H.
It follows that (cw—1_w()\))b satisfies the defining property of ¢, hence

(e) (011}*1-10()\))b = Cw-A-
We see also that

Py=1wN),w=1w(A) = Py-Aw-X

for any y € W.

1.9. Let 2 be a based A-algebra that is, an associative A-algebra with 1
with a given finite basis {b;;7 € I} as an A-module, a given involution i + '
of T such that the A-linear map x + 2" defined by b2 = b, for all i € I is
an algebra antiautomorphism (necessarily preserving 1) and a given subset
Iy of {i € I;i* = 4}. For 4,7 in I we write biby = > el
hiyv; € A. Let jl;_?ti (resp. j = i) be the preorder on I generated by the

hi,i/,jbj where

relation hy ; ; # 0 for some ¢’ € I, resp. by the relation
hiij #0or hy;; # 0 for some ¢’ € I.

We say that z'lr\;j (resp. i~ j) if i <j and j <4 (resp. ¢ < j and j < ). This
eft left left
is an equivalence relation on I; the equivalence classes are called left cells

(resp. two-sided cells). Note that any two-sided cell is a union of left cells.
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If ¢ is a two-sided cell and i € I we write i < ¢ (resp. ¢ < i) if i <4
(resp. ¢’ < i) for some i’ € ¢; we write i < ¢ (resp. ¢ < i) if i <X ¢ (resp.
c=i)and i ¢ c. If ¢,c are two-sided cells, we write ¢ < ¢’ (resp. ¢ < c') if
i <14 (resp. i <4 and i £ ¢') for some i € ¢,i’ € ¢'.

Let j € 1. We can find an integer m > 0 such that h; ;7 ; € v~=""Z[v] for
all i,47"; let a(j) be the smallest such m. For 4,7, j in I there is a well defined
integer h* such that

byt = h;i,’jv_“(j!) + higher powers of v.

We say that the based algebra 2l is excellent if properties Q1-Q11 below
hold.

QL. If j € Ip and i,7 € I satisfy hj, ; # 0 then ¢’ = i*.

Q2. If i € I, there exists a unique j € Iy such that h* 7& 0.
Q3. If i’ < then a(i') > a(i). Hence if ' ~ i then a(i ) = a(i).
Q4. Ifjely,icland by, #0thenhf, =1

h*

Q5. For any 4,7,k in I we haveh ki

iJ,k

Q6. Let 4, j,k in I be such that A7, # 0. Then 2~j jE kit
left left

Q7. If i =i and a(i') = a(i) then i lf\fztz.

left
Q8. If ¢ <iand a(i') = a(i) then i’ ~ 1.
Q9. Any left cell I" of I contains a unique element of j € Iy. We have
h% .. =1foralliel.

Z‘7Z7]
Q10. For any i € I we have i ~ i'.
Q11. Let ' be a second indeterminate and let A ; , € Z[v', v'~1] be obtained
from h; j , by the substitution v — o/, If 4,7, j, k € I satisfy a(j) = a(k)

then
thz ]’hZ]J Zth‘J 3

j'el j'el

In the remainder of this subsection we assume that 2l is excellent. Con-
sider the free abelian group A* with basis {t;;i € I}. We define a
Z-bilinear multiplication A x A — A by t;ty = Zje b it

As in ﬂE, 18.3], we see using Q3,Q6 that this defines an associative
ring structure on A and we see using Q1,Q2,Q4,Q5 that >, I, i 18
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a unit element for this ring structure. Also from Q1,Q5 we see that

tity = 5@',i/tz‘ for i,i/ e Iy.

From the definitions we have h; ;1 4 = hy;; for any i,i',j in I. Tt
follows that a(j) = a(j') for any j (this also follows from Q3, Q10) and that
defined by tZ- =t, for all 4 € I is a ring antiautomorphism.

We define an A-linear map ¢ : l — A ® A by

hy ;. for any i,i’,j in I. Hence the Z-linear map ° : A® — A®

gl = Ty
77/ 7.] 1 77/7

P(b;) = Z hi jirtis

i'el,jelo;a(i’)=a(j)

Using Q1,Q2,Q3,Q4,Q6,Q11 we see as in ﬂE, 18.9] that ¢ is an A-algebra
homomorphism preserving 1.

We define a group homomorphism 7 : A — Z by 7(t;) = 1 if i € Iy,
T(t;) =0if i € I — Iy. We show:

(a) Fori,j € I we have T(t;it;) =1 if j =4 and 7(t;t;) =0 if j £ 1i'.

An equivalent statement is that Zkelo h’;j pis Lif g = i' and is 0 if j # ¢".
This follows immediately from Q1,Q2,Q4.

For any two-sided cell ¢ in I let A° =, Zt; C A*°. From Q6 we see
that if ¢, ¢’ are two-sided cells then AU is zero if ¢ # ¢’ and is contained
t; and A = B AL

o0 e o : . . .
in A if ¢ = ¢’. Hence A° is a ring with unit » ;.

as rings.

1.10. Let A be a based A-algebra with basis {b;;i € I} and with i s i', Iy
as in 1.9. We assume that 2 is excellent. We use the notation in 1.9. We
fix a two-sided cell ¢ of I and we set a = a(i) for any i € c. Let r > 1, let
(41,42, ...,1,) € I". We write

bisbiy .. -bi, = > N(i,k)vFb; where N (i, k) € Z.
i€l keZ

We show:

(a) Assumethati € c. If N(i,k) # 0 thenk > —(r—1)a. If N(i,—(r—1)a) #
0 then i, € c for all w € [1,r].
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If » = 1 the result is obvious. Now assume that r > 2. We have

. k
(b) S ONGEW = gy o hississ - e v
keZ
where the last sum is taken over all ji,j2,...,Jr—1,Jr in I such that

P=Jr 2 Jrm1 2 23 2 j2 21 =l
Assume that N (i,k) # 0. From (b) we see that

k=ko+ ks+---+ k., where ky > —a(jg), ey ko > —a(jr,l),
kr > —a(jr) = —a

for some j1,jo,...,Jr—1,Jr as above. Using Q)3 we see that
a=a(j;) > a(jr—1) = -+ > a(js) > a(j2),

hence ky > —a, ..., k, > —a and k > —(r — 1)a, as required.

Assume now that N (i, —(r — 1)a) # 0. Then for some j1, jo, j3, ---,

Jr—1, jr as above, the inequalities used above must be equalities

~ky == ~k1=a=a(j) == a(j3) = a(jo)
and
h* #O,h* #07“'7h;r—1i7‘j!%07

. . . . . -1
i1,02,75 J2,13,74

so that, by Q6, Q8 we have
b~ g~ 2 VA3 Y I3 e ] N e ™

Thus, i1 € c,...,i, € c. This proves (a).

We show:
(c) Assume that i € ¢ and i € c,...,i, € c. Then
. . * * *
N(i,—(r=1)a) = P51 ia, Pl i sinash
where the sum is taken over all j1,j2,73, ..., Jr—1,Jr in € such that j; =

7:17 jr = 1.
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Note that N (i, —(r — 1)a) is the coefficient of v~ ("~14 in

E N ingaljais gs - - Py i

where sum is taken over all j1,jo,...,J_1, - in I such that
t=Jr X Jr—1 =X 2 J3 X J2 2 J1 =11

Such j, must satisfy j, € c for all u (since j; € ¢, j, € c). Hence the sum is

equal to

d>(ht . v~™*+ higher powers of v )(h’f v~ %+ higher powers of v )...

11522579 »135]3

(h* 40~ %+ higher powers of v )

Jr— lazrajr
=> h* R yo~r=Da 4 higher powers of v

31.,42,7% j2,23,j3 Jr—1irJn

where both sums are taken over all j1, jo, ..., jr—1,Jr in ¢ such that j; =iy,

jr =1i. Now (c) follows.

From (c) we deduce:

(d) Assume that iy € c,...,i, € c. Then

tistiy . ti, = Y N(i,—(r — Da)t;

i€C

(in A*°) where N(i,—(r — 1)a) is as in (c).

We show:

(e) Assume that i, € c for some u € [1,7] and that i € I, k € Z are such
that N(i,k) # 0. Then eitheri € c, k> —(r — 1)a, ori < c.

If r = 1, the result is obvious. We now assume that r > 2. We have

§ :N i, k E :hh,lz,h J2,13,73 hj?"—lyi'ryjr

k'eZ

where the last sum is taken over all j1, jo, ..., j, in I such that j; = i1, j, = 1.
Since the left hand side is # 0, so is the right hand side. Thus there exist
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J1,72,- .., Jr as above such that

hj1,i2,j2 7é 0, hj2,i3,j3 7é 0,... 7hjr71,irajr 7é 0

hence j, = j,—1 = -+ =< j2 = 71 and j, = iy. In particular we have j,. =< 1,

that is, i« < c. If i < c, there is nothing to prove. Thus we may assume that

i € c. In this case we have k > —(r — 1)a by (a). This proves (e).

1.11. We now give some examples of excellent based 4-algebras.

(i)

(iii)

Let A € s. Let H), be the Hecke algebra of the Coxeter group W) with
its basis {cy;w € I = W)} defined as in ﬂE, 5.3] with i + i' given
by w — w™! and Iy being the set of distinguished involutions of W)
(defined as the set D in [18, 14.1] with W replaced by Wy). Then Hy
is excellent by results in ﬂE, §14, §15].

Let A\ €s. Asin ﬂﬁ, 34.2], W} is a semidirect product W,y where €, is
an abelian subgroup of Wy such that any x € Q) satisfies Wiz~ =W,y
and |zwz~l|y = |w|) for any w € W). Let H} be the A-module
H) ®4 A[Q,] with basis {¢, ® z;w € W),z € Q\}. We regard H), as
an A-algebra with multiplication (¢, ®)(cy @x') = (CyCpyprp-1) @ (z2")
for w,w’ in Wy and z,z’ in Q. We take I = Wy x Qy, i — 4’ given by
(w,z) = (z7Y(w™1),27!) and Iy to be the set of all (d,1) where d is
a distinguished involution of Wy. Then H is excellent. (This follows

easily from Case (i)).

Let A € 5. Let A = 1,H1, viewed as a subalgebra of H with unit
element 1y and with the basis {c,.n;w € Wy}. In this case we take
I = W{. The involution i — ' is given by w — w™! for w € Wj.
This is induced by the antiautomorphism of 2 which is the restriction
of the antiautomorphism h — h” of H. We take I to be the set of
distinguished involutions of the Coxeter group Wj. In ﬂﬁ, 34.7] it is
shown that 2 is canonically isomorphic as a based A-algebra to H) in
(ii). It follows that 2 is excellent.

Let 0 be a fixed W-orbit on s and let Ay € 0. Let E be the set of all for-
mal sums z = ZA, wveo Tan Where xy v € 1) H1,, regarded naturally

as an A-module and as an 4-algebra where the product zy of z,y € E
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is given by

(zY)an = Z LAY N
A€o

(we used the product in 15, H1,,). Let I = {(w,\,\") € W} x o x o}.
We view E as a based A-algebra with basis {by,xx; (w,\,\) € I}
where by, » » has (A, X')-coordinate ¢,., and all other coordinates zero.
The involution 4 — i' of I is given by (w, A\, \') — (w™",1', ). This is
induced by the antiautomorphism h +— h® of the algebra E such that
by = bu—1x 1. The subset Iy of I is the set of all (w, A, ) € I such
that A = M and w € D, the set of distinguished involutions of W),. For

w,w’ in W>’\0 we write

Cw-NoCw’-Ng = E hw,w’,w”cw”-)\o
w”EW;\O

where hy, o 7 € A. Then the coefficients h;, ;, 4, for i1,42,i3 in I are
given by

s My Mo ! Ny Ny Nt = Ong N Oxy MO g Pt -

We see that the a-function on I is given by a(w, A\, \') = a(w) where
a(w) is computed in 1),H1),. Moreover,

h* VAR TN/ :(S)\ 2\ 5)\/ A//(S)\N)\ h* 1 gl e
w,A1,A2,w" A A w! A NG 2;01 AN TAHLALTTW, WL, W

We show that Q1-Q11 hold for 2 = E, using that we already know that
they hold for 1),H1),.

!
We prove Q1. Assume that h:v,)q,Az,w/,AII,A/Q,w”,)\/l/,A’QI # 0 where w" € D,
T = Xj. We must have Ay = M, Ay = A\ = X/ = )\, w' = w™! hence
(w, A1, A2)" = (w', N}, N). Thus Q1 holds.
We prove Q2. Assume that h* # 0 where w” € D.

w7>\17)\27'“}717)\27>\17w”7>\/1/7)\,1,
Then Iy = X/ and w” is the unique element of D such that h* _, , # 0;
1 w,w— 1w )

thus the uniqueness in Q2 holds. The same proof shows the existence in Q2.

We prove Q3. If i = (w, A\, A2),7 = (w', N}, ;) then we have i < 7/
(resp. i ~ ') in E if and only if w < w’ (resp. w ~ w') in 1),H1,,. Hence
Q3 for E follows from Q3 for 1,,H1,,.
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* 1!
We*prove Q4. Assume that hw,h,x\z,w‘l,kz,h,w”,X{,X{ 7&*0 where w” € D.
Then hw,w—l,w” # 0 hence by Q4 for 1,,H1,, we have hw,w_l,w” =1 It

follows that h*

w,A1,A 2w A2, A w

We prove Q5. We must show that

v = 1 as required.
LA A |

*

*
5>\2 AL 5>\’2,>\’1’ 6>\’2’,>\1 hw,w’,w” = 5)\'2 A 6)\’2’)\1 6>\2,>\’1 hw’,w”,w :

This clearly follows from Q5 for 1),H1},.

We prove Q6. If i = (w, A1, \2), 7" = (w', A}, \}) then we have iljftz" (resp.
€
i~i')in E if and only if Ay = A} and w <’ (resp. w~w') in 1\ ;H1,,. As-
left left left
sume that hju7)\1’>\27w/’>\/17)\/2’11}//7)\/1/’)\/2/ 7é 0. Then (5)\27>\/1(5)\/2,)\/1/5)\/2/’)\1 h;ku,w’,w” 7é 0

hence Ay = N[, X; = N[, A\ = Ay and (by Q6 for 1),H1,,) we have wlfe\fztw’*l,

w ~w" ™ w” ~w . Thus Q6 holds for E.
left left

We prove Q8. Assume that i = (w, A1, X2),7" = (W', N, A\}) and i < ¢/,
a(i) = a(i’). Then w < w" and a(w) = a(w’) in 1),H1), so that by Q8 for
1),H1,, we have w ~ w’ and ¢ ~ i’. This proves Q8. The proof of Q7 is
entirely similar to that of Q8.

We prove Q9. Now I' is the set of all (w, A1, \2) where Ay is fixed, A\
runs through o and w runs through a left cell Ty of W§0. Let w be the
unique element in D N Ty. Then (w, Az, A2) is the unique element of Iy N T
Ifi = (wl,)\l,)\g) € I then wy € I'y and

h* . *
w2 AL w AL 2w A e w] w,w
and this is 1 by Q9 for 1,,H1,,.

We prove Q10. Let (w, A, \') € I. It is enough to show that w ~ w™! in
15,H1,,; this follows from Q10 for 1),H1),.

We prove Q11. We write i = (w, A1, A2), i' = (w', A3, A1), J = (u, A5, \g),
k= (z,A7,Ag). We have a(z) = a(u). We must show

I
5)\3,)\35)\7)\25)\1,)\5 5)\47)\6 Zu’ hz,w’,u’ hw,u’,u
I
= Oxg a0 2001 5000, 06 Do hwvzvu’hu’,w’,u'

This follows from Q11 for 1),H1),.
We see that E is excellent.
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(v) Let o be a fixed W-orbit on s. Let H, be the .A-subalgebra of H with A-
basis {cy.n;w € W) A € 0}. We view H,, as a based A-algebra. We take
I ={w-\€Ws;\ € o}. Theinvolution i s i' of Iis w-\ — w™'-w(\).
This is induced by the antiautomorphism of H, which is the restriction
of the antiautomorphism h — h* of H. We take Iy to be the set of all
w - A where A € 0 and w is a distinguished involution of W). We show
that H, is excellent. We fix A\g € 0 and let E be as in (iv) above. For
any A\ € 0 we choose a sequence sy = (s1,82,...,8;) in S such that

)\0 7é 81)\0 7é 8281)\0 7é cee 7& Sp .. .8281()\0) =

and we set 7, = 51T52...T8T € H, [s)] = s152...8, € W. Note that
T{lat =T, ...Ty,T,, € H. We define an A-linear map ¥ : H, — E by

\Ij(h)Al,)\g = T)\llAlhl)QT)b\Q S 1>\0H1)\0

for any Aj, A2 in 0. In ﬂE, 34.10] it is shown that ¥ is an isomorphism
of A-algebras and W~ carries the basis element b 2., Of E onto the
sx,) 22 Of Ho. We show that U(h*) = (U(h))° for
all h € H,. Indeed for A\i, Ao in 0 we have

basis element Clsx, ]~ 1w

((\I](h))o))q,)q = (\I](h))\Q,Al)b = (7—)\21)\2h1)\17—)b\1)b
= T)\ll)\lhbl)QTEQ = \If(hb))\lm.

If w is a distinguished involution of W), and A € o, then

\If_l(bw,A,A) = Clsa]twlsal' A5

note that conjugation by [sy] ™! is a Coxeter group isomorphism Wy, =
W) hence [s)] 'w[sy] is a distinguished involution of Wy. This argu-
ment shows that ¥~! induces a bijection from Iy defined in terms of E
to Iy defined in terms of H,. Using the fact that E is excellent we now

deduce that H, is excellent.

(vi) We consider the A-algebra H with its A-basis {c,.n;w - A € Ws}. We
view H as a based A-algebra. We take I = Ws. The involution i — i’
of I'is w- X+ w™!-w()\). This is induced by the antiautomorphism
h — R of H. We take I to be the set of all w - A where A € s and w
is a distinguished involution of W). We have H = ©,H, (as algebras)
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where o runs over the set of W-orbits in § and H, is as in (v). Using
the fact that each H, is excellent, it follows immediately that H is
excellent.

In this case we shall write D instead of Ij.

In particular, in case (vi) the two-sided cells of Ws and the a-function
a: Ws — N are well defined. Note that each two-sided cell of Ws (in case
(vi)) is equal to a two-sided cell of W x o (in case (v)) for a unique W-orbit
0 in s. Moreover for any two-sided cell ¢ of W x o (with A € o), the subset
{we W;w- X € c}is atwo-sided cell of W} (in case (ii)) and this gives a
bijection between the set of two-sided cells of W x 0 and the set of two-sided
cells of W} in case (ii), which in turn is in bijection with the set of orbits of
the conjugation action of Q) on the set of two-sided cells of W) in case (i).

The based algebras in (i)—(vi) have the additional properties that

(a) hijr € N[v,v_l], hi j i = hi ji for any 4,5,k € I;
(b) hi jx € N for any i,j,k € I.

2

Indeed, (a) is well known in the cases (i), (ii); from this we deduce by the
arguments in (iii)-(vi) that (a) holds in each case (iii)—(vi). Clearly, (b)
follows from (a). From (a) we see that for the based algebras in (iii)-(vi) we
have

|
hi iyt = hi jv“(j ) 4+ lower powers of v.

In (i) the ring HS® has Z-basis {t,,;w € Wy} in natural bijection with
the A-basis (¢, ) of Hy.

In (ii) the ring (H))* has Z-basis {t,, ® z;w € W),z € Q,} in natural
bijection with the A-basis (¢, ® x) of H\. The multiplication is given by

(tw @ 2)(tw @ 2') = > et @ (x2')
zeWy
where tyt p—1 = ZzeWA c:tz, c; € Z, is the product in HS®.

In (iii) we have an identification (1yH1,)> = (H))> (as rings) for which
the basis element (,,).n (With w € Wy, € Q) of (1\H1,)> corresponds
to the basis element t,, ® « of (H))>.
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In (iv) the ring E® has Z-basis {t,x;w € W} ,A € 0,\ € o} in
natural bijection with the A-basis (b, 1) of E. This ring is canonically
isomorphic to a matrix ring with entries in the ring (1,,H1,,)>® with its
natural basis.

In (v) we have an identification H® = E® (as rings) for which the basis
element 2, , , of E corresponds to the basis element tsy, ]~ Lwlsry] Ao of
H.

In (vi) we have an identification H>* = &,HJ° (as rings) for which the

basis elements %,,.) in the two sides correspond to each other.

1.12. For a based A-algebra 2 as in 1.9 we set A* = Q;(v) ®4 A; we set
A = Q; ®4 A where Q; is viewed as an A-algebra via v — 1. By definition,
H! is the associative Q;-algebra with generators T, w(w € W), 15(X € 5) and

relations:

Lyly = 5)\)\/1)\ for )\,)\/65;
T,Tyw = Tuw if w,w' € W;
Tuly = 1w()\)Tw forw e W, \ € s;

T, = Zh.

AEs

The elements {T,,1y;w- A € Ws} form an Q;-basis of H' and 77 is the unit
element. Consider the group algebra QZ[WTn] where WT,, is the semidirect
product of W and T,, with T,, normal and W acting on T,, by w : t — w(t).
We define a Q;-linear map Q;[WT,] — H! by wt — Y res AM(t)Ty1y. From
the definitions we see that this is an isomorphism of Q;-algebras; we shall use
it to identify Q;[WT,] = H!. For A € 5 we set (1,\H1\)! = Q; ®4 (1,H1,);
under the identification above we have (1\H1,)! = Q;[W{].

Recall that we have H* = & .HZ° as rings. Here, for any two-sided cell
c, He® has basis {t,.;w- A € c}; it is a ring with unit element )\ cp_tw.a
where D = D Nec. We set J = Q; ® H®. We have J = ®.J. (as algebras)
where for any two-sided cell ¢ of Ws we set J. = Q; ® H.

Now ¢y : H - A® H*® and ¢ : 1H1, — A® (1,H1,)*> induce by
extension of scalars isomorphisms of split semisimple Q;(v)-algebras ¢ :
H* 5 Q(v) @ H®, v : (1)H1,)” = Q;(v) ® (1)H1,)* and isomorphisms
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of semisimple Qq-algebras ¢! : H! 5 J, ¢! : Q[W{] 5 Q;® (1,H1,)>®. (See
[20, 34.12(b), (<))

Let Irr(W'T,,) be a set of representatives for the isomorphism classes
of simple Q;[WT,] = H'-modules. For any WT,-module E let E* be the
corresponding J-module (via ') and let EV be the H’-module corresponding
to Q;(v) ® E* under ¢"°.

For any W-orbit o on s let Irr,(WT,,) be the set of all E € Irr(WT,,)
such that 1y E = 0 for all N ¢ 0. We have Irr(WT,,) = UyIrr,(WT,).
If £ € Irr,(WT,), then for any A\ € o, 1,E is a simple (1\H1,)!-module,
that is, a simple Wj-module. Moreover E +— 1,F is a bijection between
Irro, (WT,,) and a set of representatives Irr(WJ) for the isomorphism classes
of simple Q;[W{]-modules.

For any E € Irr,(WT,,) and A € o let (1yE)™ be the Q; ® (1, H1,)>-
module corresponding to 1, E via ¢! and let (1, E)? be the (1yH1,)"-module
corresponding to Q;(v) ® (1) E)> under ¥V. Note that (1\E)? = 1,(E?).

If £ €Irry(WT,), A € 0 and w € W] then we have
tl‘(Cw.)\, Ev) = tr(cw.A, (1)\E)v)

For any left cell A of Ws contained in o we denote by [A] the Q;[WT,]-
module such that [A]> is the Q;-subspace of J spanned by {t,.\;w -\ € A}
(a left ideal of J). We show:

(a) Let z- X\ be the unique element of AND. Then for any E € Irr, WT,,,
tr(t,.n, E°) is equal to the multiplicity of E* in the J-module [A]*°.
An equivalent statement is that

dim(t,.\E*) = dim Homy ([A]*°, E*).

It is enough to show that the Q-linear map Homgy([A]>, E>®) — t,\E>,
€ — &(t,.)) is an isomorphism. The proof is along the same lines as that of
,21.3)].

1.13. Let 2 be one of the based A-algebra Hy, H) (with A € s) or H. Note
that in these cases I is Wy, W, Ws respectively and 2A! is the group algebra
Qi[W] where W is W, Wy, WT,, respectively. Note that 1 : A — A @ A®
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induces an isomorphism Q;[W] = A 5 Q; ® A*°. Under this isomorphism
an irreducible W-module E corresponds to a simple Q; ® 2A*°-module E>.
We have Q; @ A® = @C(Ql ® AX) where ¢ runs over the two-sided cell of
1. Hence if E is an irreducible YW-module then there is a unique two-sided
cell cg of I such that Q; ® A acts as zero on E> for any ¢ # cg; thus B>
can be viewed as a simple Q; ® 27 -module. For an irreducible WW-module

E let ag € N be the constant value of the restriction of a : I — N to cg.

1.14. Since™: H — H permutes the elements in the basis {c,.\} according
to the involution w - A s w- A = w- A\~* of Ws, we see that the image of a
two-sided cell ¢ of W's under this involution is again a two-sided cell ¢ of Ws
and the value of the a-function on ¢ is equal to the value of the a-function

on cC.

1.15. Applying ’ to the equation

Cx\Cy X = g hx-)\,y-)\/,z-)\”cz-)\”a
zN'eWs
we get
Cy=ty(N)Cr—1z(N) — g hx-)\,y-)\/,z-)\”cz_l-z()\”)
zN'eWs

= Z hx-)\,y-)\/,z_l-z()\”)cz-)\”
zN'eWs

hence

hoxy v z=tz0m) = By=1y(0) e-ta(n),2 A7

This shows that the involution z- A — 271 2(\) of Ws preserves the preorder
= hence it maps any two-sided cell onto a two-sided cell. (In fact, it maps
each two-sided cell ¢ onto itself. Indeed, it is enough to show that some
element z- \ of ¢ satisfies z-A = 271-2(\); we can take z-\ to be any element
of the nonempty subset D of c¢.) We also see that the a-function on Ws
is constant on the orbits of our involution and that the group isomorphism
> H™® — H> given by t,., — t.-1..(\) Is a ring antiautomorphism. Note
that our involution restricts to the identity permutation of the subset D of
Ws and that the algebra homomorphism ¢ : H — A ® H* is compatible
with the antiautomorphisms ” of H and of A @ H.
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1.16. Let ()* : Q; — Q; be a field automorphism which maps any root of 1
in Q; to its inverse. The field automorphism Q;(v) — Q;(v) which maps v
to v and z € Q; to z* is denoted again by ®.

1.17. We can view naturally W as a subgroup of GL(V') where
V := Q; ® Hom(T, k*)(—1).

For any ¢ > 0 let S'V be the i-th symmetric power of the vector space
V. Then SV = @;>0S'V is naturally a commutative algebra. Now W acts
naturally on S°V for any i.

Let A € 5. If B,E € ModW)y, (resp. E',E’ € ModW}) with E (resp.
E') irreducible, we set E¥ = Homyy, (E, E) (resp. E'F = Homyy, (E',E")).
For E (resp. E') as above there exists i > 0 such that (S'V)® # 0 (resp.
(STV)E" £ 0); let bg (resp. bgr) be the smallest such i. If E (resp. E') are
as above we say that E (resp. E') is univalent if dim((S*#V)¥) = 1 (resp.
dim((S°=' V)E') = 1). We show:

(a) Let E € ModW) be irreducible and univalent. There exists E' € ModWy
irreducible such that E appears in E'|w, and bpr = bg; moreover, E' is
uniquely determined up to isomorphism by these properties and is uni-
valent.

Let E be the unique Wy-submodule of S#V that is isomorphic to E. Let
E'=3 o, EC SPEV (notation of 1.11(ii)) where we have used the W-
action on S®ZV. Then E' is a W{-submodule of S®ZV'; moreover, for each z €
Q,, zE is an irreducible Wy-submodule of S*2V. If £ is an irreducible Wy-
submodule of E’ then &£ is isomorphic to E as an irreducible Wy-submodule
(for some z € Q). But zE is a univalent Wj-submodule hence we have
necessarily £ = zE. Since any irreducible Wy-submodule of E’ is equal to
zE for some x € ), we see that any nonzero W{-submodule of E’ contains
xE for some x € ); being stable under the action of ), it is equal to E’.
Thus E' is an irreducible W{-submodule of S®#V. Clearly, E' appears with
multiplicity 1 (resp. 0) in the W{-module S’ZV (resp. SV with 0 < i < bg).
Thus bgr = bg and E’ is univalent. Thus the existence of E’ in (a) is proved.
Now let E} be an irreducible W{-module such that E appears in Ef|w, and
bE] = bp. We can find a Wi-submodule E of Sb2V that is isomorphic to
EY. By assumption we can find a W-submodule of £ which is isomorphic
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to E; this is necessarily equal to E. For any x € ) we must have zE C E
so that E' C E'. Since Ej is irreducible as a W}-module we have E] = E'.
This proves (a).

1.18. If B, E € ModWT,, with E irreducible, we set E¥ = Homyr, (E, E).
For any i > 0, WT,, acts on S°V ® Q;[T,] (V as in 1.17) by w1 : v @ x
w)@w(zriz) (withw € W,v € V.21 € T,z € T,). If E € ModWT,, is ir-
reducible, there exists i > 0 such that (S°V®@Qy[T,])¥ # 0. Indeed, there ex-
ists A € s and By € ModW] irreducible such that E is induced by the repre-
sentation £ ® X of the subgroup W{T,,. Then E; appears in the W{-module
S%21V hence E appears in the WT,-module S°#1V ® Q;[T,]. Thus we can
take i = bg,. Let bg be the smallest 4 > 0 such that (S'V ® Q[T,])¥ # 0.
Note that bg < bg,. Conversely, assume that (S°V ® Q;[T,])¥ # 0. Since
the WT,,-module S'V ® Q;[T,,] is induced by the W-module S*V we see (us-
ing Frobenius reciprocity) that dim(S'V @ Q;[T,.])* = dim Homy (E, S*V).
Since the W-module E is induced by the W{-module E, the last dimension
is equal to dim(S?V)¥1. Thus dim(SV)#t #£ 0 so that bg, < i. We see that
bp = bp,. This argument shows also that (S°?V @ Q[T,])¥ = (S*#V)Fr.
We say that E is univalent if dim(S°#V @ Qi[T,])¥ = 1 or equivalently if

F is univalent.

1.19. Let A, I, W be as in 1.13. Thus W is W, W (with X € s) or WT,,.
Let sgn be the (one dimensional) sign representation of W. The composition
of sgn with the obvious homomorphism W — W (the inclusion if W is W),
or Wj, the projection if W = WT,,) is denoted again by sgn. If F is an
irreducible W-module then E ® sgn is again an irreducible W-module. An
irreducible representation E of W is said to be special if ap = bpgsgn. We

show:

(a) If E is an irreducible YW-module then ap < bpgsgn-

(b) For any two-sided cell ¢ of I there exists a unique (up to isomorphism)
wrreducible special representation E of W such that cp = ¢. Moreover,

FE ® sgn is univalent.

In the case where 2 = H), (a), (b) are known from ﬂﬂ]

We prove (a) for A = H)\. Let E be an irreducible Wj-module and
let ¢ = cg (a two-sided cell of WY). Let Ey be an irreducible Wj-module
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appearing in Ely, and let ¢ = cg, (a two-sided cell of Wy). We have
cg C c and the a-function of W) takes the same value on ¢y as the a-
function of Wy on c. Hence ap = ag,. Now Ey®sgn appears in (E®sgn)|w,
hence bp,gsen < bEgsgn- Since ap, < bpyosgn is already known we see that

ap < bpgsgn. Thus (a) holds for 20 = H.

We prove (b) for 2 = H). Let ¢ be a two-sided cell of Wy. We can find
a two-sided cell ¢y of W), such that cg C c¢. We can find an irreducible W)-
module Ey such that cg, = ¢y and ag, = bgygsgn. By 1.17(a) we can find
an irreducible W{-module E’ such that Ey ® sgn appears in (E' @ sgn)|w,
and bprgsen = DEywsgn Then Ey appears in E'|y, hence cg, C cpr. Thus
¢y C cpr so that cgr,c have nonempty intersection and cp = c; we see
also that ap, = ap’ so that apr = bprgsgn. Thus the existence part of (b) is
proved. Assume now that E” is an irreducible Wj-module such that cgr = ¢
and agr = bprgsgn. Let Ey be an irreducible WW)-module which appears in
E"|w, and let ¢; = cg, so that ¢; C ¢ and ap, = apr. Replacing c¢; by
zciz— for some x € Q), we can assume that ¢; = cg. Now E; @ sgn
appears in (E” ® sgn)|w,. Hence b gsen < bprgsen = apr = ap,. Since
ap, < bg,gsgn by (a), it follows that ap, = bp gsgn = bErgsgn. Similarly we
have ap, = bpygsgn. By the uniqueness in (b) for W) we see that E; = Ej
as Wy-modules; moreover Fjy ® sgn is univalent. Now Fy ® sgn appears
in (E' ® sgn)|w, and bprgsgn = DEy@sgn; moreover, Ej ® sgn appears in
(E" ® sgn)|w, and bprgsgn = bEy@sgn- By the uniqueness in 1.17(a) we see
that E” ® sgn & E' ® sgn so that E” = E'; from 1.13(a) we see also that
E" @ sgn is univalent. Thus (b) holds for 20 = H.

We prove (a) for 2 = H. Let E be an irreducible WT,,-module and let
c = cg (a two-sided cell of Ws). We can find A € s such that 1y FE # 0. Then
1\FE is an irreducible (1yH1,)!-module hence an irreducible Wi-module. Let
c1 = C1,E, a two-sided cell of W}. Then {w-A\;w € ¢1} C ¢ and a¢, = ac
hence a1yg = ap. Now 1(F ®sgn) = (1\E) ® sgn hence by an argument in
1.18 we have bpgsgn = b(1, B)asgn- Since a1, B < b(1, p)gsgn 1S already known
we see that ap < bpgsgn. Thus (a) holds for 2 = H.

We prove (b) for 2 = H. Let ¢ be a two-sided cell of Ws. Note that
c is also a two-sided cell of W x o for some W-orbit 0 in Ws. We can find
A € o and a two-sided cell ¢y of W] such that {w - A\;w € co} C c and
Gc, = Gc. We can find an irreducible W)’\—module Ly such that cg, = cp and
ap, = bE,@sgn- Let E' be the WT,-module induced by the W{T,-module
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Ey ® A; note that E' is irreducible. We have apr = ag,. Moreover, E' ® sgn
is the WT,,-module induced by the W{T,-module (Ey ® sgn) ® A; hence by
an argument in 1.18 we have bg/ggen = bpy@sgn. Thus we have apr = bprggen.
Thus, the existence part of (b) is proved.

Assume now that E” is an irreducible WT,,-module such that cgr = ¢
and apr = bprgsen. We can find X' € s such that 1y E” # 0. Since cgr =c
we must have \ € 0. Replacing X' by w()\’) for some w € W, we can assume
that A" = X so that 1\E” # 0. Then {w € W;w - X € ¢} is a two-sided cell
of Wﬁ, necessarily equal to cp; moreover, ci, g = co hence ay\gr = agn.
Now E” is the WT,-module induced by the W} T,-module (1yE”)®\ hence
E"®sgn is the WT,,-module induced by the W T,-module ((1yE”)®sgn)®@\
hence by the argument in 1.18 we have bprgsgn = b(1, E)@sgn- 1t follows that
apr = b, Er@sgn- Using this and ag, = bgygsgn and also the uniqueness
part in (b) for W5 we see that Fy = 1\E” as W{-modules. Since E’ (resp.
E") is induced by the W{T,-module Ey @ A (resp. (1,E") ® X) we deduce
that £/ = E"” as WT,-modules. From 1.18 we see also that E” is univalent.
Thus (b) holds for 20 = H. This completes the proof of (a), (b) in all cases.

The special representation of W associated to c in (b) is denoted by FE..
It is well defined up to isomorphism. By (b), the special representations of
W (up to isomorphism) are in natural bijection with the two-sided cells of
1.

1.20. Let V, SV = ®;505%V be as in 1.17. For any i > 0 we set

T = > (S"VV SV c S,

i7>0,i >0 i =i

SV = S'V/T', where (S¥V)W is the space of W-invariants in S*V (we have
used the algebra structure of SV). Let T = @®;50Z%, SV = @;>0SV* = SV/T.
Note that Z is an ideal in SV hence SV is a (graded) algebra. Note also
that the W-action on SV preserves Z hence it induces a W-action on SV
which is compatible with the grading and with the algebra structure.

The following property is well known:

(a) SV =0 fori > v; SY is isomorphic to sgn as a W-module (in particular
it is 1-dimensional). Fori € [0,v], the bilinear pairing SV x S¥=% — S¥
given by multiplication in SV is perfect.
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From (a) we deduce that for i € [0,7] we have SV = S§¥~% © sgn as W-
modules. (We use that any W-module is isomorphic to its dual.) Hence if

A € 5 we have

(b) SV = S ® sgn as Wi-modules. (WY acts by restriction of the W -
action.) In particular. for any irreducible representation E of WJ we
have (S'V)E = (Sv—i)E®sen,

Clearly, if F is an irreducible W{-module and 0 < i < bg then (ZH* =0
hence (S*V)F = (S'V)E. In particular we have

(c) (S'V)E =0for 0 <i < bp and (SPEV)F = (SP2V)E £ 0.

Using (b), (c) we see that:

(¢)) If E is an irreducible W5 -module then (S'V)F =0 for i > v — bpgsen-
Moreover, dim(S¥~PeesenV)E s 1 if E is special and > 1 if E is not

special.

Since ap < bpgsen (see 1.19(a)) with equality if and only if E is special, we
deduce:

(d) If E is an irreducible W{-module then (S'V)E = 0 for i > v — ag.
Moreover, dim(SY~*eV)E is 1 if E is special and 0 if E is not special.

1.21. The WT,-action on SV ® Q;[T,] (see 1.18) leaves I ® Q;[T,,] stable
hence it induces a WT,-action on SV ® Q;[T,]. We show:

(a) Let E be an irreducible WT,-module. We have (S'V @ Q;[T,])¥ =0
for i > v —ag. Moreover, dim(S*~**V @ Qi[T,])¥ is 1 if E is special
and 0 if E is not special.

We can find A € s such that 1\E # 0. Then 1,E is an irreducible Wj-
module and E is induced by the representation (1yF) ® A of the subgroup
W/{T,. Since for i > 0 the WT,-module 5V © Q;[T,,] is induced by the W-
module S*V we see (using Frobenius reciprocity) that dim(S*V ®@Q;[T,])* =
dim Homy (E, S*V). Since the W-module E is induced by the W{-module
1\E, the last dimension is equal to dim(SV)"F. Now (a) follows from
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1.20(d) applied to 1, E instead of E, using the equality ap = a1, g and the
fact that F is special if and only if 1) F is special.

2. Truncated Convolution of Sheaves on 32

2.1. For w € W and w € s '(w) we define G, - T, g — gu, by g €
Uwg,U, g, € T. Let B=G/U. Now G x T? acts on B2 by

(9,t1,t2) : (2U,yU) = (gt U, gyt U).

The orbits of this action are indexed by W: to w € W corresponds the
orbit Ow = {(zU,yU) € B*z 'y € Gy}. The closure of O, in B? is
Ow = Uy<wOu.

Let w € W, w € k' (w). We define j, : O, — T by j,(zU,yU) =
(z7'y)w Let X € 5. We set LY = j} Ly. Now L, is equivariant for the G x T?-
action (g,t1,t2) : t = w™1(¢;) "% on T and this action is compatible under
jo with the G'x T2-action on O,, (as above); hence LY is a G x T%-equivariant
local system of rank 1 on O,, such that the induced action of T2 on any stalk
is via the character (t1,t2) = w(A) 71 (¢t1)A(t2). (Note that T2 acts trivially
on B2.) Now let

Tw = {(g,t0,t1) € G x T gthU = U, gwt}U = wU}

be the stabilizer in G' x T? of (U,wU) € O,,. Setting g = tu where t € T,
we Uy := UnwUw™!, we can identify

Tw = {(u,t,to,t1) € Uy x T3¢0 = 1, w™ ()t} = 1}.
The subgroup
{(u,t,to,t1) € Uy x T3;tg = w(ty), tth = 1}

of T'y, is clearly connected and has the same dimension as I'y, (namely p +
dim U7) hence it is the identity component I') of T',,. We can view T2 as the
kernel of the surjective homomorphism I'y, — Uy x T, (u,t,to,t1) — (u,ty),

whose restriction to '), must also be surjective. It follows that T',, = 7T
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hence
Lw /Ty = T?/(T? NTy) = T?/{(to,t1) € T to = w(t1)}.

Now the G x T2-equivariant local systems on O, correspond to repre-
sentations of T',, /T hence to representations of T2 which are trivial on
{(t1,t2) € T%;t; = w(ty)}. We see that the local systems LY, \ € s form
a set of representatives for the isomorphism classes of irreducible G x T?-

equivariant local systems on O,,.

We define b : B2 — B2 by (2U,yU) — (yU,zU). Let w € W, w €
kY (w), A € s. Define £ : T — T by &(t) = w(t™!). From the definitions
—1

we have joh = &j,-1 : Op-1 — T. Hence G*L“)f = L%(A - (We use that
g*L)\ - Lw()\—l).)

2.2. Let w € W, w € k! (w). For | € s we shall view LY as a constructible
sheaf on B2 which is 0 on B2—0,,. Let L“;ﬁ be its extension to an intersection
cohomology complex on 5w viewed as a complex on B2, equal to 0 on B2 —
Ew. Let LY = L;’ﬁ<|w| + v + 2p), a simple perverse sheaf on B2. Note that
LY (resp. LY) is (noncanonically) isomorphic to LY (resp. LY). (We use
1.5). We have

(a) b'LE =LY\ )

2.3. For i < j in [0,2] we define p;; : B — B? by (20U, 21U, 25U)
(2;U,x;U). For L, L' in D(B?) we set Lo L' = poa(ply; L K piyL') € D(B?).
This operation is associative. Hence for 'L,?L,... "L in D(B?), 'L o?L o

...0™L € D(B?) is defined.

We have poy = poof where f: B3 — B x B x Bis (zU, 21U, z,U) —
(xoU,xlefl,xQU) and Pop : B x B x B = B? is (29U, B, 25U) — (20U,
z2U). We show:

(a) Let w,w' € W, w € vk H(w),w € s 1(w'), A, N €s5. If w'(\) # X then
L§ o LY =0.
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It is enough to show that fi(pg, L X pi,L%) = 0. Hence it is enough to show
that for any (xg,1,22) € G° and any i we have

Hé(f_l(xOIL xlefla 22U), po LY ¥ PTQLWII) =0.
We have
f N (@oU,21Bay !, 25U) = {(2oU, 217U, 2,U); 7 € T}

hence this fibre of f is empty unless & ‘o1 € Uwt U, z;  ze € Uw'tyU for
some tg, ¢ in T (which we now assume) so that the fibre can be identified
with T. The restriction of pg; (resp. pi2 to this fibre can be identified
with 7+ tor (resp. 7 = w'~'(771)t)). Then pj LY K pio L% becomes
the local system Ly ® Ly yy-1 = Lyy(ny-1 on T. It remains to use that
HiT,Ly,) =0if \ €5 — {1}.

2.4. Let w,w’ € W be such that |ww'| = |w| + [w'], let w € k™1 (w),w’ €
k~Hw') and let A, X' € 5. We show:

(a) If w'(N) = A, then we have canonically LY o LY, = L5 @ £.
Let
Y = {(zU,yU,t,t') € Bx Bx T x T;2 'y € Uww'vw' 1 (t)t'U}.
Define h: T? — T by h(t,t') = w'~1(t)t'. Define j : Y — Oy by
j(zU,yU, t,t') = (U, yU).

Define j1 : Y — T by j1(2U,yU,t,t') = (¢,t'). Let j' = juw : Owuwr — T be

as in 2.1. From the definitions we have
o LY = i(ji(La B Ly)) = j™* (hi(Lx R Ly)).

To prove (a) it remains to show that h(Ly X Ly) = Ly ® £. Replacing A
by w'=1(\) and h by b’ : T2 — T, h/(t,t') = tt we see that it is enough to
show that h?(LA XLy =Ly® £ We have (L)X L)) = hgh/*L)\ and it
remains to use the equality h|Q; = £.
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2.5. Let s € S, N € 5. Let L' be the local system of rank 1 on B2x (U,—{1})
whose restriction to B2 x {¢} is L5} for any £ € Uy — {1} (see 1.2). Let
L3, = oI’ € D(B?) where ¢ : B?x (Uy—{1}) — B2 is the obvious projection.

Clearly, we have

L5, < {H2L3[—2], H LS, [-1)).
Moreover, if s ¢ Wy then H2L5,[—2] = 0, H'L5,[—1] = 0 hence L3, = 0. If
s € Wy then H2L3,[—2] = L3,[~2](—1), H'L3,[-2] = L5, [-1].

2.6. Let s € S and let A\, \' € s be such that s(\') = A. From the definitions

we see that:
SoLs, < {LL[-2(-1) ® & L)
Using the results in 2.5 we deduce:

(a) If s ¢ Wy, then L o L3, = LL,[-2)(-1) ® £.
(b) If s € W, then

SoLs, < {LL[-2)(-1) ® &, L} [-2)(-1) ® &, L [-1] ® £}

(Note that the conditions s € W) and s € Wy are equivalent.)

2.7. Let s € S,w € W be such that |sw| < |w| and let w € k™1 (w), \, N € 5
be such that w(\) = X\. We show:

(a) If s ¢ Wy then L o LY, @ £ = L7 [-2](-1) @ £ ® £.
(b) If s € Wy, then

S0 18 ® 8 o (LF[-2(~1) ® 82, 15[ 2)(~1) ® 92, 1%, [ 1] ® £72).
Using 2.4(a) we have LY, ® £ = Li;l o L3¥ where A = (sw)(\). Hence
{oLy ®e=LioLs oLy

We now apply the results in 2.6 to describe L§ o Li;l. In case (a), we

obtain

R0 Lg% ® &= Lino LYY © £[-2](-1).
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By 2.4(a) this equals LY @ £92[—2](—1), proving (a). In case (b) we

obtain

iOLU;/@Eﬁ
(LY, o L3 [=2)(-1) ® £, L%, o L¥[-2)(-1) ® £, L3, o L¥[-1] ® £}.

Here we substitute L}, 0 L3y = LY @ £, Li;l o LY = L%, @ £ (see 2.4(a))
and (b) follows.

2.8. We choose an F,-rational structure on G. We shall assume that B
(hence U) is defined over F,, that T is defined and split over F, and that
the integer n in 1.4 divides ¢ — 1. Then for each s € S, the subgroup Uy is
defined over Fy; we shall also assume that in 1.3 we have & € Ug(Fy) — {1}.

We have induced Fg-structures on B, B. For any w € W, Oy, Oy, O, O

-1
q

&~ Hw) N G(Fy); note that v € r; ' (w), ()™ € k' (w™!). Now the local

system 1Q; in 1.4 is naturally pure of weight zero (since Q; is so) and each

inherit natural F -structures. For any w € W we write s, ' (w) instead of

of its direct summands L) is itself naturally pure of weight zero (since n
divides ¢ — 1). If w € k,*(w), it follows that the local system LY on O is
naturally pure of weight zero. Hence L;\’ﬁ, LY are naturally pure of weight

zero. In particular, qu, L;’;}ﬁ, Li{} are naturally pure of weight zero.

Let D®B2 be the subcategory of D(Bz) consisting of objects which are
restrictions of objects in the G' x T?-equivariant derived category. Let D,?JS’Q
be the subcategory of D,,(5%) consisting of objects which are restrictions of
objects in the mixed G x T2-equivariant derived category. Let M* 52 (resp.
M®AB?) be the subcategory of D*B? (resp. D*B?) consisting of objects
which are perverse sheaves.

IfweW, we /f(;l(w) then LY (resp. L‘;\’ﬁ, L}f) is (noncanonically)
isomorphic to LY (resp. Lfﬁ, LY) as objects of D, (B?).

2.9. Let L € Da(lg’g) Forany w € W, i € Z, ’HiL|@w is a G x T?-equivariant

local system with an induced mixed structure. We can write it as

H'Lls, = @resViiwa @ LY
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where Vg ; ., » are mixed Q-vector spaces. For j € Z let VLiwn,; be the
subquotient of Vi, ; ., x; of pure weight j. We set

VD)= > > (=1 (—v) dim Vi wa,Twls € H.
weW,\esi,j€Z

For example, if w € W and w € m;l(w), A € s then
Y(LY) = (LY) = Twlx.

Note that

(a) if (L, L', L") is a distinguished triangle in D®(B2), then (L") = ~(L) +
y(L).

2.10. Let w,w’ € W, w € k1 (w), ' € k1 (w'), A, X € 5. We show:

(a) V(LK o L)) = (v = D)PY (L)Y (LY)-

The right hand side of (a) is (v? —1)PT,, 1\T} 1), We prove (a) by induction
on |w|. If jw| = 0 then by 2.4(a), 2.3(a), the left hand side of (a) is (v? —
D)PTy1y (if w'(N) = A) and 0 otherwise; this is clearly equal to the right
hand side of (a). Now assume that |w| > 1. We can find s € S such that
|w| = |ws| + 1. The right hand side of (a) is

(b) (v? = 1)PT1\Tyyly = (v* = 1)P Ty Tl Ty Ly

If w'(\') # X then (b) is 0. If w/(N) = X and |sw'| = |w'| + 1 then (b) is
(V2 — 1)PTpsTow 1y If w'(N) = X and |sw'| = |w'| — 1, s ¢ W) then (b) is
v2(v? — 1)PTysTsu 1y, If w'(N) = X and [sw'| = |w'| — 1, s € W) then (b) is

(1)2 - 1)pTws(U2T5w/ + (U2 - 1)Tw’)1)\’-
Let ) = s(\). By 2.4(a) we have L§ ® £ = L% ' o L}, hence
(c) Ri=I50L{ ®L®LE=LY oLioL{ ®L.

If w'(\) # A, then 8 = 0 by 2.3(a); hence in this case (a) holds. Thus we
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can assume that w'(\) = A, If [sw'| = |w| + 1 we have (using 2.4(a))
R=L oLl¥ 0e®e
hence by the induction hypothesis
(v = 1)2Py(LY) 0 L)) = (02 — 1) Tos Lo T Ly

hence in this case (a) holds. We now assume that w'(\) = A, |sw/| = |w'|—1.
Using 2.7(a), (b) to describe L5 o LY, ® £ we deduce that

R = LY o LY @ £92[—2)(—1) if s ¢ Wi,
R o {L§ o LY ® £82[=2)(=1), 155 o LY ® £82[—2)(—1),
LY o LY © £92]-1]} if s € W,

It follows that

Y(R) = v2(v? — 1) (L5 o LYY if s ¢ Wy,
V(R) = (02 = DALY o LYY + (v® — Dy(LgS o L)) if s € Wy,

Using the induction hypothesis we see that

fy(ﬁ) = 1)2(1)2 — 1) Twsl)\”Tsw’lX if s §é W)\,
v(R) = 02— )SP(UQTwsl)\”Tsw’lX + (1)2 — D)Tys Ty ly) if s € Wy,

Thus, (a) holds.

2.11. Let r > 1 and let 'L,2L,...,"L be objects of DgéQ. We show:
(a) y(*Lo?Lo...o"L) = (v* = 1)V L)y(L) ... 4("L).

When r =1, (a) is obvious. For r > 2, (a) follows easily by induction from
the case when r = 2. Thus we may assume that r = 2. For j = 1,2 we have

IL = {H'(L)[-i];i € Z}
hence (using 2.9(a)), y(/L) = >_,(—=1)"y(H(L)). Moreover,

'Lo?L < {H'('L) o H' (PL)[—i — i'];i,i' € Z}
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hence (using 2.9(a)),

Y('Lo?L)= Y (=)™ y(H('L) o H' (°L)).

ii'€Z

Thus we can assume that 'L = LY, 2L = Lﬁ\"’/ where w,w’ € W, A\, \ € s.
In this case, (a) follows from 2.10(a).

2.12. Let A € 5. We choose for each n € Wy an element ij € x~1(n) as
follows. Assume first that ||y = 1. We write n = s182... 88418 ... 81
with s1,89...,8-41 in .S; we set

.. .. .o .1 .1
TN=5182...85rSr415 -.-.S1 -

Assume next that |n|y = m. We write n = miny... 0, with n; € Wy such
that [m|x = - = [nmlx = 1, In|x = m and we set 7 = fjifja... 7. (In
particular, 1 = 1.)

We now define for each w € W an element 1 € ;' (w) as follows. There
is a unique z € W such that z = min(wW)). We have w = zn for a unique
n € Wy. We set w = z1.

Let w,y € W. Let z = min(wW)). We write w = zn with n € W). Let
i € Z. The statements (a), (b) below can be deduced from ﬂa, 1.24] in the
same way as |16, 12.4] was deduced from |13, 1.24].

(a) We have Hingﬁ\@y =0 unless i is even and y € wWy.

(b) Assume that i is even and y € wWy. We write y = zn' with ' € W).
We have

HLY 5, = {LDA(=i/2);h € (L, n4]}
where (Lg{)h are copies of Lg{ and ny 5 is the coefficient of X2 ip

1/2)(|w|—|y|— +|n' A

x W/2)(wl=lyl=Inlxl+In |)\)Pn/’7](X)7
see 1.8.

From (a), (b) we deduce:

(c) LY < (LS (=i € Wi b€ [Lma i}
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This is compatible with the natural mixed structures. Using 2.9(a), we
deduce

’Y(Lq)fﬁ) = Z nA,n/,n,i’Y(L()\ZU ))Uia
n'€Wy;i€2Z
that is
(L) = Z olel= = = Py ()T
n' €Wy

hence, using 1.8(a),

(d) YISF) = vley s,

for any w € k! (w).

2.13. Let w,w’ € W, w € kY (w), v’ € k= H(w') and A\, X € 5. We show:
(a) Ifw'(N) # A then L% o L9 =
(b) If w'(XN) # A then LY o LSF =0, L5¥ o L& = 0,

We prove (a). We write w = zw; (resp. w’ = 2'w}) where z = min(zW))
(resp. 2/ = min(2'W)y/)) and wy € Wy (resp. w) € Wy). Using 2.12(c) it
is enough to show that Lg){l o L‘z/} = 0 for any y; € Wy, y; € Wy. Using
2.3(a) it is enough to show that for yj € Wy we have 'y} (N) # A\. We
have yj () = X, w](X) = X hence 2'y|(N) = 2/(N) = Zw)j(N) =o' (N). It
remains to use our assumption that w’(\) # .

We prove (b). For the first (resp. second) equality in (b) we repeat the
proof of (a) but take y; = wy (resp. yj = w)).

It is not difficult to prove the following strengthening of (a).

(c) Assume that for some j € Z, sz is a composition factor of (Lf o L)\w/)j.
Thenn =X =w'"*(\).

2.14. In the remainder of this paper we fix o two-sided cell ¢ of Ws and we
set a = a(w - X) for some/any w -\ € c. Let o be the unique W-orbit on s
such that w- A €c = A €o.

Let Y = B2 Let M3Y (resp. M~Y) be the subcategory of D*Y whose
objects are perverse sheaves L such that any composition factor of L is of
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the form LY for some w - A < ¢ (resp. w- A < ¢). Let MZY (resp. M;Y)
be the subcategory of D®Y whose objects are in MZY (resp. M<Y). Let
DZY (resp. D<Y) be the subcategory of D®Y whose objects are complexes
L such that L7 is in MZY (resp. M<Y) for any j. Let DY (resp. DY)
be the subcategory of D®Y whose objects are also in DZY (resp. D<Y).
Let C*Y be the subcategory of M®Y consisting of semisimple objects. Let
CO‘Y be the subcategory of M®Y consisting of those L such that L is pure
of weight zero. Let C°Y be the subcategory of M*®Y consisting of objects
which are direct sums of objects of the form Lf\i’ with w - A € ¢. Let C§Y be
the subcategory of CO*Y consisting of those L € CO*Y such that, as an object
of C*Y', L belongs to C°Y . For L € CO*Y let L be the largest subobject of L
such that as an object of C*Y, we have L € C°Y.

2.15. Let » > 1. We define an action of G = G x U” x T?"t1 x U™ on
Gr+lt by

/ / / !/ !/ Iy .
(g,ul,UQ,...,ur,t17...,tr,to,t17...7tr,uO,ul7...7ur) .

-1

(90 G1s - gr) = (ggoty™uh ™ urty Mgt " uy T gt Ml .

The orbits of this action are indexed by W"; to w = (wy,...,w,) € W’
corresponds the orbit GTF1 = G x Gy, X Gy, X ... X Gy, The restriction
of the G-action to the subgroup

! / / ! / / /
G = {(g,ur,ug, ... up,tyy .t o, by, ug U, ) € G

g=Lti=...=t,=t)=...=t,=1uj=uy,u) =us,...,u._;=u,}
(isomorphic to U™*1) is free and the map 6 : G"+! — B"+! given by

(907917 cee 7g7") — (90U79091U7 ---59091 - gT’U)

identifies B! with ¢'\G"*!. For w = (wy,...,w,) € W" and J C [1,7] we
define

GTHY = (g0, 915+, 90) € Gl € Gy Vi € J, g € Gy, Vi € [1,7] — J},

OF = {(xU,21U,...,2,U) € B o 2,U € Gy, Vi € J,
z; i € Gy, Vi € [1,r] — T}
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Now 6 identifies O with ¢/\G%' "/ and

Oy = l—ly:(yl,y27~~~,yr)€WT;yiéiniEJ,yFiniE[1,T]*JO?"
Note that O? is irreducible of dimension v + (r 4+ 1)p + |w| where
(Wl = |wi| + [wa| + - - + Jwy].

Until the end of 2.22 we fix w = (wy,...,w,) € W', w = (w1, wa,...,w,)
such that w; € nq_l(wl-) fori=1,...,7and A = (A1, Ag,..., \,) €5".

Define ¢ : O% — T and é: G%' — T" by

c(zoU, 21U, ..., 2,U) = (25 01w, (07 02)wns - 5 (27 120w ),
(90,91, -29r) = ((91)wrs (92)wss -5 (91 )w, )
so that &= cfl. Let M¥ € D,,(B"!) be the local system ¢*(Ly, K... K Ly,)
on Of extended by 0 on B’ — 0. Let MY € D,,(G"*!) be the local

system & (Ly, ... X Ly ) on G7! extended by 0 on G"*! — G7FL. Note
that

N;‘" =0"My.
From the definitions we have

(Here pi; : B'*t! — B2 are the obvious projections.) Note that MK’ €
D, (G"H1) is G-equivariant. Indeed, G acts on T" by

/ / / / / Iy .
(g7u17u2,...7ur7t17...7t7‘7t0,t17...7tr7uO7ul7...7uT,) .

N T U AR (o T AR U A}

6 is compatible with the G-actions and Ly, X ... X Ly 1is a G-equivariant
local system. Let J C [1,7]. We set

MY = gl L opilLe...® Pi_1,"L € Dy (B,
Y7 = pouMy (W) =L o2Lo...o"L{|w|) € Dn(B?),



640 G. LUSZTIG [December

where L is L“;jﬁ for i € J and LY for i ¢ J. Note that M;"w = M. More-
over, M;”J is the intersection cohomology complex of @;]V with coefficients
in My .

To prove this, it is enough to show that H*M;”J is the intersection cohomol-
ogy complex of G with coefficients in M;)? this is immediate.

Consider the free T -action on B"t! given by
(Tl,TQ, .. ,Tr—l) : (mOU,mlU, .. ,mr_lU,er) —
(.%'oU, .%'1T1U, Ce ,xr_lTr_lU, .%'TU).

Note that Oy, is stable under this T"~'-action. We also have a free T"~1-
action on T" given by

(T4, 72y ooy Tr1) = (E1 b2y ooy )
1

(tr71, wy (7 Dtara, wy (g DtaTs, .o w (1) a1, wy ()t

Let B+t = T"=1\B"*1. Let 'O = T""1\OZ (a locally closed subvariety
of 'B"t1). Let "T" = T"~'\T". Note that ‘O = T"~1\O! is an open dense
smooth irreducible subvariety of ‘OZ,. Now ¢ : O — T" is compatible with
the T -actions on O, T" hence it induces a map ‘c : 'O% — 'T7. The

homomorphism ¢’ : T" — T given by
(tl, tg, A ,tT) — tlwg(tQ)’wQZUg(tg) Lo Wws3 .. wr(tr)

is constant on each orbit of the T"!-action on T" hence it induces a mor-
phism "T" — T whose composition with c is denoted by :’O% — T. Let
’M;\"’@ be the local system & Ly, on 'O% extended by 0 on /B"+1 -’00 . Let
! M;"J € D,,('B"t") be the intersection cohomology complex of 'OJ with
coefficients in ’M;‘\”@ extended by 0 on 'B"t —'O7 . Let po, : 'O — B? be
the map induced by po, : O — B2. We define ’ L‘;‘”J € D* B2 as follows: if

)\k = wk+1()\k+1) for k = 1,2, ey T — 1
(in which case we say that A is w-adapted) we set
J . J
'L = o M ()

if X is not w-adapted, we set ’L;‘\”J =0. Let ¢/ : O — 'O be the obvious
(orbit) map. We show:
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(a) If X is w-adapted then M;”J = (éJ)*’M;)’J.

J

Since ¢’ is a T"!-bundle, it is enough to show that

M;),@ — (é@)*/M;’,w
or that
(L, K...®Ly) = (") Ly,.

We have a commutative diagram
oy =
a@l c'l
‘00— 5 T
hence ()*&* = ¢*¢* and it is enough to show that
Ly, ®...®Ly =cd*L,,.
This follows from the equality

M (C/(tl, to, ... ,tr)) = Al(tl))\g(tg) ... )\r(tr) for all (tl, to,... ,tr) S TIL

which is a consequence of A being w-adapted.

We now show:

7J _ r— ,J
(b) We have LY = £20=1 @ /L.

If A is not w-adapted then from 2.3(a), 2.13(a), (b), we see that L‘;‘”J =0
hence (b) holds. We now assume that A is w-adapted. Using (a) we have

w,J
LA

pon My ([wl) = pon (&) My (|w))
= Do (& )(@”) M () = pors((&7):Qu) @ (&) My {|wl))
and it remains to use that (¢/),Q; = £20—1),
We prove the following result.

(¢) There is a natural bijection between s™ and the set of isomorphism classes
of irreducible G-equivariant local systems on the G-orbit GCVH: to N =
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(AN, A, oo L) € 87 corresponds the local system

M,‘\",,]Gw, = (H*M/‘\",,)Gw, where w' = (wy, wa, ..., Wy).
Let T' be the stabilizer of (1,y,...,w,) € G in G. We have

!y roor / .
I' = {(gyu1,u2y ..., Up,t1, ...ttty oot ug, uly .o uy) € Gs
syl —n . —1 . roe—1 . / . —1 . /
g =upty ", W] T u W = U, Wy UWa = Uy, ..., Wy UpWy = Uy,
n __ 'n n __ 'n
751 _wl(tl )?""tr _wr(tr )}
The closed subgroup
/ / / / / /
{(g,ur,ug, ... up,t1, ooyt to, thy .oyt ug, Uy, ..o u) € G;
oy =1 . =1 . =1 ./
g =ugly " W] U = Uy, Wy UWo = Uy, ..., Wy UpWy = Uy,
/ /
tr=wi(t),. .., tr = we(t)}
of I' is clearly connected of the same dimension as I' (namely (r+ 1)v + (r +

1)p) hence it is equal to the identity component I' of . We can view T2"
as the kernel of the surjective homomorphism I' = G x U™ x T™+ x U™+,

/ / / / / /
(gyur,uy ..oy Up, b, o o ey g, B, ot ug, U, -y )

n n 4/ / / /
(U, U2, U, T T, UG U e Uy )

whose restriction to I'Y must also be surjective. It follows that I' = T2'T°

hence
L/’ = T2 /(T2 N1°)
= T2 /{(t1,...,tp,th, ..., t.) € T2ty = wi(t),...,t, = we(t))}.

Note that the irreducible G-equivariant local systems on G7f! correspond
to irreducible representations of I'/T' hence to representations of T2" which

are trivial on

{(try ottt € T2ty = wi(th), ...t = we(th)}.
Such representations are uniquely determined by their restriction to

{(try oo sty ) €Tty =ty = =, = 1}
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hence they are in natural bijection with s”. This proves (c).

Using (c) and the fact that the G-orbits on G™*! are indexed by W7, we

deduce:

(d) There is a natural bijection between W' x s" and the set of isomor-
phism classes of simple G-equivariant perverse sheaves on G™1: to w' =
(wh,wh,...,wl) € W™ and N = (N, NS, ..., \L) € 8" corresponds the sim-

ple perverse sheaf H*M;),/’[l’r] (dim GTHYY where w' = (W, i, . .., Wl).

2.16. We preserve the setup of 2.15. We assume that J = [1,7]. In this

]

case, por : ' @L},T — B2 is clearly a proper morphism. Hence, by Deligne’s

theorem,
(a) ’L‘;\”[l’r} is pure of weight zero.

We set L = L‘;’[l’r}, 'L = ’L;‘”[l’r]. From (a) it follows that for j € Z, 'L/ is

pure of weight j hence
(b) /Lj = @w-)\EWst-)\,ng\b
where V. A,j are mixed Q-vector spaces of pure weight j. For any (w,\) €
Ws and any j € Z we show:
(c) We have
dim Viyn; = N(w- X\, —j + v+ 2p)

where N(w, A\, k) = N(w, A\, —k) € N are given by the equality (in H):

k
Cwt- M Cwsg - -« Comr, = E N(w -\ k)v ey
w-ANeWs,keZ

From 2.11(a) and 2.12(d) we have (setting 6 = (r — 1)p):

2

R (Lo PRTE W g

)

L) = (P - 1)
= @*-1)
(- 1)
(- 1)

w1 w9 w —|w
vl |cw1.>\lv‘ |cw2.)\2...v‘ T‘cwr.)\rv [wi

[\

6
Cwi-A1Cwa-Az - - - Cwpe Ay

J Z N(w- A\, k)vkcw.h.
w AW s kEZ

v

U2
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From the definitions we have (using (b)):
(L) = Y (=1L
J
= D (-1 > dim Vi (~0) v (IR (wl + v +20)

7 w AEW s
= g g dim Vw.A,ijcw.w]_w_”_p.
7 w-AeEWs

From 2.15(b) we have (L) = (v? — 1)°y('L) hence

L) = (02 = 1)° 325 3 ayemws A Vigy jeynvd ™2

= (v* - 1)5 Zw-AEWﬁ,kEZ N(w - X, k)oF ey

Since ¢,,.) are linearly independent in H, it follows that for any w- A we have

Z dim Vy,.p j0? 7772 = Z N(w -\ k) = Z N(w- A, —k)o*
J keZ keZ

hence for any j we have dim Vw.)\J = N(w-\ —j+v+2p), as required.

2.17. We preserve the setup of 2.15; let J C [1,7]. We set L7 = L‘;‘”J,
'L = ’L;‘\”J. As in 2.16, we set 6 = (r — 1)p.

We now analyze the complex £20"~1) ¢ D, (point). We can find free
abelian groups Xp5_; of rank (f), (i € Z) such that X5 = Z, complexes
R<25_; € Dy, (point) (i € [0,0 + 1]) and distinguished triangles

(R<2s—i—1, R<as—i, Xos—i ® Qu(i — 8)[i — 28]), (i €[0,0))

in D,,(point) such that R<os = £er-1), R<s_1 = 0. It follows that for
i € [0, 0] we have distinguished triangles in D,,(B?):

(R<2—i—1 ® 'L, Reas—i @ 'L, Xp5_i(i — 6) @ 'L7[i — 24))
hence we have exact sequences

C = Xy i(i—0) @ (L) (Regs @ LYY
— (R<25—i ® /LJ)j — Xos_i(i — ) ® (/LJ)725+i+j — ...



2016] NON-UNIPOTENT CHARACTER SHEAVES 645

Thus, setting

Rij = (Reos_i ®'L7) fori€[0,6+1],
Pij = Xos_i(i —0) @ (L7)™2FH for i € [0, 4],

we have R;41; = 0 for all j and, for any i € [0, 6], we have an exact sequence
in M, (B?):
(a) e — 731'7];1 — Ri+1,j — Ri,j — PZ'J' — Ri+1,j+1 — Ri,jJrl — ..

Note that for any j we have

(b) Ro; = (L7,

() Poj = (LY~ (=5).
Indeed, (c) is obvious; (b) follows from 2.15(b):

Roj = (Rezs @ 'L7) = (£50 "V o 'L7)) = (L7

2.18. We preserve the setup of 2.15; there is no assumption on J. The
restriction of M := M;“’ Ml g O (an open dense subset of (7)&’7"}) is the same

as the restriction of M7 := M;”J to O ; the restriction of M to ~L},’r] -0
(a closed subset of @L},’r]), extended by 0 on B! — (@L},’T} —O2), is denoted
by M. We have a distinguished triangle

(a) (M7, M, M7)

in D,,(B ). We have the following result.

(b) Let h € Z. Let K be either M7 or M. Any composition factor of
K" € M(B™1) is of the form M;),’[l’r](|w’| + v+ (r+1)p) for some
w o= (Wi, wh, ... w) e W, N = (A, N,, ..., ) € 8" such that w; =
wi, i = X, for alli € J; here w' = (W}, w5, ..., 0.).
It is enough to show that for any h, any composition factor of (6*K)" (6 as
in 2.15) is of the form §*My, ’[1’r}<|w’| + v+ (r+1)p) for some w', N w' as
in (b). To see this we use the fact that (6*K)" is a G-equivariant perverse
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sheaf on G"*! (it is obtained from the G-equivariant object MK’ by opera-
tions which preserve G-equivariance: passage to an intersection cohomology
complex, restriction to a G-invariant subvariety, taking a perverse cohomol-
ogy sheaf) and that all simple G-equivariant perverse sheaves on G™ ! are
of the form H*M)‘:’,/’[l’r}ﬂw’] + v+ (r+1)p) with w', X, w' as in (b) (but
with w’ unrestricted), see 2.15(d). The fact that the w’, X which appear are
restricted as in (b) is immediate.

We show:

(c) (M7{(w|+v+ (r+1)p—1)) =0 for any j > 0.

It is enough to show that dimsuppH(M”[|w|+ v + (r +1)p — 1)) < —h
for any h € Z. Assume first that h < —|w| — v — (r + 1)p. Since M is an
intersection cohomology complex with support of dimension |w|+v+(r+1)p,
we have dim suppH" 1 (M][|w| + v + (r +1)p]) < —h + 1 hence

dim suppH" (M7 [|w| + v + (r +1)p]) < —h +1
hence dim suppH"~ (M7 [|w| + v + (r + 1)p]) < —h, hence

dimsuppH" (M7 [|w| +v + (r +1)p —1]) < —h.
Next we assume that h = —|w| —v — (r + 1)p + 1. Then

dimsuppH" Y (M [|[w| + v + (r+1)p]) < dim(@&’r} —-0)) <
Wl 4w+ (4 Dp—1=—h,

hence

dim suppH" (M7 [|w| 4+ v + (r 4+ 1)p — 1]) < —h.

Finally, assume that h > —|w| — v — (7 + 1)p + 2. Then H"Y(M[|w| 4+ v +
(r+1)p]) = 0, hence H" Y (M’[|w|+ v+ (r+1)p]) = 0, hence H"(M”’[|w]|+
v+ (r+1)p—1]) = 0. This proves (c).

2.19. We preserve the setup of 2.15; there is no assumption on J. We

shall need a variant of the results in 2.18. The restriction of 'M ="' M;)’[l’r]
to 'O (an open dense subset of ’ (’j‘%’r]) is the same as the restriction of

‘M7 = ’M;”J to 'Oy ; the restriction of 'M to ol 'O (a closed subset
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of ’(’j‘[},’r]), extended by 0 on ‘B! — (’@L},’r] —'0y), is denoted by 'M7. We
have a distinguished triangle

(a) (/MJ,,M,/MJ)
in D('B"t1). The following result can be deduced from 2.18(b).

(b) Let h € Z. Let 'K be either 'M” or 'M”. Any composition factor of
(K)" € M('B™*Y) is of the form ' M, ’[l’r}ﬂw’] +v+2p) for some w' =
(wh,wh,...,w.) € W', X = (AN, \,...,\.) € 8" such that w; = w),

Xi =X, foralli e J, and X is w-adapted; here w' = (W), dw), ... w).).

We note:

(c) (’MJ(\W\ +v+2p—1)) =0 for any j > 0.

The proof is entirely similar to that of 2.18(c); alternatively it can be deduced
from 2.18(c).

2.20. We preserve the setup of 2.15. Assume that w, - A\, € c for some
we J. Weset L7 = L7 /L7 ="157. Let M7 be as in 2.18; let 'M” be as
in 2.19. Let L' = poaM7(|w|) € D(B?), 'L’ = o’ M’ {|w]|) € D(B?). Let
J € Z. We have the following results, in which R; ;, P; ; are as in 2.17 with
J=1[1l,r]and § = (r — 1)p.

(a) We have (L7) € M3B2. If j > 26+v+2p+(r—1)a then (L7) € M=B2.
(b) We have (L7) € M3B2. If j > 26+v+2p+(r—1)a then (L7)7 € M=B2.
¢) We have ('L7) € MZB2. If j > v+2p+ (r—1)a then ('L7) € M=B2.

L7y € M=B2.

(e) Ifi €10,6 +1], J = [1,7], then R;; € MZB.

(f) Ifi € [0,6+1], j > 26—i+v+2p+(r—1)a, J = [1,7], then R; ; € M<B2.

(g) Ifi €0,8], J = [1,7], then P;; € MZB%. Ifi €[0,6], j > 26 —i+ v+
20+ (r — V)a, J = [1,7], then P;ij € M=B.

)
)
(c)
(d) We have ('L7) € M=B2. If j > v+2p+ (r — 1)a then ('L’
)
)
)

We prove (e) by descending induction on ¢. If i = 6+1 then, since Rs41; = 0,
there is nothing to prove. Now assume that ¢ € [0,0]. Assume that LY is
a composition factor of R;; (without the mixed structure). We must show
that w - A < ¢. By the induction hypothesis we can assume that L)\“" is not
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a composition factor of R; 1 ;; hence by 2.17(a) it is a composition factor
of P; ;. Hence LY is a composition factor of (/ LIV =20%45 - Hence Vi,
in 2.16 is # 0 for some k. Using 2.16(c) we see that N(w - A\, k) # 0 for
some k. Using the definition of N(w - A, k) we see that w- A\ < ¢ (recall that
Wy, + Ay € ¢ for some u) and (e) is proved.

We prove (f) by descending induction on i. If ¢ = 6 4+ 1 then, since
Rs+41,; = 0, there is nothing to prove. Now assume that i € [0,6]. Assume
that LY is a composition factor of R;; (without the mixed structure). We
must show that w - A < ¢. By the induction hypothesis we can assume that
L% is not a composition factor of R;1; (we have j > 20 —i — 1+ v +
2p + (r — 1)a); hence by 2.17(a), LY is a composition factor of P; ;. Hence
LY is a composition factor of ('LIrly=20+i+)  Hence Vipr—26+i+j in 2.16 is
# 0. Using 2.16(c) we see that N(w - \,20 —i — j + v + 2p) # 0. We have
20—i—j+v+2p < —(r—1)a. Using 1.10(a) we deduce that w- A < ¢ and
(f) is proved.

We prove (g). This follows from the exact sequence 2.17(a) (with J =
[1,7]) using (e), (f).

We prove (a) assuming that J = [1,7]. From (e), (f) we have Ry ; €
MZB? and Ry € M=B?if j > 25 + v+ 2p + (r — 1)a. Using 2.17(b) we
deduce that (a) holds (when J = [1,7]).

We prove (c) assuming that J = [1,7]. From (g) we have Py ; € M=B?
and Py ; € M=B%if j > 25 + v+ 2p + (r — 1)a. Using 2.17(c) we deduce
that ('L”)1=2%(—=6) is in MZB? and is in M=B?if j—26 > v+2p+ (r—1)a.
We deduce that (c) holds (when J = [1,7]).

We prove (b). Assume that j € Z and w - A € s is such that LY is a
composition factor of (L7)7 (without mixed structure). Then there exists
h such that LY is a composition factor of (po.(M?[|w|])*[~h])7. We have
(M7[]w])" # 0 hence (M7 [|w| + v + (r + 1)p — 1])=»=0+Dp+L £ 0 hence
by 2.18(c), h —v — (r+ 1)p+1 < 0. From 2.18(b) we see that there
exist w' = (wj,wh,...,w.) € W', XN = (M,N,,...,\) € s" such that
w; = wl, \; = X, for all i € J and LY is a composition factor of

(por (M MW | 40 4 (r 4+ 1)p)[=h]) = L& w7+t Do=h,

here w' = (w,...,w.). From the part of (a) that is already proved (for
w’, X instead of w,\) we see that w-\ < ¢ and that if j+v+(r+1)p—h >
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20+v+2p+(r—1)athatis, if j > 20+ (r—1)p+(r—1)a+h, then w-\ < c.
Ifj >20+v+2p+ (r— 1)a then, using that 0 > h — v — (r + 1)p, we see
that we have indeed j > 26 + (r — 1)p + (r — 1)a + h. This proves (b).

The proof of (d) is entirely similar to that of (b); it uses the already
proved part of (c) and it uses the results of 2.19 instead of those in 2.18.

We prove (a) without assumption on J. Applying pg,! to 2.18(a) we get
a distinguished triangle (L, L"), L7). This gives rise to an exact sequence

(LYY = (L7 — Ly — (L7).

Using this together with (b) and the already proved part of (a) we see that
(a) holds in general.

We prove (c) without assumption on J. Applying po,! to 2.19(a) we get a
distinguished triangle ('L”,’LI71 /L7, This gives rise to an exact sequence

(/LJ)j—1_>(lLJ)j_>(/L[1,r})j_>(/LJ)j‘

Using this together with (d) and the already proved part of (c) we see that

¢) holds in general.
(c) g

2.21. Let j € Z. In (a), (b) below, R, ; is as in 2.17 with arbitrary J.

(a) If i €[0,6 + 1] then R;; € M=B2,
(b) Ifi € 0,6 +1], 5 >20 —i+v+2p+ (r—1)a then R;; € M~B2.

Note that (a), (b) are generalizations of 2.20(e), 2.20(f) (which correspond
to the case J = [1,7]).

We prove (a), (b) by descending induction on i. If i = 6 4+ 1 then, since
Rs41,; = 0, there is nothing to prove. Now assume that i € [0,0]. Assume
that LY is a composition factor of R;; (without the mixed structure). We
must show that w-A < c and that, if j > 2d—i+v+2p+(r—1)a, then w-\ < c.
Using 2.17(a), we see that LY is a composition factor of R;41; or of P; ;. In
the first case, using the induction hypothesis we see that w- A < ¢ and that,
ifj>20—i+v+2p+(r—1)a (sothat j >20—i—14+v+2p+(r—1)a), then
w - A < c. In the second case, LY is a composition factor of ('L7)=20+i+i,
Using 2.20(c) we see that w- A < c and that, if j > 20 —i+v+2p+(r—1)a
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(so that =20 +i+j > v+ 2p+ (r — 1)a), then w - A < c. This proves (a),
(b).

2.22. We preserve the setup of 2.20. In (a), (b) below we take j = 20 +v +
2p + (r — 1)a. We have the following results.

(a) We have canonically gri((L7)7) = grj('L7)I=20(=6)).

(b) We have canonically gri((L”)7) 5 gri((LIb)7).

(c) If (w1, A1) €c,...y(we, \p) €, (w,N) €cand j=20+v+p+(r—1)a
then the multiplicity of LY in gr;((L7)7) is

Z hzl-)\’l,wg-)\z,m-)\g hzz-A§7w3-A3723-Ag T hzrfl')\;«,lywr'Ahzr')\;a
where the sum is taken over all zq - Nj, 29 - Ny, ..., 2z - AL in ¢ such that
21N =w1 A,z N =w e A
(d) Assume that i € [0,0 + 1]. Then R;; (notation of 2.17) is mized of
weight < 7 — 1.

We prove (d) by descending induction on ¢. If i = § + 1 there is nothing
to prove. Assume now that i < 6. By Deligne’s theorem, L7 is mixed
of weight < 0; hence ('L7)~20T"*J is mixed of weight < —28 + i + j and
Xos_i(i—0) @ ("L7)~20++7 is mixed of weight < —25+i+j—2(i—0) = j—i.
In other words, P; ; (notation of 2.17) is mixed of weight < j—i. Thus in the
exact sequence Ri1,; — Ri; — P;j coming from 2.17(a) in which R4 ; is
mixed of weight < j —i—1 < j —i (by the induction hypothesis) and P; ; is
mixed of weight < j — 4 we must have that R; ; is mixed of weight < j — .
This proves (d).

We prove (a). From 2.17(a) we deduce an exact sequence
grj(Ra) = g7j(Ro,j) = 975(Poj) = g7j(Rj+1).

By (d) we have gr;(R1;) = 0. We have gr;(Ro ;) = gr;((L?)?), grj(Po;) =
grj(('L7)=20%3(=5)). Moreover, by 2.21(b) we have Ry j1 € D~B? since
j+1>25—14+v+2p+(r—1)a. It follows that grj(Ri ;41) € D=B% Thus

the exact sequence above induces an isomorphism as in (a).



2016] NON-UNIPOTENT CHARACTER SHEAVES 651

We prove (b). As in 2.20 we have an exact sequence
(L7 =Y = (L7 — Ly — (L7)7.
This gives rise to an exact sequence
gri (LY 1) = gri(L7)) = gry(LET)T) = gry (L7)).

From 2.20(b) we have grj((L7)7) € M=(B?). It is then enough to show
that gr;((L7)7~1) = 0. Since M”(|w]|) is the restriction of a pure complex
of weight 0 to a subspace, it is mixed of weight < 0 (see ﬂ, 5.1.14]). Hence
L7 = (pos M’ (|w]) is mixed of weight < 0 and (L7)7~! is mixed of weight
lej — 1 (sce |1, 5.4.1)). Thus, gr;((L7)7~") = 0 as required. This proves (b).

We prove (c¢). By (a) and (b), the multiplicity in (c) is equal to the
multiplicity of LY in

gr; (LI =25 (=8)) = (LI =25 (=)

(we use the fact that 'L is pure of weight zero); thus it is equal to

Virj—25 = Vi p42p+(r—1)a hence also to N(w - A, —(r — 1)a) (see 2.16(c)).
It remains to use the equality 1.10(c).

2.23. Let L, L' € D*B2. We show:

(a) Assume that L,L' € M®*B? and that either L or L' is in DZB%. If
j>a—vthen (LoL') € M=B>.

We can assume that L = LY, L' = L)\“"// and that either w-\ € cor w' -\ € c.
According to 2.20(b) we have

(LY ([w]) o LY (|u' )Y € M=B?
if j/ > 4p + v + a. Hence
(LY (w] + v+ 2p) o LY (w'| + v + 2p)) € M7B?

if j+2v+4p > 4p+ v+ a that is, if j > a — v. This proves (a).

(b) If L € D2B? or I € D=B? then Lo L' € DZB% If L € D=B? or
L' € D=B? then Lo L' € D=B>.
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The first assertion of (b) is shown in the same way as (a). The second
assertion of (b) can be reduced to the first assertion.

2.24. For L, L' € C§B? we set
Lol = (Lo L')*} e c§B2.

(For the notation {#} see 0.2.) Now let L, L/, L" € CSB?. By 2.23(b), we have
L' o L' € D7 B2 and the functor ® : DZB? — DEB?, &(K) = Lo K, is well
defined. We note that, by 2.23(a), (i), (ii) below hold.

(i) If Xo € M3 B? then (®(Xo))" € MZB2 for any h > a —v.

(ii) L'oL" is mized of weight < 0 and (L'oL")* € MZB? for any h > a—v.
Similarly we have L o L/ € D7B? and the functor & : DZB? — D7 B2,
®'(K) = K o I, is well defined. Moreover, (iii), (iv) below hold.

(iil) If Xo € MZB? then (' (Xo))* € MZB2 for any h > a — v.

(iv) Lo L' is mized of weight <0 and (Lo L\" € MZB? for any h > a—v.
We now apply , 1.12] with Y7, Y5 replaced by B? we see that

(I)((L/ o Ll/){a—l—p—u}){a—i—p—u} _ ((I)(Ll ° Ll/)){?a—QV}7

(I)/((L o L/){a—l—p—u}){a-i-p—u} _ (‘I’l(L ° Ll)){Za—?u}.

Thus, we have

LQ(LIQL//) — (L o L/ ° L//){2a72u}’

(LQL/)QL// — (L o L/ o L//){2a72u}‘

Hence

Lo(L'oL") = (LoL')oL".

We see that L, L/ + LoL' defines a monoidal structure on CSB?. Hence if
11,,2,...,"L are in C(‘jl’;’2 then 'Lo%Lo...0"L € C§B~2 is well defined; using
, 1.12] repeatedly, we have

(a) 'Lo?Lo...o"L=("Lo%Lo...o"L){r=Ne=v)}
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2.25. Let Lo, L € C88~2. We show that we have canonically
(a) D(LoeLy) = D(Lo)oD(Ly).

(Note that in the right hand side, o is relative to € instead of ¢, see below.)
We can assume that L; = Lg\”: (¢ = 0,1) where w; - A\; € ¢ (1 = 0,1).
Let L; = ©(L;) = Lfil, i = 0,1. Note that w; - \; ! € & (see 1.14) and
Lo, L € 6832. It is en;ugh to show that

D(LooL1) = LooLs.

If wl()\l) 7£ )\0 (that iS, wl()\fl) 7£ )\61), we have LO o L1 = 0, f/() o f/l =0
hence both sides of (a) are zero. Now assume that wi(A;) = A\o. Let L =
LY L =17 "M ="My where w = (g, 1), A = (Ao, \1), J = {1}
Let L =LY, 'L ="1" 'M ='M;y” where X = (\; ', \{'). By definition
we have

L= (Lo{=|wo| = v —=2p) o Li(=|wi| = v = 2p)){|wo + |wi])
hence L = (Lo o L1){(—2v — 4p). Thus,

L4p+u+a —_ (LO ° Ll)a—u(_y _ 2,0)
and

gr4p+v+a(L4p+nu+a) = gra—v(Lo o L1)"""(-v — 2p).

By 2.22(a) we have

(L4p+nu+a) _ /LV+2p+a(_

9T4p+vta p)

hence

gra-—v(Lo© L) ((a = v)/2) =L ((a + 2p + 1) /2).

Similarly,

gra—v(Lo o L) ((a —v)/2) =L ((a + 2p + 1) /2).
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It is then enough to show that
DL (0 +2p +v)/2)) = "L (a + 20+ ) /2).
This would follow from the stronger result that
DLV H2tey = [t (q 4 2p 4 1),

Recall that 'L = Fg,1 (' M) {|wo|+|w1|) and similarly 'L = po,1("M)(|wo|+ |w1])
where ' M (|Jwo| + w1 | + v +2p), "M (Jwo| + |w |+ v +2p) are perverse sheaves,
each being © of the other. Since pgy is proper, po1r commutes with . It
follows that

D(L{v+2p)) = "L{v +2p),
hence
D((L{v+2p))) = (Liv+2p))7,
that is
D( LY+ = '[YA2i(y 4 2p)

for any j; in particular,

@(/La+2u+p) _ /E7a+u+2p(y + 2/))

Thus it is enough to prove

/f/fa+1/+2p(y + 2/)) — /Eu+2p+a(a + 2/) + l/),

that is
/£—0+V+2/J _ lf]u—l—Qp—l—a(a).

From the hard Lefschetz theorem applied to the projective morphism pg;
and to "M (Jwo| + |w1| + v + 2p) (a perverse sheaf of pure weight 0) we have

canonically for any i:

liu—i—?p—i _ /fju+2p+i (’L)
Taking i = a we obtain the desired result. This proves (a).

2.26. Letr > landlet w = (w1, wa,...,w,) € W' A= (A, A\,..., \) €5"

and let w = (w1, ws,...,w,) be such that w; € nq_l(wl-) fori=1,...,r.
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(a) Assume that w; - \; € ¢ for some i € [1,7] and that

(L;fll o Lfi 0...0 L“/\J:){(r—l)(a—u)} £0.

Then w; - \; € ¢ for all i € [1,r].

Let j = v+ 2rp+ (r — 1)a. By assumption we have grj((L;‘)’[l’r})j) # 0.
Hence by 2.22(a) we have

gry (LYY 00— (r — 1)p)) # 0.

Thus there exists w - A € ¢ such that L)\“" has nonzero multiplicity in

(/L‘;\’v[lvr} )j—Q(T‘—l)p,

that is, Vw_)\7j,2(r,1)p # 0 (notation of 2.16). Using 2.16(c) we see that
N(w-A, —j+2p+v)#0 that is N(w-\, —(r — 1)a) # 0. Using now 1.10(a)
we see that w; - \; € ¢ for all i € [1,r].

3. Sheaves on the Variety 7

3.1. Let
Z ={(B,B',gUg);(B,B") € B>, g€ G,gBg~ ' = B'}.

We define € : B2 — Z by (zU,yU) — (zBz~',yBy~',yUz"'). Now e
identifies Z with T\B? where T acts on B2 by t : (zU,yU) — (2tU,ytU).
Note that Z inherits an Fg-structure from B x B x G.

3.2. The G x TZ?-action on B2 (see 2.1) induces a G x T?-action on T\B>
(see 3.1) hence a G x T?-action on Z in which the subgroup {(1,t1,t2) €
G x T%t) = to} acts trivially. For w € W let Z,, = {(B, B, gUg); (B, B') €
Ow,g € G,gBg~" = B'}; this is a single G’ x T?-orbit on Z with closure

Zyw={(B,B',gUg);(B,B') € O,,g9 € G,gBg~! = B'}

and we have Z = Uyew Zy. Note that Z,, = €(Oy), Oy = € (Zy), Zy =
€(On), O = e HZy).
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Let w € /-cq_l(w). We have a diagram Tj—“>(§w<6ﬂZw where ¢, is the
restriction of € and j, is as in 2.1. Let A € s be such that w(\) = A\. The
T-action on B2 in 3.1 is compatible under j,, with the T-action ¢ : ¢/
w71t on T and Ly is equivariant for this action (by 1.4(a) with w
replaced by w™1) hence 5 L is T-equivariant so that there is a well defined
local system LY of rank 1 on Z,, such that €, LY = j5L). Note that the
induced action of T2 (which acts trivially on Z,) on any stalk of £ is via
the character (t1,t2) — A71(t1)A(t2). Moreover, LY is naturally pure of
weight zero. We have ey, LY = LY.

We show the converse:

(a) Let £ be an irreducible G x T?-equivariant local system on Z,. Then L

is isomorphic to LY for a unique X\ € s such that w(\) = .

The local system €, £ on B2 is irreducible and G x T2-equivariant hence, by
2.1, is isomorphic to L§ for a well defined A € s. Now the restriction of €, L
to any fibre of €, is the constant sheaf. On the other hand the restriction of
LY to any fibre of €, is (under an identification with T) of the form L, \-1)\
which is trivial if and only if w(l) = X\. We see that we must have w(\) = A.
We have €;, L = €; L (both are L§) hence £ = LY. This proves (a).

We define b : Z — Z by (B,B',gUg) + (B',B,g 'Ug/). Note that
he=¢h: B2 — Z. For L € D,,Z we set LT = p*L.

3.3. Let Ws = {w-X € Ws;w(\) = A}, ¢ = Wsnc. Forw-\e Ws and
w € m;l(w) we shall view LY as a constructible sheaf on Z which is 0 on
Z — Zy. Let Eg‘\’ﬁ be its extension to an intersection cohomology complex of

Zw, viewed as a complex on Z, equal to 0 on Z — Z,,. Let
L = L3H(|w] +v + p),

a simple perverse sheaf on Z. Note that £ (resp. LY) is noncanonically

isomorphic to LY (resp. LY.)

We define € : D(Z) — D(B?) and é : D,,(Z) — D,,,(B?) by
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From the definition we have
ELY =LY, g =18,

Note that E“;ﬁ, LY are naturally pure of weight zero.

Let D*Z be the subcategory of D(Z ) consisting of objects which are
restrictions of objects in the G x T?-equivariant derived category. Let D* Z
be the subcategory of D,,(Z) consisting of objects which are restrictions of
objects in the mixed G x T?-equivariant derived category. Let M*®*Z (resp.
M Z) be the subcategory of D*Z (resp. D* Z) consisting of objects which
are perverse sheaves. We define D=Z,D=Z, M=Z, M~Z, D=7 ,D;Z,
MZZ, M3Z, C*Z, CSZ as in 2.14, by replacing (in 2.14) Y by Z and
LY by LY (with w - A required to be in T/I75) For M € CO*Z let M be the
largest subobject of M such that as an object of C*Z, we have M € C°Z.

From 3.2(a) we see that, if M € M*Z, then any composition factor of
M is of the form LY for some w - \ € Ws. From the definitions we see that
M v+ EM is a functor D®*Z — D*B? and also D& Z — DAB?; moreover, it
is a functor M*Z — M*B? and also M%Z — M#* B2, From the definitions
we see that for M € M*Z we have

(a) M € M3Z if and only if eéM € M=B2; we have M € M=Z if and only
if eM e M=B2.

Note that if X € D(Z) and j € Z then
(b) (€ X) 0 = e (X7)[p].
Moreover, if Y € M,,(Z) and j' € Z then

(c) grj (€Y) = &(gryY).

Let A € 5, w € W}, w € k! (w). From 2.2(a) we deduce

1

(d) (L) =L
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3.4. Let 7, f be integers such that 0 < f <r — 3. Let
Y ={((zoU,z,U,...,2,U),g9) € BxG;g € mf+3Um}?1,g € foFQBm;}rl}.
Define ¢ : Y — B! by

((xoU, 21 U,...,2,U),g) — (zoU, 21 U,...,2,U).
For y,y' € W let

Bt = {(xoU,21U,...,0,U) € B a wpyy € Gy apiyapis € Gyl

‘We show:

(a) Let & € g[ryfyl,}. If yy' # 1 then 971(€) = 0. Ifyy' = 1 then 971(¢) =
kvl

We set ¢ = (2oU,71U,...,2,U). If 971(¢) # 0 then x;le+1 € Gy,
x]?iQ:chrg € Gy and (a:f+3U;chl) N (g;f+2Bx]7i1) # (). Hence for some
u € U, b € B we have

ux]jle_,_l = QT;_il_ngf_FQb € Gy N Gy/—l

so that yy' = 1. If we assume that yy’ = 1, then ¥~1(¢) can be identified
with

{g€G;g€ xf+3UxJ71,g € :cf+2BxJ7}rl}
hence with

{(u,b) € U x B; ux;leﬂ = x;}rg)x}urgb}.

We substitute .%'JTJlr31'f+2 = uoytouy, x;leﬂ = w1 ytiu) where ug, uf), u1,u}
€ U, tg € T. Then 9~1(¢) is identified with {(u,b) € U x B;uuigtiu} =
uoytoupb}. The map (u,b) +— wugy'uu; identifies this variety with U N
yBy ' = k¥, This proves (a).

Now T? acts freely on ) by

(tl, tg) : ((.%'oU, U, ... ,er),g) —
((.%'OU, x1U7 s 7fo7 forltlUv $f+2t2U, $f+3U, s 7'%.7"U)7 g)
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Let

'Y=T\{(2U,z:U,...,z,U),g)eB % G;ge :cf+3Ua:]71, ge xf+2Ux]7i1}
where T acts freely by

t: ((xOU,xlU, s ’er)ag) =
((.%'OU, xan s 7fo7 xf+1tU7 for?tUa mer3-[J7 s 71.7’U)7g)'

Clearly, the obvious map 3 : 'Y — T?\) is an isomorphism. We define
!7] A A by

(zoU, 21U, ..., 2,U),g) = e(x 41U, z70U).

We define 7 : ) — 'Y as the composition of the obvious map Y — T2\Y
with =1, Let n = 'nt : Y — Z. We have

n((mOUa 1’1U, s 7x7’U)7 g) = 6(1’f+1t71U7 foer/ilU)

. -1 -1
where ¢,t" in T are such that g € z 7,9t Utz ).
3.5. Let z- A e Ws. Let P = n*ﬁiﬁ. Let p;j : B! — B2 be the projection
to the ij coordinates. We have the following result:

. . L1
(@) P < D] pa L8 ® Phyr, pra Ly ® Py, praliyoy 2lyl — 2v);y € W
Define e : Bt — B4 by

(U, 21U, ..., 2,U) = (27U, 241U, 252U, z513U).

Then (a) is obtained by applying e* to the statement similar to (a) in which
{0,1,...,r} isreplaced by {f, f+1, f+2, f+3}. Thus it is enough to prove
(a) in the special case where r = 3, f = 0. In the remainder of the proof we
assume that r =3, f = 0.

For any y,y in W let 9, : 19*1(3@ y,}) — B* be the restriction of 9.

Let P¥Y be the restriction of P to 9~ (B%) Clearly, we have

[y,y']*

WP = {0, 1P (y,9) € W2},
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Since 19—1(3{;;/}) = () when yy’ # 1, see 3.4(a), we deduce that

NP < {0, , 1Py e W}
Hence to prove (a) it is enough to show for any y € W that

. . -
(b) Dy Py = meZ){ ®p12L§\ﬁ ®P23Lz(>\) 2ly| —2v)

. . -1 . .
where we write Uy, P, instead of ¥, ,—1, P¥¥ . We have a cartesian diagram

v, P,
| |
v, —25V,

Vy = {(moU,xlU,xQU,ng)634;:6513:1 GGy,:cfle € Gz,xglxgéqu},
Vy = T\{(20U, 21U, 22U, 23U) € 5’4;malxl IS Gy,xflxg e G,,

zy ' wg € Gy, (x5 ' m1)y = (25 ' m2)4}

with T acting freely by simultaneous right multiplication on x; and xo,
V, =97(V,) and

Vy, = T\{((2oU, 21U, 25U, 23U), g) € B* x G;05 w1 € Gy, w2 € G,

.%'2_1.%'3 €Gy1,9€ ngxal,g € mgUxfl};
we have
b(zoU, 71U, 22U, 23U) = T — orbit of (zoU, z1tU, 22t'U, 23U)
where ¢,¢' in T are such that (zy'@1t); = (23 @2t'),
b((2oU, 21U, 25U, 23U), g) = T — orbit of ((2oU, z1tU, 2ot'U, 23U), g)

where t,t' in T are such that g € xot/ Utilxl_l; the vertical maps are the

obvious ones. We also have a cartesian diagram
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~ b ~
/ /
Vy V?J

Lo

/ v /

Vy Vy
where f/y’ ,Vé,Vy’ ,V,, are defined in the same way as Vs Vy, Viy, Vy but the
condition xflxg € (G, is replaced by the condition xflxg € G.; the maps
% , b’ are given by the same formulas as 5, b; the vertical maps are the obvious

ones.

Let 5: Vy’ — B* be the inclusion. It is enough to show that
. . * ] 2 * 71
9Py = §* (p51 LY @’l)hszf\jj ® pgng(/\))(2|y| —2v).

By definition, P|y, is the inverse image of Eiﬁ under the composition of b’
Yy

with f/g’/ -V, M 7 where the first map is the obvious one and
!ny(xoU,xlU,ng,ng) = e(x1U, 22 U).

Hence P\(/y, is the inverse image of Eiﬁ under the composition of 7, = !nyb’
with the obvious map v}, : V] — V;. Since 1J,, is an affine space bundle with
fibres of dimension v — |y|, it follows that j*¥, P, = nZEiﬁ(2|y| —2v). Thus

it is enough to show that

-1

L3 = 5 (0 LY @ pia L @ piss LY ).

Since n, is smooth as a map to Z,, we see that nZEiﬁ is the intersection
cohomology complex of Vy’ with coefficients in the local system nZEi on V,.

Now,
. . . L1
7 L, @ Ly @ pas Ll )
is the intersection cohomology complex of Vy’ with coefficients in the local

system

—1

j*(p&ﬁi ® il ® PEng(A )

on V,. It is then enough to show that these two local systems on V), are the
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same. One local system is h*Ly with h : V,, — T given by

(20U, 11U, 25U, 23U) — (t1x1_1$2t2_1)z'
where
ty = (x5 'w1)y € Tty = (23'a2)y € T,

The other local system is A'*Ly with b’ : V, = T given by
('IOU) iElU, 'I2Ua 'I3U) = tllz(té)(zyil)(té)

where
th = (xg'a1)y € T,th = (z7 we): € T,th = (.%'2_11'3):[)—1 eT.

It is enough to show that h*L), = h'*L,. Since the map v : T — T,
t — 27 1(t) satisfies u*Ly = Ly (recall that z(\) = )), we have h/*Ly =
h'*u*Ly hence it is enough to show that h(¢) = (~1(R/(€)) for any & =
(xoU, 21U, 20U, 23U) € V, or that, if t1,ts,],th, t5 are associated to £ as
above, then

(tray sty ) = 27 (Hh2(th) (25 ) (85))-

We have t; =t and xglxg € UytaU hence
x5 twy € Uty 'y~ U = Uy ty(t, U
so that th = y(t; 1) and ;' =y~ (t}). We have

tixy twaty € 1 UG Utyt = Uiz (ty)thty 'U,
so that
(g twaty')s = 27 (t)thty = 271 (1))tay (),

as required. This completes the proof of (b) hence that of (a).
3.6. Let

-2
(w17w27-"7wf7wf+27wf+47"'7w7‘) e W’ )

(A A2, s A A proy Aprdy ooy Ap) € 5772

We set 2z = w2, A = Appo. We assume that z2(A\) = A\. Let P be as in
3.5. Let P = ®c(1r—{f+1./12,5+3)Pi_1, L5 € Dp(BH), P = P@9*P' €



2016] NON-UNIPOTENT CHARACTER SHEAVES 663
D (Y). For any y € W we set

—1 r
wy = (w1, w,..., WY, Wiy, Y Wegd, ..., wp) € W',
. . . .o 1 . .
wy = (w17w27"'7wf7y7wf+27y 7wf+47"'7w7‘)7

Ay = (A A2 A Ao, A2, y( A p42), Afga, -, M) €5
We set 2 = ,P. We have the following result.
- (L = {41,743
(a) 2o (g IR o1y o0)y € WY

in D,,(B ). This follows immediately from 3.5(a) since 2 = P’ @ 0(P).

3.7. We preserve the setup of 3.6. Let S = Uw'@a/ where the union is over
all w' = (w],...,w]) € W" such that w, = w; for i ¢ {f + 1, f + 3}. This is
a locally closed subvariety of B"t1. For y € W let R, be the restriction of
M, NGRS (’)QJ extended by 0 on S — (’)QJ , (a constructible sheaf on §). From
the deﬁnltlons we have

M;:’yyv[lm}*{f"’lvf“rs}ls — Ry.

From 3.6(a) we deduce
Els = {Ry(2ly| - 2v);y € W}.
We now restrict further to @gvy (for y € W); we obtain
Zly, < (B (2| - 2|y 10 € W),

In the right hand side we have R, (2|y'| — 21/>|O@ =0if y # y. It follows

that _]O@ = R, (2ly| — >\O@ Since R \O@ is a local system we deduce
for y € W the following result.

(a) Let h € Z. If h = 2v — 2|y| then HhE|(5€{,y = Ry|@gvy(|y| —v). If
h# 2v —2Jy| then H'E|z = 0.
wy

3.8. We preserve the setup of 3.6. We set

(a) k=( Z lwi|) +3v + (r + 1)p.

i€[1,r]—{f+1,f+3}
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For y € W we set

Ky = Myt (1)),

S[1,r
Ky = Myt (wy |+ v+ (r + 1)p),
From 3.6(a) we deduce:
(b) E(k) = {Ky;y € W}
We show:
(c) For any j > 0 we have (Z(k))? = 0. Equivalently, =/ =0 for any j > k.

Using (b) we see that it is enough to show that for any y € W we have
(K,)? =0 for any j > 0. Now f(y is a (simple) perverse sheaf hence for any
1 we have dim supp?—l’f(y < —i. Moreover K, is obtained by restricting f(y
to an open subset of its support and then extending the result (by zero) on
the complement of this subset in B!, Hence supp’HiKy C supp’Hif(y SO
that dim supp?-LiKy < —i. Since this holds for any i we see that (Ky)j =0
for any j > 0.

3.9. We preserve the notation of 3.6. We show:

(a) Let j € Z and let X be a composition factor of Z/. Then
X = My, ’[1’r]<]w’] +v+(r+1)p) for some

w = (wh,wh,...,w.) € W XN =LA, .. ) €s”

such that w, = w;, N, = X\; fori e [1,7r] —{f + 1, f + 3} and such that

(3

1= Wrio(Npya), Nppo = wi3(Xj ).
Here w' = (W}, ), ..., w.).
From 3.6(a) we see that, for some y € W, X is a composition factor of

(e UL oy — 207,

Using this and 2.18(b) we see that X is as required except that the equalities
above for )\} +1,)\’f 4o may not be satisfied. To see that they are in fact
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satisfied we note that

(Mo LT gy — 207

is equivariant for the T?-action

(tl, tg) : (xoU, 21U, ... ,er) —
(xoU, 21U, ..., 2/ U, zp 11 U, 2y 0t U, 243U, ... 2, U)

hence so are its composition factors and this implies that the equalities above
for Ny 1, A}, do hold.

3.10. From 3.8(c) we see that we have a distinguished triangle (2, 2, ZF[—k])
where Z' € D,,(B"*1) satisfies (/) = 0 for all j > k. We show:

(a) Let j € Z and let K be one of =,Z7,Z'. For any w' € W' and any
h ez, ’HhK|@@ s a local system.

We prove (a) for K = =. Using 3.6(a), we see that it is enough to show that
Hh(Mw”’ Lol f+3})\ 50 is a local system for any h. This follows from

the fact that H*W;’[ rI=f +1’f+3} (see 2.15) is G-equivariant.

We prove (a) for K = Z7. Using 3.6(a), we see that it is enough to
show that H"(( wyy’[l I, f+3}) )lgo is a local system for any h and
any j. This again follows from the g—eqtv;ivariance statement in the previous

paragraph.

Now (a) for K = =’ follows from (a) for

Z and ZF[—k] using the long
exact sequence for cohomology sheaves of (Z/,Z, Z¥[—k]) restricted to @&,

(b) Let (y,y/) € W?, i =2v —[y| — |y|. Let
Wy,y’ - (’U)l,’lUQ, cee 7wf7y7wf+27y/7wf+37 cee 7w7’) S WT'

The induced homomorphism H'Z| 5 — HTR(ER)| 50 is an iso-
Owy,y’ Owy,y’
morphism.

We have an exact sequence of constructible sheaves

- - kel 1=
7‘[@:/|@9qu/ —)7‘[Z:|(7)9v ) — H (: )|(§9V ) /HZJF /| " ,
Y,y Y,y Y,y Wy,y
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Hence it is enough to show that H?Z/| s =0if ¢ >i. Assume that

vy’

W= | #0

vy’

for some i’ > i. Since H'Z/| v is alocal system (see (a)), we deduce that

- vy’ ,

0% is contained in supp(H’'Z'). We have (Z'[k — 1])7 = 0 for any j > 0
Y.y

hence dimsupp(H* Z'[k — 1]) < —i” for any i”. Taking i =7 — k + 1 we

deduce that

dim @&y < dimsupp(H'E) < —i' +k—1< —i+k—1
hence
Wy | +v+(r+1)p< —i+k—1
We have |w,, /| +v+(r+1)p = —i+Fk hence —i+k < —i+k—1, contradiction.
This proves (b).

3.11. For (y,9') € W? we set

Wyy = (W1, b, ...t W, (U )) T  dpys, ) € W
Ay = ()\1,)\2,.. Afs A2 A2, T A pr2)s Apras oo, Ar) €87
Kyy = M v <‘Wyy’+y+(r+1) >€Mm(BTH)7

~ /[17’

K , :M}\yy

s = My Uy v (4 1)p) € M (BT,

Note that when y = v/, Wy, wy . Ay, Ky y ,Ky y become w,,w,, A, (see
3.6) and K, K, (see 3.8). We show that we have canonically

(a) gro(E"(k/2)) = Dyew K.

Since gro(Z¥(k/2)) is a semisimple perverse sheaf of pure weight zero, it is
a direct sum of simple perverse sheaves, necessarily of the form described in

3.9(a). Thus we have canonically

gTO (k/Q)) (y Yy )eEW?2 Vyvy/ ® Ryvy/

where V), are mixed Q-vector spaces of pure weight 0. By ﬂ, 5.1.14], Zis



2016] NON-UNIPOTENT CHARACTER SHEAVES 667

mixed of weight < 0 hence Z¥(k/2) is mixed of weight < 0. Hence we have

an exact sequence in M., (B"+1):
(a) 0= W EFk/2) = 2F(k/2) — gro(EF(k/2)) = 0
that is,

0= W (E"k/2) = EF(k/2) = By yyen2Vyy ® Kyy — 0.

(Here W~1(?) denotes the part of weight < —1 of a mixed perverse sheaf.)
Hence for any (7, 7') € W2 we have an exact sequence of (mixed) cohomology

sheaves restricted to @va y (where h = 2v — |g| — |§| — k):

(b) H'OVHEF(R/2)) S HMERE/2)) = Bryyew Vi © H (Kyy)
— HMIOWLER(k/2))).

Moreover, by 3.10(b), we have an equality of local systems on (53,

7,9’

HAEH(k/2) = HHEE(R/2) = MWW I(E(k/2)

and this is Ry(k/2 + || —v) if gy’ =1 (see 3.7(a)) and is 0 if gy’ # 1 (see
3.4(a)) hence is pure of weight —k — |g| — |§’| + v = h. On the other hand,
HM WL (EF(k/2))) is mixed of weight < h — 1; it follows that « in (b) must

be zero.

Assume that H"(K, ) Then, by 3.10(a), OY, 5
Y1

is contained in supp?-lh(f(yg/) which has dimension < —h (resp. < —h if

(y,y") # (9,7')); hence —h = dim @va - is < —h (resp. < —h); we see that

we must have (y,y') = (§,7') and we have H"(K,, ) = H'(K, ) on OF, .
Y,

y/

is nonzero on (’)f,)v~ .
R

9.9’

Assume that H" 1 (W~1(Z¥(k/2))) is not identically 0 on @va - Then,

by 3.10(a), O  is contained in suppH T (W~1(Z¥(k/2))) which has di-
9.9 N

mension < —h — 1; hence —h = dim (’)9\,17 y < —h — 1, a contradiction. We

see that (b) becomes an isomorphism of local systems on @QV I
Y,y

0= Vg,gl &® Kg@/ if ggl 75 1,

Ry(—h/2) 5 V5 @ HM(Kyy) if g7 = 1.
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When §3’ = 1 we have H"(K;4) = Rz(—h/2) as local systems on 0%, .
— v,y
It follows that Vj g is Q; if gy’ =1 and is 0 if gy’ # 1. This proves (a).

3.12. Let h € [1,7]. Let ,D=B"*! (resp. ,D=B"t!) be the subcategory
of DB consisting of objects K such that for any j € Z, any compo-
sition factor of K7 is of the form Mf’[l’r](\w\ + v+ (r+ 1)p) for some
w = (wy,...,w,) € W', X = (A1, A2,...,A\y) € 8" such that wy, - A\, < ¢
(resp. wp, - Ay < c). (Here w = (y,1g,...,%,).) Let B MZB"*1 (resp.
pnM=B"t1) be the subcategory of , D3B! (resp. ,D*B"+!) consisting of
perverse sheaves.

If K € M,,(B"*1) is pure of weight 0 and is also in ,D=B"+! we denote
by K the sum of all simple subobjects of K (without mixed structure) which

are not in , DB 1.

3.13. Let Z<- Y% B* be as in 3.4 with r = 3, f = 0. We define b : D(Z) —
D(B?) and b : D,,(Z) — D,,(B?) by

b(L) = pozhn* L.

‘We show:

(a) If L € D3(Z) then b(L) € D=B.
(b) If L € D(Z) then b(L) € D=B>.
(c) If L € M3(Z) and h > 5p + 2v + 2a then (b(L))" € M~=B2.

We can assume that L = ]Li where z - \ € V[75, z+ A = c. Applying 3.5(a)
with P = n*ﬁiﬁ we see that
) )
b(LF) < ng\f;@{ Nz = 20)y € W,
hence
3 2
b(L3) & (L850 (v + phiy e W,

To prove (a) it is enough to show that for any y € W we have

2,97 1{2} <52
LiAZ(A) € D=5
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When z - X\ € c this follows from 2.10(a). When z - A < c this again follows
from 2.10(a), applied to the two-sided cell containing z - A instead of c¢. The
same argument proves (b). To prove (¢) we can assume that z - A € ¢; it is

enough to prove that for any y € W we have
(Lyzy 17{2}<_V+ >)h c M=B2
AN p

if h > 5p + 2v + 2a or that (Ly’z’y( ){2})j € M=B%if j > 6p+ v + 2a. This
follows from 2.20(a). This completes the proof of (a), (b), (c).

We define b : C§(Z) — CS(B?) by

b(L) = 97"5p+2u+2a((b(L))E)pHVHa)((5/) + 2v 4+ 2a)/2).

We show:

(d) Let z- A € ¢. We have b(L§) = ®yewsyrecLioLiol? .

We shall apply ﬂZ_AI, 1.12] with @ : D,, (Y1) — D,,(Y2) replaced by pos :
D, (B*)— D, (B?) and with D3(Y7), D= (Y5) replaced by o D=(B2), oD=(B%),
see 3.12. We shall take X in loc.cit. equal to 19m*]L§\. The conditions of
loc.cit. are satisfied: those concerning X are satisfied with ¢ = 2v + 3p.
(For h > |z| 4 3v + 4p we have E" = 0 that is (X[—|z| — v — p])* = 0, with
= as in 3.8(c). Hence if j > 2v + 3p we have X/ = 0.) The conditions
concerning pogr are satisfied with ¢ = 2p + 2a. (This follows from 2.20(a).)
Since b(LL3) = posiX and ¢+ ¢ = 5p + 2v + 2a, we see that

(LX) = 9720+2a(Po3t (9720430 (97 LY)* ) (20 + 3p) /2)))**2%) (p + ).

Using 3.11(a) we see that (with = as in 3.11(a) and k = |z| + 3v + 4p) we
have
grav+sp (D" L3)* ) ((2v + 3p) /2)
— grasp(E(lzL+ v + )P H0)(20 + 30)/2)

1,3
= gro(E (k/2) = Dyew MPT I 2ly| + 2]+ v + 4p).

Hence

3 yZy 1,3 a
B(LE) = grapraa(@yew Pos MYy VY @yl + 12+ v+ 49)2772) (0 + a)
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7,297, [1,3 v42a
= grapsaa(@yew (L35 )42 (0 1 4p)/2)) (o + ).

Using 2.26(a) we see that in the last direct sum the contribution of y € W
is 0 unless y - A € c. For the terms corresponding to y such that y - A € c,
we may apply 2.24(a). Now (d) follows.

3.14. Let Z+~'Y be as in 3.4 with r = 3,f = 0. Let 'B* be the space of
orbits of the free T2-action on B* given by

(tl,tg) : (xoU,xlU,ng,ng) — (.%'oU,xltlU,thQU,ng);

let "9 : 'Y — 'B* be the map induced by 9. We define b’ : D(Z) — D(B?)
and b’ : D,,(Z) = D,,(B?) by

b'(L) = pos''n* L.

(The map 'B* — B2 induced by pos : B* — B2 is denoted again by pos.) Let
7:Y — 'Y be as in 3.4 (it is a principal T2-bundle). We have the following

results.

(a) If L € D3(Z) then b'(L) € DB2.

(b) If L € D¥(Z) then b'(L) € D=B>.

(¢) If L e M=Z(Z) and h > p + 2v + 2a then (b’ (L))" € M=B2.

~—  —

We can assume that L = }Li where z - \ € W75, z+ A = c. A variant of the
proof of 3.5(a) gives:

S

2 7,501 {2
oL o {LL3Y B =Ll = 20y € WY,

hence

z 7,201, {2
o(LF) o (L3P v+ phiy e W

To prove (a) it is enough to show that for any y € W we have

179,29 {2} <132
DXxwy " € P75

When z - X\ € c this follows from 2.10(c). When z - A < c this again follows
from 2.10(c), applied to the two-sided cell containing z - A instead of c. The
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same argument proves (b). To prove (¢) we can assume that z - A € ¢; it is

enough to prove that for any y € W we have
(/Ly,é,y’17{2}<_y+ Wh e M=B2
AN p

if h > p+ 2v + 2a or that (/L§§Z;;){2})j e M=B?if j > 2p+ v + 2a. This
follows from 2.20(c). This completes the proof of (a), (b), (c).

We define b’ : C§(Z) — C§(B?) by

V(L) = grpravi2a((6/(L)"2772) ((p + 2v + 2a) /2).

In the remainder of this subsection we fix z- A € ¢ and we set [ = Li. We
show:

(d) We have canonically b'(L) = b(L).
The method of proof is similar to that of 2.22(a). It is based on the fact that
b(L) =b'(L) ® £%2

which follows from the definitions. We define R; ; for i € [0,2p+ 1] and P; ;
for i € [0,2p] as in 2.17, but replacing L”,'L7,r,6 by b(L),b'(L),3,2p. In
particular, we have

Pij = Xap—i(i — 2p) @ (0'(L)) =+ for i € [0,2p]

where Xy,_; is a free abelian group of rank (2{)) and Xy, = Z. We have for
any j an exact sequence analogous to 2.17(a):

(e) e = ’Pi,jfl — RZ'JFLJ' — Ri,j — PZ'J' — Ri+17j+1 — Ri,j+1 — e,
and we have
Roj = (6(L)),  Poj = (b'(L))~*(=2p).

We show:

(f) If i €[0,2p + 1] then R;; € MZB2.
(g) Ifi €[0,2p+ 1], j > 6p —i+v+2a then R;; € M=B2.
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We prove (f), (g) by descending induction on ¢ as in 2.21. If i = 2p + 1
then, since Ro,41,; = 0, there is nothing to prove. Now assume that ¢ €
[0,2p]. Assume that LY is a composition factor of R;; (without the mixed
structure). We must show that w- A < ¢ and that, if j > 6p —i+ v+ 2a then
w- X < c. Using (e), we see that LY is a composition factor of R;41 ; or of
P; ;. In the first case, using the induction hypothesis we see that w- A < ¢
and that, if j > 6p — i+ v + 2a (so that j > 6p —i — 1 + v + 2a), then
w - A < c. In the second case, LY is a composition factor of (b'(L))~4 7.
Using (a), (c), we see that w- A =< ¢ and that, if j > 6p —i + v+ 2a (so that
—4dp+i+j>v+2p+2a), then w- A < c. This proves (f), (g).

‘We show:

(h) Assume that i € [0,2p 4+ 1]. Then R; ; is mized of weight < j — i.

We argue as in 2.22 by descending induction on i. If i = 2p + 1 there is
nothing to prove. Assume now that i < 2p. By Deligne’s theorem, b'(L) is
mixed of weight < 0; hence (b'(L))~#+*J is mixed of weight < —4p 4 i + j
and Xy, (i—2p)®(b' (L)) =4+ is mixed of weight < —4p+i+j—2(i—2p) =
J — 1. In other words, P;; is mixed of weight < j — 4. Thus in the exact
sequence Ri;1; — Ri; — P;; coming from (e) in which R;;; is mixed of
weight < j —i—1 < j — ¢ (by the induction hypothesis) and P;; is mixed
of weight < j — ¢ we must have that R; ; is mixed of weight < j —4. This
proves (h).

We now prove (d). From (e) we deduce an exact sequence
9rj(Ra) = g7j(Ro.j) = 975(Poj) = g7j(Raj+1).

By (h) we have Agrj(RLj) = 0. We have grj(Ro ;) = gr;(b(L)?), grj(NPOJ) =
gri((6'(L))~**(—2p)). Moreover, by (g) we have Ry ;11 € D~B? since
j+1>6p—1+v+2a. It follows that gr;(Ri 41) € D=B2. Thus the exact

sequence above induces an isomorphism as in (d).

‘We show:

(i) Let L € D(Z). Let L' € M(B?) be G-equivariant. We have canonically

b'(L)o L' = L' ob'(L).
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Let R = T\{((zoU, 21U, 22U, 23U),g) € B*x Gig € xQUxfl} where T
acts freely by

t: ((zoU, 21U, 25U, 23U),g) — ((2oU, z1tU, 29tU, 23U), g).

Define ¢p : R — Z by ((zoU, 21U, 22U, 23U), g) — €(z1U, 25 U).

Define ¢; : R — B2 by ((2oU, 21U, 25U, 23U), g) — (20U, ga3U).

Define ¢; : R — B2 by (20U, 21U, 25U, 23U), g) — (¢~ xoU, z3U).
Define ¢3 : R — B2 by (20U, 21U, 25U, 23U), g) — (20U, 23U). We have

L'ob' (L) = c3i(ciL @ L), b’ (L) o L' = e31(c3 L' @ cfL).

It is enough to show that ¢fL’ = ¢5L’. This follows from the G-equivariance
of L.
G) If L €CSZ, L' € C°B?, then we have canonically b(L)oL' = L'ob(L).

By (d), it is enough to prove that b'(L)oL’ = L'ob’(L). Using (i) together
with (a), (b), (c) and results in 2.23, we see that both sides are equal to

9rptvisalea (L @ g L) ((p + v + 3a) /2)
= grprvsa(ca(sL’ © L)) ((p + v + 3a) /2).

3.15. Let
3 ={(20U, 21U, U, 23U),g) € B* x G;g € zQBzfl}.

Define ¥ : 3 — B* by (20U, 21U, 22U, 23U),9) — (20U, 21U, 25U, 23U).
Let

'V ={((2oU, 21U, 22U, 23U, 2,U), g) € B° x G;g € ng:cal,g € xQBxfl},
"V ={((2oU, 21U, 22U, 23U, 2,U),g) € B° x G;g € x4Uxf1,g € ng:cgl},

Define 9 : 'Y — B®, "9 : "y — B by

((xoU, 21U, 29U, 23U, 24U), g) — (20U, 21U, 22U, 23U, 2, U).
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We have isomorphisms ‘¢ : 'Y = 3, "¢ : Y 5 3 given by

‘¢ (20U, 21U, 22U, 23U, 24U), g) = ((2oU, 21U, 25U, 24U), g),
"¢ ¢ (20U, 11U, 22U, 23U, 24U), g) — ((2oU, 22U, 23U, 2,U), g).
Define 'd : B> — B, "d : B5 — B* by
'd . (20U, 21U, 25U, 23U, 24U) — (29U, 2, U, 25U, 2,U),
"d - (.%'0U,1‘1U,.%'2U,.%’3U,.%’4U) — (1‘0U,$2U,1‘3U,1‘4U).

We fix w,u in W and A\, X" in s such that w(\) = X. The smooth subvarieties

U = {((zU, 21U, 25U, 23U, 24U), g) € 'V 2y 'w3 € Gy, 75 w4 € G},
u = {(($0U,$1U,$2U,$3U),g) € 3;55f1552 S Gwaxalgilx?) S Gu}a
//u = {((:COU’xlU’$2U,x3Uax4U)ag) € ”y; $2_1£l73 € Gwaxalxl € Gu}a

of 'Y, 3,"Y correspond to each other under the isomorphisms 'Y —5 3 «- .
Moreover, the maps ‘o :'U = Z, 0 : U — Z," 0 :"U — Z given by

(U, 21U, 22U, 23U, 24U),g) = (21U, 22U),
((xOU,xlU,xQUax?)U),g) = E(xanx2U)’
((ﬁOU,$1U,$2U,$3U,$4U),g) = 6(£2Uax3U)’

correspond to each other under the isomorphisms 'Y — 3 <.

Also the maps '6 : U — B2, 5 : U — B2, given by

((xoU, 21U, 22U, 23U, 24U), g) — (23U, 24U),
(U, 21U, 22U, 23U), 9) + (920U, 23U)

correspond to each other under the isomorphism ') l) 3 and the maps 71 :
U— B2 "5 :"U — B2 given by
(20U, 21U, 25U, 23U),9) = (20U, g 'a3U),
((ﬁoU, $1U, $2U, $3U, £C4U), g) = ($0U, $1U),

correspond to each other under the isomorphism 3 gy Y. It follows that
the local systems 'o*LY, 0*LY, "o* LY correspond to each other under the
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isomorphisms 'Y -5 3 «+-”Y; the local systems ’ G*L%, 6*LY, correspond to
each other under the isomorphism 'Y — 3; the local systems oyL%, "5*LY,

correspond to each other under the isomorphism 3&” Y. Moreover, we
have 6*LY, = ;L% by the G-equivariance of L%. Let 'K, K,”K be the
intersection cohomology complex of the closure of 'U,U,"U respectively with
coefficients in the local system

lo_*£1>1\1®15_* K/,J*E&U(@&*LK/,HO'* 75\0®/15_* K/,

on 'U,U,"U (respectively) extended by 0 on the complement of this closure
in’'Y,3,”Y. We see that 'K, K,” K correspond to each other under the

isomorphisms 'yi>3 <”—‘”y. Hence we have '¢('K) = K = "¢/("K). Using

this and the commutative diagram

//c

y 3 ey

ol
B B B

we see that

(a) '/ (K)="d/"9("K).

(Both sides are equal to 9,K.)

3.16. In this subsection we study the functor ‘dy : D,,(B%) — D,,,(B%).
Let w = (w1, wa, w3, wq), A = (A1, A2, Az, \g), w = (w1, w2, ws,wy) (With w; €

kgt (w;)). Assume that wy-Ay < c. Let K = M;”[l’4]<|w|+5p+1/> € D (B°).
We show:

(a) If h > a+ p then (dK)" € 'M=(B*). Moreover,

-1
gratp((dK)P)((a +p)/2) = Byewy—1aecHompez (LY, L5ZoLy)

i
®M;‘\’11,7)\°-’227,>?\;4 ’[173}<|UJ1|+|UJ2|—|—|y,|—{—4p—{—y>.

We shall apply ﬂﬂ, 1.12] with ® : D, (Y1) — Dp(Y2) replaced by ®q :
D (B%) = D (BY), M = pi LY w1 ]) @ pio LS (|wa]) @ pisy M (p — v) and
with D2(Y7), D=(Y2) replaced by 4D=(B?), 4D=(B%), see 3.15. We shall take
X in loc.cit. equal to Z := L;‘\J;’ﬁ oL“/\Jjﬁﬂwg] + |w4| +4p+2v). The conditions
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of loc.cit. are satisfied: those concerning X are satisfied with ¢ = a — v (see
2.23); those concerning ®g are satisfied with ¢ = p+v (using the definitions).
Since 'd| K = ®y(Z) and ¢+ ¢ = a + p we see that the first sentence in (a)
holds; moreover, we see that, setting K1 = gro1,(('diK)**)((a + p)/2), we

have

K1 = grpn (0 LS (Jwn ) @ pio L2 wal) @ pis M (p — )P ) ((p + ) /2)

where

1

— T3 oT,W4 — (LY T LWsoLen\LY
M = Lol = &y -1 pecHompege (Ly) L2 oLTLY .

From 2.13(c) we see that n above must satisfy n = A4. Thus we have

— TV T pws Twa
Kl = @y/ew;y'_l')\4€CHomCCBQ(L)\4 ,L)\agL)\4)

, "/—1’173
9970 (M 2T | 4 fuoal + ['] + 30))7H) (0 + 0)/2).

It remains to use that

b 7.,717173
9o ML2T N oy | 4 Jwa| + [y + 39))7 ) (0 + 1) /2)

. MW17W27Z),717[133} / 4 0 _ 2 2
= grpw (M5, (lwi]+|wa| +y | +4p+v)) (= (r+v)/2))((p+v)/2)

W17W27y/_17[173]

= My, )\, (lwi] + |wa| + [¢/| + 4p + v).

We state the following properties of the functor ‘dy : Dy, (B°) — D, (B*).
(b) If K € 4D3(B°
(c) If K € 4D(B°
(d) If K € JMZ(B

then 'd)(K) € 4D=(B*).
then 'd)(K) € 4D=(B*).
5) and h > a + p then ('di(K))" € 4M=(BY).

~—  ~—

We prove (b). We can assume that K is as in the first paragraph of this
subsection. It is enough to show that for j € Z we have (®o(Z))? € 4M=(B*)
(with @, = as above). It is enough to show that ®(Z7) € 4 M= (B*) for any
j§' € Z. This follows from the fact that 7" € 4M=(B?) (see 2.23(b)) and the
fact that ®g carries 4D=(B?) to 4D=(B*). Thus (b) holds. A similar proof
gives (c). We prove (d). We can assume that K is as in (a). Then the result

follows from (a).
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3.17. In this subsection we study the functor "dy : D,,(B°) — D, (B%).
Let w = (wl,wQ,wg,w4), A= ()\1, Aa, )\3, )\4), w = (wl,wQ,wg,w4) (Wlth w; €

kgt (w;)). Assume that wy-A; < c. Let K = M;\U’[l’4]<|w|+5p+1/> € D (B°).

We show:
(a) If h > a+ p then ("dK)" € 'M=(B*). Moreover,

g?“a+p(("d!K)a+p)((a +0)/2) = ©yew .y rsecHom e zo (L:;/\Q’ LL)‘EQL(;;)

) \ws3,wa,[1,3
®M)¥{2,§2,§j [ }<|w3| + |w4| + |y’| + 4p + 1/>_

We shall apply , 1.12] with ® : D, (Y1) — Dp(Y2) replaced by ®q :
Din(B2) = Din(BY), M > iy M @ 5L (us) © p3y Ll — v) and
with D2(Y7), DZ(Y2) replaced by 1D=(B?), 1D=(B%), see 3.15. We shall take
X in loc.cit. equal to 2 := L“ﬁﬁ o L‘;\’;ﬁ<|w1| + |wa| 4+ 4p + 2v). The conditions
of loc.cit. are satisfied: those concerning X are satisfied with ¢ = a — v (see
2.23); those concerning @ are satisfied with ¢ = p+v (using the definitions).
Since "d| K = ®¢(Z) and ¢ + ¢ = a + p we see that the first sentence in (a)
holds; moreover we see that, setting Ky = gro,((diK)* ) ((a + p)/2), we
have

K1 = grpen (0 M @ pio LS5 (wsl) @ pis LS (Jwa| + p — v))PH) ((p +v)/2)

where
M = L§1oL§? = @y pecHomge iz (LY, LY oL§2 LY .
From 2.13(c) we see that n must satisfy n = \y. Thus we have
Ky = @y’eW;y’-AzEcHC’mCCZ@(LKQ’LiiQLﬁ)

'/7 E) 3173 1%
097 (ME S | 1 ug] + [/ + 30))PH) (p + ) /2).

It remains to use that

7 w3, ,11,3
970 (L5 3 | g |+ [y |+ 30)PH) (0 + 1) /2)

= 7o (M550 g | Joa |+ | +4p+ 1)) (= (r+1)/2)) ((p+9)/2)

' \w3,wa,[1,3]

= My, o (lws] + wa| + [Y'| +4p + v).

We state the following properties of the functor ”d : D,,(B%) — Dy, (BY).
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(b) If K € {D3(B®) then "d)(K) € 1D=(B%).
(c) If K € {D*(B®) then "d)(K) € \D=(B%).
(d) If K € tM=(B%) and h > a + p then ("d)(K))" € tM=(B).

The proof of (b), (c), (d) is completely similar to that of 3.16(b), (c), (d).

3.18. Let w-\ € Vi//5, u- XN € c. We shall apply ﬂ2__4|, 1.12] with @ :
D (Y1) = Dyn(Ya) replaced by 'dy : Dy, (B°) — D, (B*) and with D= (Y7),
D3(Y3) replaced by 4D=(B°), 4D (BY), see 3.15. We shall take X in loc. cit.
equal to 2 = "%('K) as in 3.15, (wa,wq) = (w,u), (A2, A1) = (A, \). The
conditions of loc.cit. are satisfied: those concerning X are satisfied with
d =k = |w|+ |ul +3v+ 5p (see 3.8(c)); those concerning ® are satisfied
with ¢ = a + p (see 3.16). We see that

Iratprk((d"O(E) ™) (a+p+K)/2)
= grarp((dgri((0(K)") (k/2)"*)((a+ p)/2).

Using 3.11(a) we have:

/ / k y,u'),yfl,u,[lA]
grk( 19'( K)) )(k/2) - @yEWM)\)\’y()\),)\/ (2!2/\ + ’1U’ + ]u\ + 5p + V>

= gri("0(K))*(k/2).

Hence using 3.16(a) we have

Iratp((dgre((O(K)M) (k/2)") ((a + p)/2)
= Dyew EBy’eVV;y’*LNEC HomCCBQ (Lg/;l

-1

(N
My,w,y'fl,[l,B] , 4
OM X (yl + lw| + | +4p +v).

Since 4/t - XN €c,u- N €c, for y € W we have

y/—l
Homccé2 (L)\, , L

—1

yn2Lv) =0

unless ¥y~ -y()\) € c (see 2.26) or equivalently (see 1.9(Q10), 1.11), y- X € c.
Thus we have

Irarprk((d"O(E) ™) (a+p +k)/2)
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y/—l y—l m
— @yEW;y-AEC @y/ew;y/—l_)\/ec HOHICCBQ (L)\’ s Ly()\)gL)\/)

jai,y (1,3
@MYyl + ol + || + 4p + v).

The last Hom-space is zero unless y'~*(\') = X hence

(a) Iratprk((d"O(K) ) ((a + p + k) /2)
-/ —1 s —1 w
= Dyew;y-rec 69y’eW;y/—l-y/(A)Ec Hornccz%2 (Lz'(A)’ LZ(A)QL)\/)

j,y 11,3
@MUY y| + | + [y + 4p +v).

3.19. In the setup of 3.18 we shall apply [24, 1.12] with @ : D, (Y;) —
D,n(Y2) replaced by "dy : Dp,(B%) — D,,(B*) and with D3(Y;), D3 (Ya)
replaced by 1D=(B°), 1 D3(B*), see 3.15. We shall take X in loc.cit. equal to
E="9%("K) as in 3.15, (w1, w3) = (u,w), (A1, A3) = (N, A). The conditions
of loc.cit. are satisfied: those concerning X are satisfied with ¢ = k =
|w|+ |u|+3v+5p (see 3.8(c)); those concerning ® are satisfied with ¢ = a+p
(see 3.17). We see that

gratper(("d"0("K))* ) ((a + p + k) /2)
= gra+p(("digri(("0("K))*)(k/2))")((a + p) /2).

Using 3.11(a) we have:
A |
ari(O )Y E/2) = @yew M%)yl + ul +lul + 50+ v)

= gri("0("K))* (k/2).
Hence using 3.17(a) we have

gratp(("digri ("0 ("K))*) (k/2) ) ((a + p) /2)
= Dyew Dy ewsy rec Homcch (Lg/, ngng)

gL
®M§\/,)\Z,Uyz(/)\) 31yl + hol + [y'] + 4p + v).

Since ¢ - A € ¢, u- N € ¢, for y € W we have HomCCBQ(Lgl,Lg,QLg) =0
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unless y - A € ¢ (see 2.26). Thus we have

gratper(("d" 0 ("EK) ) ((a + p + k) /2)

VT ]
= Dyewyreec Dy ewy rec HomccBQ (LA ) LK’QL)\)

j gt (1,3
®M)Z\/,>\l,vy?)\) B3y + ] + 19| + 4p + v).

The last Hom-space is zero unless y(A) = )\ hence (with the change of

notation (y,vy") — (v, v)):

(a) ratper(("d" 0 ("K))* ) ((a + p + k) /2)

_ v oru 7Y
= Byew y-rec By eWw:y/ Aee Homcc[5’2 (L)\7 A’QL)\ )

jab,y' 7113
@MIVY I ) + [l + [y | + 4p + v).

3.20. Let y1 - A1 € ¢, y2- A2 € ¢, y3 - A3 € c. We show:

(a) We have canonically

L1 . —1 . . . .
U U
Hompep (L) () Ly, (>\1)9L3>/\i) = Hompe o (L), L2 LYY ).

When A; # Ay, both sides of the last equality (to be proved) are zero and

the result is clear. In the rest of the proof we assume A\ = Ay = A. We set
u- N =ysz-A3. Choose w € W such that w -\ € Ws.

Applying 3.18(a), 3.19(a) to our w - A\, u - " and using the equality

Irarprk((d"O(E) ™) (a+p+K)/2)
= grarps(("d"0("K)) ) ((a + p + k) /2)

which comes from 'd)/9,('K) ="d)"9,("K), see 3.15(a), we deduce

r—1 c—1 .
(b) @yeW;y-)\EC @y’eW;y’~>\ec Homcc1§2 (LZ/( ) Lzy/()\)QLK')

0,9 ~1,[1,3
@MPULY Ny |+ wl + ||+ 4p+ v)
= @yEW;yJ\EC ®y’6W;y’~>\€C HOII]CCBQ (Lg{, LK,QL%\ )

ja,y 11,3
@MILY Nyl + w| + ||+ 4p + v).
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Considering the coefficient of

. ’.’.,1’173
MV 3y | + ] + [ya] + 4p + v)

in the two sides of (b) we obtain (a). From the proof one can see that the
identification in (a) does not depend on the choice of w.

3.21. We assume that w-\ € ¢, u- N € c. We apply po3i and (N) for some
N to the two sides of 3.20(b). (Recall that pgs : B* — B2.) We obtain

o/ —1

g o/ —1
®y6W;y~>\6C @y’EW;y’-)\Ec HOchBQ (Lz,o\), L ()\)OLU/) ® L ) L ) Ly ( )

= @yGW;y-)\Gc EBy/GVV;y’-)\Gc Homcc[ga (L)\7 L)\/QLg\ ) ® Lg\ o L o Ly ()\)

(We have replaced Lg\, by LY y( /\); in the last equality the terms with \' #

y'(A\) contribute 0.) Applying (){2(“ ")} to both sides and using 2.24(a) we
obtain

o/ —1

®y€W;y~>\6c @y,EW{l/')\EC HochBQ (LZ,(A)’ ( )OL)\/) ® L OL)\ OL ,()\)

= 69yEI/V;y~>\€C @y/GW;y’-)\EC HomCCZ§’2 (L)\’ L ’oLy ) ® LyOL)\ OL /()\)
or equivalently
. . -1 5 . ./ . o/ —1
@yew;y'AGCLZSI\QL?QLZ()\)QLK’ = @y/ew;y/.)\eCLglng nggLZ,(A)
Using 3.13(d), this can be rewritten as follows:
(a) B(LY)oLY, = Liob(LY).

Another identification of the two sides in (a) is given by 3.14(j) with L = LY,
L' = L% (note that b(L) = b/(L) by 3.14(d)). In fact, the arguments in 3.13-
3.21 show that

(b) these two identifications of the two sides of (a) coincide.

3.22. Let

V = {(BO7B17BQ79UB()79/U31);
(Bo,B1,By) € B°,g € G,¢ € G,gBog™' = B1,g'Big’~' = Bo}.
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Define pg1 : V — Z, p1o:V — Z, pga : V — Z by

po1 : (Bo, B1, B2,9Ug,,4d'Up,) — (Bo,B1,9Us,),
P12 - (BOaBlyBZagUBo7g,UB1) — (B1,B259/U31)7
poz2 : (Bo, B1, B2, gUp,,d'Us,) — (Bo,Ba,9'gUp,).

For L, L' in D(Z) we set
Le L' = pox(p L ® pio L) € D(Z).

This operation is associative. Hence if 'L,%L,...,"L are in D(Z) then 'L e

Le...e"L € D(Z) is well defined. We show:
(a) For L,L' in D(Z) we have canonically e*(L o L') = ¢*(L) o e*(L’).
Let

Y = {(2U,yU, gU,p,-1);2U € B,yU € B;g € G}.

Define j:Y = B2, j1:Y = Z,j3: Y = Z by

j(anyUagUsz_l) = (.%'U,yU),
jl(anyUagUxBaﬂfl) = (xBxilagmBmilgilmgUxBx*l%
j2(2U,yU, gU,g,—1) = (gzBz~'g~ ", yBy~',yUz"g ™).

From the definitions we have
(Lo L") = j(ji(L) ®j5(L)) = € (L) o (L))
and (a) follows.

3.23. Let L, L' € D*Z. We show:

(a) IfLED>Z or ' € D>Z then Le L' ¢ D>Z. If L€ D=Z or L' € D*Z
then Le L' € D~Z.

For the first assertion of (a) we can assume that L = LY, L' = LY with

w - A\w' - N in Ws and either w- X < c or w' - X =< c. Assume that
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w1 A1 € Ws and I[&”ll is a composition factor of (L e L')/. Then Lfll = 'éILE\bll
is a composition factor of
(Lo L) (p) = ((LeL)*(p/2) = (Lo L'y (p/2)
= (€"'L{p) 0 € L'(p)) " (=p/2) = (LY o L)) ~"(p/2).

From 2.23(b) we see that w; - A\; < ¢. This proves the first assertion of (a).
The second assertion of (a) can be reduced to the first assertion.

(b) Assume that L,L' € M®*Z and that either L or L is in D=Z. If j >
a+p—v then (Le L) € M~Z.

We can assume that L = LY, L/ = L’f,/ with w - A\,w’ - X in Ws and either
w-A€corw )N €c. Assume that wy - \; € Ws and L&”ll is a composition

factor of (L e L')7. Then as in the proof of (a), Lg\”ll is a composition factor
of

(Lo LY = (L o L )i~*(p/2).
Since j — p > a — v we see from 2.23(a) that w; - A\; < c. This proves (b).

3.24. For L, L' € C§Z we set

Lel' = (LeL')lotr—vt c sz,

Using 3.23(a), (b) we see as in 2.24 that for L, L', L” € C§Z we have

L!(L,:L”) — (L:L,)gL” — (L. L/ .Ll/){2a+2p—2u}.

We see that L, L' — LeL’ defines a monoidal structure on C§Z. Hence if
'L2L,...,"L
are in C§Z, then 11e%Le... 0" € C§Z is well defined; we have

(a) 'Le’°Le...o"L=("Le%Le.. o L[)ir—Dlatr=1)}

For L, L' € CSZ we have éL,¢L € CSB%. We show:

(b) é(LeL') = (eL)o(eL)).
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It is enough to show that

e (gro((L e L) *7")((a + p —v)/2))lpl(p/2)
= gro((€"L{p](p/2) o € L'[p)(p/2))" ") ((a — v)/2))).

The left hand side is equal to
gro(e*((L o L") 7")((a + p — v)/2))[pl(p/2))

hence it is enough to show:

(Lo L)) ((a+p—v)/2))p)p/2)
= (e"Llpl(p/2) o € L'[pl(p/2))" " ((a — 1) /2))

that is,
(Lo L") ™) [p] = (€'Llp] 0 " L'[p])*"",

or, after using 3.3(b):
(6* (L ° L/))a+2pfu — (E*L ° E*L/)a+2p71/.

It remains to use that e*(L e L') = e*Loe*L’, see 3.22(a).

3.25. In the setup of 3.14 let
°Y = T2\ {((2U, 21U, 22U, 23U), g) € B* x G;g € 23Uz, ", g € 25Uz '}
where T? acts freely by
(t1,t2) : (U, 21U, 22U, 23U), ) = ((xot1U, 212U, 22t2U, 23t,U), g).
We define °n : °Y — Z by
((xoU, 21U, 29U, z3U), g) — €(x1U, 22 U).
We define d : °Y — Z by

(20U, 21U, 22U, 23U), g) — €(zoU, 23U).
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We define b” : D(Z) — D(Z) and b" : D,,,(Z) — Dy, (Z) by
b"(L) = di(°n)"L.
From the definitions it is clear that
(a) b'(L) = 0" (L).

Using (a) we see that 3.14(a), (b), (c) imply the following statements.

(b) If L € DZ(Z) then b"(L) € D=Z. If L € D*(Z) then b""(L) € D~Z.
(¢) If L € M=(Z) and h > 2v + 2a then (b”(L))" € M=B2.

We define b” : C§(Z) — C§(Z) by

(L) = grav2a((0"(L)* ) (v + a).

Using results in 3.3 we see that, if L € C§Z, then

(d) (L) = &(b"(L)).

4. The Monoidal Category C¢2 and Its Centre

4.1. We consider the inclusion O; — B2 where O; = {(2U,yU) € B2, 2~ 'y €
B}. Let w- A € Ws be such that w - A < c; let i € Z. From 2.12(a), (b) we
deduce:

(a) Zrk(?—liLg\b”@l)vi is v‘w|pi‘7w if we Wy and is 0 if w ¢ Wy;
1€Z

where pt,, € Z[v™!] (as in 1.8) belongs to v Z[v~1] (see ﬂE, §14]) and
a(w) is the value at w of the a-function of the Coxeter group W) (so that
a(w) > a); moreover,

(b) HiLi\bﬁ] 5, 1s a local system of pure weight 4.
From (a) it follows that

Zrk(%i(L;bﬁ[]w]])\@l)vi is in o™ Z[y™ if w € Wy and is 0 if w & W),
i€Z
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so that
HULY [w]])|5,) is 0 if i > —a.

Define § : B — B2 by 2U + (2U, zU). Then the image of d is contained in
Bl and we deduce

(c) Hi(é*Lﬁ\bﬁHwH) =0ifi> —a.
We show:
(d) If L € M=B? and j > —a — p then (6*L)7 = 0.

We can assume that L = L;\"’ with w - \ as above. It is enough to show that
for any k we have (H*(6*L)[—k])? = 0 that is

(HE O™ (LYF[lw] + v+ 20]) v + p])F 77 = 0.
Now H'“(5*(L§"ﬁ[!w! + v+ 2p])) is a local system on B hence
HE (S (LY [w| + v+ 2]) [ + p)

is a perverse sheaf on B so that we can assume that j —k — v — p=10. Thus
it is enough to show that

MRS (LYF ] + v+ 20])) = 0

or that Hj+p(5*(L1>‘;}ﬁ[]w])) = 0. This is indeed true by (c).
We show:

(e) If L € MZ B2 is pure of weight 0 and j € Z then (5* L) is pure of weight
7.

We can assume that L = LY with A\, w as in (c). It is enough to prove that
for any k, (H*(6*L)[—k])? is pure of weight j that is,

(HE O™ (L3Pl + v+ 20]) v + pl)) 52 ((Jw] + v +29)/2)

is pure of weight j. As in the proof of (d) we can assume that j—k—v—p = 0.
Thus it is enough to show that

HIT (S (LYFlw] + v+ 20) v + p)((Jw] + v+ 20)/2)
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is pure of weight j or that HIHwH+2(5* (L)) (v + p)((Jw| + p)/2) is pure of
weight j. This follows from (b).

For w - A € ¢ we have as in the proof of (e):
(8"LY) ™ * = H= NG (L) (v + o) ((wl + ) /2).
We set
Bux = H™ S (LYF) (—a + Jw])/2)

This is a G-equivariant local system on B hence can be identified with a

Q-vector space which by (b) is pure of weight 0; we have
We show:

(f) dim By.x is 1 if w- X € De and is 0 if w- A ¢ D.. We have

(6" LK) ™7 = Bualv + p)((a +p)/2).

By (a), dim 3y, is 0 if w ¢ W) while if w € W), it is equal to the coefficient
of v™% in pi\w, which by ﬂﬁ, 14.2, P5] is 1 if w is a distinguished involution
of W) and is 0 otherwise. This proves (f).

4.2. Let 7' : B — p be the obvious map. We show:

(a) Assume that L € M,,(B) is G-equivariant so that L =V @ Qu(v + p)
where V' is a mized vector space. If j > v+ p then (m|L)} = 0.

We have Hi (p|L) = V@ HLI ™ TP(B, Q) (v +p)/2). This is zero if j+v+p >

2u + 2p since B is irreducible of dimension v + p.
We show:
(b) If L € MiB? and j > v — a then (n|6*L)) = 0 (with § as in 4.1).

Moreover we have canonically (m0* L)' ~% = (m|((6*L)~* 7)) tP.

The proof has much in common with that of ﬂ2_4|, 8.2].

Let X = 6*L. For any i we have a distinguished triangle (7«;X, 7<;X,

X'[—i]) where we write T;,7<; for what in ﬂ] is denoted by Pr.;,P7<;.
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We deduce a distinguished triangle (7(7<;X), 7| (7<;X), ] (X%)[—i]) hence
an exact sequence

(c) (T (XN = (1] (1< X)) = (7] (1< X)) = (] (X))

> (Rl (X))

We show by induction on ¢ that
(d) (7](1<:X))? =0 for j > v —a.

For sufficiently negative i, (d) is obvious. Thus we can assume that (d) is
known when 1 is replaced by i — 1. From (c) with h = j — i we see using the
induction hypothesis that we have an exact sequence 0 — (7](7<;X))? —
(m{(X%))7~%. It is then enough to show that (m{(X%))7~" = 0. If i > —a—p
then X* = 0 by 4.1(d). Thus we can assume that i < —a — p so that
j—i> v+ pand the equality (7](X*))?~" = 0 follows from (a) with L = X".
This proves (d).

In particular the first assertion of (b) holds. We now take h =v —a —1
in (c). Assuming that i > —a — p we obtain (using 4.1(d))

(m(T<iX))V " = (m (1< X))~

Hence

(M (T<—a—pX))" ™" = (MX)" .

We show by induction on 4:

(e) (m(r<i X)) =0ifi<—a—p, j=v—a.

For sufficiently negative i, (e) is obvious. Thus we can assume that (e) is
known when 1 is replaced by i — 1. From (c) with h = j — i we see using the
induction hypothesis that we have an exact sequence 0 — (7 (TSiX))j —
(m/(X%))7~%. It is then enough to show that (7{(X?))/~% = 0. We have
j—i> v+ pand the equality (7](X"))?~% = 0 follows from (a) with L = X*.
This proves (e).

From (e) we see that (m(7<_q—p—1X))""* = 0. From (c) with i = —a—p,
h = v + p we deduce an exact sequence

0 — (MX)'™% — (7 (X9P))"P — 0.
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This completes the proof of (b).

We show:

(f) If L € CSB? then (7] ((6*L)~%"P))**° and (7{§* L))"~ are pure of weight

v—a.
We can assume that L = LY where w - A € c. Using 4.1(f) we have

(T (8" L)~ *7*))" ((—a +v)/2)
= (mM(Burlv+p)((a+p)/2))" P ((=a+v)/2)
= Buar ® (MQu{v + p)" (v +p)/2)
= Bur @ (M Q) (v+p) = Pua-

Since by is pure of weight 0, we see that (m/((6*L)~*"?))"*? is pure of
weight v — a. Using (b) we deduce that (7{6* L)~ is pure of weight v — a.

4.3. We set

1= BdreD By @ LS{ € 685’2
Here 3, is the vector space dual to 4., see 4.1(f). For L € C°B? we show
(a) Homgega (1, L) = (7{((6° L))" **((~a + 1)/2).

We can assume that L = L)\w where w - A € c¢. Assume first that w - A € De.
Then Homc;5. (1", L) = By.x and (as in the proof of 4.2(f)):

(m{((0" L)~ ") P ((—a+v)/2) = Bu.x-

Thus (a) holds in this case. Next assume that w - A ¢ D.. Then both sides
of (a) are zero (we use 4.1(f)).

4.4. For L € D,,(B?) we set LT = h*L where b : B> — B2 is as in 2.1. Let
7" : B2 — p be the obvious map. For L, L’ in D,,(B%) we have from the
definitions

(a) m6*(LoL') =n'(L® L'T).

We show:
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(b) If L € CSB? then D(LT) € CSB2.

We can assume that L = LY where w- A € c. Using 2.2(a) and the definitions

we have

1 =1

(c) D(LT) = DLy 1)) = L.

It remains to use that w=' - w(\) € ¢, by property Q10 in 1.9 for H.

4.5. We show:
(a) For L, L' in C°*B? we have canonically
Homcpe (1, LoL') = Home 0 (D(L'T), L).

We can assume that L = LY, L' = Lf,/ where w- A € ¢, w' - X € c. Using
4.3(a) and 4.2(b), 4.2(f), we have

() Hompege (1, LoL!) = (r{(" (LoL')) ™))" ((~a + v)/2)
= (W{(S*(LQL/))V_O’((—(L—'— I/)/2) _ (W!/(S*(LQL,)){V_G}.

Applying ﬂ2__4|, 8.2] with ® : DRZ — Dp, L+ m6*L, c=v —a,d = —v +a
(see 4.2(b)) we see that we have canonically

(c) (m6™ (LoL")¥ = C (a6 (L o L)1
From ﬂa, 7.4] we see that we have canonically
@ (e D) = @ (Lo L) = Homp g, @(L), L).

By 4.4(a) we have 76" (L e L') = 7'(L @ L'T). Hence by combining (b), (c),
(d) we have

(e) Home 3 (1, LoL') € Hompepg (D(L'T), L).

The dimension of the left hand side of (e) is the sum over z - A\; € D, of
the coefficient of t,.), in t,.2t,.x € H* and by the properties Q1,Q2,Q4
(in 1.9) of H, this sum is equal to 1 if w' - X = w=! - w(\) and is 0 if
w' - X # w™-w()\); hence it is equal to the dimension of the right hand side
of (e). It follows that (e) is an equality and (a) follows.
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4.6. The bifunctor C§B? x C§B* — C$B2, L, L' — Lo in 2.24 gives rise to
a bifunctor C°B2 x C°B2 — C°B2 denoted again by L, L' — LoL' as follows.
Let L € C°BB2, L' € C°B?; we choose mixed structures of pure weight 0 on
L,L’, we define LoL’ as in 2.24 in terms of these mixed structures and we
then disregard the mixed structure on LoL’. The resulting object of C¢B? is
denoted again by LoL’; it is independent of the choices made.

Similarly the bifunctor C§Z x C§Z — C§Z, L,L' — LeL' in 3.24 gives
rise to a bifunctor C°Z x C¢Z — C°Z denoted again by L, L' — LelL’.

The operation Le L’ (resp. LoL') makes C°Z (resp. C°B?) into a monoidal
abelian category (see 2.24, 3.24).

The following result can be deduced from 2.22(c).

(a) Let w;- )\ € ¢, i =1,2. In C°B* we have
LyoLy? = @yaee(LE)
where f(w-AX) € N are given by

twia bwgdg = Z f(w . )\)tw.)\ S Hgo

w-AEc

It follows that:
(b) in (a) we have f(w-\) =0 unless X = Ag, w(A) = w1(A1), A1 = wa(A2).
To see this, we use that, setting for any A € o:

1§ = > gtan € HE (sum over all distinguished involutions d of W),
we have 1§15, = 0y »1§ for A, X’ in 0 and

twx = twal§ = 1fu(l)tw->\ for any w - A € c.

For any A1, As in o let C§1’>\2Z§2 be the subcategory of C<B? consisting of

objects which are direct sums of objects of the form L;’;’Q for various w € W

such that w(Az) = A\; and w - Ay € c. Clearly, any object L € C°B? is
canonically of the form

(¢) @xa0c0ling o where Ly, z, €CF, 5,

From (b) we see that
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(d) if A1, A2, A3, Ax are elements of o and L € C5, ,, L' € CS, ), then LoL’ €

1.\, Mmoreover, LoL’ = 0 unless Ao = 3.

4.7. We set
n—1 ~
(a) 1= ®greDcfar @ Lf\d) € CsB>.

Here (4. is as in 4.1(f).

Let y2 - A2 € ¢, y3 - A3 € c¢. From 3.20(a) we have for any d- X € De:

L—1
Ya
Hom ez (L

(d.)71 y . d . .
312()\2)711)\ QLg\z) = Homcch (L 7L3>/\19LZ>/\22)

It follows that
- —1 . . 5
(b) HochBQ(in(AQ), lgLZ)/g) = Homep (1, LZ)/SQL%).

From 4.5(a) we have:

5 . -—1 .
P YUs oYz (1Y Y
Homepe (17, L2 oLY ) = HomCCBQ(Ly;(AQ), )

(We have used 2.2(a) and the equality
(c) D(LY) = L3

for any w- A € Ws and w € £, (w).) Using this, (b) becomes

—1

y—l R g X
HOchBQ (Ly;(AQ) 5 19L§\33) = HOchBQ (Lyi ()\2) 5 Lg\aa)
Since this holds for any ys - A € ¢, we see that we have canonically
1oLy = LY.
Since this holds for any ys3 - A3 € ¢, we see that we have canonically
(d) 1oL = L for any L € C$B>

for any L in C°B2. Now C<B? — C¢B2, L — LT, satisfies

(e) (LoL)t = L'TolL
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for any L, L' in C°B%. Applying L — D (L) to (d) and using (e) and 2.25(a)

we get
() Lo®(1") = L for any L € CSB2.

From (d), (f) we deduce that we have canonically 1 = 10D(17) = D(17).
Using 4.4(c) we see that ®(1'T) = 1 hence D(11) = 1. We see that

(g) 1=1"=9(1") is a unit object of the monoidal category C<B2.

4.8. For L € C°B? let L* = ®(L"). We say that L* is the dual of L. Note
that L — L* is a contravariant functor C°B2 — C<B2 and that L** = L. We
show how L — L* gives a rigid structure on C<B2.

We have the following special case of 4.5(a) (we use that 1 = 1/, see

4.7(g)):
(a) Hom e s (1, LoD (L)) = Hompe g (L, L)

for any L in C§B%. Let &, € Hompep (1, LoD(LT)) be the element corre-
sponding under (a) to the identity homomorphism in Hom, .z, (L, L). Using
(e) and 2.25(a) we have

(b) Homgege (LoD(L1),1) = Homgep (D(17), D((LoD(L1))1))
= HochBQ(l,C‘D(LT)gL).

Let &) € Hompgcz (LoD (L)1) be the element corresponding under (b) to
the element {g11) € Homge5:(1,D(L1)oL). The elements &z, &) define the

rigid structure on C¢52.

4.9. Let Z€ be the centre (in the sense of Joyal and Street ﬂa], Majid @]
and Drinfeld) of the monoidal abelian category C°B2. By a general result on
semisimple rigid monoidal categories in M, Proposition 5.4}, for any L € CeB?
one can define directly a central structure on the object

I(L) = @y-AECngLQLZ(A)
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of C¢B2 such that, denoting by I (L) the corresponding object of Z¢, we have

canonically

(a) Hom 3. (L, L') = Homze (I(L), L")

for any L' € Z°. (We use that for y -\ € ¢, the dual of the simple object Lg
is Lzy/(_)\l)) The central structure on I(L) can be described as follows: for any
X € C°B? we have canonically

)

. . . .1
= @y-)\EC,z-)\’EcHomccBQ (Lil ) XQLZ)/\) ® Li/QLQLz()\)
-1

.1 . . y
— @y-AEC,Z'AIECHomCCB2 (LZ(A)’ Lj()\/) X) X Li/ngLZ(}\)

Xol(L) = @y~A6cX9L§9L9L§

- @Z-A/GcLi/QLQLE.E;/) X = I(L)QX

(The third equality uses 3.20(a).)
We show:

(b) If - A €c and I(LE) £ 0 then z - A € Ws.

For some y - \' € ¢ we have Lg,gLi # 0 (hence X' = z(1)) and LigLZ&,) #0
(hence A = X). It follows that z(A) = X\ and (b) is proved.

4.10. By 3.13(d), for z- A € ¢ we have canonically
(a) b(L3) = I(L3)

as objects of C°B2. Here b : C5Z — 6832 in 3.13 is viewed as a functor
b:C°Z — C°B? as in 4.6. Now I(Lj) has a natural central structure (by
4.9) and b(LL}) has a natural central structure (by 3.14(j)). By 3.21(b),

(b) these two central structures are compatible with the identification (a).

In view of (a), (b) we can reformulate 4.9(a) as follows.

Theorem 4.11. For any z- A € ¢, L' € Z° we have canonically

(a) Homg. g, (L, ') = Homz« (6(L5), 1)
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where b(L3) is b(L3) viewed as an object of Z¢ with the central structure
given by 3.14(j).

4.12. We will state some variants (a)-(j) of results in 4.1-4.5 which will
be needed in Section 6. Let 6y : B — Z be map B — (B,B,Up). Let
7y : B — p be the obvious map.

(a) Let A € s and let w € Wy be such that w- X < c; leti € Z. Ifi > a we
have (55 L2 |w]]) = 0.

This can be deduced from 4.1(c) using that e*?—[i(égﬁfﬁHw\])z%i(é*L?ﬁHwH)
where e : B — B is the map 2U — 2Bz~ L.

(b) If L e M=Z and j > —a — p then (65L) = 0.

We argue as in the proof of 4.1(d). We can assume that L = LY with w - A
as in (a). It is enough to show that for any k we have (H¥(6;L)[—k])! =
that is (H* (85 (L9 w] + v+ p]))[W])T 7+ = 0. Now H* (65 (LY [Jw|+ v+ p)))
is a local system on B hence H* (5} (quﬁ[|w| + v+ p]))[v] is a perverse sheaf
on B so that we can assume that j — k — v = 0. Thus it is enough to show
that HI = (65 (LY [lw| + v + p])) = 0 or that HI+(6*(LY*|w])) = 0. This is
indeed true by (a).

(c) If Le M5 Z is pure of weight 0 and j € Z then (63L)’ is pure of weight
7.

We argue as in the proof of 4.1(e). We can assume that L = LY with A\, w
as in (a). It is enough to prove that for any k, (H*(63L)[—k])’ is pure of
weight j that is, (%k(ég(ﬁ)\wﬁ[|w| +v+ )R ((Jw| + v+ p)/2) is pure
of weight j. As in the proof of (b) we can assume that j — k — v = 0. Thus
it is enough to show that Hj*”(és(ﬁ)\wﬁ[\w\ + v+ p])V((|lw] + v+ p)/2) is
pure of weight j or that HI+wl+e(s (Ef\vﬁ))<u>((]w] + p)/2) is pure of weight
j. This follows from 4.1(b).

(d) Let A € s, w € W} be such that w- X € c. If w- X € D¢ (see 1.12) then
(SFLY)~27P = Bya(v)((a+p)/2) where By is as in 4.1(f). Ifw-\ ¢ De
then (§§LY)~2=F =
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As in the proof of (¢) we have
(O5LY) 0P = H M (G55 (LYY (v + p)(([w] + p)/2).

Setting Bu.x0 = H- (S (LY) (v + p)(—a+ |w]) /2) we have (§5LY) ="
= BuroV)((a + p)/2) where B0 is a mixed vector space. If e : B — B is
the obvious map, we have

Buxo = € H UL+ p)(—a + ] /2)
= MG L)+ ) (=t [wl)/2) = B

where (3. is as in 4.1(f). Hence the result follows from 4.1(f).

(e) Assume that L € M,,(B) is G-equivariant so that L =V @ Q{v) where
V' is a mized vector space. If j > v then (W()!L)j =0.

We argue as in the proof of 4.2(a). We have H7 (p}, L) = VoHI ™ (B, Q;)(v/2).
This is zero if j + v > 2v since B is irreducible of dimension v + p.

(f) If L € MnZ and j > v —a — p then (m),63L)" = 0. Moreover we have
canonically (m(,05L)" =P = (m, ((05L) =4 F))¥.

The proof is almost identical to that of 4.2(b), using (b), (e) instead of 4.1(d),

4.2(a).

(g) Let L € C§Z. Then (myo5L)" =" and (m(,((65L)~*""))" are pure of
weight v — a — p.

We argue as in the proof of 4.2(f). We can assume that L = LY where
w- X\ € c. Using (d) we have

(o (06 L))" ((—a = p+v)/2)
= (mu(Bua(v))((a +p)/2))"(—a = p+v)/2)
= Bua @ (1 Qu(¥)" (v/2) = Bur © (M Q1) * (V) = B
Since 3,,.» is pure of weight 0, we see that (7(,((65L)~*"*))" is pure of weight
v—a—p. Using (f) we deduce that (7(,05L)" %" is pure of weight v —a — p.
We set
1) = Barep.fir O LY € C§Z.
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(h) For L € C°Z we have canonically
Homeez(15, L) = (mo((95L) " 7)) ((—a — p+v)/2).

The proof is similar to that of 4.3(a); it uses (d) (instead of 4.1(f)) and the
proof of (g).

For L € D,,,(Z) we set LT = h*L where h : Z — Z is as in 3.2.
(1) If L € C§Z then D(LT) € C§Z.
This can be deduced from 4.4(b).

(j) For L,L' in C*Z we have canonically
Homeez (1), LeL') = Homeez (D (L), L).

This can be proved by the same method as 4.5(b) or it can be deduced from
4.5(b) using the fully faithfulness of € : C§Z — Cgl’;’g, the equality €1, = 1
and 3.22(a).

4.13. Let A € o. Using the decomposition 4.6(c) of any object of C¢B?
we see that C¢B2 can be viewed as the category of “matrices” with entries
in the abelian category C§ /\B~2 (see 4.6). (This is a category version of the
isomorphism ¥ : H, — E in 1.11(v).) Using this and a result of Miiger
ﬂﬁ] it follows that ZY is equivalent to the categorical centre of the abelian
category C§ ,B? with the monoidal structure induced by o (see 4.6(d)).

5. Truncated Induction, Truncated Restriction,

Truncated Convolution on G

5.1. Let Z = {(B,B',g) € Bx Bx G;gBg~' = B'}. We have a diagram
(a) zL 725G

where f(B,B’,g) = (B,B',gUg), n(B,B’,g) = g. We define x : D(Z) —
D(G) and x : Dpp(Z) — Dp(G) by

Xx(L) =mf*L.
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For any w - A € Ws we define RY € D,,,(G), RY € D,,,(G) by

Y (LY), RY = X (L) ifw- ) e Ws,
O 0,RY =0 ifw-\¢Ws.

Here VE/JS is as in 3.3.

We say that a simple perverse sheaf A on G is a character sheaf if the
following equivalent conditions are satisfied:

- there exists w- A € Ws and j € Z such that (A : (RY)Y) £ 0;
- there exists w- A € Ws and j € Z such that (A : (RY)7) # 0.

(For the equivalence of these two conditions see ﬂE, 12.7].) A character sheaf
A determines a W-orbit on s: the set of A € s such that (A : (RY)7) # 0 for
some w € W and some j (or equivalently (A : (R¥)?) # 0 for some w € W
and some j), see ﬂﬁ, 11.2(a), 12.7]. We say that A is an o-character sheaf
if the W-orbit on s determined by A is o (as in 2.14). Let C'S, be a set of
representatives for the isomorphism classes of o-character sheaves on G.

By @, 14.11], for any X € o there exists a pairing C'S, x IrtW} — Qq,
(A,e) — ba, such that for any A € CS,, any z € W5 and any j € Z we have

(A (R)) = (= A= [z; (=12 Y7 bactr(cane?)).
eclrr(WY)

Here €” is as in 1.12. (When z -\ ¢ Ws, both sides are zero.) By the results
in 1.12 this can be reformulated as follows.

There exists a pairing C'S, x Irro,(WT,,) — Qy, (A, E) + ba g such that
for any A € CS,, any A € 0, any z € W and any j € Z we have

(a)  (A:(RY)) = (=12 —A—[z: Y bastr(cr EY))
E€lrr,(WTy)

where EV is as in 1.12; if E is an Q;[WT,]-module isomorphic to
Dpenrwt,) EY™? (with mp € N) we set

bapr = Z meba,E.
E€lrr,(WTy)
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In particular if E € Irr(W'T),) — Irro(WT),), we have by g = 0. Moreover,
given A € C'S,, there is a unique two-sided cell c4 of W's such that by g =0
whenever E € Irr,(W'T,,) satisfies cg # c4. (This follows from |16, 16.7].)
We have necessarily c4 C {w- A € Ws; A € 0}. As in ﬂﬂ, 41.8], [22, 44.18],
we see that:

(b) (A:(R3)?) #0 for some z-\ € ca, j € Z; conversely, if (A: (R;)?) #0
forz- A€ Ws, j€Z, thency = z- \.

Let a4 be the value of the a-function on c4. If z- A € Ws, E € Irr,(WT,,)
satisfy tr(c,.n, EV) # 0 then cg = z- A; if in addition we have z- A € cg then

from the definitions we have

—h
tr(c,.n, BY) = Z Var, B,nVF
h>0

where v,.\ g1 € Q is zero for large h, v..\ g o = tr(t,\, E) and ag is as in
1.13. Hence from (a) we see that for A € C'S, and A € 0, z € W, j € Z, the
following holds:

(c) (A: (R3)") =0 unlessca = z-\; if z- X € c4 then

(A5 (B = (~ )72 — A—|z; 3 b sy ™)
Eclr,(WTy);ecg=ca;h>0

which is 0 unless j — A — |z| < aa.

Recall that c, a are as in 2.14.

Let M=G (resp. M~Q) be the category of perverse sheaves on GG whose
composition factors are all of the form A € C'S, with c4 < ¢ (resp. ¢4 <
c). Let DG (resp. D=G) be the subcategory of D(G) whose objects are
complexes K such that K7 is in M=G (resp. M~Q) for any j. Let DZG
(resp. D,;3G) be the subcategory of D,,(G) whose objects are also in D=G
(resp. D=Q).

Let A € 0, z € W. From (c) we deduce:
(d) If z- X < c then (R5)’ € M=G for all j € Z.
(e) Ifz-N€cand j > a+ A+ |z| then (R3)! € M~G.
(f) If - XA < c then (R3)? € M=G for all j € Z.
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5.2. Let CS. ={A € CS,;ca =c}. For any z- A € Ws we set

n, =a(z) + A+ |z|
Let A e CS; and let z- X\ € ¢. We have

(a) (A: (R})™) = (—1)*+Il > ba ptr(t., E%).
Echir(WTy);cg=c

Indeed, from 5.1(a) we have

(A:(R)"™) = (—1)*H > ba,p(a;tr(c.n, EY))
Eclir(WTy);cp=c

and it remains to use that (a;tr(c,.n, EV)) = tr(t,.x, E*°). We show:

(b) For any A € CS. there exists E € Irr(W'T,,) such that cg = ¢, ba,g # 0.

Assume that this is not so. Then, using 5.1(a), for any A € o, any z € W
and any j € Z we have (A : (R5)7) = 0. This contradicts the assumption
that A € C'S,.

(c) For any A € CS, there exists z- A € ¢ such that (A : (R3)") # 0.
Assume that this is not so. Then, using (a), we see that

Z bA7Et1“(tz.>\,EOO) =0
Echir(WTy);cp=c

for any z - A € c. Using this and (b) we see that the linear functions t,., —
tr(t,.n, £°°) on J¢ (for various E € Irr(WT,,) such that cg = c) are linearly
dependent. This is a contradiction since the E*° form a complete set of
simple modules for the semisimple algebra J..

We show:

(d) Let z-\ € c be such that (R;)"= # 0. Then z-)\lA}tzfl-z()\). In particular

1

we have z € W{ and z,z~" are in the same left cell of WJ.

Using (a) we see that there exists E € Irr(WT,,) such that tr(¢,.5, E*) # 0.

We have E*° = ®g4.),eptar, £ and .\ : E° — E° maps the summand

tag.n, E°° where z-)\lAfztd-)\l into t .y £°° where d-\} € D, d/')‘llf\f z71.z(\) and
e eft
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all other summands to 0. Since tr(¢,.x, %) # 0, we must have ¢4, B> =
tox B #0hence d- Ay =d' - N} and z - )\lmfz 2z71. 2(\). This proves (d).
eft

5.3. We show:

(a) If L € D=Z then x(L) € D=G. If L € D~Z then x(L) € D=G.
(b) If L€ M=Z and j > a+v then (x(L)) € M=G.

It is enough to prove (a), (b) assuming in addition that L = Lj where
z-A€Ws, z- X <c. Then (a) follows from 5.1(d), (f). In the setup of (b)
we have

(L)Y = (BRHEH2((J2] 4+ v+ p) /2)

and this is in M~G since j + |z| + v+ p > a + A + |z], see 5.1(e).

5.4. Let C*G be the subcategory of M(G) consisting of semisimple objects.
Let CO‘G be the subcategory of M,,(G) consisting of those K such that K
is pure of weight zero. Let C°G be the subcategory of M(G) consisting of
objects which are direct sums of objects of the form A € CSc. Let C§

be the subcategory of CO‘ G consisting of those K such that, as an object of
C*G, K belongs to C°G. For K € CO*G let K be the largest subobject of K
such that as an object of C*G, we have K € C°G.

5.5. For L € C§Z we set
xX(L) = (@) ((a+v)/2) = (D)™ e c§a.

(The last equality uses that 7 in 5.1 is proper hence it preserves purity.) The
functor x : C§Z — C§G is called truncated induction. For z - A € ¢ we have

(a) X(L3) = (B3)™ (n:/2).

Indeed,

X(L3) = (L)) ((a+v)/2) = (L5 2] + v+ p)*H ((a +v)/2)
= (X(LE)FHAA (2] + a+ A)/2) = (L) (n./2) = (B)™ (n./2).

Using (a) and 5.2(d) we see that:
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(d) If z- X\ € ¢ is such that X(L3) # 0 then z- )\lr?tz_l - z(N). In particular

we have z € WY and z,z~" are in the same left cell of WJ.

5.6. As in 1.9 we shall denote by 7 : H*® — Z the group homomorphism
such that 7(t,.n) = 1if z- A € D and 7(t,.,) =0 if z- A € Ws — D. For

2+ M\ 2 - XN in ¢ we show:

(a) dim HOHICCG'(K(Li),X( i/)) = Z T(ty*I~y()\’)tz-)\ty-)\’tz’*1~)\’)-
yeW;y-Nece

Using 5.5(a) and the definitions we see that the left hand side of (a) equals

D (A (RY)™) (A (RY)"™).
AeCS.
Using 5.2(a) and the analogous identity for (A : (R3,)"=') in which the field
automorphism ()®* : Q; — Q; (see 1.16) is applied to both sides (the left
hand side is fixed by ()*), we see that the left hand side of (a) equals

(—1)l=+= DB, Bl (WTh)en—cpy—c
Y acos, bzt pitr(ten, BX)(tr(ta.n, B'))S.

Replacing in the last sum g bA7EbX’E, by 1 if B/ = E and by 0 if
E' #+ FE (see ﬂﬁ, 35.18(g)]) we see that the left hand side of (a) equals

(CDFFET N tr(ta, B (tr(t, BX))R
Echr(WTy);cp=c

By ﬂﬁ, 34.17], for E € Irr(WT,,) and h € H we have tr(h’, EV) = tr(h, EV)®
where ()® : Q;(v) — Q(v) is as in 1.16; in particular, for w- A € Ws we
have tr(cy.z, EY) = tr(cw—1,w(>\),E”)‘. Taking the coefficient of v* in the
two sides of the last equality we deduce tr(ty.x, £%°) = tr(t, 1.5, E>®),
Thus the left hand side of (a) equals

(—1)lz1+1# > tr(tsn, EX)tr(t -1, B®).
Echir(WTy),cp=c

(Recall that z'()N) = z.) This is equal to (—1)**#'| times the trace of the
linear map & — t,.\Et,—1.y, on J¢; hence it is equal to the sum over y-A\; € ¢
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of the coefficient of ;.\, in t,.xty.x,t—1.y; this coefficient is 0 if Ay # N
while if A\ = )\ it is equal to
T(ty_l-y()\/)tz-)\ty~>\/tz/_1~)\’)'

(We use 1.9(a) for H*.) Thus we have

dim Homeec (x(L3), x( )= (=1)lH Z T(ty-1.yo)teatyxta—1a).
yeW;y-Nece

Since dim Homeeq (x(LL3), X(Li/’)) € N and the last sum is in N, it follows
that (a) holds.

The proof above shows also that dim Homeeg (x(IL3), X(Ljﬁ)) = 0 when-
ever (=1l = —1.

5.7. Let L € CSZ. We show that D (L) € C$Z. It is enough to note that for

w-A€ candw € kg (w) we have

(a) D(LY) =LY,

We show:

(b) We have canonically x(D(L)) = D(x(L)) where the first x is relative to

¢ instead of c.

By the relative hard Lefschetz theorem H, 5.4.10] applied to the projective
morphism 7 (see 5.1) and to f*L(v) (a perverse sheaf of pure weight 0 on

Z, see 5.1) we have canonically for any :

() (mf L))~ = (mf L))" (D).

We have used the fact that f is smooth with fibres of dimension v. This also
shows that

(d) D(X(D(L))) = x(L)(2v).

Using (d) we have
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= @@ (-a=v)/2)
= ((D)2v) " ((ma = v)/2) = (X(L)(¥)) " (=a/2).

Hence using (c) we have

D(X(D(L))) = (X(L)()*(a/2) = (X(L)*"((a +v)/2) = x(L).

This proves (b).

5.8. Let z- X € D¢ and let A,.\ be the left cell of Ws containing z - \. We

show:

(a) (A: X(Li)) = bA,[AZ,A] for any A € CS;.

Using 1.12(a) we see that for any E € Irr(W'T,,), tr(t,.n, E*) is equal to the
multiplicity of E in the Q;[WT,]-module [A..,]. Hence, using 5.5(a) and

5.2(a), we have

(A:x(L}) = (~1)*" > b p( multiplicity of E in [Ag])
Eclir(WT,);cp=c

= (—1)a+|zle,[Az,k]-

It is enough to show that a + |z| = Omod2. Since z is a distinguished

involution of W), the coefficient of v™¢ in piz (see 1.8) is nonzero (see ﬂﬁ,

14.1]). Using now ﬂﬁ, 5.4(b)] we deduce that |z|y = amod 2. It remains to
note that |z|y = |z|mod2. (Indeed, W) is generated by elements u € W)

such that |u|y =1 and such u are reflections in W so that |u| is odd.)

5.9. We define ¢ : D(G) — D(Z) and ¢ : Dy, (G) = Dy (Z) by ((K) = fir* K
where Z4- 2 5 G is as in 5.1(a). We show:

(a) For any L € D(Z) or L € D,,,(Z) we have b”(L) = ((x(L)).
We have ((x(L)) = fir*mf*(L). We have
Z xq Z ={((Bo, B1, B2, B3), g) € B x G;gBog™" = Bs,gB1g™" = Ba}.

We have a cartesian diagram
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Zxg? —s 7
S
z ——= G
where 71 ((Bo, B1, B2, Bs),g) = (Bo, Bs,g), 72((Bo, B1, B2, Bs3),g) = (B,
By, g). It follows that 7*m = 7yy75. Thus

C(x(L)) = firums f*(L) = (fr)(f72)"(L).
Define 7} : Zxq Z — Z, wh: Z xqg Z — Z by

Wi((BO7BlaB27B3)7g) - (B07B379UB())7
75((Bo, B1, B2, B3),g) = (Bi1, B2, gUsg,).

Then 7} = [, Wé.: [ and ((x(L)) = 7}m5*(L). We have an isomor-
phism °Y — Z X Z induced by

((xoU, 21U, 25U, z3U), g) — ((aconal, mlel_l, ngmgl, ngxgl), 9).

We use this to identify °Y = Z xg Z. Then 7}, ) become d,°n of 3.25. We
see that (a) holds.

5.10. Let -\ € 0. Weset ¥ = ¢*C(R)(2v + |z|) € Dy (B?). Let j € Z. We
show:

(a) If z- X\ < ¢ then ¥/ € M3B2.

(b) If z- X < ¢ then X/ € M=B>.

() If z- XA €cand j>v+2p+2a then ¥ € M=B2.

Ifz-\¢ V[75 then ¥ = 0 and there is nothing to prove. Now assume that
z+ A € Ws. Then, using 5.9(a), we have

S = CLE) @+ |2]) = /(L) (2 + |2]) = b/ (L3) (v — p).

Now (a), (b) follow from 3.14(a), (b) and (c) follows from 3.14(c). (If j >
v+2p+2athen j+v—r>2v+p+2a.)
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5.11. We show:

(a) If K € D=G then ((K) € D=Z.
(b) If K € D=G then ¢(K) € D=Z.
(c) If K € D=G and j > v+ a then (((K)) € M~Z.

We can assume in addition that K = A € C'S, where A € C'Sy for a two-
sided cell ¢’ such that ¢/ < ¢. Assume first that ¢/ = c¢. By 5.2(c) we
can find z - X € c such that (A : (R3)") # 0. Then A[—n,] (without mixed
structure) is a direct summand of R5 (which is a semisimple complex). Hence
€*C(A)[—n.] is a direct summand of €*¢(R5) and €*¢(A)[—n, +2v + |z]] is a
direct summand of ¥ (in 5.10), that is, €*((A)[—a — p| is a direct summand
of ¥. By 5.10, if j € Z (resp. j > v + 2p + 2a) then X7 € M=B? (resp.
Y € M=B?) hence (¢*C(A)[—a — p])¥ € MZB? (vesp. (¢*C(A)[—a —p])! €
M=B?), that is (¢*C(A))/~%7 € MZB? (resp. (e*¢(A))~*P € M=B?).
We see that if j' € Z (resp. j > v+ p+a) then (¢*¢(A))! € MZB? (resp.
(e*C(A))T" € M=B?) so that (((A))' =P € M=Z (resp. (C(A))T' P € M=Z);
here we use 3.3(a). We see that if j € Z (resp. j > v + a, so that j + p >
v+ p+a) then (((A)) € M=Z (resp. (((A))! € M=Z). Thus the desired
results hold when ¢’ = c.

Assume now that ¢’ < ¢. Applying the above argument with ¢ replaced
by ¢’ we see that (a), (b) hold.

5.12. For K € C§G we set

C(K) = () e c5 2.

We say that ((K) is the truncated restriction of K.

5.13. Let L € C§Z. We show:

(a) We have canonically {(x(L)) = b"(L).

We shall apply , 1.12] with @ : D,, (Y1) — D, (Y2) replaced by ( :
Di(G) = D (Z) and with DZ(Y7), D=(Y2) replaced by D=G, D=Z. We
shall take X in loc.cit. equal to x(L). The conditions of loc.cit. are satisfied:
those concerning X are satisfied with ¢ = a + v, see 5.3. The conditions
concerning ¢ are satisfied with ¢ = a + v, see 5.11. We see that
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(b) (C(x(L)) =0if j > 2a+2v
and
(c) graar20 (C(X(L))** ) (a +v) = ¢(x(L)).

Since ((x(L)) = b”(L), we see that the left hand side of (c¢) equals b”(L).
Thus (a) is proved.

Combining (a) with 3.25(d) and 3.14(d) we obtain the following result.

(b) We have canonically €((x(L)) = b(L).

5.14. Let K € D,,(G) and let L € D*B2. We show that

(a) there is a canonical isomorphism Lo ¢*((K) = e¢*((K)o L.

Let Y = B2 x G. Define j : Y — G by j(2oU,2,U,g) = g. Define j; :

Y — B? by ji(20U,21U,g) = (20U,g '2;U). Define jo : ¥ — B2 by
J2(zoU, xlU,g) = (gon z1U). From the definitions we have L o e*((K) =

ImUH () ® (K, G o L = in((L) & (K)). By the G-equivasance
of L we have JiL = j3L; (a) follows.

Now let K € C§G and let L € C(‘jl';’Q. We show that

(b) there is a canonical isomorphism LoeC(K) = (é¢(K))oL

We apply ﬂ2__4|, 1.12] with & : D2B? — DAB% L' +— L' o L, X = &(K) and
with (¢,d) = (a — v,v + a), see 2.23(a), 5.11(c). We deduce that we have

canonically

(¢) (ECE)) ) o L)1) = (E((K) 0 L)

We apply [24, 1.12] with & : DB2 — DIB2, L' v Lo L', X = &(K) and
with (¢,d) = (a — v,v + a), see 2.23(a), 5.11(c). We deduce that we have

canonically

(d) (L o (EE)) e = (Lo &g(K)) B,

We now combine (c), (d) with (a); we obtain (b).



708 G. LUSZTIG [December

5.15. Let p: G x G — G be the multiplication map. For K, K" in D(G)
(resp. in Dy, (G)) we set K x K = (K X K'); this is in D(G) (resp. in
Din(G)). For K,K', K" in D,,(G) we have canonically (K x K') « K" =
K x(K'+ K") (and we denote this by K« K« K"). Note that if K € D,,(G)
and K’ € M,,,(G) is G-equivariant for the conjugation action of G then as

in [24, 4.1] we have a canonical isomorphism
(a) K+K S K xK.
5.16. We show:

(a) For K € Dp,(G), L € Dp,(Z) we have canonically Kxx(L) = x(Le((K)).

Let Y = G x G x B. Define ¢: Y — G x Z by ¢(g1, 92, B) = (91, (B, 92Bg; ',
92Up)); define d : Y — G by d(g1, g2, B) = g192. From the definitions we see
that both K * x(L), x(L e ((K)) can be identified with djc*(K X L). This
proves (a).

Now let L,L" € D,,(Z). Replacing in (a) K,L by x(L),L" and using
5.9(a), we obtain

(b) X(L) * x(L') = x(L" e b"(L)).

5.17. Let L, L' € DA(Z), j € Z. We show:

(a) If L€ D=Z or L' € D=Z then L' e b"(L) € D=Z.
(b) If LeDZ or L' € D=Z then L' ¢ b"(L) € D~Z.
(¢c) fLEM=Z, L' ¢ M®Z and j > 3a + p+ v then (L' o b"(L))) € D=Z.

Now (a), (b) follow from 3.25(b) and 3.23(a). To prove (¢) we may assume
that L = LY, L' = Lf,/ with w- A\, w’ - X in Ws and w - A < c. We apply
24, 1.12) with @ : D2Z — DZZ, Ly + L' ® L; and X = b”(L) and with
' = 2v+2a (see 3.25(c)), ¢ = a+p—v (see 3.23(b)). We have c+c = v+p+3a
hence (c) holds.

5.18. Let L, L' € D*(Z), j € Z. We show:

(a) If L € D=Z or L' € D=Z then x(L' ¢ b"(L)) € D=G.
(b) If Le D=Z or L' € D~Z then x(L' e b"(L)) € D=G.
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() IfL) € M®Z, L € M3Z and j > 4a + 2v + p then (x(L' e b"(L))) €
M=G.

(a), (b) follow from 5.3(a) using 5.17(a), (b). To prove (c) we can assume
that L = LY, L' = Lg\"’/ with w - A\, w’ - X in Ws and w - A = c. We apply
24, 1.12] with @ : D3Z — DG, Ly — x(L1), X = L' e b(L) and with
d = v+p+3a (see 5.17(c)), ¢ = a+v (see 5.3(b)). We have c+¢’ = 2v+p+4a
hence (c) holds.

5.19. Let K, K’ € DA(G). We show:

(a) If K € D=G or K' € D=G then K x K' € D=G.
(b) If K € DG or K' € DG then K x K' € D™Q.
(c) If K € D=G or K' € DG and j > 2a + p then (K * K') € DZG.

We can assume that K = A € CS,, K/ = A" € CS,. Let A” €¢ M(G)
be a composition factor of (4 * A’)7. By 5.2(c) we can find w - A € ca,
w' - N € cu such that (A : (RY)™) #0, (A : (RY)™') # 0. Then A is a
direct summand of R¥[n,,] and A’ is a direct summand of R [n,,] (without

mixed structures). Hence A x A’ is a direct summand of
RY « RY [a(w - X) + a(w' - N) + [w] + [w'| + 24]
and (A x A’)J is a direct summand of

(Rg\u * R%/[|w| + |fw’| + 2+ Qp])j+a(w'>\)+a(w/-)\/)+2y
= (X(LY) # x (LI Fatw A alwX)r2y

Using 5.16(b) we see that (A x A’)’ is a direct summand of
0 (X(LS/ o b"(LY))Felorelei X2y,

Hence A” is a composition factor of (d). Using 5.18(a) we see that A” € C'S,
and that c4» < w-X and c4» < w'-N. In the setup of (a) we have w-A < c or
w'- N =< ¢ hence cqr < c. Thus (a) holds. Similarly, (b) holds. In the setup
of (¢) we have w -\ < ¢ and w'- N < ¢. Hence a(w - ) > a, a(w' - XN) > a.



710 G. LUSZTIG [December

Assume that c4» = c¢. Since A” is a composition factor of (d), we see from
5.18(c) that

jHalw-N)+aw -N)+2v<4a+2v+p
hence j + 2a + 2v < 4a+ 2v + p and j < 2a + p. This proves (c).
5.20. For K, K' € C§G we set
KxK' = (K  K')?et0} ¢ cea.

We say that KxK' is the truncated convolution of K, K’'. Note that 5.15(a)

induces for K, K’ € C§G a canonical isomorphism

(a) K+xK' 5 K'sK.
Let L € C§Z, K € C§G. Using ﬂﬂ, 1.12] several times, we see that

Kxx(L) = gri((K  x(L))*)(k/2)

where k = (a +v)+ (2a+ p) =3a+ v + p and

X(Le¢(K) = gri(x(L o C(K)*) (K /2)

where ¥ = (a+v)+ (a+v)+ (a+ p—v) =3a+ v+ p. Using now 5.16(a)
and the equality & = k/ we obtain

(b) Kxx (L) = x(Le¢(K)).
Let L, L' € C§Z. Using ﬂﬂ, 1.12] several times, we see that

X(L)xx(L') = gri((x(L) = x(L')*)(k/2)

where k = (a +v) + (a+v) 4+ (2a + p) = 4a + 2v + p and

X(L'eb"(L) = gri (X(L' « b"(L)*) (' /2)

where ¥’ = (2a+2v)+ (a+p—v)+ (a+v) = 4a+2v+ p. Using now 5.16(b)
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and the equality k = k&’ we obtain

() X(L)xx(L') = x(L'e(b"(L))).

We show

(d) For K,K',K" in C§G there is a canonical isomorphism
(KxK")xK" 5 Kx(K'sK").

Indeed, just as in ﬂﬂ, 4.7] we can identify, using ﬂﬂ, 1.12], both (KxK')xK"
and Kx(K'xK") with (K x K’ x K"){4a+2p},

A similar argument shows that the associativity isomorphism provided
by (d) satisfies the pentagon property.

5.21. For K, K' in D,,,(G) we show:

(a) We have canonically (K x K') = ((K') o ((K).

Let Y = {(B,gUp,h1,h2); B € B,g € G,hy € G,ha € G;h1hey € gUp}.
Define j. : Y — G by je(B,g9Up,h1,hs) = he (e = 1,2). Define j : Y —
Z by j(B,gUpg,hi,ha) = (B,gBg~',gUp). From the definitions we have
G+ K') = 151 (K) @ j35(K") = C(K") o C(K); (a) follows.

For K, K" in D§(G) we show:

(b) We have canonically ((KxK') = ((K")e((K).

Using ﬂﬂ, 1.12] we see that

CK*K") = gri((C(K + K')*) (k/2)

where k = (a +v) + (2a + p) = 3a + v + p and that

(K)ol (K) = gris (C(K) o C((K)) (K /2)

where £/ = (a+p—v)+ (a+v) + (a+v) = 3a+ v+ p. It remains to use
(a) and the equality k& = k£’

5.22. Define h: G — G g+ g~ . For K € D,,,(G) we set KT = h*K. We
show:
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(a) For L € Dp,(Z) we have (x(L))t = x (L") with LT as in 3.2.

This follows from the definition of y using the commutative diagram

zl 7z T ,q

L sl ]

Z+l 7z T ,q

where f,m are as in 5.1, b is as in 3.2 and § : Z — Z is (B,B',g) —
(B',B,g7").

From (a) and 3.2(a) we see that if A € s, w € W, then

1

(b) (LT = x(LF).

We deduce that

(c) if A is a o-character sheaf with associated two-sided cell ¢ then Al is a
o~ -character sheaf with associated two-sided cell €.

From (a), (¢) we deduce:

(d) For L € C§Z we have (x(L))! = x (L") where the second y is relative to

¢ instead of c.

6. The Main Results

6.1. Let Y = {(B,g);B € B,g € B}. We definet:Y — T by (B,g) —t
where t € T is given by the conditions 2 'gx € tU, z € G, B = zBa™!;
note that ¢ is independent of the choice of z. Let

Y ={((B,g),t) € Y x T;¥(B,g) = t"}.
Let G,s be the variety of regular semisimple elements in G. Let
YTS = {(B,g) € Y;g € Grs},Yrs = {((B,g),t) S Y;g S Grs}-

For any w € W we define 7, : Y,.s = Y5 by (B,g) — (B’,g) where B’ € B
is uniquely defined by the condition that g € B’, (B’, B) € O,,; one verifies
that 7 : Yrs — Yoo, ((B,g),t) = (tw(B,g),w(t)), is well defined. Now
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w — Ty (resp. w %w) is an action of W on Y, (resp. on S?rs). For
any t; € T, we define 7 : Y,; — Y, by ((B,9),t) — (tw(B, g),tt1). The
operators T, 7! define an action of the semidirect product W'T,, (see 1.12)
on ?rs. This action leaves stable each fibre of the map w,s : Ym — Grs,
(B, g),t) — g, hence it induces an action of WT,, on @,,Q, a local system
of rank §(W)n” on G,s such that the induced WT,-action on any of its
stalks is isomorphic to the regular representation of WT,,. We show:

(a) The algebra homomorphism h : Q[WT,] — End(&,5Q,) defined by the

action above is an isomorphism.

Note that h is injective since the induced algebra homomorphism from
Q:[WT,] to the space of linear endomorphisms of any stalk of @,,Q; is

clearly injective. Since

End(ﬁrlel) HOHID (Qlaw wrs'Ql)

it is enough to show that
dim HomD(YTS)(Q 7% @TS'QI) < ﬁ( )

Since @, @, Qy is a local system of rank #(WW )n” on Y,,, it is enough to show
that Y, is connected. Since Y,s — B, ((B,g),t) — B is a G-equivariant
fibration with G acting transitively on B, it is enough to show that its fibre
over B is connected or that {(g,t) € G,s x T; g € t"U} is connected, or that

{t,u) e TxUt"ue Gy} ={t e T;t" € G,s} x U

is connected. It is enough to observe that {t € T;t" € G,,} is connected (it
is a nonempty open subset of T). This proves (a).

We define @ : Y — G by ((B,g),t) — g. We have @ = wr where
m:Y = Yis ((B,g),t) = (B,g) and w: Y — G is (B,g) — g. From the

cartesian diagram

Y —— T
SR
Y

L}T
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with ¢ : T — T as in 1.4, we see that £4,Q; = m1Qy, hence
E:=mQ = m(muQ) = @ (EuQi) = Brcs@ (F L)) = Bresa

where 2y = w)(¢*Ly). Since E|g,, = @5 Qi, we have ©,4Q; = ®resExa, .-
As observed in [12], w : Y — G is small and =, is the intersection coho-
mology complex of G with coefficients in Z)|g,.; hence Z is the intersec-
tion cohomology complex of G with coefficients in &, Q. It follows that
EndD(G)E = EndD(GTS)(me!Ql) hence, using (a),

(b) Endp()E = Qi[WT,).
For any E € Irr(WT,,) we set

We see that Ag is a simple perverse sheaf on G and that for £ # E’ in
Irr(WT,,) we have Ap 2 Ap,. Moreover we have

(1]

(d) (A) = Opemwr,)E ® AR.

From the definitions, for A € s we have =) = RiA (notation of 5.1). Using
this and (d) we see that for any E € Irr(W'T,,), Ag is a character sheaf on
G.

We state the following result.

Proposition 6.2. For any E' € Irr(W'T,,) we have ca,, = cgr. In particu-
lar, we have aa,, = apr. (Notation of 5.1, 1.13).

The proof is given in 6.3, 6.4, assuming, to simplify the exposition, that
n = 1. It consists in a reduction to an analogous (known) statement in
the representation theory of the finite group G¥ in ﬂﬁ] (We denote by
F:G — G, F: B — B the Frobenius maps corresponding to the F,-
structures on G, B.)

6.3. Until the end of 6.5 we assume that n = 1. Then WT,, =W, s = {1}
hence we can identify Ws = W; H has a basis {T\,;w € W}. As in E], for
each w € W we consider the variety X,, = {B € B;(B,F(B)) € Oy} on
which GF" acts by conjugation and the resulting G*-module H’(X,,, Q;) for
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each i € Z. Let Irr,(GY) be a set of representatives for the isomorphism
classes of irreducible representations r of G such that r appears in the G-
module H!(X,,Q;) for some w € W and some i € Z, or equivalently (see
[4)), such that S°,(~1)i(r : Hi(Xy, Q1)) # 0 for some w € W. (Here (r :7)
denotes the multiplicity of r in ?.) In the terminology of B], Irr, (GT) is
the set of unipotent representations of G¥'. For any r € Irr,(G) and any
E € Irr(W) we set

(@)  bep=4W)1 Y tr(w, B) Y (—1)(r: Hi(X,. Q) € Q.

weWw 7
By ﬂa, 4.23], given r € Irr, (GF), there is a unique two-sided cell ¢, of W
such that by p = 0 whenever E € Irr(W) satisfies cp # cr; let ap be the

value of the a-function a : W — N on c;.

For w = 1, we have X; = BY and F := H?(X1,Q;) is the vector space
of functions BY — Q. This vector space is naturally an G¥-module and its
space of G -equivariants endomorphism can be naturally identified with the
semisimple algebra HV? := Q; ® 4 H where Q; is viewed as an A-algebra
via v +— ,/q. Hence for any simple HV%-module M, the vector space rj; =
Homyy . 2(M, F) is either 0 or an object of Irr,,(G*'); in fact, it is known that it
is # 0. For any E € Irr(W) let EV4 be the simple HV9-module corresponding
to E under the algebra isomorphisms Hv4 wf Q ® H™® (wz;l H' = Q;[W]
obtained by extension of scalars from ¥ : H — A ® H™ (see 1.12); we
write rg instead of ryz. Thus we have an imbedding Irr(E) — Irr, (GF),
E—rg.

6.4. We write R instead of R (see 5.1) where A = 1, z € W. The following
result can be deduced from ﬂﬁ, 2.1].

(a) Letye W, E' e Irr(W), i € Z. Then H'RY|q,, is a local system and
Y (N Ap[-Alle,,  HRg,,) =Y (=) (re : Hi(X,, Qu)).
(In the left hand side, (:) denotes the multiplicity of an irreducible local

system on Gy, in another local system on G,.)
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Using 6.3(a) we deduce for any E, E in Irr(W):

(b)  begp =tW)7H Y te(y, B) Y (1) (Ap[-Allg,. : H'R,.)-
yeW i

From ﬂﬁ, (14.10.1)], for any E € Irr(W), A € C'S, we have

bap=tW)"' Y tr(y, B) Y (—1)FE(A: ().

yeW i

(ba g is as in 5.1(a).) In particular for £ € Irr(W) we have

bag,p =W)X yew tr(y, B) Xy (=1) 2 (Ap + (RY))
=1W) 7 Epew trly™ BE) (-1 (Ap e, 1 (V) 6,.)-

Since Hii)‘%rs are local systems, we see that

Y DT Aple,. s ()6,.) = Y (-1 (Ap[Alls,. : HRg,,)

i i
(in the last sum (:) refers to multiplicities of an irreducible local system in

another local system). Thus,

bayp=tW)1 Y tr(y, B) Y (1) (Ap[Alle,, : H'R|q,,)

yeWw )

so that, using (b), we have
bA, . E=br,, B
Using the definitions we now see that
CA, = Cr,,, hence as,, = ar,,
for any E’ € Irr(W). Thus we can restate 6.2 as follows:
(c) For any E' € Irr(W) we have c;,, = cp.

We shall deduce (c¢) from the following result which is equivalent to ﬂﬁ,
12.2(1)]:
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(d) Let A be a left cell of W. Write [A] = @Eelrr(W)E@fE where fp € N. In
the Grothendieck module of G¥ -modules tensored by Q we have

Z fErE = Z Z br BT

Eclrr(W) Eelrr(W) relrr, GF

Let E' € Irr(W). We can find a left cell A of W as in (d) such that A C cp
and E’' appears in A], that is, fg > 0. Then rg appears with nonzero
coefficient in the left hand side of the identity in (d) hence it appears with
nonzero coefficient in the right hand side of the identity in (d). Thus there
exists £ € Irr(W) such that by, g # 0. By definition this means that
Cr,, = cp, proving (c), hence also Proposition 6.2 (assuming n = 1). The
proof for general n goes along similar lines.

Note that the proof of 6.4(d) given in ﬂﬁ, 12.2(i)] is case by case. It
is likely that a more efficient proof can be obtained using the inductive
description of W-modules carried by left cells in terms of constructible rep-

resentations given in ﬂﬁh

6.5. The following inequality is a special case of Proposition 6.2.
(a) For any E' € Trr(W) we have aa,, < ag.
We give an alternative proof of (a) which avoids the use of 6.4(d) hence of

ﬂE, 12.2(i)]. We again assume for simplicity that n = 1. As in 6.4 it is

enough to prove:

(b) Qr g, <apgr.
It is known ﬂﬁ, 8.1.8] that

dim(rg) = dim(E") Y ¢I(> ¢ (T, BV
weW weW
From |8, 3.14, 3.16, 3.17, 3.19] we have

dimrg =4(W)"" > br,,m Y dimHomy (E,S'V)q".
Eelrr(W) i>0
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Since by, g = 0 unless cg = ¢, it follows that

(c) dim(E") Y ¢I(> " ¢ (T, E'VT)?) !

weW weW
= t(w)~! > bry. »_ dimHomy (B, S'V)q'.
Eelrr(W)iep=cr, >0

Since by, g = ba,, E is independent of ¢, we may regard (c) as an equality

/2.

of polynomials with rational coefficients in an indeterminate ¢ From

1.20(c’) we see that the right hand side of (c) is in ¢°Q[g~'/?] where

c= max (V—Dbpgsg) ="V — Grg,
E;CE:crE/

(the last equality uses 1.19(a), (b)). From ﬂE, 20.11] we see that the left
hand side of (c) is in ¢"~®# (co + ¢~ /?Q[q'/?]) where ¢y € Q — {0}. Hence
from (c) we deduce that v —ap/ <v —a,,, so that agr > ar,, as required.

6.6. We now return to our general n. Let A be a character sheaf of G.
By ﬂﬁ, 30.12], there exists a parabolic subgroup P of G, a Levi subgroup
L of P and a subset S; of L which is a single conjugacy class of L times
the connected centre of L such that the support of A is the union of G-
conjugates of elements in the closure of S7 times the unipotent radical of P;
moreover, if P € B then A = Ag for some E € Irr(WT,,) while if P ¢ B
then Al = 0. (Here we use the cleanness of cuspidal character sheaves, see

| and its references. Actually we only use a weak form of the cleanness
property which is more elementary than what appears in ﬂﬂ])

6.7. Let ¢ : p — G be the map with image 1. For any K € D,,(G) we have
("K) = HK.

The identification 6.1(b) induces for any ¢ an algebra homomorphism

QIWT,] - End(H;Z)

thus,

12=Hi(& '(1),Q) = H(B x T,,, Q) = H.(B,Q)) ® Q[T,]
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becomes naturally a WT,-module; one verifies that the action of wt (with
we W, teT,)is given by wt : e®t; — w(e) @ w(tty) (here e € H (B, Qy),
t; € T, and e — w(e) is the W-action on H(B,Q;) = H'(G/B,Q;) =
H(G/T, Q) induced by the conjugation action of NT. (In the case where
n = 1 this is proved as in [29, §2]; the proof in the general case is along
similar lines.) Note also that H{= = 0 if i is odd. We show:

(a) Let E be an irreducible WT,,-module. We have (H¥Z)F = 0 for i >
v—ag. Moreover, dim(H:" 2*P2)F is 1 if E is special and 0 if E is not

special.

Let SV = EBiZOS'iV be as in 1.20. It is well known that for ¢ > 0 we have
canonically SV = H?(B,Q;) compatibly with the W -actions. This extends
to an identification

SV @ QWT,) = H'(B,Q) @ Q[WT,] = Hi'=

which is compatible with the WT,-actions. Hence (a) follows from 1.21(a).

6.8. We show:

(a) Let A€ CSe. If j > —2a — p then (¢*A)f = HIA = 0.

We can assume that A = Ap for some E € Irr(WT,). (If A is not of
this form, the result holds by 6.6.) Since a < ag (see 6.5(a)) we have j >

—2ap — p. By definition we have HJ A = (HI (Z(A)))F = (7—[{+AE)E(A/2)
hence by 6.7(a), H{Ag =0 if j + A > 2v — 2ap that is if j > —2ag — p.

We show:

b) Let E=FE., see 1.19. Then (¢*Ag _2“_p:7{_2a_pAE is a 1-dimensional
’ 1
mixed vector space of pure weight —2a — p.

As in the proof of (a) we have
H AR = (M (E(A))F = (M E)P(A)2).

By 6.7(a) we have dim(#2*~2*Z)P=1. It remains to note that (H?~2%1¢=)¥
is pure of weight 2v —2a (indeed, H3" 2= = H2'~2%(B, Q;) ® Q[T,] is pure
of weight 2v — 2a).
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We show:

(c) Let A € CS. be such that A% Ap,. Then (¢*A)~207F = H[**PA = 0.
As in the proof of (a) we can assume that A = Ap for some E € Irr(WT,,).
By 6.2 we have cgp = ¢ and by assumption we have £ % E.. Hence F is not

special. By 6.7(a) we have (H2' 2*#E)F = 0 hence H] *** PAp = 0. We

have ag = ac = a hence H;Qa*pAE = 0. This proves (c).
From (b), (c) we see that if K € C°G then

(d) dim HOI’IlCch(AEC’ K) = dim(¢*K)—2a—p _ dim%l_ga_pK,

6.9. Let &g : B — Z, my : B — p be as in 4.12. We show that for L € D,,(Z)

we have
(a) ¢*x(L) = 705 L.

Define ¢ : B — Z (see 4.1) by B ~ (B,B,1). We have a commutative

diagram in which the right square is cartesian:

B—=3B-",p
Jo
A S SN

(Here f,m are as in 4.1.) It follows that for L € D,,(Z) we have ¢*x(L) =
¢*m f*L = ¢ f*L = n[05L. This proves (a).

Let L € CSZ. Applying [24, 8.2) with @ : DG — Dup, K1 — ¢* K1,
c¢=—2a—p (see 6.8(a)), K replaced by x(L) and ¢ = a+ v, we see that we

have canonically
(b) (@ (L)) € (6 (L) T = (g (L) T

(The last equality follows from (a).) By 4.12(c), d;L is pure of weight 0 hence
706 L is pure of weight 0 hence (m(,05L)"~ %7 is pure of weight v —a — p
so that

(w05 L) 7P = (w65 L)~ ((—a — p + 1) /2).
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From 4.12(f) we have (m(,05L)"~* " = (m,((65L)~**))”. Hence
(RS L) ) = (e (G5L) ") (—a — p+ 1) /2).

Thus (b) becomes

(¢* (X(L) 277 € (au((B5L) 7)) ((—a = p+1)/2)
and using 4.12(h):
() (¢" (x ()27} € Homeez (19, L)
We show that (c) is an equality:
(d) (&" (x (D)) 7277F = Homeez (19, L)

To prove this we can assume that L = }L)\“" for some w-A e c. Ifw-\ ¢ D,
then the right hand side of (d) is zero, hence by (c), the left hand side of (d)
is zero and (d) holds. Assume now that w -\ € D¢. Then the right hand
side of (c) has dimension 1. Hence the left hand side of (c¢) has dimension 0
or 1; it is enough to prove that it has dimension 1. By 6.8(d) with K = x(L)
we see that the left hand side of (c) has dimension equal to (Ag, : x(L)).
(We have also used 6.8(b).) In particular we have

(e) (A, : x(LY))is 0 or 1
and we must prove that

(f) (Ap. : x(LY)) =1

In the rest of the proof we set A = Ap_. Using 5.8(a) we can reformulate
(e) as ba Ay € {0,1} for any w - A € D¢; we must prove that b, =1
for any w - A € De¢. Since cq4 = ¢ we have by (z) = 0 for any left cell A
not contained in c¢. Hence it is enough to show that ), baa] = #(Dc)
where A runs over the left cells in Ws. We have )", b A,[A] = bA,Reg Where
Reg is the regular representation of WT,,. Hence it is enough to show that
ba,reg = §(D¢). From 5.1(a) with z =1, j = A we have

Z(A:(R;)A):@; 3 bAEZtr(lA,E”))

AEs Echrr(WT,) AEs
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= (0 Y bamdim(E)) = ba e
Eclrr(WTh)

Hence it is enough to show that Y, (A : (R})®) = #(Dc) or equiva-
lently (see 6.1) that (A : Z2) = #(D.). By 6.1(d) we have (A : Z2) =
dim(FE,). It remains to show that dim(E.) = §(D¢). The left hand side is
Y reo dim(1yE.) where 1) E, is the special representation of Wy attached to
the two-sided cell ¢y of Wy determined by c; the right hand side is Aco A
where ny is the number of distinguished involutions of Wy contained in cy.
It is then enough to show that dim(1yFE.) = ny for any A € Lo. This
can be deduced from the following known property of a two-sided cell cg of
W: the dimension of the special representation of W) corresponding to cg
is equal to the number of distinguished involutions of W) contained in cg.
This completes the proof of (f) hence that of (d).

We now state the following complement to (f).

(g) Ifw-A€ ¢ andw- X ¢ D then (Ap, : x(LY)) = 0.

Let L = LY. By 6.8(d) it is enough to show that (¢*(xL)) 2*"” = 0. By
6.8(b), (c), (¢*(xL))~2*~* is pure of weight —2a — p hence it is enough to
show that (¢*(x(L))){724=P} = 0. Using (c) it is enough to note that, by

our assumption we have Homee (1), L) = 0.

6.10. Let u : G — p be the obvious map. From ﬂa, 7.4] we see that for
K, K’ in M,,G we have canonically

(uw(K ® K))? = Hom ) (D(K), K'), (u(K @ K')) =0if j > 0.

We deduce that if K, K’ are also pure of weight 0 then (u)(K @ K'))° is pure
of weight 0 that is (uj(K ® K'))? = gro(u)(K ® K'))°. From the definitions
we see that we have u)(K ® K') = ¢*(KT + K') where KT as in 5.22. Hence
for K’ in CSG and K in CSG (so that KT € CSG, see 5.22(c)) we have

(a)  Hompye)(D(K),K') = (¢"(KT+ K'))° = (¢" (KT« K'))1%.
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Applying ﬂ2__4|, 8.2] with ® : DG — D,,p, K1 +— ¢*K1, ¢ = —2a — p (see
6.8(a)), K replaced by KT K’ and ¢ = 2a-+p we see that we have canonically

(¢"(KTxK"))2e70h c (¢7 (KT« K7) 1)
In particular, if L, L' are in C§Z then we have canonically

(&* (X(L)ax(L))207PF € (9 (e (L) * x (1))

Using the equality

(&* (L2 (D)) 277 = ¢ (x(Le¢ (X(L))))) 2"

which comes from 5.20(b), we deduce that we have canonically

" (X(LeC(x (L)) 727"  (¢"(x(L') » x(L)1*,

or equivalently, using (a) with K, K’ replaced by x(L' o, x(L),

¢* (x(LeC(x(L)))))**? € Homeea(D(x(L)),x(L))
= Homceq (D (x(L)), x(L").

Using now 6.9(d) with L replaced by Le((x(L')) we deduce that we have

canonically

Homcez(1', Le¢(x(L")))) € Homeea(D(x (L)1), x(L'))
or equivalently (using 4.12(j)):

Homeez (D (¢(x (L)1), L) € Homeea(D(x (L)1), x(L')).
Now we have

Homeez(D(¢(x(L'))),L) = Homyge,(D(L)
= HOmccz((Q(L

\,“

N—
—+

[
~~

[=
—~

~
<

N—
Nt
N—

hence

Homeez((D(L))", ((x(L))) € Homeea (D (x(L)"), x(L))-
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We set 'L =D (L) = (D(L))" and note that

D(x(L)") = D(x (L) = x(D(L) = x('L),
see 5.22(d), 5.7(b). We obtain

(b) Homeez(* L, ¢(x(L))) € Homeeg (x("L), x (L))

for any 'L, L' in C§Z.

We show that (b) is an equality:

() Homeez ('L, ((x(L))) = Homeeg (x(' L), x(L")).

Let N’ (resp. N”) be the dimension of the left (resp. right) hand side of
(b). It is enough to show that N’ = N”. We can assume that 'L = L%,
L' = }L)\“"/ where w- A € ¢, w'- X € c. By 5.13(a), N’ is the multiplicity of
'L in b”(L'); by the fully faithfulness of € this is the same as the multiplicity
of &L in é”(L') = b'(L') = b(L') (the last two equalities use 3.25(d) and
3.14(d)). By 3.13(d) this is the same as the multiplicity of LY in

y o yfl
@yEW;y-)\’ecL)\/QL% QLy()\/)-
Using now 2.22(c) we see that N’ is the coefficient of ¢,,.) in

Z ty-)\’tw’-)\/ty—l-y()\’) c H*.
yeWy-Nec
Hence if 7: H>* — Z is as in 4.6 (see also 1.9) then
N' = Z T(ty.)\/tw/.)\/tyﬂ_y()\/)twﬂ,)\).
yeW;y-Nece
This can be rewritten as
N, = Z T(ty-)qtu/-)\/ty_l-y()q)tw_l-)\)'
Y-A1E€C

(In the last sum, the terms corresponding to y - A; with A\; # )\ are equal to
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zero.) By 5.6(a) we have

N// — Z T(tyfl-y()\l)tw-)\ty-)\ltw’*l)\’)-
y-A1€c

Since 7(£) = 7(€) for all £ € H® and € — £ is the ring antiautomorphism

in 1.9 we have also

N//: Z T(tw/-)\’ty*1-y()\l)t’wfl-)\ty)\l)'
Yy-A1EC

To show that N’ = N” it is enough to show that for any - A\; € ¢ we have

Tty b vty—1y(antw-1.0) = T(tw v ly—1500) tw—1 ATy )-

This follows by taking & = tu . xty—1.y0)tw-1.2, & = tyx, in the identity
7(&¢") = 7(£'€) which (as we see from 1.9(a)) holds for any &, & in H*. This
completes the proof of the equality N = N” and hence that of (c).

6.11. In the reminder of this section we assume that the F-rational struc-
ture on G in 2.8 is such that

(a) any A € CS. admits a mized structure of pure weight 0.

(This can be achieved by replacing if necessary ¢ by a power of q.)

The bifunctor C§G x C§G — C§G, K,K' — KxK' in 5.20 defines a
bifunctor C°G x C°G — C°G denoted again by K, K’ — KxK' as follows.
Let K € C°G, K' € C°G; we choose mixed structures of pure weight 0 on
K, K’ (this is possible by (a)), we define KK’ as in 5.20 in terms of these
mixed structures and we then disregard the mixed structure on KxK’. The
resulting object of C°G is denoted again by KxK'; it is independent of the

choices made.

In the same way the functor x : C§Z — C{G gives rise to a functor
C°Z — C°G denoted again by x; the functor ¢ : C§G — C§Z gives rise to a
functor C°G' — C°Z denoted again by (.

The operation KxK' is again called truncated convolution. It has a

canonical associativity isomorphism (deduced from that in 5.20(d)) which
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again satisfies the pentagon property. Thus C°G becomes a monoidal cate-
gory; it has a braiding coming from 5.20(a).

6.12. If K € C°G then the isomorphisms 5.14(b) provide a central structure
on €¢(K) € C°B? so that éC(K) can be naturally viewed as an object of Z¢
denoted by €((K). (Here € is as in 3.3, { is as in 5.9, Z¢ is as in 4.9.) Then
K — é((K) is a functor C°G — Z°. We shall prove the following result.

Theorem 6.13. The functor C°G — Z¢, K + é((K) is an equivalence of

categories.

From 5.13(a), 3.14(d), 3.25(d) we have canonically for any z - X € c:

(a) &(x(L3)) = (L)

as objects of C°B2. From the definitions we see that the central structure on
the left hand side of (a) provided by 6.12 is the same as the central structure
on the right hand side of (a) provided by 3.14(j). Hence we have

(b) C(x(L5)) = b(L)

as objects of Z¢. Using this and 4.11(a) with L' = &((x(L%)) (where z -

A, w - N are in c¢), we have

Hom . (L5, € (X (LY))) = Homze (€¢(x(L3)), €¢(x(LE)))-
Combining this with the equalities

Homeeq (x(L3), Xx(LY)) = Homeez (L7, {(x (L))

= Homccgz(Ll C( (L g\v)))

of which the first comes from 6.10(c) and the second comes from the fully

faithfulness of €, we obtain

Homeeg(x (L), X( w)):HomZC(Q(X( )€ Q(K(Lw)))

In other words, setting

A\ = Homeeq (x(L3), x(LY)),
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Eonwy = Homze (€C(x (L5)), €€ (X (L)),

we have

(c) Apxwy = Alz-)\,w-)\/'

Note that the identification (c) is induced by the functor K ~ €((K). Let
A = ®A, uy, A = BA,.\ .y (both direct sums are taken over all z -
A\, w- )N in ¢). Then from (c) we have A = A’. Note that this identification

is compatible with the obvious algebra structures of A, A’.

For any A € C'S. we denote by A 4 the set of all f € A such that for
any z- A\, w-\, the (z-\,w-\)-component of f maps the A-isotypic compo-
nent of X(Li) to the A-isotypic component of X(LK}’) and any other isotypic
component of (L) to 0. Thus, A = @4ccs, A4 is the decomposition of
A into a sum of simple algebras. (Each A 4 is nonzero since, by 5.2(c) and

5.5(a), any A is a summand of some y(L3).)

From @], M] we see that Z€ is a semisimple abelian category with
finitely many simple objects up to isomorphism. Let & be a set of represen-
tatives for the isomorphism classes of simple objects of Z¢. For any o0 € &
we denote by Al the set of all f/ € A’ such that for any z - A\,w - N, the
(z- A\, w-X')-component of f’ maps the o-isotypic component of m to
the o-isotypic component of m) and all other isotypic components

of é((x(L3)) to zero. Then A’ = @,A/ is the decomposition of A’ into a

ag
sum of simple algebras. (Each A/ is nonzero since any o is a summand of

some €¢(x(LL%)). Indeed, we can find z - A € ¢ such that Lf is a summand

of o, viewed as an object of C°B?, by 4.9(a), o is a summand of I(L%). If in

addition, z - A € Ws then, by (a), o is a summand of é((x(LL%)), as required.

Ifx-A¢ Ws then, by 4.9(b) we have I(L%) # 0 which is a contradiction.)
Since A = A’, from the uniqueness of decomposition of a semisimple

algebra as a direct sum of simple algebras, we see that there is a unique
bijection C'S¢ <+ &, A <+ 04 such that Ay = A] for any A € C'Sc. From

~

the definitions we now see that for any A € CS. we have é((K) = o4.
Therefore, Theorem 6.13 holds.
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Theorem 6.14. Let L € C°Z, K € C°G. We have canonically

(a) Homee (L, C(K)) = Homeeg (x(L), K).

We can assume that L = }Li where z - A € ¢. From 6.13 and its proof

we see that

Homeeg (x(L), K) = Homze (éC(x(L)), &C(K)) = Homze (I(L5), éC(K)).

Using 4.9(a) we see that

Homze(I(L3), &(K)) = Hompe s (L3, €¢(K)) = Homeez (L, {(K)).

This proves the theorem.

6.15. We show that for K € C°G we have canonically

(a) D(C(D(K))) = ((K).

Here the first ¢ is relative to ¢. It is enough to show that for any L € C°Z

we have canonically
Homeez(L, D(¢(D(K)))) = Homeez(L, ((K)).
Here the left side equals

Homee 7 (((D(K)),D(L)) = Homee(D(K), x(D(L)))
= Homcc(;(”D(K), Q(K(L)))

(We have used 6.14(a) for ¢ and 5.7(b).) The right hand side equals
Homeeq(x(L), K) = Homeeg (D (K), D(x(L)))-

(We have again used 6.14(a).) This proves (a).

6.16. The monoidal structure on C°B? induces a monoidal structure on Z°.
Using 5.21(b) and 3.24(b) we see that the equivalence of categories in 6.13

is compatible with the monoidal structures. Since Z€ has a unit object, it
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follows that the monoidal category C¢G also has a unit object, say A. We
show:

(a) A= Ap,

with Ag, asin 6.8(c). From 6.9(f), (g) we see that for w-\ € ¢, (Ag, : x(LY))
islifw-A€D¢andis0if w-\¢ Dg. Using 6.13 we deduce that

dim HomCCB2 (L% EQ(AEC))

is 1if w-\ € D and is 0 if w- A ¢ D,. Thus é((Ag,) is isomorphic in C°B?
to the unit object 1 of the monoidal category C°B%. Then €C(Ag,) viewed
as an object of Z€ is also the unit object of Z¢ hence is isomorphic in Z€ to
€C(A). Using 6.13 we deduce that (a) holds.
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