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Abstract

Making use of the Poincare inequality with respect to a complete metric on the real
line, we will give an elementary proof of the closed range property for d-operator on the

unit disk endowed with Poincdre metric.

1. Introduction

O-equation plays a central role in complex analysis and geometry. On
bounded domains in C™, there are two pioneer work related to the existence
and regularity of the d-equation see ([7], [8], [6], [10]).

Theorem 1.1 (Hormander). Let Q € C" be a bounded pseudoconvex do-
main. Let f € L?p’q)(Q) with Of = 0 in the sense of distribution, where
0<p<n,1<qg<mn. Then there exists u € L%p,q—l)(Q) such that Ou = f.
Moreover, ||u|| < C||fl|, where C is a constant only depending on the diam-

eter of Q and q.

Theorem [ILT] tells us that on bounded pseudoconvex domains the O-

equation always have solutions. This is equivalent to say that the cohomol-

ogy HP1 (Q) := Kerd ,osociated to the O-operator vanishes for any ¢ > 1.

129 Imo
Thus, the range of J-operator denoted by Rang(d) is a closed subspace of
L?p,q)(m‘
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When the boundary 912 is smooth, we have the boundary regularity for
O-equation.

Theorem 1.2 (Kohn). Let Q € C" be a bounded pseudoconver domain with
C smooth boundary. For any [ € C’(O;’q) (Q) with 0f =0 for0<p<mn,1<

q < n there exists u € C’E’;q_l)(Q) such that Ou = f.

When the domain is not pseudoconvex, there are also plentiful results
(see [12], [13], [14]) related to the existence and regularity for d-equation.
Let €4 and 29 be two bounded pseudoconvex domains in C",n > 3 with
Oy € Q1. Put Q = Q1 \ Q. Then the subelliptic estimate does not hold
on ) in general. Making use of the growing weights e~t7" when t large, for
1 < g < n — 2, the author in [12] established a weaker estimate than the
one obtained by Hérmander [7] on pseudoconvex domains which is sufficient
to prove that Hif’g(ﬂ) is a finite dimensional space. This also implies that
the range of d-operator from L]%’q_l(Q) to Lg,q(Q) is a closed subspace. In
a recent work [14], Shaw completely solved the d-problems on annulus with

smooth boundaries in C™.

Theorem 1.3 (Shaw). Let 2 be the annulus between two bounded pseudo-
conver domains in C™ with smooth boundaries. If we denote by HY1_(Q)

L29
the cohomology associated to the O-operator, then H i’fg(ﬂ) = 0 for any
0<p<mn,1<q<n—2. Inthe critical case, forq=n—1, Hpm_l(Q) = o0.

L29
When studying the extension of CR functions from the boundary of a
complex manifold or the extension of CR structures to complex structures,

it is useful to consider the d-problems on domains with mixed boundary
conditions. For this subject, we refer the readers to [1, 2,13, |9, 11].

Related to the O-problems, there are also generous results related to
the closed range property for the O-operator. In the view of functional
analysis, if we denote by Rang(d) the range of d in the L?-setting which is
closed, then it will give us probability to solve the d-equation. In [14], Shaw
proved that the O-operator has closed range property in the critical case
when ¢ = n—1 on annulus between two bounded pseudoconvex domains with
smooth boundaries although the cohomology group is of infinity dimension.
Recently, Shaw and Thiébaut in [15] show that if 2 € C? is a domain with
Lipschitz boundary such C2\ Q is connected, then the d-operator will not
have closed range from L?(2) to L%071)(Q) if © is not pseudoconvex.
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Let Q be a bounded domain in C™ or in a complex manifold. Usually,
the Hermitian metric we choose on € is induced from the ambient Hermi-
tian manifold. However, if we choose a Hermitian metric on {2 which is a
complete Riemann metric or in particular we choose the Bergman metric on
Q, Donnelly and Fefferman [5] proved

Theorem 1.4. Let 2 be a strictly pseudoconver domain in C" endowed with
its Bergman metric. If p+q = n, then Hifg(ﬂ) has infinity dimension and

the complex Laplacian associated to 0-operator has closed range.

In this note, we will consider d-operator on the unit disk endowed with
Poincare metric which is the Bergman metric on the unit disk. Making use
of the Poincare inequality with respect to a complete metric on the real line,
we will give an elementary proof of the closed range property for d-operator
in the L?-setting.

2. Closed Range Property for d-operator on Pincare Disk

Let D = {z € C : |z| < 1} be the unit disk in complex plane C with
coordinates denoted by z = x+iy and let h = Wdz@d? be the Pincéare

metric which is a complete metric on D. For ¢ = 0,1, let L?O 2 (D, h) be the

completion of smooth (0, g)-forms which have compact support in D under
the inner product induced by the Poincare metric. When ¢ = 0, we write

L*(D,h) = L%o,o) (D, h) for convenience. Let 0 : L?(D,h) — L%071)(D, h) be

the d-operator defined in the sense of distribution. Let Rang(d) denote the

(D;h)

— ) L2
range of J-operator in L%o,l)(Dv h). Set H%;E(D) = (ROSQW’ Then

Theorem 2.1. H%?lE(D) is an infinite dimensional space and Rang(d) is
closed in L?OJ)(D, h).

Proof. First, let f = f(z)dz be any smooth (0, 1)-form with f smooth up
to the boundary dD. The L%-norm of f with respect to the Pincdre metric
on D is given by

12 = /D (f(2)dz|f (2)dzond,

where dv = ﬁqux A dy is the volume form with respect to the Poincare

metric on the unit disk. Obviously, f € L%O 1)(D, h). In particular, for any



574 XIAOSHAN LI [September

m € N, set f,, = 2"dz. We will show that the equation du = f,, will not
have a solution u € L%(D, h). We prove this by seeking a contradiction. It is
obvious that 9(2™%) = fm. Suppose we have a solution u,, € L?(D,h) such
that Ouy, = fr. Then d(u,, — 2™Z) = 0 in the sense of distribution. Thus,

Uy — 2% is a holomorphic function on D. By Taylor’s expansion

o
U = 27 + E apz®.
k=0

By the assumption u,, € L*(D,h) we have

/D <§akzk+zm§><zakzk zmz> = 1|z| Fyzde A dy < oo. (2.1)

Taking polar coordinates, for any 0 < 7 < 1,

L [T 2 T p2ml T p2me3
Z|akz| / 2)? dT+(am 1Fam— 1)/0 mdr%—/g mdr<oo.
(2.2)
By ([22), for any 0 < 7 < 1, we have
T p2mtl
(am—1 +M)/o mdr < 00. (2.3)

Taking 7 — 1 and since the integral on the left hand side of (2.3)) is divergent,
thus we have a,,—1 + @,—1 = 0. Substituting it to (Z2]) and taking 7 — 1,
we have f ! (f";; dr < co. Contradiction. Thus the equation du = f,,, does

not have any solution u € L?(D, h). This implies that dlmHE; a(D) = 00.

For the second part of Theorem 21l we need to show that exists a
constant ¢ > 0 such that

18911 = ellg]?, ¥g € Dom(d) N Ker(d)". (2.4)

First, we show that Ker(d) = {0}. For any u € Ker(d), we have du = 0 and
/ |u|2¥dx Ady < 0. (2.5)
p o (I—|z?)?

By Taylor’s expansion, v = Y -, apz®. Substituting it to (Z5) and using
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the polar coordinates we have

[e.e]

) 1 7,.2k’+1
B . 2.
Sl /0 T < (2.6)

k=0
Since the integral on the left hand side of (2.6]) is divergent for every k, thus
ar =0, Vk, that is, u = 0.

We only need to prove (24) when g € Dom(d). Since the Poincére
metric on D is complete, then C§°(D) is dense in Dom(8) C L?(D, k). Thus
we only need to prove (2.4]) when g € C§°(D).

Set z = ret?. Since

09 _ 09 9, 09 _ip
o~ 9.0 T o°
we have ) ) ,
dg dg dg
ZJ < -7 - . .
or _2<8z +8z) 27)
Since

3] / Pl i A 02

t?)?

99\ idz A dz

_/3
p |0z

z

_1/ 9
2 /p\ |0z

The last equality in (2.8) comes from the assumption that g € C5°(D).
Substituting [2.7)) to (2.8]), we have

o 21
1Bgll? > e /0

Before the computing of the norm ||g|| with respect to the Poincare

2 1ag?
+ ‘& ) idz N\ dZ. (2.8)

rdr. (2.9)

metric, we first give the following Poincéare type inequality on the real line.

Lemma 2.1. Let f be a smooth function over [0,1] and f(1) =0, then

/If Co/ | (z)Pxd (2.10)

where cy is a constant which does not depend on f.
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Proof.

/Ol\f(m)zm x |
- / 1\f<m>\2m (#) @

- ‘ - / (1f (@) + 2 f'(2) f(2) + 2 f () f'(2))dz

1—:L‘

1
- _/0 m<|f<x>|2+xf'<x> (@) +2f(2)f'(z))de

1
<2 @l If @l

1
= \/E ) VI /.T X
=2 F )\f( )| VL @)l

£ 01|f /\f (z)|2dx (2.11)

1 27&7 X 71 1 /.T 2.’B X
| @i e < e [1r@Pets @12)

O

IN

That is,

Now, we turn to the proof of the main theorem. Since g has compact
support in D, we use the estimate (2.10) in Lemma [2.T] and we have

/

dg

or

\%

2 1
o T
rdr > co/o lg(r,0)] Wdr

1
2_ "
co/o lg(r, 6)] = sdr (2.13)

v

Substituting (2.I3]) to (2.9) we have
18g]1* = ercollgll*, Vg € C§°(D). (2.14)

We get the conclusion of (Z4) and thus the Rang(9) is closed in

L£2,,,(D,h). O
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