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Abstract

Let W C P* a very general quintic hypersurface. We study the existence/non-
existence of non-complete intersection curves 7' C W with T spanning a hyperplane H
and H N'W smooth (non-existence if the hyperplanes vary in a family not containing a

line or a conic of W).

1. Introduction

Let T be an integral algebraic variety over C. We say that a property
a is true for a general (resp. a very general) point of T if there is a finite
(resp. countable) union A of proper subvarieties of 7" such each 0o € T'\ A
satisfies . Let W C P* be a very general complex projective hypersurface
of degree 5, i.e. any W € |Ops(5)| outside a countable union A of proper
subvarieties of |Opa(5)|. These hypersurfaces are the target of Clemens’
conjecture, which states that for each positive integer d the hypersurface W
has only finitely many degree d rational curves, all of them smooth, except
degree 5 plane sections of W (of course of degree 5) with geometric genus 0
(E], M], B], ﬂa], ﬂﬁh, B], ﬂﬁ], ﬂa]) It is expected that one can say more
about curves contained in the intersection of W with a hyperplane (see ﬂﬁ,
Corollaire at page 610] for general hypersurfaces of P4 of degree > 7), e.g.
each smooth rational curve of degree > 4 should span P%. In this note we
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look at curves (with arbitrary geometric genus), which are contained in a
hyperplane H, but they are not the complete intersection of W N H with
another hypersurface. Let P4V denote the set of all hyperplanes of P*. Fix
any integral and quasi-projective family I of integral curves 7' C W. We
assume that for a general T' € I there is a unique hyperplane H containing
T. Restricting if necessary I we assume that this is true for all 7" € 1. We
call 7(I) the set of all hyperplanes spanned by some T € I. For any T € I let
(T') denote the hyperplane spanned by 7. We make the following restrictive

assumptions:

1. the hyperplanes move, i.e. dim(w(I)) > 0;
2. a general H € w(I) is not tangent to W;

3. a general H € w(I) contains no line of W.

In this note we prove the following result.

Theorem 1. Let W C P* be a very general quintic hypersurface. Assume
the existence of an integral positive dimensional quasi-projective variety 1 C
Chow (W) such that any T € 1 spans a hyperplane (I'), W N (T') is smooth,
T is not the complete intersection of W N (T') with another hypersurface and
dim(7(I)) > 0. Assume the non-existence of a line L C W such that L C H
for all H € w(I). Then there is a smooth conic D C W such that 7(I) is
an open subset of the pencil of all hyperplanes containing D and for a very
general T € T we have Oy (T) = Oy (x)(—yD) for some x,y € Z.

Fix a hyperplane H C P*. The set of all smooth quintic surfaces S ¢ H
with Pic(S) # ZOg(1) is a countable union of subvarieties of codimension
4, plus the set of all S C H containing either a line or a smooth conic (ﬂﬁ,
Th. 0.2]; ﬂﬁ] shows that this is not true for surfaces with large degree) and
their union is dense in the Zariski topology and in the euclidean topology
of |Ops(5)] (E]) Since dim(P*V) = 4, a dimensional count suggests that a
general quintic 3-fold W C P* contains at most countably many curves T'
spanning a hyperplane H containing no line and no conic of W and with T
not a complete intersection of W N H and another hypersurface. Call H4 the
set of all hyperplanes H = (T') for some T" as above with deg(7") = d. For any
H € H, the surface HNW has families of non-complete intersection subcurve
with arbitrarily large dimension (use Ownp(z)(yT)) with y € Z \ {0} and
x> |y|). So the question is not about the non-existence of large families of



2016] QUINTIC 3-FOLD 395

non-complete intersection degenerate subcurve of W, but that the associated
hyperplanes do not move, i.e. if for each d the set Hy is finite. See Remark
@ for the finiteness of Hq, d < 5.

Question 1. Is Hy finite for all d > 67 Is Uysq Ha dense in P (in the
Zariski and/or the euclidean topology)?

Question 2. Let W C P* be a very general quintic hypersurface. Is there a
finite upper bound for the rank of the Picard scheme (resp. class group) for
all smooth (resp. all) hyperplane sections of W ¢ Is this upper bound equal
to 37

See Remarks [I B2l and Bl for smooth hyperplane sections of a general
quintic 3-fold and with Picard group of rank < 3.

We thanks a referee for useful suggestions.

2. Proof of Theorem [

Let W denote the set of all smooth quintic hypersurfaces W C P? satis-
fying the thesis of ﬂﬂ] In particular for each W € W we assume that for each
integer x < 11 the smooth 3-fold W contains finitely many curves of degree
x and geometric genus 0, all of them smooth and pairwise disjoint, except
rational plane quintics, and all of them with normal bundle isomorphic to
a product of two line bundles of degree —1. For instance W contains no
reducible conic. For any positive integers d let I be the set of all (T, W)
with W e W, T'C W and T a degree d integral, rational curve. It is known
that I is irreducible if and only if d < 11 (|5, Theorem 1.1], ﬂa]) We only
need the irreducibility of I; for very low d to check in the following remarks
that certain natural hyperplane sections of a general W € W have a Picard
group with the expected rank.

Remark 1. Fix a general W € W. W has 2875 lines and any two of them
are disjoint (ﬂﬁ], , page 158]). Take lines L, R C W such that L # R.
Since LNR = (), LUR spans a hyperplane H C P*. Since h!(P*, Z; r(5)) =0
for any 2 disjoint lines L, R of P*, the Galois group of the covering I; — W
is 2-transitive (or see the case n = 4 of ﬂﬁ]) Set S := HNW. We claim
that S is smooth. Since the Galois group G of the covering I; — W is 2-
transitive, this is true for one pair (L, R) if and only if it is true for all pairs
of different lines of W. Fix two disjoint lines D,T C H and let Y C H be a
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general degree 5 surface containing D UT. Since a general W € W contains
a pair of disjoint lines and G is 2-transitive, to prove that S is smooth it
is sufficient to prove that Y is smooth. Since D U T is the base locus of
|Zpur,z(5)|, Y is smooth outside D UT by Bertini’s theorem. Since DU T
is a smooth curve, Y is smooth by ﬂ, Theorem 2.1] (in the set-up of ﬂﬂ,
Theorem 2.1] either Sing(Y') = () or Sing(Y) has codimension 2 in D UT).
We claim that for a very general S the group Pic(S) has rank 3, generated
by L, R and Og(1). It is sufficient to prove that for a very general Y Pic(Y")
has rank 3, generated by D, T and Oy (1). We have h'(H,Zpur(t)) = 0 for
all ¢ > 1 and so for each ¢t > 2 a very general surface Y C H containin
D UT is normal with class group freely generated by Oy (1), D and T (ﬂg:
Theorem 1.1]). Let J C H be any line with J # T and J # D. Since
5 > deg(D UT U .J), it is easy to check that h'(H,Zpurus(5)) = 0, i.e.
R (H,Zpurus(5)) = h°(H, Zpurus(5)) —6+4(JN(DUT)). Since H has co?
lines, only co? of them meeting D U T, only co! intersecting both D and T,
and Y is general in |Zpur g (5)], D and T are the only lines contained in Y.
Hence L and R are the only lines of S and hence (by the irreducibility of I;)
for a general W € W no 3 of the lines of W are contained in a hyperplane
and there are (28275) hyperplanes of P* containing 2 lines of W and none of
them is tangent to W.

Remark 2. Fix a general W € VW and take any line L C W and any smooth
conic D C W. We know that D N L = (). Here we check that D U L spans
P* and hence we cannot get a hyperplane section with Picard group of rank
at least 3 taking the linear span of D U L. Take any hyperplane H C P*,
any smooth conic T' C H and any line R C H such that RNT = (). The
set of all such triples (H,T, R) has dimension 16. Since h!'(P* Zr,r(5)) =
hY(H,Zruru(5)) = 0, we have h®(P*, Trr(5)) = (Z) — 17. Hence a general
W € W contains no T'U R. The set of all hyperplanes H C P* containing
D is a pencil. Since the dual variety of a smooth hypersurface of degree > 1
is a hypersurface), there is H ¢ P* with H D D and H N W singular. We
check here that a general hyperplane H C P* with H O D is smooth. We fix
a hyperplane H C P* and a smooth conic D C P*. Since the homogeneous
ideal of D in H is generated by forms of degree < 2, a general element of
S € |Zp.u(5)|. Any smooth quintic hypersurface W’ C P* with W/ N H = S
contains a conic D and a hyperplane H D D with H N W’ smooth. Since
Iy is irreducible, for a general W € W this is true for all conics contained in
w.
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Remark 3. Let I' be the set of all complete intersection T C P* of one
hyperplane and 2 quadric hypersurfaces. The set I' is an irreducible vari-
ety of dimension 20. Fix any 7' € T. Since h!(P* Z7(5)) = 0, we have
hO(P4, Zr(5)) = (Z) — 20. Therefore a general W € W contains only finitely
may 1" € ', all of them smooth elliptic curves, and the associated incidence
correspondence E is irreducible and dim(E) = 125. Fix a general W € W
and take T € I" with T" C W. Call H the linear span of 1. Since W has
only oo® tangent hyperplanes and dim(W) = dim(E), for a general W the
surface W N H is smooth (or you may quote ﬂ, Theorem 2.1]). Since the
homogeneous ideal of T in H is generated by two smooth quadric surfaces,
a general quintic surface S C H containing 7' is smooth. By ﬂ, Theorem
1.1] Pic(S) is freely generated by T and Og(1). Since E is irreducible, we
get that W N H is freely generated by T and Ownp(1).

Remark 4. Fix a general W € VW and assume the existence of an integral
curve ' C W of degree d < 5 and whose linear span (T") has dimension < 3.
First assume that (T') is a plane. We know the cases d = 1,2 since W has
2875 lines and 609,250 conics, all of them smooth (, Theorem 3.1]). If
d =5, then T is a plane section of W. If d = 3, then T is linked by (T") to a
plane conic contained in W (we also know by B] that 7" is a smooth elliptic
curve). If d = 4, then T is linked by (T') to a line contained in W and so
we know that W has 2875 integral 3-dimensional families of such curves 7'
Now assume that (T") is a hyperplane. If d = 3, then T is a rational normal
curve and we know that W has only finitely many such curves. If d = 4
the irreducibility of I, and B] gives that any such T is a smooth elliptic
curve (see Remark Bl for a description of this case). Now assume d = 5.
We have have p,(T) < 2 by Castelnuovo’s upper bound for the arithmetic
genus of non-degenerate curves. We have h!'(P*,Zr(5)) = h'(H,Zr(5)) = 0
(Id)). Hence h°(P*, 7 (5)) = (%) — 25— 1+ pa(T). Since dim(PY") =4 and H

0 non-degenerate curves with degree 5 and p,(T) € {0, 1,2},

contains only co?
we get that a general W € W contains such a curve 7" only if p,(7) = 2. In
this case the singular ones have lower dimension. Hence W only has finitely
many 7', each of them being smooth and of genus 2. In particular Hs is

finite.

Proof of Theorem [Il Take I as in the statement of Theorem [Il Assume
for the moment that dim(I) = 1. Fix a general p € P*. We assume p ¢ W
and that p ¢ H for a general H € w(l), say p ¢ (T') for all T € I in a dense
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open subset J of I. Let £ : P4\ {p} — P? denote the linear projection from
p. We get a family ¢(T"), T € J, of deg(T") integral space curves and a family
(W N (T)) of degree 5 surfaces with ¢(T") C £((W N (T)). Fix T' € J. Since
W is not a cone with vertex p, there are only finitely many 77 € J with
(W N {Ty)) = (W N {(T)). Since dim(J) = 1 and dim(P*") = 4, taking the
linear projection from varying W € W we get a family I' of smooth degree 5
surfaces of P3 such that each S € I' contains a deg(7T') integral curve and I'
has codimension < 3 in |Ops(5)|. By , Th. 0.2] a general S € T" contains
either a line or a conic (see ﬂ§] and [16] for the characterization of the surfaces
containing a line). Since W contains only finitely many lines and conics, all
of them smooth, either there is a line L C H for all H € w(J) or there
is a smooth conic D such that D C «(T) for all T' € I. We excluded the
former case. Assume the existence of the conic D. Since h(P*, Zp(1)) = 2,
I is induced by the pencil of all hyperplanes containing D. To conclude (for
a general W € W) it is sufficient to prove that a general degree 5 surface
S C P3 containing a smooth conic 7' is smooth and Pic(9) is freely generated
by Og(T) and Og(1). S is smooth, because the homogeneous ideal of D is
generated by forms of degree < 2 (or you may quote ﬂ, Theorem 2.1]).
Pic(9) is freely generated by Og(T) and Og(1) by M, I1.3.8] or ﬂ, Theorem
1.1], because h'(Zr(t)) = 0 and a general A € |Zp(t)| is smooth for all ¢ > 0.

Now assume dim(I) > 1. Take any integral I' C I such that dim(I') =1
and dim(w(I')) > 0. By part (a) either there is a conic D C H for all
H € wn(I') or there is a line L C H for all H € «(I'). Since W has only
finitely many lines or conic, the same line or the same conics works for all I'.
If there is a conic, then dim(I) = 1, a contradiction. We excluded the case of
a line in the statement of Theorem [I but by the irreducibility of I; we also
know that for a general W € W, any line L C W and a general hyperplane
H containing L the surface W N H is smooth and its Picard scheme is freely
generated by Ownpg(1) and L (ﬂl_AI, I1.3.8] or H, Theorem 1.1]). O
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