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Abstract

We derive the expressions of harmonic non ± holomorphic maps of Riemann surfaces.

We study the relationship between leaf-wise harmonic maps and harmonic maps. We

investigate the Gauss-Bonnet theorem for leaf-wise harmonic maps of manifolds with 2-

dimensional foliations.

1. Introduction

The theory of harmonic maps between Riemannian manifolds were first

established by Eells and Sampson [11] in 1964. Afterwards, there are two

reports by Eells and Lemaire [9, 10] about the developments of harmonic

maps up to 1988. Chiang and Ratto also studied harmonic maps in [2]-[6].

Harmonic and biharmonic maps of manifolds with Riemannian foliations

were investigated by Eells and Verjovsky [12], El Kacimi and Gomez [17],

Konderak and Wolak [18], Chiang and Wolak [7], etc.

In this paper, we derive the expressions of harmonic non ± holomorphic

maps between Riemann surfaces in Theorem 2.2. In section three, we study

the relationship between leaf-wise harmonic maps and harmonic maps of fo-

liated Riemannian manifolds. In the 1980s, Connes [8] and Ghys [16] studied

the Gauss-Bonnet (type) theorem for compact manifolds with 2-dimensional

foliations. Based on Theorem 2.2, we are able to construct a non-trivial
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F1-harmonic measure on the domain globally so that we can prove Gauss-

Bonnet (type) Theorem 4.1 for a leaf-wise harmonic map between compact

manifolds with 2-dimensional foliations without singularities on leaves, which

generalize the main theorems in [8] and [16] (cf. Corollary 4.2). If a leaf-wise

harmonic map between compact manifolds with 2-dimensional foliations is

with isolated singularities on some leaves, then we can not define a har-

monic measure globally. Therefore, we study the Gauss-Bonnet theorem for

a leaf-wise harmonic map differently using usual measure by considering the

stationary indices of the singularities.

2. Harmonic Maps of Riemann Surfaces

Let f : M → N be a C2 map between two Riemann surfaces M and

N with Riemannian metrics g and h. With respect to isothermal local

coordinate systems (U, z) and (V, ζ) on M and N , respectively, the given

metrics are represented as g = λdz ⊗ dz and h = µdζ ⊗ dζ for some λ ∈

C∞(U) and µ ∈ C∞(V ) with λ > 0 and µ > 0. Let D ⊂ M be a relatively

compact domain. The Dirichlet energy functional ED : C2(M, N) → R is

given by

ED(f) =
1

2

∫

D
‖df‖2 dvg,

where ‖df‖ : M → [0,+∞) is the Hilbert-Schmidt norm of df and dvg the

canonical volume form on (M,g). Locally,

‖df‖2 = λ−1 (µ ◦ f)
{

|wz|
2 + |wz|

2
}

,

where w = ζ ◦ f . Also if z = x + iy, then dvg = λdx ∧ dy on U . A map

f ∈ C2(M,N) is harmonic if for any relatively compact domain D ⊂ M and

any smooth 1-parameter variation {ft}|t|<ǫ ⊂ C2(M,N) with supp(V ) ⊂ D

d

dt
{E(ft)}t=0 = 0,

where V is the infinitesimal variation induced by {ft}|t|<ǫ (i.e. Vp = (dp,0F )

(∂/∂t)(p,0) for any p ∈ M and F : M×(−ǫ, ǫ) → N is given by F (p, t) = ft(p)

for any p ∈ M and |t| < ǫ).
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Let ∇ and ∇N be the Levi-Civita connections of (M, g) and (N, h),

respectively. Let hf = f∗h (or f−1h) and ∇f = f−1∇N be the Riemannian

bundle metric and connection in the pullback bundle f−1T (N) → M induced

by h and ∇N . For X ∈ X(M) we denote f∗X ∈ C∞(f−1T (N)) the section

given by (f∗X)(p) = (dpf)Xp for any p ∈ M . The second fundamental form

of f is

βf (X,Y ) = ∇f
Xf∗Y − f∗∇XY, X, Y ∈ X(M).

The tension field of f is τ(f) = traceg (βf ) ∈ C(f−1T (N)). Locally

τ(f) =

2
∑

a=1

βf (Xa,Xa),

where X1 = λ−1/2∂/∂x and X2 = λ−1/2∂/∂y. The first variation formula

(cf. [11]) is

d

dt
{ED(ft)}t=0 = −

∫

D
hf (V , τ(f)) dvg .

Hence, a map f ∈ C2(M,N) is harmonic if τ(f) = 0, i.e. locally

wzz + (µ ◦ f)−1(µ ◦ f)ζ◦fwzwz = 0 (2.1)

on U (the domains U and V of the local charts are tacitly chosen such that

f(U) ⊂ V ). Both the Dirichlet energy and harmonicity are known to be

conformal invariants. We shall need the following lemma (cf. [13, 21]) to

prove Theorem 2.2.

Lemma 2.1. Let f : M → N be a harmonic map between two Riemann

surfaces. Then the (2, 0) component of f∗h is a holomorphic quadratic dif-

ferential on M locally given by

Q = φdz ⊗ dz = λwz wz dz ⊗ dz. (2.2)

Moreover, φ = 0 if and only if f is ± holomorphic. If f is harmonic non ±

holomorphic, then φ(z) 6= 0 and the zeros of wz and wz̄ are isolated of finite

order.

Proof. Differentiating φ = λwz wz, one finds

φz = λw wz wzwz + λw wz wzwz + λwzz wz + λwzz wz,
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where λ = µ ◦ f and w = ζ ◦ f . It may be rewritten as φz = wz H +

wz H, where H denotes the left hand side of (2.1). It is clear that f is ±

holomorphic if and only if φ = 0. Recall that a function F : D → C defined

on an open neighborhood D ⊂ C of the origin has a zero of infinite order at

z = 0 if F (z) = o(|z|m) as z → 0 for all m ≥ 0. If wz and wz have zeros of

infinite order, then φ = o(|z|m) as z → 0 for all m ≥ 0. Therefore, φ = 0,

and so f must be a ± holomorphic map. Otherwise, if f is harmonic non ±

holomorphic, then φ(z) 6= 0 and the zeros of wz and wz̄ are isolated of finite

order. ���

Theorem 2.2. If f : M → N is a harmonic non ± holomorphic map

between two Riemann surfaces, then

w(z) = Azm + o(|z|m) for some A ∈ C \ {0} andm ≥ 1, or (2.3)

w(z) = B zn + o(|z|n) for some B ∈ C \ {0} and n ≥ 1, or (2.4)

w(z) = C zk +D zk + o(|z|k) for some C, D ∈ C \ {0} and k ≥ 1. (2.5)

Proof. Let p ∈ M and let (U, z) and (V, ζ) be the isothermal local coordinate

systems on M and N such that p ∈ U , f(U) ⊂ V , z(p) = 0 and ζ(a) = 0

where a = f(p). Since f : M → N is harmonic and g, h are analytic, f is

analytic (cf. [11]). Therefore, we may expand w = ζ ◦ f in a power series

w(z) =

∞
∑

i,j=0

aijz
izj , (aij ∈ C), (2.6)

which converges in a neighborhood of z = 0. We first have a00 = 0 (due to

ζ(a) = 0). Because wz, wz and wzz are analytic (as w is analytic), and wz

and wz have isolated zeros of finite order by Lemma 2.1, we may choose a

sufficiently small neighborhood of p (denoted again by U) such that it avoids

all zeros of wz and wz. Then we can rewrite (2.1) as

(µ ◦ f)−1 (µ ◦ f)ζ◦f = −wzz/ (wzwz) (2.7)

on U . As µ−1 µζ is analytic at a, it may be expanded in a power series

µ−1 µζ =

∞
∑

k,ℓ=0

bklζ
kζ

ℓ
(bkℓ ∈ C), (2.8)
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which converges in a neighborhood of ζ = 0. We assume that the complex

coordinate ξ on the codomain of v = µ−1µζ is chosen such that ξ(v(a)) = 0,

it implies that b00 = 0. Substituting (2.6) and (2.7) into (2.8), it yields to

a11 = 0. If a10 6= 0, a01 = 0, then w(z) is in (2.3); if a10 = 0, a01 6= 0, then

w(z) is in (2.4) ; if a10 6= 0, a01 6= 0, then w(z) is in (2.5). If a10 = a01 = 0,

then we derive a21 = a12 = 0 by (2.7), and w(z) can be expressed in (2.3),

(2.4) or (2.5), etc. ���

As a corollary to Theorem 2.2, it was shown by Eells and Wood [13] as

follows.

Corollary 2.3. If f : M → N is harmonic non ± holomorphic between

Riemann surfaces, then

wz = Ezm−1 + o(|z|m−1), for some m ≥ 1 and complex number E 6= 0;

wz̄ = F z̄n−1 + o(|z|n−1), for n ≥ 1 and F 6= 0.

3. Leaf-wise Harmonic Maps

Let F be a foliation on a Riemannian n-manifold (M, g). Then F is

defined by a cocycle U = {Ui, fi, gij}i∈I modeled on a q-manifold N0 such

that

(1) {Ui}i∈I is an open covering of M;

(2) fi : Ui → N0 are submersions with connected fibres;

(3) gij : N0 → N0 are local diffeomorphisms of N0 with fi = gijfj on Ui∩Uj.

The connected components of the trace of any leaf of F on Ui consist of

the fibres of fi. The open subsets Ni = fi(Ui) ⊂ N0 form a q-manifold

N = ∐Ni, which can be considered as a transverse manifold of the foliation

F . The pseudogroup HN of local diffeomorphisms of N generated by gij is

called the holonomy pseudogroup of the foliated manifold (M,F) defined by

the cocycle U . If the foliation F is Riemannian for the Riemannian metric

g, then it induces a Riemannian metric ḡ on N such that the submersions

fi are Riemannian submersions and the elements of the holonomy group are

isometries.



✐

“BN11N22” — 2016/5/17 — 21:47 — page 348 — #6
✐

✐

✐

✐

✐

348 YUAN-JEN CHIANG [June

Let φ : U → Rp × Rq, φ = (φ1, φ2) = (x1, . . . , xp, y1, . . . , yq) be an

adapted chart on a foliated manifold (M,F). Then on U the vector fields
∂

∂x1
, . . . , ∂

∂xp
span the bundle TF tangent to the leaves of the foliation F , the

equivalence classes of ∂
∂y1

, . . . , ∂
∂yq

denoted by ∂̄
∂y1

, . . . , ∂̄
∂yq

, span the normal

bundle N(M,F) = TM/TF , which is isomorphic to the subbundle TF⊥.

Please see more details about foliations in [19, 23].

We study the relationship between leaf-wise harmonic maps and har-

monic maps between foliated Riemannian manifolds as follows.

Theorem 3.1. Suppose that (M1, F1) and (M2, F2) are two foliated Rie-

mannian manifolds such that F1 is minimal and F2 is totally geodesic. If

f : (M1, F1) → (M2, F2) is leaf-wise harmonic and transversally harmonic,

then f is harmonic.

Proof. Since the definitions of transversally harmonic map and harmonic

map are local, we consider open subsets Ui ⊂ Mi and Riemannian submer-

sions φi : Ui → Ūi, i = 1, 2, such that the foliations on Ui are fibres of the

submersions φi : Ui → Ūi and f(U1) ⊂ U2. Then there exists the unique

map f̄ : Ū1 → Ū2 such that

Diagram 3.1.

commutes, where the vertical maps are Riemannian submersions. A map

f : (M1, F1) → (M2, F2) between two foliated Riemannian manifolds is

transversally harmonic if and only if f̄ : Ū1 → Ū2 is harmonic locally (cf.

[18, 7]).

On a manifold M with a foliation F , we can have another topology

and smooth structure to take as open subsets of the set M open subsets of

leaves (cf. [20]). Then the leaves of F are connected components in this

topology and the set M carries a differentiable structure compatible with

this topology; we denote this manifold by MF . Moreover, a smooth map

f : (M1, F1) → (M2, F2) is foliated iff it induces a smooth map f̂ : MF1
→

MF2
. The map f is leaf-wise harmonic if τ(f̂) = 0.
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If X is a vector tangent to a foliated manifold, denote H(X) and V(X)

the orthogonal to and tangent to the leaves, respectively. Let Bi denote the

second fundamental form and Hi denote the mean curvature vector fields of

leaves of Fi, i = 1, 2, respectively. In Diagram 3.1, considering the vertical

maps φ1 and φ2 are Riemannian submersions, we can apply [26] (eq. (6.10))

and obtain

τ(f) = τ(f̄) + traceTF1
f∗B2 − f∗H1 + τ(f̂). (3.1)

Since F1 is minimal and F2 is totally geodesic, the second and third terms

vanish. If f is transversally harmonic (τ(f)H = τ(f̄) = 0) and leaf-wise

harmonic (τ(f)V = τ(f̂) = 0), then it implies τ(f) = 0. ���

In particular, if f : (M1, F1) → (M2, F2) is leaf-wise harmonic and

transversally harmonic between two manifolds with 2-dimensional foliations

such that F1 is minimal and F2 is totally geodesic, then f is harmonic.

We review a small part of the main results of Garnett [14, 15], which

is useful to study Gauss-Bonnet type theorem. Let F be any foliation on a

compact manifold M equipped with a Riemannian metric g on its tangent

bundle. We may assume that F and the Riemannian metric are of class C3.

We can use the Laplace operators of the leaves to construct a global operator

△F defined on functions u : M → R that are C2 along the leaves:

△Fu(x) = △L(x)u|L(x)(x), (3.2)

where L(x) is the leaf through x and △L(x) is the Laplace operator of the

Riemannian manifold L(x) with respect to its Riemannian metric induced

by g.

Definition 3.2. A measure µ on (M,g) is called F-harmonic, if for every

continuous function u : M → R which is C2 along the leaves, the integral
∫

△Fu dµ is zero.

Theorem 3.3 ([14, 15]).

(1) A compact foliated manifold (M,g) always admits a non-trivial F-harmonic

measure.

(2) A measure µ is F-harmonic if and only if in any disintegrated open set, µ

can be disintegrated as a transversal sum of leaf measure, where every leaf
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measure is a positive harmonic function times the Riemannian volume

of the leaf.

(3) The measure on M obtained by combination of a transverse invariant

measure and the volume along the leaves is always F-harmonic. These

special F-harmonic measures are “completely invariant measures.”

(4) Suppose that µ is an F-harmonic measure such that for µ almost every

point x, the universal covering space L̃(x) of L(x) has no non-constant

positive harmonic functions. Then µ is completely invariant.

Notice that the positive harmonic function changes by a positive mul-

tiplicative constant when one changes the distinguished open set. Also, the

harmonic functions are constants if and only if the measure µ is the combi-

nation of a transverse invariant measure and the volume along the leaves.

4. Gauss-Bonnet Theorem

Let f : (M1,F1, g) → (M2,F2, h) be a foliated map between two foliated

Riemannian manifolds. When both foliated Riemannian manifolds M1 and

M2 are considered as disjoint unions of leaves, the definition of a leaf-wise

harmonic map in section two is equivalent to the following definition of a leaf-

wise harmonic map between two manifolds with 2-dimensional foliations. A

map f : (M1,F1, g) → (M2,F2, h) between two foliated Riemannian man-

ifolds is a leaf-preserving map if it has the property that df(TF1) ⊂ TF2.

A map f : (M1,F1) → (M2,F2) is a leaf-wise harmonic map between two

manifolds with 2-dimensional foliations, if f : (M1, F1 → (M2,F2) is a

foliated leaf-preserving map between two manifolds with 2-dimensional foli-

ations which sends a 2-dimensional leaf L1 of F1 into a 2-dimensional leaf L2

of F2, as f restricted to each leaf, still denoted by f : L1 → L2, is harmonic.

Suppose thatM1 andM2 are disjoint unions of leaves. Let f : (M1,F1) →

(M2,F2) be a leaf-wise harmonic map between two compact Riemannian

manifolds with 2-dimensional foliations, which sends a 2-dimensional leaf L1

of F1 into a 2-dimensional leaf L2 of F2, as f restricted to each leaf, still

denoted by f : L1 → L2, is harmonic. The Jacobian J = λ
σ (|wz |

2−|wz̄|
2) of a

harmonic map f : L1 → L2 may be positive, or negative, or zero by Theorem

2.2. A point p ∈ D is a singular point iff the Jacobian J vanishes at p. A

point p is a stationary point iff wz = wz̄ = 0 (since df(x) = wzdz+wz̄dz̄ = 0,
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z is the local coordinate of p). When J is zero, f may have isolated singulari-

ties (i.e., isolated stationary points), or non-isolated singularities. Wood [24]

studied the singularities of harmonic maps between surfaces, and Smith [22]

constructed a harmonic non ± holomorphic map from a torus into a sphere,

which exhibited collapsed lines. We shall not consider this degenerated case

here. From now on, we assume that f : L1 → L2 is a harmonic map with

isolated stationary points.

Since f : M1 → M2 is a leaf-preserving harmonic map with isolated sta-

tionary points, the pull-back metric on a pull-back leaf L(x) ⊂ f−1L(f(x))

is

f∗h = λwzw̄zdz
2 + λwzw̄z̄dzdz̄ + λwz̄w̄zdz̄dz + λwz̄w̄z̄dz̄

2

= [λwzw̄z + λ(|wz |
2 + |wz̄ |

2|) + λwz̄w̄z̄]dx
2 + [2iλwzw̄z − 2iλwz̄w̄z̄]dxdy

+[−λwzw̄z + λ(|wz|
2 + |wz̄|

2)− λwz̄w̄z̄]dy
2 (4.1)

= [2Reφ(z) + λ(|wz |
2 + |wz̄ |

2)]dx2 − 4Imφ(z)dxdy

+[−2Reφ(z) + λ(|wz|
2 + |wz̄|

2)]dy2,

where Reφ and Imφ are harmonic functions on L(x) − S, and S = {x ∈

L(x)|wz = wz̄ = 0} is a set of finite isolated stationary points (L(x) is

assumed compact).

Theorem 4.1. Suppose that f : (M1,F1, g) → (M2,F2, h) is a leaf-wise har-

monic map between compact manifolds with 2-dimensional foliations (i.e. man-

ifolds foliated by Riemann surfaces) without singularities on leaves. Denote

by κ(x) the Gauss curvature of the pull-back leaf through x with respect to

the pull-back metric g1 = f∗h. If the set of spherical leaves is harmonic

measure-negligible, then
∫

κ(x) dµ is non-positive.

Proof. The given map f : (M1,F1, g) → (M2,F2, h) is a leaf-wise harmonic

map between compact manifolds foliated by Riemann surfaces without sin-

gularities on leaves. Let h be the restriction of the Riemannian metric to

TF2, the pull-back metric g1 = f∗h does not vanish (S = ∅) on the pull-

back leaf L(x). It follows from (4.1) that (1) if the restricted map of each

full-back leaf is holomorphic (resp. anti-holomorphic), then (4.1) reduces to

g1 = f∗h = λ|wz|
2dzdz̄ (resp. λ|wz̄|

2dzdz̄) which is Riemannian and hermi-

tian on each pull-back leaf L(x) of F1. (2) If the restricted map of each leaf
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is harmonic non ±holomorphic, then by Theorem 2.2, g1 = f∗h is Rieman-

nian, but not necessarily hermitian on each full-back leaf L(x) of F1. We

can use the Laplace operators of the pull-back leaves to construct a global

operator △F1 defined on functions u : M1 → R that are C2 along the leaves:

△F1u(x) = △L(x)u(x)|L(x), (4.2)

where L(x) is the pull-back leaf of F1 through x, L(f(x)) is the leaf F2

through y = f(x), and △L(x) is the Laplace operator of the leaf L(x) (viewed

as a Riemannian manifold (L(x), g1)). By Theorem 3.3, there exists a non-

trivial F1-harmonic measure µ on M1 with respect to g1, and so
∫

△F1udµ

is zero, or equivalently,

∫

△L(x)u|L(x)(x)dµ = 0, (4.3)

for every continuous function u : M1 → R which is C2 along the F1-leaves.

Let κ(x) be the Gaussian curvature at x of the pull-back leaf L(x)

through x with respect to the pull-back metric g1 = f∗h. The technique

is to change the pull-back metric conformally along the pull-back leaf of

F1 to generate a new metric of constant negative curvature, which can be

fulfilled by a well-known fact that the harmonicity of f between Riemann

surfaces is conformally invariant by Eells-Sampson [11]. Recall that the pull-

back metric g1 = f∗h is Riemannian and non-vanishing on the pull-back leaf

L(x) through x. By the uniformization theorem, there are three possibilities:

(a) L(x) is a sphere; (b) the universal covering space L̃ of L is conformal

equivalent to the Euclidean plane R
2; (c) the universal covering space L̃ of

L is conformal equivalent to the Poincaré disc D
2. One can divide M1 into

three F1-saturated sets: M1 = B1 ∪B2 ∪B3, where B1 (resp. B2, B3) is the

set of points such that L̃ is conformally equivalent to S2 (resp. R2, D2). For

simplicity, one may assume that either L̃ is conformally equivalent to R
2 for

µ-almost every x or L̃ is conformally equivalent to D
2 for µ-almost every x.

Since the set of spherical leaves is measure-negligible, one can write µ as µ2

on B2 plus µ3 on B3. If one shows that
∫

κdµ2 and
∫

κdµ3 are non-positive,

then the theorem follows by linearity. Firstly, if L̃(x) is conformal equiva-

lent to R
2 for µ almost every x, then the proof of the theorem is similar to

Connes’ proof [8], since the harmonic measure µ is completely invariant by

Theorem 3.3 (4).
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Secondly, we show that if L̃(x) is conformal equivalent to D
2 for µ al-

most every x, then the theorem holds. Note that the conformal equivalence

between L̃ and D
2 is unique up to the isometries of D2. Moreover, the pull-

back of the Poincare metric of D
2 is a well-defined metric on L̃ which is

invariant by the covering transformations of the covering L̃ → L. Therefore,

there is a unique smooth function u : L → R such that the metric exp(2u)g1

is complete and has curvature −1. If g1 = f∗h is a metric on a surface L

with curvature κ(x), then it is known that the curvature κ1(x) of the metric

exp(2u)g1 is given by

κ1 = exp(−2u)(κ −△u), (4.4)

where u : L → R is any smooth function, and △ is the Laplace operator with

respect to the metric g1. In [16], it showed that: Let B ⊂ M1 be a closed

F1-saturated set of non-spherical leaves, and let u : B → R ∪ {−∞} be a

map. If L̃ is conformally equivalent to D2, u|L(x) is the unique function so

that exp(2u|L(x))g1|L(x) is complete and has curvature −1. Then u is upper

semi-continuous and smooth along leaves of F1. Furthermore, the gradient

∇F1 along the leaves is bounded on B.

Thus we have −1 = exp(−2u(x)(κ(x)−△F1u(x)), if we apply (4.4) leaf

by leaf to the above defined function u. It implies that κ(x) = △F1u(x) −

exp(2u(x)). This formula holds µ almost everywhere, since we assume

that u(x) 6= −∞ almost everywhere (if L̃ is conformally equivalent to R
2,

u(x) = −∞). Note that u is upper semi-continuous and bounded on B,

and so exp(2u(x)) is a positive bounded function on B. Therefore, △F1 is

also bounded since κ is a continuous function. Hence, exp(2u) and △F1 are

µ-integrable, and we arrive at

∫

κdµ =

∫

△F1udµ−

∫

exp(2u)dµ ≤

∫

△F1u dµ,

where u is continuous and smooth along the leaves. Consequently, the inte-

gral
∫

△F1u dµ is zero (since µ is a F1-harmonic measure), and we conclude

the result. ���

In particular, take f as an identity map id : (M, F) → (M, F) in

Theorem 4.1 such that F admits a transverse invariant measure. Then

the following corollary (1) is a main theorem obtained by Connes in [8].
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Similarly, let f be an identity map id : (M,F) → (M,F) such that M

admits a F-harmonic measure. Then (2) is a main theorem proved by Ghys

[16], which generalizes Connes’ theorem since a transverse invariant measure

is a special F-harmonic measure by Theorem 3.3.

Corollary 4.2. (1) Let F be an oriented 2-dimensional foliation on a com-

pact manifold M which admits a transverse invariant measure. Denote by

κ(x) the Gaussian curvature of the leaf L(x) through x. If the set of spherical

leaves is transverse invariant measure-negligible, then
∫

kdµ is non-positive.

(2) Let F be an oriented 2-dimensional foliation on a compact manifold M.

Choose a Riemannian metric on the tangent bundle of F such that µ is an

F-harmonic measure. If the set of spherical leaves is µ-negligible, then
∫

kdµ

is non-positive.

Suppose that f : (M1,F1) → (M2,F2) is a leaf-wise harmonic map

between compact manifolds with 2-dimensional foliations (Riemann surfaces)

with isolated stationary points on some leaves (assumed compact). Then

the pull-back metric g1 = f∗h vanishes at finite isolated stationary points on

some pull-back leaves. Therefore, we can not define an F1-harmonic measure

µ on M1 globally with respect to g1. In this case, we deal with the Gauss-

Bonnet formula using usual measure differently from the preceding case. We

consider the restriction of f to leaves (Riemann surfaces), still denoted by

f : L1 → L2, is harmonic. Let D be a compact smooth domain bounded by

a piece-wise smooth curve γ in the leaf L1, z be a local coordinate at a point

p ∈ D, and w be a local coordinate at the image point a = f(p). In terms

of the local coordinate w = reiφ, let h = λdwdw̄ be a hermitian metric on

L2. Set λ = µ2 and

Θ = −dφ + i(∂ − ∂̄)logµ. (4.5)

Then we have dΘ = κΩ, where Ω = i
2µ

2dw ∧ dw̄ is the area element, and

κ = −(
4

µ2
)
∂2logµ

∂w∂w̄
. (4.6)

is the Gaussian curvature with respect to the hermitian metric h = µ2dwdw̄

on L2.
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Proposition 4.3 ([5]). If f : D ⊂ L1 → L2 is a harmonic non ± holo-

morphic map between compact Riemann surfaces of Jacobian J ≥ 0 (resp.

J ≤ 0) with isolated stationary points, then

2πχ(D) +

∫

γ
Θ+ 2π

n
∑

i=1

(n(pi, a)− 1) =

∫

f(D)
κΩ, (4.7)

where χ(D) is the Euler characteristic of D, n(pi, a)−1 (resp. −n(pi, a)+1),

i = 1, . . . , n, are the stationary indices of f . (Note that if f : L1 → L2 is ±

holomorphic, then f is automatically of J ≥ 0 (resp. J ≤ 0) with isolated

stationary points and (4.7) holds (cf. [1, 25]).

Recall that f : (M1,F1) → (M2,F2) is a leaf-wise harmonic map be-

tween compact manifolds foliated by Riemann surfaces of Jacobian J ≥ 0

(resp. J ≤ 0) with isolated stationary points on some leaves. We consider the

restriction of f to compact Riemann surfaces, still denoted by f : L1 → L2,

is harmonic. Let p1, . . . , pn be a set of finite isolated stationary points of f

at a point a in a leaf L2 of F2. (1) If p1, . . . , pn all lie in the same pull-back

leaf Lj ⊂ f−1L2 for some j, we consider the harmonic map restricted to

the pull-back leaf f : Dj ⊂ Lj → L2 of J ≥ 0 (resp. J ≤ 0) with isolated

stationary points. Thus by Proposition 4.3 we have

2πχ(Dj) +

∫

γ
Θ+ 2π

n
∑

i=1

(n(pi, a)− 1) =

∫

f(Dj )
κΩ, (4.8)

whereDj is a compact smooth domain bounded by a piece-wise smooth curve

γj in the leaf Lj. (2) If p1, . . . , pn lie in some different pull-back leaves, say

L1, . . . , Lk, such that p1, . . . , pn1
∈ L1, . . . , pnk+1, . . . , pnk

∈ Lk, we assume

that each pull-back leaf is a compact Riemann surface without boundary.

Then by Proposition 4.3 we have

2πχ(Lj) + 2πs(Lj) =

∫

f(Lj)
κΩ, j = 1, . . . , k, (4.9)

where s(Lj) =
∑nj

i=1(n(pi, a)−1) (resp.
∑nj

i=1(−n(pi, a)+1) is the stationary

indices of f in Lj . Thus we obtain

2π
∑

Lj∈F1

χ(Lj) + 2π
∑

Lj∈F1

s(Lj) =
∑

Lj∈F1

∫

f(Lj)
κΩ. (4.10)
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Theorem 4.4. Suppose that f : (M1,F1) → (M2,F2) is a leaf-wise har-

monic map between compact manifolds with 2-dimensional foliations of Ja-

cobian J ≥ 0 (resp. J ≤ 0) with isolated stationary points on finite compact

leaves. (1) If the stationary points lie in the same pull-back leaf Lj for some

j, then (4.8) holds. (2) If the stationary points lie in some different compact

pull-back leaves L1, . . . , Lk without boundaries, then

2πχ(F1) + 2πs(F1) =
∑

Lj∈F1

∫

f(Lj )
κΩ, (4.11)

where χ(F1) =
∑

Lj∈F1
χ(Lj) and s(F1) =

∑

Lj∈F1
s(Lj).

In the above theorem, if Lj is an nj-sheet covering of L2 and
∫

f(Lj)
κΩ =

2πnjχ(L2), then (4.10) yields to

χ(Lj) + s(Lj) = njχ(L2). (4.12)

Suppose that F1 and F2 have finite compact leaves, and a leaf Lj ∈ F1 is an

nj-sheet covering of a leaf L2 ∈ F2, then we obtain

χ(F1) + s(F1) =
∑

Lj∈F1

njχ(L2). (4.13)
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