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Abstract

A type of directed multigraph called a W -digraph is introduced to model the structure
of certain representations of Hecke algebras, including those constructed by Lusztig and
Vogan from involutions in a Weyl group. Building on results of Lusztig, a complete
characterization of W-digraphs is given in terms of subdigraphs for dihedral parabolic
subgroups. In addition, results are obtained relating graph-theoretic properties of W-
digraphs (acyclicity, existence of sources or sinks, connectedness) to the structure of the
corresponding H-module or its character.

0. Overview

Let W be a Weyl group with set of fundamental generators S and length
function ¢, let u be an indeterminate, and let H be the Hecke algebra of
(W, S) over Q(u). (See the next section for a presentation of H.) Put
I={weW |w!=w}. Inl[l], Lusztig and Vogan construct an H-module
M with basis {m,, | w € I'} indexed by I, on which the generator Ty of H
acts according to the rule

Msws if sw # ws, {(sw) > L(w),
Tum. — (u? — )My + UM if sw # ws, {(sw) < L(w),
UMy + (U4 1)mgy if sw = ws, {(sw) > L(w),
(u? —u — )my + (U2 — wW)mg,  if sw = ws, {(sw) < £(w),

for s € S, w € I. These expressions are given geometric interpretations in
[7): when w is replaced by a power ¢ of a prime number, each coefficient in
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the expansion of Tym,, evaluates to the number of F,-rational points in a
corresponding subset of a variety constructed from Borel subgroups in an
algebraic group with Weyl group W. (See 1.1-1.6 of [7] for the details of this
construction, and Lusztig’s paper [6] for an extension to arbitrary Coxeter
groups.)

The present work originated in the author’s attempt to visualize the
structure of the H-module M described above. A directed multigraph I' can
be constructed, with set of vertices {m,, | w € I}, as follows. f w € I, s € S,
sw # ws, and A(w) < (sw), then a solid edge m,, —— Mgy is included in
T, while if sw = ws and {(w) < {(sw), then a dashed edge My --» Mgy
is included. The result is an example of what will be called a W-digraph
(see Definition [[2]). In broad terms, the notion of W-digraph is similar to
the notion of W-graph introduced by Kazhdan and Lusztig in [4]: both give
rise to graph-theoretic objects that encode the action of the generators Tk,
s € S, on an H-module. There are also combinatorial similarities: if a finite
dimensional H-module M affords both a W-digraph I' and a W-graph ¥,
then the number edges labeled s € S in I' is equal to the multiplicity of the
eigenvalue —1 of Ts on M (see Lemma [24i)), which in turn is equal to the

number of vertices with label including s in .

On the other hand, there are significant differences between the notions
of W-digraph and W-graph, including the obvious structural differences: a
W-digraph is directed rather than undirected, can have two different types
of edges (corresponding to commutation relations in the motivating example
above) rather than one type, and has generators labeling edges rather than
scalars. The encodings of the actions of generators for W-digraphs and W-
graphs are necessarily different. Further, the class of modules afforded by
W -digraphs need not coincide with the class of modules afforded by W-
graphs. When (W, S) is finite and S # (), not all H-modules are afforded
by W-digraphs, whereas every H-module is afforded by a W-graph over a
suitable field of scalars (Gyoja, [3]). Specifically, when S # (), the sign
representation T — —1 is not afforded by a W-digraph (see Theorem [[.71(i)),
but is afforded by the W-graph with a single vertex labeled S. In the other

direction, an example can be given of an infinite (W, .S) and corresponding
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H-module that is afforded by a W-digraph but is not afforded by a W-graph
(see Theorem and Example [T71]).

1. Statement of Results
The Coxeter system (W, S) has a presentation of the form
W = <8 €S | (rs)"™) =¢forrse S, nrs) < oo>,

where n(s,s) = 1 and 1 < n(r,s) = n(s,r) < oo for r,s € S, r # s. The
Hecke algebra H has basis {1}, | w € W} satisfying

e {Tsw if £(sw) > l(w), 1)

wTsy + (w2 — DT, if £(sw) < £(w)

for s € S. As a Q(u)-algebra, H has generators {Ts | s € S} satisfying the
relations

(Ts —u?)(Ts +1) =0 if s € S, (1.2a)
T.T, - =TTy - if s,teS,1<n=n(st)<oco  (1.2b)

(where the factors in the products of (L2D]) are alternately Ty and T}).
Moreover,

T, Ty = Ty if {(xy) = l(z) + L(y).

Definition 1.1. Let S be a set. Let I' = (¥, &) be a directed multigraph
with set of vertices ¥ = #(I') and set of edges & = &(I") such that each
edge is either solid or dashed and is labeled by an element of S, that is, has
one of the forms

a— 8 or a—iﬁ

with o, 8 € ¥, s € S. Then I' is an S-labeled digraph if T has no loops and,
for all s € S, every vertex of I' occurs in exactly one edge labeled s.

Examples of S-labeled digraphs appear in Figures [LTHL.2l

Let I' be an S-labeled digraph. Let M (I') be a vector space over Q(u)
with basis #/(I"), and let gl(M(T")) be the Q(u)-algebra of all linear operators
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Y6 ——= V5
S

Figure 1.1 An {s, t}-labeled digraph. Figure 1.2 An {r, s,t}-labeled digraph.

on M(T). For each s € S, define 75 € gl(M(T")) as follows: if & € ¥(T), then

B if o - Bec& ),
2 2 . s
() = (u®* — Da+ug if « <S— g e &), (1.3)
ua+ (u+1)3 if a-=»p3e&()
()

(u? —u—1)a + (u? —u)B if a<l-pge&).

)

Definition 1.2. An S-labeled digraph I' is a W -digraph if the mapping
Ts — 75 extends to a representation of H, that is, a homomorphism of
Q(u)-algebras p : H — gl (M(I")).

Let J C S, so (Wy,J) is a Coxeter system with W = (.J) the associated
parabolic subgroup of W. For I' an S-labeled digraph, denote by I'; the
subdigraph with the same set of vertices obtained from I' by removing all
edges labeled by elements of S\ J. Thus I'; is a J-labeled digraph. If T is
a W-digraph, then clearly I'; is a W-digraph. Conversely, because of the
presentation ([2al), (L2D) it is also clear that T' is a W-digraph if T'; is a
W -digraph whenever J C S, |J| < 2. Note also that I" is a W-digraph if
and only if each connected component of I' is a W-digraph.

In Figures [[L3HL.I0 several J-labeled digraphs are given with J = {s,¢}.
These multigraphs have 2m vertices, with m > 2 except for Figures [LIHLT0L
Also, ' = s if m is even, s’ =t if m is odd, t’isdeﬁnedby {¢, t}—{s t},
and any edge not shown has one of the forms aw; AN 2541, 0251 LN a2;,
Baj—1 — Baj, or B LN B2j+1-

Two S-labeled digraphs I' = (¥, &) and I = (¥, &) are isomorphic if
there is some bijection ¢ : ¥ — ¥ such that for all a, 8 € ¥ and s € S,
o -2 B € & if and only if p(a) -2 ¢(8) € & and a -2» B € & if and only
if p(a) -=> ¢(B) € &,
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Qg Qo Qo
a b1 o B o B
t Vs t Is t Us
% B % B % b
m—2 Bm—2 m—2 Bm—2 i —2 Bm—2
s\ Wt s\ Wt s\ Wt
QUm—1 Prm—1 Qm—1 Prm—1 Qm—1 Prm—1
PN PNy A
B B B
Figure 1.3 Figure 1.4 Figure 1.5
Qg Qo Qo
S/ \\t s/ \j 3/ \\ﬁ
a b1 o B o B
t Vs t Is t Us
% B % B % B
Cm—2 Bm—2 Cm—2 Bm—2 Cm—2 Bm—2
s\ W s\ W s\ W
Qm—1 Prm—1 Qm—1 Prm—1 Qm—1 Prm—1
PN Py Py
Brm B B
Figure 1.6 Figure 1.7 Figure 1.8

Theorem 1.3. Let (W, S) be a Coxeter system. The following are equiva-

lent.

(a) T is a W-digraph.

(b) T is an S-labeled digraph such that for all s,t € S with 1 <n =n(s,t) <
00, each connected component of Ty, J = {s,t}, is isomorphic to one of

the J-labeled digraphs in Figures [L.3HI10, with
(i) m > 2 and m a divisor of n in Figure[L.3, Figure[1.F), or Figure[LJ],
(il) m > 2 and 2m — 1 a divisor of n in Figure or Figure[I.7],

(iii) m > 2 and 2m — 2 a divisor of n in Figure [1.8,

(iv) m =1 and n > 2 arbitrary in Figure or Figure [ 10
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s ]
7 ™\ PN
Qo B1 ap B1
~—_ 7 S _ -7
t t
Figure 1.9 Figure 1.10

If T is an S-labeled digraph, let I'., be the S-labled digraph obtained
by reversing the direction of all edges of I' while keeping their types and
labels. For example, if T is as in Figure [[L6, then I',e, is isomorphic to the
digraph in Figure [[71 We can assume M (T") and M(Tey) are the same as
vector spaces over Q(u) (since ¥ (I') = ¥ (I'tev)), but the endomorphisms of
M(T') and M (T'yev) corresponding to an element of S are different.

Corollary 1.4. IfI" is an S-labeled digraph, then I' is a W -digraph if and
only if T'yey is a W -digraph.

For I" an S-labeled digraph, let I, be the S-labeled digraph obtained
from I' by replacing any dashed edge « N B by the corresponding solid
edge & — B. Let I'giy be the directed multigraph obtained by removing
all labels from I",. Let I'ypq;r be the (undirected) multigraph obtained from
[air by replacing each directed edge @ — 8 by an undirected edge o —
8. For example, with T" as in Figure [Tl the associated graphs I'_,, I'g;;, and

V2 $ 73 Yo — V3 Y2 ——73

o N NN

ad! Y40m Y4 M 4

N N SN/

V6 —> 5 Y6 —> 5 Yo —— V5
Figure 1.11 I, Ig;;, and T'yng; for T' as in Figure [

[unair are given in Figure [LTIl We say a vertex « of I' is a source (sink) of
I'if a is a source (sink, respectively) in I'g;,;. We consider an empty path to
be a directed circuit in any directed multigraph, and define I' to be acyclic if
[air is acyclic, that is, if there is no nonempty directed circuit in I'g;.. Also,
I' is connected if T'pq;r is connected.

Theorem 1.5. If n(s,t) < oo for all s,t € S and I" is a connected W -
digraph, then the following hold.

(i) T' can have at most one source and at most one sink.
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(ii) IfT' has either a source or a sink, then I' is acyclic.

(iii) If (W, S) is finite, then I" has both a source and a sink, and so is acyclic.

Corollary 1.6. If (W,S) is finite, then any W -digraph is acyclic. Further,
the number of sources (or sinks) in a finite W -digraph is equal to the number
of its conmected components.

Let ind and sgn be the linear characters of H determined by ind(7},) =
Uy = w2 and sgn(T},) = e, = (—1)“™ for w € W, respectively. For X a
linear character of H and M an H-module, put M) = {v € M | hv = A(h)v
for h € H}.

Theorem 1.7. If T is a W-digraph and ¥ (') is finite, then the following
hold.

(i) The number of connected components of I' is equal to dim M (T)inq.

(ii) If n(s,t) < oo for all s,t € S, then the number of acyclic connected
components of I is equal to dim M (I")sgn.

Theorem 1.8. If (W, S) is finite, J C S, and ' is a connected W -digraph,
then Ty has at most |[W : Wj| connected components.

Taking J = ) gives the following.
Corollary 1.9. If (W,S) is finite and I is a connected W -digraph, then
()] < [W].

The bound in Corollary is always attained: see Example

Theorem 1.10. Assume n(s,t) < oo for s,t € S and I' is a connected W -
digraph with a source or sink. Then for a, 8 € ¥ (I'), any two directed paths
from « to B in I' have the same number of edges.

If T is a W-digraph and ¥/(I") is finite, so M(I") is finite dimensional,
let xr be the character of H afforded by M (T").

Theorem 1.11. If T is a W-digraph and ¥ (I') is finite, then the following
hold.

(i) If o is the automorphism of Q(u) determined by v = —1/u, then
XTreo(Tw) = Oxr (T4 for we W.



308 DEAN ALVIS [June

(ii) Ifn(s,t) < oo fors,t € S andT is acyclic, then xr,,,(Tw) = cwtwXr (T ")
forw e W.

In the case of an affine Weyl group, the following holds.

Theorem 1.12. If (Wy,J) is finite for proper subsets J of S, I is a finite,
connected W-digraph, and M(T") affords a W -graph (as defined in [4]) over
Q, then I is acyclic.

The organization of this paper is as follows. Section 2 contains prelimi-
nary results, and Section 3 contains a proof of Theorem [[3] and related re-
sults. Section 4 contains proofs of Theorems[T.5] [[.7] [[.8] and [[L.T0l Section 5
contains a proof of Theorem [[LTT] and related results. Section 6 contains a
proof of Theorem [[L12], and the last section has additional examples.

2. Preliminary Results

Assume that (W, .S) is a Coxeter system and let I' be an S-labeled di-
graph. Throughout this and later sections, the notation x < y is used to
indicate the usual Bruhat order on W relative to S when x,y € W. For any
s € S, we have

(s —u®) (15 +1) =0 in gl(M), (2.1)

where 75 is as in (L3) and M = M(T") (see [6], 2.3). Indeed, suppose « is
connected to 8 by an edge of I' labeled s. Exchanging «, 3 if necessary, we
can assume this edge is directed from « to . By (L3]), 75 leaves invariant
the subspace with basis {«, 8}, and the matrix of 75 acting on this subspace
with respect to this basis is

0 u? u u?—u
2 or 2
1 w—1 u+1l v —u—1

according to whether o =+ 3 € &(T') or « N B € &(T). In either case, the
eigenvalues are u? and —1, and thus (2.I) holds. Hence I is a W-digraph if
and only if

n n

TeTe = TyTg - whenever s,t € S, 1 < n(s,t) < oco. (2.2)
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Define Ty € H by
T2 = (u+1)" Ty — u).

(This element is denoted T’y in [6], 2.2.) By (LZal), both T, and 77 are units
in H, with inverses given by

To = (T - (w2 - 1), (T = (0 — ) T~ (u® —u 1)),

S S

The terminology used in the next definition will be justified by the remarks
after Lemma

Definition 2.1. Let M be an H-module. Then a subset X of M supports a
W -digraph if X is linearly independent over Q(u) and, for each o € X and
s€e S,

X N {Toe, T; o, TP, (T) ) # 0.

S

Lemma 2.2. If M is an H-module and X C M supports a W -digraph, then
the following hold.

(i) If s € S and o € X, then «, Tsa, Ty ta, T2a, (T2) v are distinct
and X contains a unique element of {Tsa, Ty ', Toav, (T3) e}
(ii) The subspace of M spanned by X is an H-submodule of M.

Proof. Suppose s € S and a € X. Put Y = {Tsa,TS_la,Ts"a, (TSO)_la}.
By (2al), there are unique 7,6 € M such that

a=v+96, Tsy = —7, T.6 = u?6.
Thus
2 -1 1
Tsa = —v + u“d, Ty a=—y+ —0,
U
2
o ut —u o1 u+1
Tsa——'y—l—mé, (TS) oz——'y—l—u2_u5.

Since X is linearly independent and X contains a and at least one element
of Y, it follows that v, ¢ are linearly independent over Q(u). Therefore
a, Tsa, Ty e, TPa, (T9) Lo are distinct. Also, since a, Ty, T o, T2a,
(T2) la are all in span{v,d}, X can contain at most one element of Y.

Thus (i) holds. Further, since X contains two elements of span {~, d}, spanX
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contains span {, d} by dimension, and thus Ts« € spanX. Since o € X was
arbitrary, we have TgspanX C spanX. Thus spanX is an H-submodule of
M since s € S was arbitrary, so (ii) holds. O

If M is an H-module and X C M supports a W-digraph, then we
construct a directed multigraph I', as follows. If o, 8 € X and s € S, then

a -2 Bis an edge of T if 8 = T,a,

a -2 B is an edge of I if 8 = Ty a.

Then T is a well-defined S-labeled digraph by Lemma Moreover, from
the definition of T, it is easily checked that H acts on My = spanX accord-
ing to

Tsa = 715(a),

where 75 is as in ([[3]). Therefore I' is indeed a W-digraph with associated
H-module M.

Lemma 2.3. Suppose X is a linearly independent subset of an H-module
M. Then X supports a W -digraph if and only if for each s € S, there exists
a partition Ps; of X such that, for oll U € Py, there are o, 8 € U such that
a# B, U={a«a, B}, and either Tsaa = 5 or T2a = .

Proof. First suppose X supports a W-digraph. Let s € S. For A € X,
define Uy = {\, u} where

X O {TNTINTON (T2 A = {u}

Then A € X N {Tsp, Ty 'y, Top, ()"}, and so Uy = U,. By Lemma 22
P, = {U) | A€ X} is a partition of X satisfying the conditions above: if
U=Uyand p =T\ or p =T\, then take o = A\, B = p, and otherwise
take o =, B = A

Conversely, suppose for each s € S, a partition Py satisfying the condi-
tions above exists. Let v € X. There is some 6 € X such that U = {~,0} €
P,. For this 6§ we either have T:Fly = § or (T2)*'y = 6. Thus X supports a
W -digraph. O

Lemma 2.4. Suppose M is an H-module with basis X supporting a W -
digraph T, v = nyeX MY €M, and s € S. Then the following hold.
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(i) Tsv = v*v if and only if A\g = Ao whenever a = Bora 22 B is an
edge of I
(ii) Tsv = —v if and only if

Ne —u"2\, whenever a — € &(T),
g —(u+ 1w —u)"'\y  whenever a ->» B € &T).

Proof. With P; as in Lemma B3] M is the direct sum of the subspaces
span{a, B}, {a,8} € P,. Also, Ty leaves each such subspace invariant,
with eigenvalues u? and —1. Hence it suffices to show that for {a, 3} € P,
span {«, 3} has a basis consisting of eigenvectors for T of the form Apa+Agf3
with coefficients satisfying the relations of (i) and (ii). If o = 3 is an edge
of I', then

T+ B) = B+ (va+ (W* —1)8) =u*(a+B)
and

Ts(a—u_gﬁ) = B—-u" 2(u o+ (u? —1)5):—(a—u_26),

so the basis {a + B, — u_QB} has the desired property. On the other hand,
. S .
if @ --+ B is an edge of I', then

Ts(a+B) = (ua+ (u+1)8) + ((u* —u)a + (u* —u —1)B)
= u’(a+f)
and
T (a—(u—l—l)(uz—u)_lﬁ)
= (va+ (u+1)p)
—(u+1)(w? —u) " (W = w)a+ (u? —u—1)B)
= —(a— @+ —u)f),

so {a+ B, — (u+1)(u? —u)~' B} is an appropriate basis. a

For the remainder of this section we assume J = {s,t} C S, 1 <n =
n(s,t) < oco. For 0 < k < n, define elements sy, t; of W; by
k k

—N— —~N—
S = -+ sts, tp =---tst,
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with k factors in each product, alternately s and ¢t. For example, sg = e = g,
and s, = wg = t, is the longest element of W;. Define elements o of H;
as follows:

O = Z Tw-

weW g
L(w)=k

Thus o9 = T¢, 0p = Ty, and o, =T, + T3, for 0 < k < n.

Lemma 2.5. Suppose ag = o, + Y wew; YuwTw € Hy, where 0 < k < n and
L(w)<k .

Y € Q(u) forw € Wy. Suppose further that for 0 < j <n—k, S; € {Ts, Ty}

and T; € {T3, T7}. Put by = ag, and define ai,...,an_,b1,...,by_p by

ijj if j is even,

gjaj if j is even,
a1 = _
" Sib;  ifj is odd

_ and by =
Tja; if j is odd, 7 {

for0<j<n—k. Then X = {ap,a1,...,an_k_1,b1,b2,...,bp_k} is linearly
independent. Moreover, if an_ = byp_g, then X supports a W y-digraph and
L = spanX is a left ideal of Hj.

Proof. If 1 < j < n —k and a; is expressed as a linear combination of
{Ty | we Wy}, then the unique w € W of maximal length such that T,

appears with nonzero coefficient is given by
w— 5jsk = sj4k if k is even,
Sjtk = L‘j+k if k£ is odd.

Similarly, if 1 < j < n — k, then the unique w € W of maximal length such

that T, appears with nonzero coefficient in b; is given by

) it =tk if k is even,
tjsp = sj4r if k is odd.
Thus X is linearly independent.
Suppose a,_r = b,_i. If n — k is even, then the partitions

Ps = {{ao,a1},{b1, b2}, s {bn——1,bn1}},
Pt = {{bg, bl} y {al, CLQ} gosey {an_k_l, an_k}}
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satisfy the conditions of Lemma 23l On the other hand, if n — k is odd,
then the partitions

Ps ={{ag,a1},{b1,b2},. .., {an—k—1,an1}},
Pt = {{bg, bl} y {al, ag} g ,{bn_k_l, bn—k}}

satisfy the conditions of Lemma 23l Thus X supports a W;-digraph, and
L = spanX is a left ideal of H; by Lemma 2.2(ii). O

For d > 0, define a polynomial pg(u) € Q[u] as follows: po(u) = 1, and
for d > 0,

palu) =142 (—u?)' + (—u?)"

Thus p1(u) = 1 —u?, po(u) = 1 —2u? +u?, p3(u) = 1 — 2u? + 2u* — uS. Let
y € Wjy. A straightforward induction argument based on 2.0.b and 2.0.c of
[4] shows

’UJ%(y)Ty__ll = Ty + Zpg(y)_g(x) (U)Tx (23)

<y

For 0 < j < n, we define elements ¢;, 7;, 7, 3] of Hy, as follows:

J
&= _pj-i(w)o;
i=0

=0+ (1 —u?)oj_1 + (1 —2u® + ut)oj_g + -
+ (1 —2u? +2u F -+ 2(—u?) 7 + (—u?)?) oy,
M= 0; +u@j_1 +uPj_o + - +u Py,
=@ — ui + UG F -+ (—u) G,
1

8j = 5(773' +75;)-

These elements are used in describing the constructions of Lusztig in the
next section.

If 0 < j < n, then by (23] we have

¢j =T + Ty + (1= w?)ojor + (1 - 2u® + ut)ojo + -+
+(1—2u? £+ 2(—u?)t + (—u?))og
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251 251
=u¥T N+ Ty, = u¥T ) + T,

J J

Lemma 2.6. I[f0 < j <k andj+ k <n, then

T, 1<p]—u23T L + T, and T,- 1g0 —u2jT v+ T

Sk+j —J k+J
Proof. Note j < n, so (Z4]) applies to ¢;. Define s*,t* € {s,t} by s =

sisk—j and {s*,t"} = {s,t}. Then

~ 2j—1
nglgpj = Ts_i .Ts*__l <u jTS*;1 + Tt;‘)

—UZJT 1 + T 1

Sk_

s*_—lj—‘t;f:UJT -1 +T 1
J

Sktj
since s,;_ljs*j_lt* = skﬂ and /(s ~ J)—M( s*7 1)+€(t*) = ﬂ(s;ij). Thus the first
equation holds. The second follows by applying the automorphism T < T}

of Hj to the first. O

Lemma 2.7. If 0 < j <k and j+k < n, then

. (2
i) 7T.- 177j Zu ol and Zu Tk+1] E
2J 2]
.. ~ RV ~
(ii) Tslzl"}/‘j = Z( w) Tsﬁjﬂ- and Cz—vt;l"y] = Z( u)’ Tki] E
1=0 1=0
B J
o 2 _ 24
(iii) TS;uS] = z;u Ts;ij_m and ; = Zu Tk+1] L
iz -

Proof. Observe that (i) holds when k& = 0 because 19 = T.. Assume ¢ > 0
and (i) holds when 0 < k < £. Suppose 0 < j</land j+¢<n.Ifj<l-1,

then
2j
TsT,- 177]—T
=0

uT1

2j
= E ulT 1
Z+] i—1 Z+] i
=0

TSZI ;=
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by the induction hypothesis. On the other hand, if j = ¢, then

Toaie =T, (Pe +une—1) = T @e+uTsTy e

—1
4

20—2
_ 2 i
=T+ T +uly Y u'lr
=0
20—2 20
=T 4+ T+ Y u'T =) "u'T
Sa¢ — S20—(i+1) 7 So0—¢
1= =

by Lemma Thus the first equation of (i) holds in the case k = ¢. The
second equation of (i) follows in the case k = ¢ by applying the automorphism
Ts <> T; to the first equation. Thus (i) holds by induction.

Let ¢ be the automorphism of Q(u) determined by ((u) = —u. Extend ¢
to a semilinear automorphism of H; by defining (> awTw) = > ().
Then ((7m) = Ym, and so the formulas of (ii) are obtained by applying ¢ to

the formulas of (i). Finally, (iii) follows by averaging the formulas of (i) and

(i) O

3. Proof of Theorem [1.3|

We begin this section by outlining constructions due to Lusztig ([6],
2.4-2.10) of Hj-modules with bases supporting W-digraphs when W is
a finite dihedral group. The arguments given here, which differ somewhat

from those in [6], are included for the sake of completeness.

Assume J = {s,t}, 1 <n =n(s,t) < co. When arguing that the {s,¢}-
labeled digraphs in Figures [L3HL.T0lare W ;-digraphs, we may as well assume
n = m for Figures [L3HLE] n = 2m — 1 for Figures [L6HL7, and n = 2m — 2

in Figure [[.8l Indeed, if n, n’ are positive integers and n divides n’, then

n n n' n’

— . . —_
TsTe " =TiTs--+ implies TeTy- " =TyTs--.

Put s = s if m is even, s’ =t if m is odd, and define ¢’ by {s',¢'} = {s,t}.

We consider cases.

Case 1. Figure[[3 n=m > 2.



316 DEAN ALVIS [June
Define pg = T, and

{m = Tspo, po = Tepa, -+ pom—1 = T frm—2, o = Ty i —1,
py = Tipro, oy = Topty, - s a1 = Ty b0 tim = Tt fyyy 1

Then
Hm = Tsm = Em = M;na

and so by Lemma B X = {10, 1, -« - b1, hs iy« oo s iy} ={T | w€ Wy}
supports a Wj-digraph. This W j-digraph is isomorphic to the J-labeled
digraph of Figure L3l via p; <> aj for 0 < j <m—1, p} <> B for 1 <j <m.

Case 2. Figure[[[4 n=m > 2.

Let v9 = T¢, and define

!/ !/ / / _ / !/ o.,/
vy =T, vy =Tsvy, ... vy, =Typv,, o vy, =Tov,, .

{Vl =Tovy,ve =T, ..., Va1 = ToVm—2,Vp = Ty V1,
2'Ym

Y m—
Then
Um = Ttm—lTSO = (u + 1)_1Ttm—1 (TS - u) = (u + 1)_1 (Ts’m - uz—'tm—l)
= (u+ 1) (T, —uTy, ) = (u+ )N (TyTy, |, —uTy, ;)
= (u + ]‘)_1(T5/ - u)ﬂmfl = Tsolﬂmfl = Ul

m’

so X ={w,v1,...,Um—1,V],Vh,...,v,,} is linearly independent, so is a basis
for Hj, and supports a Wj-digraph by Lemma This W-digraph is
isomophic to the J-labeled digraph of Figure [[L4] via v; <> o for 0 < j <
m— 1, V]’-<—>ﬁj for 1 <j <m.
Case 3. Figure[[Hl n=m > 2.

Interchanging s and ¢ in the argument given for the previous case shows
that the J-labeled multigraph in Figure is a Wj-digraph.
Case 4. Figure[[L6l n =2m — 1, m > 2.

Define an element 19 of H; by

m—1~

o = ﬁm—l = (ﬁm—l + U(ﬁm—Q + U2§5m—3 + 4w ©0-
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Suppose m is even. Then by part (i) of Lemma 2.7]

Ty (Ts —w)no = T, 1 — uTy, -1 = Tt;}ﬁm—l - Un;ilﬁm—l

2m—2 2m—2
= g u'T,— —u g u'T,—
2m—i—1 2m—i—2
=0 i=0
_ 2m—1 __ n
—Tt2_1 —u =Ty —u".
m—1

On the other hand, if m is odd, then

Ttm,1 (Ts - u)nO = Tsmﬁm—l - uﬂm,lﬁm—l =T *177m—1 - UTS;Ll_lﬁm—l

Sm
2m—2 2m—2
= g uw'T 1 —u E T -1
Som—i—1 Som—i—2
i=0 i=0
=T 1 —um = Ty — u™.
Som—1

Hence

Ttmfl (TS - U)Uo = Two —u" = Tsm,l (T;f - U)an

where the second equation follows by applying the automorphism T <> T

to the first. Hence if we define

{?71 =Tgno,m2 =Tem, -, Nm—1 = Lo Mm—2,Nm = Ty Nm—1,

m = TEmos s = Tsnys -« M1 = Toim—o i = T —1,
then
M = (w4 1) Ty — u™) = 11,

Therefore X = {7]0,771,7]2,...,nm_l,ni,né,...,n;n_l,n;n} is a basis for a
left ideal in H; and X supports a W-digraph by Lemma This W -
digraph is isomorphic to the J-labeled digraph in Figure via n; <+ a; for
OSjSm—l,n}Hﬁj for 1 <j <m.
Case 5. Figure[[L7l n =2m — 1, m > 2.

Put

m—1~

Y0 = ﬁm—l - {ﬁm—l - 'Uf(ﬁm—Q + UZ&m_g +---4+ (—U) ©o-
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If m is even, then part (ii) of Lemma 2.7 gives

(El - U)Tsm71 70

= (Ts - U)Tsm_1§m—l = Tsmﬁm—l - Tsm_1§m—l
2m—2

2m
= Tt,_nl&/m—l - Ts;ilam_l = Z (_u)thz_nlq—i—l B UZ(_U)ITSQ_nlq—i—Q
i=0 =0
= Y (wrT,,
weW

On the other hand, if m is odd, then

(El - U)Tsm71 70

= (Tt - U)Tsm_l:ylm—l = Tsm&/m—l - uTsm_ﬁm—1
2m—2 2m—2

= Tsy_nlﬁm_l B UTtT_n1,1§m_1 - Z (_u)iTSQ_nlq—i—l - Z (_u)itrt_l
i=0 i=0
- Z (_u)n_e(w)Tw-
weW
Therefore
(Tt’ - U)Tsmfl'YO = Z (_u)n_g(w)Tw = (TS’ - U)Ttmfl 70,
weW

with the second equation following from the first by applying the automor-
phism T < T;. Hence if we put

{71 =Tv0,v2 =T+ s Ym—-1 = TsVYm—2,Ym = T3Vm—1,
Y =T0,7% = TsVis s Yome1 = T Vim—2sYim = ToVim—15

then

Ym = (u+ 17 ()OI, =,
weW

Thus X = {70,71, - Ym—1Y1: Vo - - - s Vom—1> Vin } 18 & basis for a left ideal
of Hj supporting a W -digraph. Moreover, this W ;-digraph is isomorphic
to the digraph of Figure [T via v; <> o for 0 < j < m — 1, 4; < 3; for
I1<j<m.

Case 6. Figure[L8 n =2m — 2, m > 2.
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Define

_ 1 N
0o = Om—2 = 5(77m—2 + Ym—2)-

If m is even, then by part (iii) of Lemma [Z7] we have

(Tt/ - u)Ttm72 (Ts - u)(so = - uTSmfl - uTtmfl + u2Ttm72)gm_2

Tt 1 —ul 1 L Un:nl_l + U2Ts;ll_2)gm_2

m m—
m—2 m—2
= u2’Tt_1 —u g uBT
2m—2—2i Som—3-2i
=0 i=0
m—2 m—2
—uE uQITrl + u? g W T
2m—3—2i Som—4-2i
=0 =0
n—_L(w
= § (—u) )T,
weW

Is,, —uls,, , —uli, , +u Ttm 2)5771 2
TS 1 —ul,—1 L UTS;I,l +u Tt;iQ)ém_g

m —
m—2 m
= u?T —u g u21T 1
Som—2-2i tom—3—2i
=0 ;
m—2
—uE u2181 —|—u2§ u2’T1
2m—3—2 2m 4—24
i=0
= Y (cuprt,,
weW

Therefore

(T —w)Th,,_(Ts —uw)do = 3 (—u)" )T, = (Ty — w)T,,, (T, — u)do,
weWw

with the second equation following from the first by applying the automor-

phism Ty <+ T;. Thus if we define

01 =T300,02 = T01, ..., 0m—2 = T Om—1,0m = T;0m—1,
5 = T80, 8 = Tydl ... 5 = 75/

’m2_ ml’m m—1>
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then

n

O = (w+1)72) (—u)" oy, = 0,
k=0
Hence X = {00,01,...,0m—1,07,05,...,0,.} is a basis for a left ideal of H;
that supports a W -digraph. This W ;-digraph is isomorphic to the J-labeled
multigraph of Figure [L§ via 0; <> a; for 0 < j < m — 1, §; < j; for
I1<j<m.

Case 7. Figure [L9 or Figure [L10, m = 1, n > 2 arbitrary.
Suppose I' is one of the J-labeled digraphs of Figures [LOHI.IOL Then

with M = span{«g, f1}, Ts and T} induce the same operator 74 = 74 on M.
Thus the relation (Z.2]) holds automatically, and so I' is a W-digraph.

From the constructions above, it follows that (b) implies (a) in Theo-
rem [[L3] To establish the converse, we can reduce to the case S = J = {s,t},
1 <n=n(st) <oco, W=W;, H= Hy, and need only show that any
connected W-digraph I' is isomorphic to one of the J-labeled digraphs of
Figures [L3HLTIO, with m and n satisfying the appropriate divisibility condi-

tions.

Let X be the set of vertices of I', and let M = spanX be the associated
H-module. If o € X, then X C Ha because I' is connected, so |X| =
dimM = dim Ho < dim H = 2n. Moreover, |X| is even by Lemma 2.3
Since every vertex of I' is contained in exactly |S| = 2 edges, it follows that

[Mungir s a simple cycle of size 2m, where 1 < m < n.

Let vy be any vertex of I'. Number the remaining vertices v1,72, . - -, Y2m—1
in such a way that I' has an edge from ~;,_1 to 7; or from ~; to v;_1 for
1<¢<2m — 1. Put v2,,, = 70, so I also has an edge from ~9,,,—1 to 7o, or
from ~2,, to vy2,,—1. We consider the subscript j in 7, as an integer modulo

2m.

Recall the linear characters \; = ind, Ay = sgn : H — Q(u) of H are
determined by

M(Ts) = M(Ty) =u? and  M\y(Ty) = Mo(T}) = —1.
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If n is even, there are two additional linear characters A3, Ay : H — Q(u)

given by
A3(Ty) = u?, M3(Ty) = =1 and  \y(Ty) = —1, \(T}) = u®.

It is known that Hc = C(u)®q(,) H is split semisimple over C(u), any irre-
ducible representation of Hc of dimension greater than 1 is two-dimensional,
and the eigenvalues of T and T} in any two-dimensional irreducible represen-
tation are —1 and u? (see [5], or [2], 8.3). Let my, ma, mg3, my be the number
of summands in a direct sum decomposition of M¢ = C(u) ®q(y) M into irre-
ducible modules that afford A1, A2, A3, A4, respectively (with mg =m4 =0
if n is odd), and let N be the number of two-dimensional irreducible sum-
mands. With P, as in Lemma 23] T} has eigenvalues —1 and u? on each
subspace span {«, 8}, {a, B} € P, and thus T, has a total of m eigenvalues
—1 and m eigenvalues u? on M. Since the same is true of T}, we must have

mi+ms+N=mi+my+N=mg+mg+N=ms+mg+ N =m,

and so my = mo and m3g = my. By Lemma [2.4], the unique one-dimensional
subspace M; of M that affords the character \; is spanned by v; = 212;”1 Yis
and thus m; = 1. Hence mo = 1, so there is a unique one-dimensional
subspace My of M affording Ao. Let vg = 212:1 (iv; be a nonzero element of
M,. By Lemma 24] we have

—#Q‘—l if i1 — 4 Or Y1 N ~; is an edge of T,

¢ —u?(i if i 1 — v or Y1 AN ~; is an edge of I,
i . s t _
— LGy if 1 -2 45 0 Y1 = ; is an edge of T,
_ul-u

u—HQ—l if vi1 -2 Yi O Yi—1 L ~; is an edge of T'.

for 1 <14 < 2m. If m = 1, then it follows that the edge joining 9 and
71 labeled s must have the same type and direction as the edge joining ~q
and ; labeled ¢, and so I' is isomorphic to one of the J-labeled digraphs of
Figure We assume m > 2 for the remainder of the proof, so there
is a unique edge joining ~; to v;—1 for 1 <14 < 2m. Further,

2m C
Go = Gom = Cozl;[l o
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and so Hffl(g/g_l) = 1. It follows that the number of edges of type
~vi—1 — ;i (labeled either s or t) is equal to the number of edges of type
Yic1 — Vi, 1 <1 < 2m, and the number of edges of type v;—1 --+ ~; is
equal to the number of edges of type v;—1 =+ v;, 1 <@ < 2m.

Next, we compute the coefficient x; of v; in the expression for T,T}v;
as a linear combination of {7v1,...,72m}. These coefficients are given in
Table B.I], which is organized according to the types of edges joining 7; to
the adjacent vertices d, € in I'. (Either 6 = ;1 and € = 741 or 6 = 41
and € = vyj_1: the coeflicient x; is the same in either case.) The entries of

Table 3.1

edges in I'  coeflicient r; edges in I’ coefficient &
§ 25 e 0 § < Le 0
§ =, e u(u?—1) 5+ 7, Lhe 0
5—1%%5 0 5:—%45 0
6 -2, D cu(u? —u—1) § ¢y e u?
§<i'yj<L5 0 (5‘—%%#5 (u? —1)2
6y e 0 62 yy elo e (U —1)(u? —u—1)
§loqy e uu—1) §-2y e (-1 —u—1)
b 2o v; Lo cu(u? —u—1) §-2s vje-—e (U —u—1)2

t
this table are easily verified. For example, if v;_1 S ¥j —=* Vj4+1 are edges

in I', then

TsTyvy = Ts(uy; + (u+ 1)yp1) = uluyy + (u+ 1)yj-1) + (u + 1) Tsyj41,

2

and so k; = u” since Tyy;j41 € span{vy;j4+1,7j4+2}. On the other hand, if T’

has edges 7,41 ELAN V; L vj—1, then
Ty Tiyj = To(uvjn + (u+1)7y5-1) = u(@yion + (@ = 1)) + (u+ 1) Tsv;-1,

and so kj = u(u? — 1) because Tsy;_1 € span {yj_1,7Vj—2}-

From Table 3] we see that the constant term in the trace tr(7s1;) =

Z?Zl kj is equal to the number of sinks in I". However, TiT; has values
u* and 1 under \; and Ao, respectively, and value —u? under both A3 and
10,,2

U

0

Ay if n is even. Also, T,T; has eigenvalues of the form e , e 942 in any

two-dimensional irreducible representation of Hc, where ' is a complex nth

root of unity ([3], Theorem 2, or [2], Theorem 8.3.1). Therefore the constant
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term of tr(7s73) is my = 1. Hence T’ has a unique sink [, and so also a

unique source .

Renumbering the vertices if necessary, we can assume that v9 = . Since
I" has a unique sink 8 and the number of edges of type v;_1 = v; is equal
to the number of edges of type vi_1 — i, 1 <@ < 2m, and the number of
edges of type v;—1 --» ; is equal to the number of edges of type v;—1 --+ i,
1 <4 < 2m, it follows that 8 = ~,, is opposite to a.

Renumbering the vertices if needed, we can assume that vy and 7; are
connected by an edge labeled s. Define ’y} = Yom—j for 0 < 5 < m, so
B = ~,,. Then I', has the form shown in Figure Bl (Since each edge of

22m

I, arises from either a solid or a dashed edge in I', there are possible

J-labeled digraphs I with this configuration.)

/ !
mto e S By Sy,
S t
/ ™~
70 Ym
;\ /y
N5 % Tme2 7 Tmet

Figure 3.1 I,

From the discussion above, we know that the number of edges in I' of
type vi—1 --» 7 (labeled either s or t), 1 < i < m, is equal to the number
of edges of type 7/_; --» 7/, 1 < i < m. Also, from the description of the
eigenvalues of TsT; above, tr(TsT;) must be an even function of u. Let Ny
be the number of edges of the form £ --+ w with £ not a source, that is,
& # a =, and let Ny be the number of edges ¢ --+ w with w a sink, that
is, w = 8 = 7/,. Then from Table B} the coefficient of u® in tr(TsT}) is
N1 — Ny, and hence N7 = Njy. Therefore any edge of type £ --+» w that
does not begin at 9 must end at v/,,. Hence I' is isomorphic to one of the
J-labeled digraphs in Figures via ;¢ aj, 0 <7 <m—1, 79} < B,
I<j<m.

Finally, let 75 and 7; be as in (I3), and let A, (u), A;(u) be the (2m) x
(2m) matrices over Q[u] representing 75 and 7, with respect to the basis X

for M. Put Ay = A4(1), Ay = A4(1). Then

A2=T=42  TLAA =T AA
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by (1), [22)), and so s — A, t — A; extends to a representation of groups
W; — GL(2m,Q). One checks that the characteristic polynomial of the
matrix Ag = AgA; representing st is as given in Table Hence the order

Table 3.2
W-digraph characteristic polynomial of A
Figure 3] Figure [[4 Figure (2™ —1)?
Figure [[L6 Figure [.7] (z — 1) (2?1 = 1)
Figure [[.§ (z— 1) (™ +1)?

of Ay as an element of GL(2m, Q) is m in the case of Figures[[.3HLH 2m —1
in the case of Figures [L6HL7l and 2m — 2 in the case of Figure [L8 Since
this order must divide n, the proof is complete.

Proof of Corollary [1.7]. Let (W,S) be a Coxeter system, and let I" be
an S-labeled digraph. For J = {s,t} and 1 < n < oo, denote by F;,, the
collection of all J-labeled digraphs C of Figures [L3HLIO for which m =
|7(C)| /2 satisfies the divisibility conditions of Theorem [[L3l Then I is a
W-digraph if and only if whenever J = {s,t} C S with 1 < n = n(s,t) < oo,
each connected component of I'; is isomorphic to an element of F;,. It is
easily seen that Fj, is invariant under C' — Ci.,. Also, C is a connected
component of I'; if and only if Ciey is a connected component of (T j)yey-
The assertion of the corollary follows. O

Let w +— w* be an involutory automorphism of (W,S), and let I, =
{z € W|a* =2} be the set of twisted involutions of W. By Lusztig [6],
Theorem 0.1, there is an H-module M, with basis X = {m,, | w € I.} and
H-action determined by

Mgws* if sw # ws* > w,

T (u? — )My + U2 Mgps: if sw #£ ws* < w,
sy =

UMy, + (U4 1) Mgy if sw = ws* > w,

(u? —u —V)my, + (U2 — w)mg, if sw = w* < w.

(Here < and > refer to the usual Bruhat order on (W, S).) The basis X for
M, then affords the W-digraph I', defined by

My — Mgps* € &) <= swH#ws" >w

and
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S
My --* Mgy € (L) <= sw=ws">w.

Theorem 3.1. Let (W, S) be finite with longest element wy, and let I'y be
the W -digraph corresponding to the involutory automorphism w — w* of
(W,S). Then (I'y)rey is isomorphic to the W-digraph T'y corresponding to
the automorphism w — w? = wow*wgy of (W, S) via the bijection sending
my € V' (Ls) to myy, € V' (Ty).

Proof. Observe w; = wop since w — w* preserves lengths. Suppose z € I,
so ¥ = 27, Then zwy € Iy because

(zwo)* = wo(zwo)*wo = wor wowy = wor ™' = (zwp) .

Likewise, if zwg € Iy, then x € I,. If z,y € I, and s € S, then

my —>m, €E(Ty) <= = <y=srs*
<— ywo< xwo= (sys™)wo=s(ywo)(wos wy) = s(ywo)s#

= My, AN Maw, € & (T4),
and

Mg -2 my€&(ly) <= v <y=sx=us"

= ywo < zwo = (sy)wo=s(ywo) = (ys* )wo = (ywo)s#

S
= Mywy ——* Maw, € E(T4).

Therefore (I'y)rev is isomorphic to I'y via the bijection mg +— Mgy, on
vertices. 0

Corollary 3.2. If wg is central in W, then (I'y) ey is isomorphic to T'y.

Example 3.3. Suppose W = (r,s,t) with n(r,s) = n(s,t) = 3, n(r,t) = 2
and w* = w for w € W, so I, is the set of involutions in W (including
e). The corresponding W-digraph ', is shown in Figure (The vertices
are labeled x rather than m, for x € I,.) If w — w# is the nonidentity
graph automorphism of W, the corresponding W-digraph I'x is as shown in
Figure B3l Note (I's)rev = I'y.

Example 3.4. Suppose W = (r, s,t) with n(r,s) = 3, n(s,t) =4, n(r,t) =
2. With w — w* = w, I, is the set of involutions of W. The corresponding
W-digraph I, takes the form shown in Figure B4l Note (Ty)ey = ..
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rtstr rtstr

Figure 3.2 ', for W (As) Figure 3.3 Ty for W (A3)

4. The Proofs of Theorems [I.5], 1.7, 1.8, and [I.10]

Throughout this section (W,S) is a Coxeter system and I' is a W-
digraph. If ¢ = o - B € &T) or e = a -2» B € &), then we call
a 25 B € &) the image of ¢ in T_,. Clearly there is a directed path from
a to B in I' if and only if there is a directed path from a to 8 in I',.

Let Hy be the 0-Hecke algebra of (W, S) (see |g§], or [1], Chapter IV, §2,
Exercise 23, with Ay = —1, pus = 0 for s € §). Thus Hj is an associative
algebra over Q with generating set {as | s € S} satisfying the presentation

2

a; = —as
for s € S and
n(s,t) n(s,t)
—
asaias -+ = Grasa -

if s,t € S, n(s,t) < oco. Also, Hy has basis {a,, | w € W} with a. the identity
element of Hy and

a if sw > w,
Qs =< (4.1)
—a, if sw < w.
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t s
< ----- r sTs rtstr
o LT Tr TT
‘ t ‘ s t
t <------ e ----- > 5§ —> tst

t
sts ----> stst

s lr lr s

ststwg - -> stswy

s .7 \i
L
t S t
tstwg —— swg ----> wy <--- twy

A A
T T T r T T
s | |
rtstrwg — Srswg —> rwg < - - rtwg

Figure 3.4 T, for W(Bj3)

It follows that for x,y € W, there is z € W such that
agay = *a, and max{{(z),l(y)} < {(2),
and
Aply = Gy <= (z) +L(y) = L(zY).

If (W, S) is finite and wy is the longest element of W, then
Ay Qopy = (—1)6(“’)aw0 = Qo Qo

for w e W.

Let M = M(T") be the module afforded by I', so M has basis X = 7/(I')
over Q(u). Let My be the Q-subspace of M with basis X. For s € S, define

a Q-linear operator (75)9 on My by

(7s)o(a) =

—a if ais a sink in I';.

{5 if a =5 B e &),

Notice that by (L3, (7s)o(c) can be obtained by replacing the coefficients

of the image 75(c) expressed as a linear combination of the elements of X
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with their values at u = 0. Since in gl(M) we have

n(s,t) n(s,t)
(re—u)(me+1) =0  and  Tomme S =Tmen
it follows that in gl(Mjy) we have
n(s,t) n(s,t)
(7)) = =(s)o  and  (ms)o(7)o(7s)o- - = (m)o(Ts)o(7e)o - -

if n(s,t) < co. Hence as — (75)o defines a representation pg : Hy — gl(Mp),
giving My the structure of an Hy-module. In particular, for o € 7/ (I),

o {5 if o =5 g e &), 2)

—a if ais a sink in T'ggy.

Lemma 4.1. Assume (W, S) is a Coxeter system, I' is a W-digraph, X =
¥ (T), and Hy acts on My as described above. Then the following hold.

(i) Ifa € X and w € W, then aya € X or —a,o € X.

(ii) If B € X, then there exists some w € W such that f = +ay« if and
only if there is a directed path from « to 8 in T.

Proof. Since a,, = as,as, - as, if s152...5¢ is a reduced expression for
w € W by [, an easy induction argument based on (2] establishes (i).

For (ii), we can argue with I, in place of I". Suppose 5 € X and there
is some directed path

S1 82 S3 Sk—1 Sk
Y0 7 V2 Ve—1 — Vk (4.3)

in I', with 790 = a, 7 = . Define y € W by *a, = as,as, , - as,05,.
Then

fayo = a5, 0, | - Usy 05,70 = Vi = .

Conversely, assume § = fa,a € X, where w € W. Let w = tytp_q1---totq
be a reduced expression for w as a product of generators tg,...,t; € S, so
QG = ag, -~ agay by @I). Put do = a and 05 = ar;0;1 for 1 < j < F,
so f = £d;. By (i), there are ¢; € {—1,1} such that o; = ¢;0; € X for



2016] A CLASS OF REPRESENTATIONS OF HECKE ALGEBRAS 329

0<j <k Thenforl <j<k,aj1#a;ifandonlyifa;_; i> a; € E(I)
0 < g1 < ja < -+ < jgarethe values of j, 1 < j < k, for which oj_1 # ¢,
then

is a directed path in I, from « to 5. Thus (ii) holds. O

Lemma 4.2. Assume (W, S) is a Cozeter system, I is a W -digraph, X =
VY (I'), and Hy acts on My as in [@2). For w € X, the following are equiva-

lent.
(i) w is a sink in T.
(il) asw = —w for all s € S.
(iil) apw = (=1 @y for all w e W.
Moreover, if (W, S) is finite, then (1)—(iii) are equivalent to

(iv) w = fay,« for some o € X.

Proof. If w is a sink in I, then asw = —w for all s € S by (£2). Thus (i)
implies (ii).

Assume a;w = —w for all s € § and w € W has reduced expression
w = $182 -+ - S,. Then by (@),

A = gy gy -+ g = (—1)Fw = (=1) Wy,

Hence (ii) imples (iii).

Suppose a,w = (—1)“®w for all w € W. Then a,w = —w for all s € S,
and thus w must be a sink in I' by ([@2]). Hence (iii) implies (i).

Suppose (W, S) is finite and w = a,,«, where o € X and € € {—1,1}.
Then

asw = As(EQuy ) = (A5, )0 = —EQ,a = —w

for any s € S, and so w is a sink in I'. Conversely, if w is a sink in I, then
awew = (—1)Nw = +w by [@2), where N = f(wy), and thus w = Fa,,w.
Hence (i) and (iv) are equivalent. O



330 DEAN ALVIS [June

Define relations = ; and = on the set of directed paths in I' as follows.
If 1 and 7y are directed paths in I' and s,t € S satisfy 1 < n(s,t) < oo,
then 7 =,; mo if there is some connected component C of Tisny such that
w1 and 7o both pass through the source o and the sink w of C', and 7o can
be obtained from 7 by replacing one of the directed paths from ¢ to w in
I'¢s ¢y by the other. Let = be the equivalence relation on directed paths in
I' generated by the relations =5, for s,t € S, 1 < n(s,t) < oo. Similar
relations, also denoted =,; and =, can be defined for directed paths in I'.
It is clear that two directed paths in I' are in the same = equivalence class
if and only if their images in [, are in the same = equivalence class.

For a € ¥(I'), denote by [a,00) the set of all 5 € #(I') such that
there exists a directed path in T from « to 8. Clearly if 5 € [a,00) and
v € [B,00), then v € [a,00). For € [a,00), let (e, B) be the minimum
number of edges in a directed path from « to § (with p(a, ) = 0).

Lemma 4.3. Suppose (W, S) is a Cozeter system such that n(s,t) < oo for
all s,t € S, and I' is a W-digraph with source o.

(i) If a € [0,00), then any two directed paths from o to o are in the same
=-equivalence class.

(ii) If a € [0,0), ¢ € ¥(T'), and « € [¢,0), then ¢ € [0,00).
(iii) IfT is connected, then ¥ (') = [0, 0).

Proof. We can argue with I, in place of I'. We prove (i) and (ii) simul-
taneously by induction on pu(o,«). If u(o,a) = 0, then oo = o, so (i) holds
because the only directed path from ¢ to o is the empty path because o is
a source. Also, if & = o € [y,00), then there is a directed path from v to o,
so the path must be empty and v = ¢ € [0, 00), and thus (ii) holds.

Suppose p(o,a) = k > 0 and (i) and (ii) hold with g in place of «
whenever 5 € [0,00) and u(o, 3) < k. Let w1 be some directed path from o
to a with k edges, and let w5 be an arbitrary directed path from o to a. For
Jj=1,2,let e € &) be the last edge of m; and let p; be the remainder
of the path 7, so m; = p;e;, where juxtaposition indicates concatination
of paths. Thus e takes the form f — « for some s € S and g € #(T)
with 8 € [0,00) and u(o,B) = k — 1. Also, 2 has the form -~y s o for
some t € S, yve ¥({I). Ift = s, then vy = 3, so p1 = p2 by (i) applied
to B, and thus m; = my as desired. Suppose t # s. Let 7 be the source of
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the connected component C of (T ),y whose sink is a. (Note that C has
a unique source by the classification of possible connected components of
L5, given in Theorem [[3]) Let 11 (v2) be the directed path in C' from 7 to
B (7, respectively), so vie; =4+ vae2. Since € [1,00), we have T € [0, 00)
by (ii) applied to 3, and so there is some directed path p from o to 7 in I',.
(See Figure 1] in which edges represent directed paths in I',.) We have

B
N
Y

Figure 4.1

p1 = pv1 by (i) applied to 8, and thus pry has k — 1 edges. Since v; and vy
have the same number of edges, it follows that prs also has k — 1 edges, and
thus p(o,7y) < k—1. Hence by (i) applied to v, we also have pry = ps. Thus

m = pie1 = (pr1)er = p(rie1)

= p(vagz) = (pr2)e = paee = .

Therefore (i) holds for a.

Now suppose a € [0,00). Let 1) be a directed path from § to a. Write
Y = ey, where ¢g € &(I',) is the last edge of 1, so ¢ has the form
¢ — aforsomer e S, ¢ € ¥(T). If r=s, then f = ¢ € [§,00), and hence
0 € [0,00) by (ii) applied to 8. Assume r # s. Let x be the source of the
connected component of (I )y, ;1 whose sink is . (See Figure 2] in which
the edges represent directed paths in I',.) There exists some directed path
from o to k by (ii) applied to 8. The argument given above for v applies to

N
?\\ \ /

f———

Flgure 4.2
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show that u(o,¢) < k—1. Since ¢ € [), ), it follows that § € [0, 00) by (ii)
applied to ¢. Hence (ii) holds for «, so the proof of (i) and (ii) is complete.

Finally, suppose I" is connected. For o € #(I"), let §() be the minimal
number of edges in a path in I'ypqi; from o to a. We prove a € [o, 00) for all
a € ¥(T') by induction on §(c). If 6(a) = 0, then o« = o € [0,00). Suppose
d(ar) =€ >0 and 7 € [0,00) whenever v € ¥(T") and 6(y) < £. Let f — «
be the last edge of a path in I'ynqi from o to « of length ¢, so 6(8) =4 —1
and 3 € [o,00). If @« >+ B € &(T,) for some s € S, then a € [0, 00) because
B € [o,00) and « € [,00). On the other hand, if a — § € &(I'), then
B € [a,00), and so « € [o,00) by (ii) applied to 5. Hence a € [0, 00) for all
a € ¥ (I'), and therefore ¥ (I') = [0, 00). This completes the proof. O

Example 4.4. Let W = W(As) = (r,s,t), with n(r,s) = 3 = n(s,t),

n(r,t) = 2, and let I be as in Figure 3l The directed paths ap — a3 — f33
t s . .

and ap — [y —— 3 from o to B3 are not in the same =-equivalence

class (even though adjoining the edge a; — ap to both does produce two

equivalent paths). Therefore the conclusion of Lemma [3|(i) does not apply

to arbitrary directed paths in a W-digraph.

r s t

a1 (0%)) Qs Qy
r s t

b1 B2 B3 B4

Figure 4.3 Digraph for Example 4]

We now prove Theorems [[5] [L7, I8, and [LI0L

Proof of Theorem [1.5. Assume n(s,t) < oo for all s,t € S and I is a
connected W-digraph. Since I'yey is also a connected W-digraph by Corol-
lary [[4] it is enough to prove the assertions involving sources. Suppose o is
a source of I'. Then ¥(I') = [0, 00) by Lemma 3] (iii). Hence if v # o is a
vertex of I', there must be some nonempty directed path in I' from o to 7,
and so « cannot be a source. Thus o is the unique source of I', so part (i)
of the theorem holds.

Suppose I" has source o but is not acyclic. Let a € #(T") be contained
in a nonempty directed circuit p in I'. Since o € [0,00), there is some
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directed path 7 from ¢ to a. Then the directed paths m and 7p from o to
« are in different = equivalence classes because their lengths are different,

contradicting Lemma 3] (i). Thus part (ii) of the theorem holds.

Finally, assume (W, S) is finite. By Lemma 2] T, has a sink. Thus

I" has a source, so part (iii) of the theorem holds. O

Proof of Theorem [1.7]. Assume ¥ (I') is finite. For a linear character A
of H, it is easily seen that M(I")y is the direct sum of M (C)y as C ranges
over the connected components of I'. By Lemma [24)(i), if C' is a connected

component of T', then v € M(C)j,q if and only if v is a scalar multiple of
Zae“ﬂ(c) . Thus (1) holds.

Suppose now that n(s,t) < oo for s,t € S. Let C' be a connected
component of I". Assume C' is acyclic. Then since #'(C') is finite, there must
be a source ¢ in C, and this source is unique by Theorem [[5(i). Assign to
each solid edge in C the weight —1/u?, and to each dashed edge in C assign
the weight —(u + 1)/(u? — u). For a € #(C), let pq be the product of the
weights of the edges of any directed path from o to a in C: p, is well-defined
by Lemma [A.3)(i) since such products are constant on =-equivalence classes.
If « —= B is an edge of C, then g = — o /u?, while if o N B is an edge of
C, then pg = —(u + 1)t/ (u?* — u). By Lemma 2A(ii), v € M(C)sgn if and
only if v is a scalar multiple of Zae”//(C') pace. Therefore dim M (C)ggn = 1.

Conversely, suppose v = >~ cy (o) Vot € M(C)sgn is nonzero. Since

at least one of the coefficients v, is nonzero and C' is connected, all of the

coefficients v, are nonzero by Lemma 2.4{(ii). Assume

S1 52 S3 Sk—1 Sk
Y0 ga! V2 e Ye—1 — Yk

is a directed path in C_,, where k > 0, s1,82,...,5:, € S. For 1 < j <k we

have
1 , 5;
y LG if yj1 —> 75 € £(0),
T u+1 . s
— vy, iy - € 6(0),
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If v = vk, then
k

. . Vy;
V’Yo - V% - 1/'70 )

j=1 V’ijl

and therefore H;?:'l(y,yj / 1/7],_1) =1, Which is impossible since the product is
equal to 4u~ 29 (y + 1)7 (u? — u) =7 for some j with 0 < j < k. Therefore
C' is acyclic, so the proof of (ii) is complete. O

Proof of Theorem [1.8. Assume (W, S) is a finite Coxeter system, I" is a
connected W-digraph, and J C S. Let

ry=Ja

icl

be the decomposition of Iy into its connected components, indexed by some
set I. Let o; € #(I') be the source of C;. If o is the source of I', then
in M(I')o we have 0; = Fa,;o for some z(i) € W by Lemma E3iii)
and Lemma [IJii). Since o; is the source of Cj, we have aso; # —o;
for s € J, so asay;) # —ly5), and thus sz(i) > x(i), for all s € J.
Hence z(7) is in the set of distinguished right coset representatives X; =
{fweW |sw>wforseJ} of Wyin W. Since 0; # o; when i # j are in
I, i+ x(i) is an injection from I into X ;. O

Example 4.5. Let (W, S) be a Coxeter system. Let I be the W-digraph
defined by #(T) = W and z —» y € &(T) if and only if < sz = y for
x,y € W, s € S. Then the H-module M(T") afforded by T" is isomorphic to
the left regular module H. Note that I' is connected since if w = sgsg_1-- - $1
is a reduced expression for w € W and x; = s;sj_1---s1 for 0 < j < k (with
xg =€), then

S1 52 Sk—1 Sk
o I T—1 — Tk

is a directed path from e to w in I'. When (W,S) is finite, this example
shows that the bound in Corollary is always attained.

Proof.[Proof of Theorem [[LI0] Suppose n(s,t) < oo for all s,t € S and T’
is a connected W-digraph with source o. (The case in which I' has a sink
follows by applying the same reasoning to I'yey.) Let 71, my be two directed
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paths in I' from a to 8. Let p be some directed path from o to a: such a
path exists by Lemma 3 (iii). By Lemma F.3 (i), the directed paths pm;
and pmy from o to 8 are in the same = equivalence class, and thus have the

same number of edges. Hence m; and 79 have the same number of edges. O

5. The Proof of Theorem .11

Let o be an automorphism of Q(u), and let M be a vector space over
Q(u). Let “M be the vector space over Q(u) that has the same additive

group as M and scalar multiplication («,v) — « %, v given by

o

axev=("a)v,

where the scalar multiplication on the right hand side is that of M. It is
clear that if Y C M, then Y is a basis (subspace) of M if and only if YV is
a basis (subspace, respectively) of M. Moreover, gl(M) = gl(? M) since if
w: M — M is an additive mapping, then

plaxsv) = axsp(v) <= @((Ca)v) = (Ta)p(v)
for a € Q(u), v € M.

Lemma 5.1. Let (W,S) be a Cozeter system, and let M = M(T") be the
H-module afforded by the W -digraph T'. Let o be the automorphism of Q(u)
determined by “u = —1/u. For s € S, let 7, € gl(M) be the operator v
Tsv. Then Ts v 7,1 € gl(° M) extends to a representation H — gl(°M).
Moreover, as a basis for the H-module M, X = ¥(I') supports the W -
digraph T rey.

Proof. Let s € S. Since (75 — u?)(7s + 1) = 0 in gl(M), we have (75 —
u=2)(7s + 1) = 0 in gl(? M), and thus (r;! — u?)(r;1 + 1) = 0 in gl(" M).

s

Also, if s,t € S and 1 < n(s,t) < oo, then

n(s,t) n(s,t) n(s,t) n(s,t)
——
Sl = (77’7?8)—1 — (m)—l A

T s

s

Therefore T, + 7, ! extends to a representation H — gl(? M).
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Now suppose a,3 € X, s € S. If « — J is an edge of I, then one
checks that

7 0) =W~ 1) s a+u’x, B and 7,'(8) =a

in “M. On the other hand, if « BN 5 is an edge of I', then

7 a) = (W —u—1)s,a+ W —u)xf and 7,1(B) = (u+1)*, a+u*,f
in M. These relations show that the basis X for M supports the W-
digraph I'iey, so the proof is complete. O

For a matrix A over Q(u), denote by “A the matrix obtained by applying
the automorphism o of Q(u) to each entry of A.

Corollary 5.2. Suppose I' is a W-digraph, X = ¥ () is finite, and o is
the automorphism of Q(u) determined by “u = —1/u. Let p and pre, be
the matriz representations relative to the basis X for the actions of H on
M = M(T') and °M according to the W -digraphs T' and T e, respectively.
Then

prev(Tw) = OP(TJ—ll) (51)

forweW.

Proof. From the proof of Lemma 5.1l we have pyey(Ts) = “p(T; ) for s € S.
The assertion follows since if w € W has reduced expression w = s1 - - - S,
then T, = T4, Ty, -+ Ty and T Y, =TT T, 1 O

Next assume n(s,t) < oo for s,t € S, I' is an acyclic W-digraph, and
¥ (I') is finite. For a« € X = #(I'), let o, be the source in the connected
component of I' containing «, and let u(«) be the number of edges in a
directed path from o, to a. (Thus u(a) is well-defined by Lemma [3]i).)
Put e, = (—1)*® for o € X, and define X’ = {e,a | &« € X}. Let p/ be the
matrix representation afforded by M (T") with basis X', and let py, be the
matrix representation corresponding to M (I'ye,) with basis X.

Lemma 5.3. If n(s,t) < oo for s,t € S, T' is an acyclic W -digraph, ¥ (T')
is finite, and prey and p' are defined as above, then

prev(Tw) = ewtip (T )T forw e W. (5.2)
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Proof. Let s € S. Suppose a —— € &(I), so also f = a € &(Trey).
Thus in M(T'}ey) we have

T = (u? — 1o+ u?B and 1.8 = «,

so the matrix of T acting on the subspace with basis {a, 8} is

w?—-11
u? 0/

On the other hand, eg = —¢, and usT; 1 = T — (u? — 1), so in M(T) we
have
esus T leqa = —&4 (Ts — (u? — D)a=—e, (8- (u? — Da)
= (u? — 1)eqa + 58
and
esusT, tegB = —ep (Ts — (u® — 1)) B

= —e5 ((u® — 1)B +va — (u® — 1)B)

= u’eq0,

so the matrix of e;usT; ! acting on the subspace with basis {e,a, egf} is

u? — 1 u?
1 0)
Now suppose that o ->» 8 € &(T). Then in M (T';ey) we have

T = (v —u— 1o+ (u? —u)B

and
T,6 = (u+ 1)a+up,

so the matrix of T acting on the subspace with basis {a, 8} is

w—u—1u+1
- U ’



338 DEAN ALVIS [June

In M(T") we have

ssusTs_lsaa = —¢, (TS — (u2 — 1)) o
= —gq (ua+ (u+1)8 — (u* — 1)a)
= (u? —u—1)eqa+ (u+1)egB

and

esusT, TepB = —eg (T, — (u® — 1)) 8
e (2 —u— DB+ (6 — w)a — (u? — 1)5)
= (u? — uw)eqa + b,

so the matrix of e,usT; ! acting on the subspace with basis {e,, egf} is

w—u—1u—u
u+1 u ’
To summarize, (5.2)) holds when w = s € S. The general case fol-
lows since if w € W has reduced expression w = s189---8p, then T, =

T, Tsy T O

ket

Proof of Theorem [1.11l. Part (i) of the theorem follows by taking traces
in (B.I)). Since xr coincides with the character afforded by the matrix rep-
resentation p’, part (ii) of the theorem follows by taking traces in (B2)). O

6. The proof of Theorem

Proof. Suppose (W;,J) is finite for proper subsets J of S and I' is a
finite, connected W-digraph. Suppose further that M(I") is isomorphic to
the module M (V) afforded by a W-graph ¥ for (W,S) (in the sense of [4]),
and that I" is not acyclic. For z in the set of vertices ¥ (V) of ¥, let I, C §
be the associated set of generators. For 8 € #(I'), let In(3) be the set of
s € S such that T’ as an edge of the form o —+ 8 or « . B for some
a € ¥ (I'). Let xr = xw be the character of H afforded by M (I') or M (V).
Put

Nr(J) =[{p e 7(I) [In(B) = T}, Nu(J)=[{z e V()| L. = J}|
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for J C S. Since M(T")ing = M (¥)ing is one-dimensional by Theorem [I.7](i),
we must have Ng () > 0. Also, since I' is not acyclic, M(I')ggn = {0} =
M (¥)sgn by Theorem [[7(ii), and therefore Ng(S) = 0. Further, I' has no
sink by Theorem [[5] and so also Np(S) = 0. For w € W, let J(w) be the
minimal J C S such that w € W;. Then

YTl = 2w [{o € #(W) | J(w) C L]
Since I, # S for x € ¥ (V¥), we have

0<Ne@) = > > ew= D  cwlfze?(¥)]J(w)C L}

€V (V) weWry, weW,J(w)#S
= > xu(Twluo
weW,J(w)#S

with the sums finite by assumption. On the other hand, if J(w) # S5,
then Ty, is acyclic by Theorem [LAliii), so if ¥(T') is ordered in a way
consistent with directed paths in I';,), then the matrix representing T},
acting on M (T'), when evaluated at u = 0, is triangular. Moreover, the
nonzero diagonal entries of this matrix are all equal to €, occurring in
positions corresponding to those g € #(I') such that J(w) C In(3). Since
In(B) # S for g € ¥ (T') and xr = xw, it follows that

0< > xr(Twl=o= Y cwl{Be¥T)]J(w) S (B}

weW,J (w)#£S wEW,J (w)#£S

= Z Z 5w:NF(®)7

BE“I/(F) wEWIn(ﬁ)

and so I' has a source. Therefore I' is acyclic by Theorem O

7. Additional Examples

Let (W,S) be a Coxeter system, let v — 7% be the automorphism of
Q(u) determined by @ = u~!, and let h — h be the ring automorphism
> wew Ywlw — ZweW%TJ_ll of H. Following Lusztig [6], define a bar
operator on an H-module M to be an additive bijection ¢ : M — M such
that

o(hv) = hp(v) forhe H,ve M. (7.1)
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Let I'yx be the W-digraph associated with an involutory automorphism w —
w* of (W,S), as described before Theorem Bl Lusztig has shown that
M (T,) admits a unique bar operator that fixes the source of 'y ([6], The-
orem 0.2). It can be shown that if (W,S) is finite, then any H-module
admits a bar operator. However, there need not be a bar operator if (W, .S)

is infinite, as the next example shows.

Example 7.1. With W = W(ﬁg) = (r,s,t), let T be as in Figure [[I] and
put w = tsr. Suppose a bar operator ¢ exists on M(I'). Let « be the
vertex in the lower left corner of Figure [[1] so Tisra = T3TsTrao = . Then
Tisrp(@) = p(a), so p(a) = Trae(a) is a fixed point of T,s. However, one
checks that the characteristic polynomial of T} acting on M(T') is (A2 +

1)(A%2 — u%) (X — u%)?, so a contradiction is obtained. Also, I' provides an

Figure 7.1 W-digraph for Example [7.1]

example in which the equation of Theorem [LIII(ii) fails: with y = w™! =

rst, one checks that xr,., (T,) = ”Xp(Ty__ll) = 2 and gyuyxr (T, 1) = —2.
Moreover, M(T") does not afford a W-graph by Theorem

Even if (W, S) is finite and I is connected, there may not exist a bar

operator on M (I") that fixes the source of T', as the next example shows.

Example 7.2. Let W = W(Bs) = (r,s,t), with n(r,s) = 3, n(r,t) = 2,
n(s,t) = 4. Let T' be the W-digraph of Figure Suppose M = M (T)
admits a source-fixing bar operator ¢ : M — M. Since v is the source of T"

and vg = 1. T5vg, we have

p(va) =T, Tyvg = u™(T; — (u? = D)(Ts — (u — 1))vo

=y (U4 - (u2 —1)vg — (u2 — 1)vg + (UQ B 1)200) . (7.2)
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r $ r
r \

s P S
V9 —> U3 U5 —> U7

t
Figure 7.2 Digraph for Example

On the other hand, vy = T;Tsvg, so we also have

p(va) =T, Tyvo = wH(T; — (u” = ))(Ts — (u? —1))vo

=y (7)4 - (u2 — 1wy — (u2 — 1oy + (u2 . 1)21)0) ' (7.3)

Since (7.2)) and (73] cannot simultaneously hold, a contradiction is reached.
Thus M does not admit a source-fixing bar operator.

Let (W, S) be finite, and let I" be a finite W-digraph. By Theorem [L.T1]
we have xr|,__; = sgny - X1/, - Thus if (W, S) has no connected compo-
nents with exceptional characters in the sense of Gyoja [3], then xr|,_, =
XT|y—_q is self-associated, that is, xr|,_; = sgnw - xr|,—;- In particu-
lar, if (W,.S) has no component of type Hs3, Hy, E7, or Eg, then xr|,_; is
self-associated. Our final example shows that if (W,S) has an exceptional
character, then xr|,_, need not be self-associated.

Example 7.3. Let W = W(H3) = (r,s,t) with n(r,s) = 3, n(s,t) = 5,
n(r,t) = 2. The W-digraph I' of Figure [Z.3] affords the non-self-associated
character xr|,_,; = 1w + sgny + xa, where x4 is the irreducible character
of degree 4 with value —4 at the longest element of W. Then xr,.. |, =

sghyy - XF‘uzl # XF"U,:]_'
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