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Abstract

In this paper we prove that there exists a random sequence 6; for the Glimm scheme
such that the approximate solution u€(t) converges to the exact semigroup solution S:@ of

the strictly hyperbolic system of conservation laws
ut + f(u)e =0, ut=0)=1a

as follows: for all 7' > 0 it holds
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This result is the extension of the analysis of |§] to the general case, when no assumptions
on the flux f are made besides strict hyperbolicity. As a corollary, we obtain a deterministic

version of the Glimm scheme for the general system case, extending the analysis of [14].

The analysis requires an extension of the quadratic interaction estimates obtained in

|3] in order to analyze interaction occurring during an interval of time.
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1. Introduction

A strict hyperbolic system of conservation laws in one space dimension
(see [5]) is a system of PDEs of the form

up + fu)y =0, (1.1)

where u : [0,00) x R — R™ is the unknown and f: Q C R"™ — R" is a given
smooth (C?) map, called fluz, defined on a neighborhood © of a compact set
K C R"™ and satisfying the strict hyperbolicity condition, i.e. the Jacobian
Df(u) of f has n distinct eigenvalues

A(u) < - < Ap(u) (1.2)

in each point u € Q of its domain. Throughout this paper, we will assume
w.l.o.g. that 0 € K C  and

Ai(u) € [0,1] for all k and for all w. (1.3)

This can always be achieved by a change of variable in the (¢,z)-plane. As
it is customary, denote by 71 (u), ..., r,(u) the right eigenvalues (normalized
to 1) associated to Ai(u), ..., A\,(u) respectively:

D f(u)rg(u) = Ag(uw)rg(u), for all kK =1,...,n and for all u € Q.
Equation (LIJ) is usually coupled with an initial datum
u(t =0) = a, (1.4)

where @ : R — R" is a given map, with sufficiently small total variation.

W.l.o.g. we assume also that @ has compact support.

It is well known that classical (smooth) solutions to the Cauchy problem
(LI)—(L4) are in general not defined on the whole time interval [0, o), even
if the initial datum is smooth, because they develop discontinuities in finite
time. On the other hand, the notion of distributional solution is too weak
to guarantee the uniqueness. For this reasons the notion of solution which

is typically used is the following one.

1

ioc 18 said to be

Definition 1.1. A map u : [0,00) x R — R" belonging to L
a weak solution of the Cauchy problem (LI))—(L4) if:
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(1) u satisfies equation (L] in the sense of distributions;

(2) w is continuous as a map [0,00) = Li (R;R™);

(3) at time t = 0, u(0,z) = u(x);

(4) w satisfies some additional admissibility criteria, which follow from phys-
ical or stability considerations and guarantee the uniqueness of the solu-
tion.

Many admissibility criteria have been proposed in the literature: just to
name a few, the Lax-Liu condition on shocks (see [10, [12,13]), the entropy
condition (see [11]), the vanishing viscosity criterion (see [2]). We do not
want to enter into details: the interested reader can refer to the cited liter-
ature.

1.1. The Riemann problem

The basic ingredient to solve the Cauchy problem (LI)—(T4) is the
solution of the Riemann problem, i.e. the Cauchy problem when the initial
datum has the simple form

ul ifz <0,

u(0,z) = u(x) = { R (1.5)

ut if x> 0.

The solution of the Riemann problem (LIJ)—(L5]) was obtained first by
P. Lax in 1957 [10], under the assumption that each characteristic field is
either genuinely non linear (GNL), i.e

Vg (u) - ri(u) #0 for any w,
or linearly degenerate (LD), i.e.
Ve (u) - ri(u) =0 for any w.

In this case, if |uR — uL\ < 1, using the Implicit Function Theorem, one
can find intermediate states u” = wg,wi, ..., w, = u® such that each pair of
adjacent states (wg_1,wy) can be connected by either a shock or a rarefaction
wave or a contact discontinuity of the k-th family. The complete solution is
now obtained by piecing together the solutions of the n Riemann problems

(wg—1,wy) on different sectors of the (¢, z)-plane.
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In the general case (here and in the rest of the paper, by general case
we mean that no assumption on f is made besides strict hyperbolicity), the
solution to the Riemann problem (u”, u®) was obtained by S. Bianchini and
A. Bressan in [2]. They first construct, for any left state v’ and for any
family k = 1,...,n, a curve s — TFu of admissible right states, defined
for s € R small enough, such that the Riemann problem (u’, T*u’) can be
solved by (countable many) admissible shocks (in the sense of being limits
of travelling profiles for the viscosity approximation), contact discontinuities
and rarefactions waves. Then, as in the GNL/LD case, the global solution of
(uL , uR) is obtained by piecing together the solutions of n Riemann problems,
one for each family: namely by using the Implicit Function Theorem to write

uR:Tglo---oTslluL
and solve each Riemann problem (wy_1,wy) with admissible waves of the
k-th family, where

_ 7k 1,L
wg =15, 0---oTgu”.

In Section 2.1 we briefly recall the construction of the admissible curves
s+ Thul,

1.2. Glimm approximate solutions in the GNL/LD case

The first result about existence of solutions to the Cauchy problem
(LI)—(@4) can be found in the celebrated paper by J. Glimm [9] in 1965,
in which the existence of solutions is proved under the assumption that each
characteristic field is either GNL or LD. In [9], for all £ > 0 an approximate
solution u®(t,x) is constructed by recursion as follows. First of all, take a
sampling sequence {¥;};eny C [0,1]. The algorithm starts choosing, at time
t = 0, an approximation u® of the initial datum u, such that @® is compactly
supported, right continuous, piecewise constant with jumps located at points
t = me, m € Z. We can thus separately solve the Riemann problems located
at (t,z) = (0, me), m € Z. Thanks to (I.3]), the solution u*(¢,x) can now be
prolonged up to time t = €. At t = ¢ a restarting procedure is used. The
value of u® at time ¢ is redefined as

u®(e+, ) := u®(e—, me + ¥1¢), if x € [me, (m + 1)e). (1.6)
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The solution u(e, -) is now again piecewise constant with compact support,
with discontinuities on points of the form = = me, m € Z. If the sizes of
the jumps are sufficiently small, we can again solve the Riemann problem at
each point (¢,z) = (¢,me), m € Z and thus prolong the solution up to time
2e, where again the restarting procedure (L6 is used, with 92 instead of
1. The above procedure can be repeated on any time interval [ie, (i + 1)e],
i € N, as far as the size of the jump at each grid point (ic, me), i € N,;m € Z,

remains small enough: this is the case whenever
Tot.Var.(u®(t); R) < 1. (1.7)

In order to prove (L7), Glimm introduced a uniformly bounded decreasing

functional

t— QEIM™ (1) < O(1)Tot. Var.(@)?,
such that at any time ie, i € N,

Tot.Var.(u®(ie+); R) — Tot. Var.(u(ic—); R)
< 0(1)(QEM™M™ (je—) — QUIM™ (je+)). (1.8)

Here and in the following O(1) denotes a constant which depends only on the
flux f and on the sampling sequence {1;};. As an immediate consequence, we
get Tot.Var.(u®(t); R) < O(1)Tot.Var.(u®(0); R) < 1 and thus the solution
u(t,z) can be defined on the whole (¢, z)-plane [0,00) x R. The uniform
bound on the Tot.Var.(u®(t); R) yields a compactness on the family {u®}.:
we can thus extract a converging subsequence, which turns out to be, for

almost every sampling sequence {¥;};, a weak admissible solution of the
Cauchy problem (L1)—(T4).

In 1977 T.-P. Liu [14] gave a deterministic version of Glimm’s result,

showing that if the sampling sequence is equidistributed, i.e. for all A € [0, 1],

lim flie N|1<i<jandd; €0,)\}

Jj—00 i

=,

then the subsequence extracted from {u®}. converges to a weak admissible

solution of (LI))—(T4).
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The analysis of the stability in L! of the solution of (LI)—(L4) w.r.t the
initial datum @ led to the introduction of the notion of standard Riemann
semigroup.

Definition 1.2. A standard Riemann semigroup for the system of con-
servation laws (LI) is a map S : D x [0,00) — D, defined on a domain
D C LY(R;R") containing all functions with sufficiently small total varia-
tion, with the following properties:

(1) for some Lipschitz constants L, L',

|S¢w — Ssv|li < L|ju— |y + L'|t — s|, for all w,v € D, t,s > 0; (1.9)

(2) if w € D is piecewise constant, then for ¢ > 0 sufficiently small S;u coin-
cides with the solution of (ILI])—(T4]), which is obtained by piecing to-
gether the standard self-similar solutions of the corresponding Riemann
problems.

If it exists, the standard Riemann semigroup is unique [4].

In the GNL/LD case it is proved (see, among others, [6, [7,[16]) that the
standard Riemann semigroup exists and that at any time ¢ > 0 the solution
u(t) obtained as limit of Glimm approximations u®(t), for the initial datum
4, coincides with the semigroup trajectory S;u. We will discuss in the next
section the general case.

Relying on the existence of the standard Riemann semigroup for GNL/LD
systems, in 1998 A. Bressan and A. Marson [§] further improved the Glimm
sampling method, constructing an equidistributed sequence {1J;}, satisfying
the additional assumption:

HieN |1 <i<jpand ¥; € [0,A]} <C'1+log(j2—j1)

sup |A < - -
J2 — 1

A€[0,1] Je— 1
(1.10)
Using this sequence, they were able to prove that the rate of convergence
of the Glimm approximate solutions u®(t) to the semigroup weak admissible
solution u(t) = Syu at every fixed time ¢ is given by
. Hua(tv ')_StaHLl
lim =
e—0 ‘ log 5‘ Ve

(1.11)
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1.3. Glimm approximate solutions in the general case

All the results cited in the previous section were obtained under the
assumption that each characteristic field is either GNL or LD. In this section
we consider now the general case, when this assumption is removed and the

only requirement is that the system is strictly hyperbolic (L2)).

The problem of finding a suitable decreasing potential to bound the
increase of t — Tot.Var.(u®(t); R) for a Glimm approximate solution u® (see
(L)) was solved first by T.-P. Liu in [15] for fluxes f with a finite number
of inflection points. Later, in [1], Bianchini solved the problem for general

fluxes, introducing the cubic functional
Fes QUUC(t) = 3 / / (oL, 1) — o (t, 5 |dspds), < O(1)Tot.Var. (u (£))%,
k=1

where sy, s} are two waves of the k-th family in the approximate solution
at time t and oy(t, i), 0% (t, s),) denote their speed (see Section 2.4 for a
precise definition). In [2] Bianchini and Bressan also proved that every
strictly hyperbolic f admits a standard Riemann semigroup S; of vanishing
viscosity solutions with small total variation obtained as the (unique) limit

of solutions to the viscous parabolic approximations
up + f(u)e = ptge,
when the viscosity @ — 0. The semigroup S is defined on
D= {u € L'(R;R") | Tot.Var.(u) < 1, lim u(z) € K}
T—>r—00
and satisfies the Lipschitz condition

St — Ssv||y < L|ja — v||1 + L'|t — s|, for any 4,0 € D, t,s>0. (1.12)

Aim of this paper is to prove that the same rate of convergence (IITI)
obtained by Bressan and Marson in the GNL/LD case holds also in the gen-
eral case, when no assumption on f is made except its strictly hyperbolicity.

In particular we prove the following theorem.
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Theorem 1.3. Consider the Cauchy problem (LI)—(L4) and assume that
the system (1)) is strictly hyperbolic. Let u® be a Glimm approzimate so-
lution with mesh size ¢ > 0 and sampling sequence satisfying (L10)), and
denote by t — Siu the semigroup of vanishing viscosity solutions. Then for
every fixed time T € [0,+00) the following limit holds:

g J(T) = Srall,

1.13
e—=0 Velloge| (1.13)

1.4. Bressan’s and Marson’s technique

We recall now the technique used by A. Bressan and A. Marson in [§] to
prove Theorem [[L3]in the GNL/LD case. In particular we wish to highlight
which is the point in Bressan’s and Marson’s proof which can not be easily
extended to the general case, where no assumption of f is made except its
strict hyperbolicity, and whose detailed proof is given in this paper, using
the tools introduced by the authors in [3].

Bressan’s and Marson’s technique is as follows. Thanks to the Lipschitz
property of the semigroup (L.9), in order to estimate the distance

lu=(T ) = Sra .,

we can partition the time interval [0, 7] in subintervals J, := [tq,tqe11] and
estimate the error

Hua(ta-i-l) - Sta+1—tau8(ta)HL1 (1'14)

on each interval J,. The error (LI4]) on J, comes from two different sources:

(1) first of all there is an error due to the algorithm itself: indeed, in a Glimm
approximate solution, roughly speaking, we give each wave either speed
0 or speed 1 (according to the sampling sequence {¥;};), while in the
exact solution it would have a speed in [0, 1], but not necessarily equal
to 0 or 1;

(2) secondly, there is an error due to the fact that some waves can be created
at times t > t,, some waves can be canceled at times ¢t < t,41 and, above
all, some waves, which are present both at time ¢, and at time .41, can
change their speeds, when they interact with other waves.
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The first error source is estimated by choosing the intervals J, sufficiently
large in order to use estimate ([LI0) with jo — 57 > 1.

The second error source can be estimated (choosing the intervals J, not
too large) if we are able to (uniformly) bound the change in speed of the
waves present in the approximate solution. In the GNL/LD case, this was
achieved by Liu in [14], where he provided a wave tracing algorithm which
splits each wavefront in the approximate solution into a finite number of
discrete waves, whose trajectories can be traced and whose changes in speed
at any interaction time are bounded by the corresponding decrease of the
functional QC™™  In particular, using Liu’s wave tracing, Bressan and
Marson prove that for any i1,i2 € N, on the time interval [tq,ts], t1 = i€,
to = i2€, it holds

Hua(tQ) - Stz—hua(tl)Hl
- - 1+ log(ia — 1

< 0(1) [(QGhmm(m) - QGhmm(tl)) e Bl : D 4 el s — ). (115)
2— 1
As e — 0, it is convenient to choose the asymptotic size of the intervals J, in
such a way that the errors in (1) and (2) have approximately the same order
of magnitude. In particular, the estimate (L.I3]) is obtained by choosing
|Ja| = v/elog|logel.

Estimate (I.I5]) is precisely the point in Bressan’s and Marson’s proof
which can not be easily extended to the general case, because the functional
QCI™m™ i not of help in this case. Improving the results recently obtained
by the authors in [3], in this paper a suitable functional

T :[0,+00) = [0,+00), T(0) < O(1)Tot.Var.(ug),
is constructed, such that for any iq,i0 € N, i1 < iq,

1+ log(ig — il)
19 — 11

(| (t2) = Spp—t,u (1) ||, < O(1) [(T(tz)—T(tﬂ) - }(m—tl).

(1.16)

In order to prove (I.I0l), one could be tempted to use the well known
semigroup inequality (see [5])

t2 S(t + h) — Spus(t
o (6) = St < [ s et + 1) = SO,
t1 h—0 h
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However, for a Glimm solution u® this estimate can not be directly applied,
because it does not take into account the error due to the restarting pro-
cedure. To go beyond this difficulty, in the same spirit as in [§], we will

introduce in Section 3 a “wavefront” map
P [tl,tg] xR — R"

with the following properties:

Y(ta,z) = u(t2, ), (1.17a)
it — v, < O] (1) -1())+ 2= 1ty
(1.17b)

o) —w @), < 0)(Tt) = T(t2)) (t2 = o). (1.17¢)

Clearly (I.I6]) is an immediate consequence of (ILI7)) and the Lipschitz con-
tinuity of the semigroup St.

Remark 1.4. Notice that all the functionals QC™™ Qcubic Y are defined
on the approximate solution u°, or, in other words, they depend on ¢, even if
we do not write this dependence explicitly. What is important, is that they
are decreasing and uniformly (i.e. without any reference to £) bounded at
t=0.

1.5. Proof of Theorem 1.3

We conclude this introduction proving Theorem [[3]in the general case,
assuming that estimate (LI6]) holds and using Bressan’s and Marson’s tech-
niques. Fix T,e > 0, say T = ic + & for some integer i and some &’ € [0,¢€).
In connection with a constant § > ¢ (whose precise value will be specified
later), we construct a partition of the interval [0, ig] into finitely many subin-
tervals J, = [tq,tq+1], inserting the points t, = ize inductively as follows.
Set g := 0. If the integers ig < i1 < --- < i, < ¢ have already been defined,
then

(i) if Ye(iqe) — T2((ia + 1)e) < 6, let iq41 be the largest integer < ¢ such
that (ig+1 — ig)e < 6 and YE(ige) — Y (ig+1€) < &5
(ii) if Y= (iqe) — T*((iq + 1)e) > 8, define iq4q = iq + 1.
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Clearly i4 = 4 for some integer A < i. Call A’, A” respectively the set of in-
dices a for which the alternative (i), (ii) holds. Observe that the cardinalities
of these sets can be bounded by

Tot.Var. (u0)” 5y T (L.18)

A <05, A< o)t o

for § < 1. On each subinterval J,, a € A’ we can apply (I.16]), thus obtaining

“Ue(ia+15) - S(iaJrl—ia) ZGE Hl

< O()|(X¥(ian9)~ T (iae)) # 0Bt =)

Za-l—l - Za

+e|(igr1 — ig)e- (1.19)

On the other hand, on each interval J, with a € A", the 1-Lipschitz conti-
nuity of v : [0,00) — L'(R;R") implies that

Hue(z’aﬂs) = S(igs1—ia)et (e H1 (la+1 — i) = €. (1.20)
Using the Lipschitz property (IL12]) of the semigroup we get
A-1
lu*Ge) = S O] < D |[Ssusnyeuliane) = Siypeutias)|

a=0

A-1
<L Z Hu(ia+1€) - S(ia+1—ia)€u(ia€)Hl

a=0

(by (CI9)-(C20) < O(l){ > [(Tff(z'aﬂe) — Y*(ioc) )

ac A’

1 +log(iar1 — ia) + 5} (tat1 — ta)e + Z E}

7 —1
a+1 a ac A"

(by Points (i), (ii) above) < (9(1){ Z (52 +e+ 610g§ + 65) + Z 6}

acA’ acA”

(by (TI8)) < O(l)T<5+ % +§10gg +E>_
Hence

Hua(T) — STuoH < Hua(T) — ua(Es)H + Hua(fe) - Sggua(O)H
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+ S50 (0) — Szouo || + || Seuo — Sruol|

9 9
-+ =

< (9(1)max{1,T}<5—|— 575

B
log = + e). (1.21)

Since ([L2I) holds for any § > &, choosing d(g) := /¢, we finally obtain
(L.13).

1.6. Notations

e For s € R, define

I(s) im {(0,3] if s >0,

[s,0) if s <0.
e Let X be any set and let f:I(s') = X, ¢g: s +1I(s") = X;
- if 's” > 0 and f(s') = g(s'), define

fug: I(s+5") — X,

_ f(z) ifxel(s),
(fUg)() : {g(aj) if z € s +1(s"); (1.22)

- if §'s” < 0, define

foag: I(s+5") — X,

3 / " / "
(f o g)(x) = {f(x) Tf 512 18", @ € s'+5"), (1.23)
g(z) if|s'| < |s"], x € I(s' + §").
e For a continuous real valued function f, we denote its convex envelope
in the interval [a, b] as conv (4 f
e Given a totally ordered set (A, <), we define a partial pre-ordering on
24 setting, for I,J C A,

I < J if and only if for a € I,b € J it holds a < b.

We will also write I < J if either I < J or I = J, i.e. we add the
diagonal to the relation, making it a partial ordering.

e The L* norm of a map ¢ : [a,b] — R"™ will be denoted either by ||¢/~
or by [|gllzeo([a,p)); if We want to stress the domain of g; similar notation
for the L'-norm.
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e Given a C!' map g : R — R and an interval I C R, possibly made by a
single point, let us define the Rankine-Hugoniot speed

N—g(nfI) .p 7. .
arh(g )= {% if I is not a singleton,

%([) if I is a singleton.

2. Summary of the Paper [3] with a Modified Version of the
Quadratic Potential

In [3] an estimate on the change of the speeds of the infinitesimal waves
present in a Glimm approximate solution u® is provided. This estimate is
achieved in two steps. First of all it is proved that at each grid point (i€, me),
i € N, m € Z, the change in speed of the waves interacting at (ie, me)
is bounded by a quantity A(ic,me), called amount of interaction. Then
it is shown that there exists an uniformly bounded, decreasing functional
t — Y(t) such that at each time ic

> Aiz,me) < O(1)(Y(ie—) — Y(ic+)).

meZ

The functional Y (¢) is defined as the sum of some already known decreasing
functionals (see Section 2.4 below) and of a new quadratic functional ¢
Q(t), whose definition requires a careful analysis of waves collisions. Aim
of this section is to summarize the main results present in the cited paper
[3], providing meanwhile a stronger definition of the functional (¢). This
stronger definition is needed to prove estimate (LI6) in Section 5 and thus
Theorem [L.3

2.1. Entropic self similar solution to the Riemann problem

As we pointed out in Section 1.1, the crucial point to solve the Riemann
problem (LI)—(LH) is to find, for any left state u”, a curve s — TFul of
admissible right state, defined for |s| < 1, such that the Riemann problem
(u”, TFu™) can be solved by (countable many) admissible shocks (in the sense
of limit of viscosity approximations), contact discontinuities and rarefaction
waves. In the GNL/LD case the admissible curve s — T*ul coincides with
the rarefaction curve for s > 0 and with the shock curve for s < 0 (see
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[5]). In the general case, however, the situation is much more difficult and
the problem was completely solved by Bianchini and Bressan in [2]. Here
we describe just the main points of their construction, in order to recall the

notations we will need.

First of all, for any index k € {1,...,n}, through a Center Manifold
technique, one can find a neighborhood of the point (0,0, A;(0)) of the form

Dy i= { (, 04, 0%) € R" X R x R | [u] < p, 0g] < p, o = M(0)] < p

for some p > 0 (depending only on f) and a smooth vector field

7, : D — R", T, :fk(u,vk,ak),
satisfying
s Oy
7 (u, 0,0%) = ri(u), @(U,Ukyak) < O(1)|vg]- (2.1)

We will call 7, the k-generalized eigenvector. The characterization of 7 is
that

Di > (u,’Uk,O‘k) — (u,kak,ak) eR" x R" xR

is a parameterization of a center manifold near the equilibrium (0,0, A;(0)) €

Dy, for the ODE of traveling waves

(A(uw) — o) ugp = Uy = vy = (A(u) — ol)v
o, =0

where A(u) = D f(u), the Jacobian matrix of the flux f, and I is the identity

n X n matrix.

Associated to the generalized eigenvectors, we can define smooth functions
Mo : Dy = R by

Ak (v, 08) == (lp(w), A(w)7y (u, vg, o%) ).

We will call A\, the k-generalized eigenvalue. By (210 and the definition of
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S\k, we can get

- 1))
)‘k(u7070-k’) = Ak(u% —k(uvvk’7o-k)

o <OWl  (22)

For the construction of the generalized eigenvectors and eigenvalues and the
proof of (2.1), (Z.2)), see Section 4 of [2].

Then, by a fixed point technique one can now prove that there exist

17 > 0 (depending only on f), such that for
ke{l,...,n}, u € B(0,p/2), 0<s<mn,

there is a curve
v : [0,8] — Dy
7 = (1) = (u(T),v5(7), ok (7))

such that u, v, € C11([0,5]), o € C%1([0,s]) and this curve is the unique

solution to the system

u(r) = ub + / " F(1(6))ds
0
v(7) = fi(y;7) — conv (g g fk(7: 7) (2.3)
74(7) = - conv o f(57)
where

folyir) = /0 " Rk(r(e))ds (2.4)

and conv (g 4 fi is the convex envelope of fi in the interval [0, s]:
conv [4 41 9(u) = sup {h(u) ‘ h:[a,b] — R is convex and h < g}.

In the case s < 0 a completely similar result holds, replacing the convex

envelope with the concave one.

If we want to stress the dependence of the curve v on u” and s we will use
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the notation
(b 5)(r) = (u(,5)(r), ve(ut, )(7), ox(uh, 5)(7)).

Finally the curve of admissible right states (—7n,1) > s — TFul is
defined as TFul := u(u”, s)(s).

2.2. Elementary estimates on the merging of two Riemann

problems

Consider two contiguous Riemann problem

M _ qm 1, L R _ qm 1. M
u —TS;LO--.OTS/lu7 u _TS;{O...OTSI{U ; (2.5)

and the Riemann problem obtained joining them,

R_qn o .. 1, L
uw'=Tg o---oT u".

In particular the curves of the incoming Riemann problems are

’71 = (’LL/I,’Ui,O'i) = ’71(UL,8/1), 7]lc = (u§€7v;€7a;€) = Vk(u;c—l('s;c—l)78;f)

fork=2,...,n,

71, = (u/1,7 U/1,7 0-/1,) = /71(qu 8,1/)7 7]/6, = (u;clv ’Ugv O-g) = (u%—l(slkt—l)v 8%)

fork=2,...,n,
while the outcoming ones are

= (ur,v1,01) = y1(u”, 51), % = (w, Ok, 0k) = Ve (ur—1(sk-1), 5)

for k=2,...,n.

We will denote by f;, fi/, fx the reduced fluxes associated by (2.4)) to v}, vy, V&
respectively; for simplicity, we will assume that v, and f; are defined on
sy, + I(s}), instead of I(s}) and f}/(s}.) = fi.(s)): indeed, it is clear that
adding a constant to fk does not vary system (2.3]).
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Fix an index k € {1,...n} and consider the points (Figure [I])

L ._ L L ._ k-1 k—1 1 1, L
Uy ‘= u-, Uy '_T8Z710T8;€71OH'OTSYOTsllu s k22

upl = Tf;cuﬁ, ukR::Tquﬂ/[, kE=1,...,n.

By definition, the Riemann problem between u% and u,i\/[ is solved by wave-
fronts of the k-th family with total strength s) and the Riemann problem
between uﬂ/l and ukR is solved by wavefront of the k-th family with total
strength s. Denote by 4}, = (), 0y, 7,) the curve which solves the Riemann
problem [uf, u}] and by f} the associated reduced flux (see (Z4).

Similarly, let 47 = (af,v},d7) be the curve solving the Riemann problem

[uM, ul?] and let f,;’ be the associated reduced flux. Clearly, 7;, f,’g are defined

on I(sg), while, since we are going to perform the patching ([22)), (L.23]),
we will assume as above that 7/ and fI are defined on s}, + I(s}) (instead
of 1(5()) and that f/(s}) = F1(s},).

As in [3], define the following quantities, called amounts of interaction.

Definition 2.1. The quantity
AtraHS(uLyuM’uR) — Z |S;€HSZ
1<h<k<n

is called the transversal amount of interaction associated to the two Riemann
problems (2.5)).

For s). > 0, we define cubic amount of interaction of the k-th family for the
two Riemann problems (u”,u™), (uM,u'?) as follows:

(1) if s >0,

. S,
A (b uM ) 12/0 [COHV 0,51 F%(T) —conv oo o (fr, U f¥) (T)]dT

sy 45y
+/ {COHV ists i () —conv o o 4 o (fi U f7)) (T)} dr;

/
k

(2) if —s;, < s <0

s;C—l-s;C’
bi L M
APl oM ) = /0 [conv o 4, fi () — conv g 4 £ (7) | dr
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82 / /
+/ [CODC (s, +s)/,s4] /1 (T) — conv [o,s;c]fk(T)]dT;
8/ +8ll
k k
(3) if s} < —s},

0

Ai“bic(uL,uM,uR) ::/ [conc s, +51, /]fk,( T)—conc [sﬁsgp}f,g(ﬂ] dr
S

ktsk
5k "
+/O [conc s +-s7, ’]fk( T)—conv [0782]]‘}6 (T)]dT.

Here conc 4 g denotes the concave envelope of a function f in the interval

[a, b]:
conc [q.59(u) := inf {h(u) ‘ h: [a,b] — R is concave and h > g}.

Similar definitions can be given if s) < 0, interchanging convex envelopes

with concave.

The amount of cancellation of the k-th family is defined by

0 if 557 >0
AcanC( L,UM,UR) ::{ k°k =

min{|s, |, [sf|} if s)s) <O.
The amount of creation of the k-th family is defined by
ce, L M | R / " +
A (P M ) = |s] = [+ ]
If s;.s) > 0, we define the quadratic amount of interaction of the k-family

associated to the two Riemann problems (235]) by

fi(s},)—conv (0,545 (fLUFN(s),) if s, >0, >0,
=< conc [s/,+57/,0] (f]é U f )( ) /(82) if S;C <0, 8/k/<0,
0 if s, s} <0.

A%uadr (’LLL, UM, ’LLR)

Finally we define the total amount of interaction associated to the two Rie-



2016] CONVERGENCE RATE OF THE GLIMM SCHEME 253

- R L
1" —
I Mo uy = uj

Figure 1: Elementary curves of two interacting Riemann problems before and after
transversal interactions.

mann problems (Z5]) as

n
A(UL, uM’ ’U,R) — Atrans(uL’ ’U,M, ZLR) + Z (A%uadr(uL7 uM’ ’U,R)
h=1

+A%anc(’LLL, UM, ’LLR) + A}clubiC(uL’ UM, ’LLR)) .

It is well known (see [1]) that
n n

Z ‘sk — (s}, + s%)| <0(1) [Atrans(uL, uM uft) + ZA%“b‘C(uL, uM, uR)} .
k=1 k=1

and thus

n
Azr(uL’ 'LLM, UR) < Atrans(uL’ UM, 'LLR) + Z A%Lublc(uL’ UM, UR).
h=1
The distance between incoming and outgoing Riemann problems can be

estimated as follows (see [3], Theorem 3.3).

Theorem 2.2. Forany k=1,...,n,
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o if sisy >0, then

H g, U ug) “k“Lw(I(s;+sg)m1(sk))

H (’Uk; U ’UZ) - ”k“Lm(I(s;+sg)mI(sk))

< O(1A L , M Ry,
it 00) ooy [ < OO0

(552

dr? dr2 dr?

LY (I(sp,+s;)N (k) )

o if sis) <0, then

H(“Z: A ug) — “k’HLoo(I sh+sy)NI(sy))

H(v;i’ A vy) = ”kHLoo(I(s L8N I(sk))
H(UZ A o) = Uk“Ll(z(s;+sg)nI(sk))

(55058 -2

dr? dr2 dr?

LY (I(sp,+s;)N (k) )

Remark 2.3. In the statement of Theorem 3.3 in 3] only the inequalities

about u, o, ddzf Lk are explicitly proved, while the ones about v are not. How-

ever it is not difficult to see that the proof used for u, o and d TJ;k can be

adapted also to v.

2.3. Lagrangian representation for the Glimm approximate

solution wu®

In this section we recall the notion, introduced in [3], of Lagrangian
representation of an approximate solution u® (e above) to the Cauchy prob-
lem (LI)—(T4) obtained by the Glimm scheme, and we state the theorem
about the existence of a Lagrangian representation satisfying some useful
additional properties. At the end of the section we introduce some notions
related to the Lagrangian representation; in particular, the notion of effective
fluz £$5(t) of the k-th family at time t.

Let us first introduce some notation related to the Glimm approximate
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solution u. For any grid point (ie,me), i > 0, m € Z, set

ub™ = uf(ie, me),

and assume that the Riemann problem (u*™~! 4%™) is solved by

i,m n 1 i,m—1
u'm=T"% 00T ,u" ,
Sn EH

moreover denote by
J,i’m:I(SZZm)%R, k=1,...,n,

the speed function of the k-th wavefront solving the Riemann problem (u®™~!,

Let us introduce also the following notation for the transversal, cubic and
quadratic amounts of interaction and for the amounts of creation and can-

i—1,m—1

i,m—ly , ('LL ,

i=Lm-1)

cellation related to the two Riemann problems (u U

u»™) which interact at grid point (i, me):
AT (e e = AT (0 1 iy 1, Ui
and for k=1,...,n,
ASPIC (e me) i= AP (w1, Wit 1, i)
A (g, me) == AP (Wi m—1, Uie1,m—1, Ui,m )
A (ie, me) := AT (Wim—1, Uim1,m—1, Uim),

dr . d
ALY (i, me) = A (Ui g—1, Wi m—1s Wism)-

We now introduce the notion of Lagrangian representation. Given a
piecewise constant approximate solution u¢ constructed by the Glimm scheme

(see Section 1.2, for any time ¢ > 0 define the quantities

L) =" [s™" L) ==Y [, iftelie,(i+1)e).

meZ meEZ

It is easy to see that |L; (¢)| +|L, (t)| < O(1)Tot.Var.(u®(2)).
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Definition 2.4. A Lagrangian representation for uf is a set W called the

set of waves, together with

e the maps

family : W — {1,...,n} the family of the wave w € W,

S:W— {£1} the sign of the wave w € W,
T W — [0,400) the creation time of the wave w € W,
W — (0, o0 the cancellation time of the wave w € W,

e a relation, which we will denote by <,

e the map, called position function,
x: {(t,w) € [0,00) x W | £ (w) <t <t (w)} — R,

which satisfy the conditions (1)—(4) below.

For convenience, set

Wi i={weWw ‘ family (w) = k},
Wi(t) = {w € Wy | t%(w) < t < t"(w)},
WiE(t) —{wEWk | S(w) = £1}.

The additional conditions to be satisfied by a Lagrangian representation

are the following:

(1) for any family k, time ¢, sign 41, the relation < is a total order both
on W (t) and on W, (t); if Z C WiE(t) is an interval in the order set
(Wk (t), <), we will say that Z is an interval of waves (i.o0.w.) at time t;

(2) the map x satisfies:

(a) for fixed time ¢, x(t,-) : Wi(t) — R is increasing;
(b) for fixed w € W, the map x(-,w) : [t (w), t°"(w)) — R is Lipschitz;
(c) for any point (¢,Z) € [0,400) x R, all the waves in

Wi(t,2) = x(£) "' (z) N Wy

have the same sign;
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(3) there exist maps D¢

q’k(t)‘wg(t) W (t)

OBy Wi () > 1(L;

(4) there exist maps i (t) : Wi (t
65(t)), such that

(a) for any = € R, setting

))
(t)) is an antisomorphism of ordered sets;
) = Dy, CR™XRXR, 45(t) = (tx(t), 0x(t),

= lim ut(t, x), uf = lim u(t, x),
T—T r—zt

the collection of curves

{cIDk(t)(Wk(t, 7)) 37— At (I)k(t)_l(T))} :

k=1,...,n

solves the Riemann problem (u, uf?);
(b) for any w € W,f(is), if £°"¢(w) > (i 4+ 1)e, then for any time ¢ €

[ie, (i + 1)e) it holds

(t.w) x(ie, w) if 9,41 > oy (ie, w),
x(t,w) =
x(ie,w) + (t —ie) if 941 < Gp(ie, w).

The following theorem is taken from [3, Theorem 4.1].

Theorem 2.5. There exists at least one Lagrangian representation for the
approzimate solution u® constructed by the Glimm scheme, which moreover
satisfies the following conditions: for any grid point (i, me) € Ne x Ze,

(a) the set Wy (ie,me) N Wi((i — 1)e) is an i.o.w. both at time (i — 1)e and
at time ie, while the set Wy (ie,me) \ Wi((i — 1)e) is an i.o.w. at time
1€

(b) the map

Or((i — 1)e) Wy (ie, me) N Wi((i — 1)e))

ie)o i— -
Dy, (ig) ‘I’k_((> 1e) Dy (ie) Wi (ie,me) N Wi ((i — 1)e))

is an affine map with Lipschitz constant equal to 1.

Definition 2.6. Fix ¢ > 0. Let Z C Wg(¢) be an interval of waves at
time t. Set [ := ®(¢)(Z). By Property (3) of the Definition of Lagrangian
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representation, [ is an interval in R (possibly made by a single point). Let
us define:

e the Rankine-Hugoniot speed given to the interval of waves I by a func-
tion g : R — R as

sup TinfT if I is not a singleton,

g(sup I)—g(inf I)
g (I) if I is a singleton;

e for any w € Z, the entropic speed given to the wave w by the Riemann
problem T and the fluz function g as

d

—conv Ig<q)k(f)(w)> if Sp(w) = +1,
ent dr
o (g, Z,w) =

%conc 19(%(5)(10)) if S (w) = —1.

If 0™(g,T) = 0™ (g, T, w) for any w € Z, we will say that Z is entropic w.r.t.
the function g.

We will also say that the Riemann problem I with fluz function g divides
w,w if 0 (g,Z,w) # o®™(g,Z,w’).

Definition 2.7. For each family k = 1,...,n and for each time ¢ > 0 define
the effective flux of the k-th family at time t as any C! function

£55(6,)  [Ly, L] = R

whose second derivative satisfies the following relation:

02258 (1, ) () = A, (A (t, w))
o2 T dr ’

for Ll-a.e. 7 € [L;,L{], where w = ®(¢t)"*(7) and L' denotes the one
dimensional Lebesgue measure on R.

2.4. Glimm-type functionals

We have already observed (see Sections 1.2, 1.3) that the main tool to
get a priori estimates on the Glimm approximate solutions is to find suitable
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decreasing functional. Here we recall the definitions of some Glimm-type

functional, which we will use throughout the paper.

Definition 2.8. Define the total variation along curves as
n .
V(t):= Z Z Erl for any t € [ie, (i + 1)e).
k=1meZ
Define the transversal interaction functional as

n k—1

QtranS(t) — Z Z Z ‘Szm’HSz,mL for any t € [iE, (Z + 1)5)

k=1h=1m>m’
Define the cubic interaction functional as

QEUic(t) = Z Z /I( im /I( - |U]i,’m(7') - O']i’m/ (7")|dr'dr.
Sk Sk

k=1mm’€Z
The following statements hold: for the proofs, see [5], [1].

Proposition 2.9. There exists a constant C > 0, depending only of the flux
f, such that for any time t > 0

1
ETot.Var.(u(t)) < V(t) < CTot.Var.(u(t)).
Theorem 2.10. The following hold:
(1) the functionals t — V (t), Q2" (t), Q°™Pi°(t) are constant on each interval
[ie, (i + 1)e);
(2) they are bounded by powers of the Tot.Var.(u(t)) as follows:
V(t) < O(1)Tot. Var.(u(t)),
Q™™ (¢) < O(1)Tot.Var. (u(t))?,
< O(1)Tot. Var. (u(t))?;
(3) there exist constants c1,co,c3 > 0, depending only on the flux f, such
that for any i € N, defining

anown(t) = 61V(t) + Cthrans(t) + CchubiC(t),
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it holds

n
Z |:Atrans(,i€’ ms) + Z (Aianc(’i?:, m€) + Aiubic(’iéf, me))}

mMEZ k=1
< QKOM((5 — 1)e) — QK™ (ig). (2.6)

2.5. Analysis of waves collisions

This section corresponds to [3, Section 5|. Here however we introduce a
new definition of characteristic interval associated to a pair of waves (w, w")
and a new definition of the partition of this interval. These new definitions
provide the correct setting to define the new quadratic interaction potential
which we are going to introduce in Section 2.6 and which will be used in
Section 5 to prove estimate (I.I6) and thus Theorem [I.3l

We first introduce the following equivalence relation <: for any fixed
time ¢t € [ig, (i + 1)e) and for any couple of waves w,w’ € Wy(t), we set
w 1w if and only if

t7(w) =t (w') and x(t,w) = x(t,w’) for any t € [t (w), (i + 1)e].
(2.7)
and we denote the equivalence classes as

EEw) = {z € Wi(D) ( £ (2) = % (w) and x(t, w) = x(t, 2)
for any ¢ € [t (w), (i + 1)e) }
Definition 2.11. Let ¢ be a fixed time and let w,w’ € Wy (t). We say that

o w,w' interact at time t if x(t,w) = x(¢,w');

e w,w have already interacted at time t if there is t < ¢ such that w, w’
interact at time ¢;

e w,w’ have never interacted at time t if for all t < ¢, they do not interact
at time t.

o w,w' will interact after time t if there is t > t such that w,w’ interact
at time t.
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o w,w are joined in the real solution at time t if there is a right neighbor-

hood of ¢, say [t,+(), such that they interact at any time ¢ € [t, 1+ );

o w,w' are divided in the real solution at time t if they are not joined at
time £.

Remark 2.12. It ¢ # ic for each i € N, then two waves are divided in the

real solution if and only if they have different position. If ¢ = ie, they are

divided if there exists a time ¢ > ¢, arbitrarily close to ¢, such that w,w’

have different positions at time t.

Definition 2.13. Fix a time ¢ and two k-waves w,w’ € W(t), w < w'.
Assume that w,w’ are divided in the real solution at time ¢. Define the time
of last splitting %P1t (£, w, w') (if w,w’ have already interacted at time #) and
the time of next interaction t™(,w,w’) (if w,w’ will interact after time ?)

by the formulas

5P , w') = max {t <t]=x(t,w) =x(t, )},

£ w,w') = min {t > 1 | x(t, w) = x(t, w')}.

Given two k-waves w,w’ € Wy and given a time t € [0,00), we define the

property

p(t,w,w’) : “either w,w’ € Wi(t) and they are divided at time ¢ in
the real solution or at least one between w,w’ does not

belong to Wi (t)”.

Definition 2.14. Let t; < {9, be two times. Let w,w’ € Wg(ta) be
two k-waves. Assume that they have the same sign and that they satisfy
p(t1, w,w"). We define the characteristic interval Z(t1,to, w,w’) of w,w' at
time to starting from time t1 as follows. Assume first that to = ie for some

i€ N.

(1) If at least one between w, w’" does not belong to Wi (t1) or w,w’ € Wi(t1),
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but they have never interacted at time t;, then

{z € Wi(t2) | S(z)=8(w) and z<E(t2,w')} U E(ta, w')
if £ (w) < £ (w'),
I(ty, to, w,w')=
Eta,w) U{z € Wi(t2) | S(2)=8(w) and 2>E(ta, w)}
if £ (w) >t (w');

(2) If w,w’ € W(t1) and they have already interacted at time ¢1, we have
to distinguish two cases:
(a) if t; = tPlt(¢1, w, w'), then argue by recursion:

o if ty =t = tPlt (¢, w, w'), set
L(t1,ta, w,w') == W(t1,x(t1,w)) = W(t1,x(t,w'));

o if ty =ie > (i — 1)e > t; = t%Pi(¢y, w, w’), define Z(t1,ts, w, w')
as the smallest interval in (W,;t(tg), <) which contains Z(t1, (i —
e, w,w") N Wig(t2), ie.

Tl ta, w0, w') = {2 € Wi(ta) | S(2) = S(w) = S(w)
and Jy,y € Z(t1, (i — 1)e,w,w’) N Wi(t2) such that ygzgy’}.
(b) if t1 > 5Pt (¢, w, w'), set
I(ty,to, w,w') = I(tSplit(tl,w,w/),tg,w,w’).
Finally set

I(ty, to,w,w') = I(ty,ie, w,w') for t € [ig, (i + 1)e).

As in [3], we define now a partition P(t1,to, w,w’) of the characteristic
interval Z(t1, to, w, w’), with the properties that each element of P(t1, ta, w, w")
is an interval of waves at time to, entropic w.r.t. the flux £$(¢5) of Definition

27

Definition 2.15. As before, let t; < t9, be two times. Let w,w’ € Wi (t2)
be two k-waves. Assume that they have the same sign and that they satisfy
p(t1, w,w"). Assume first that to =ic,i € N.
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(1) If at least one between w, w’ does not belong to Wi(t1) or w,w’ € Wi(t1),
but they have never interacted at time ¢1, then the equivalence classes
of the partition P(t1,t2, w,w’) are singletons.

(2) Assume now that w,w’ have already interacted at time ¢1; we distinguish
two cases:

(a) if t; = Pt w, w'), argue by recursion:
o if ty = t; = t5Pt(¢y, w,w'), then P(t1,t2,,w,w’) is given by the
equivalence relation

, 2,7 are not divided by the Riemann problem
2z~ 2 = ‘ e
Wi (t1, x(t1, w)) with flux function £ (¢1,-);

o if tyg =ic > (i — 1)e > t; = t5Pit(ty, w,w'), then P(ty, s, w,w')
is given by the equivalence relation

z,2z' belong to the same

equivalence class J € P(t1, (i — 1)e, w,w’)
and the Riemann problem [J N Wj(t2)
z~ i = with flux £$7 (25, ) does not divide them

or

[t“(z) =t"(2') =ty and z = 2/|.

It is not difficult to see that the previous definition is well posed,
since J N W(ig) is an interval of waves at time ie.

(b) if t; > %Pt (¢, w,w'), set
P(t1,to,w,w') = P(tSplit(tl,w,w’),tg,w,w’).

Finally extend the definition of P(t1, t2, w,w") for any time t3 € [ie, (i+1)e),
setting

Pty to, w,w') = P(ty,ie, w,w') for any t € [ie, (i + 1)e).

We collect now the main results about the characteristic interval and
its partition. In this paper the definitions of the characteristic interval
Z(t1,t2,w,w’) and of the associated partition P(t,ts, w,w’) are different
from the analog definitions given in [3]. However the results we present now
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can be proved with the same techniques as in [3, Section 5|. For this reason
we just state the results, omitting the proofs.

The following proposition corresponds to |3, Proposition 5.12] and can
be proved in a similar way.

Proposition 2.16. Let t1 < to, be two times. Let w,w’ € Wy (t2) be two k-
waves. Assume that they have the same sign and that they satisfy p(t1, w,w’).
Let J € P(t1,te,w,w'). Then x(ta,-) is constant on J and J is an entropic
interval of waves at time to w.r.t. the flur function fzﬂ(tg, .

Definition 2.17. Let A, B two sets, A C B. Let P be a partition of B.
We say that P can be restricted to A if for any C € P, either C C A or
C C B\ A. We also write

Pla:={CeP|CCA}.

Clearly P can be restricted to A if and only if it can be restricted to B\ A.

The following proposition is the equivalent to [3, Proposition 5.14] and
can be proved in an analogous way.

Proposition 2.18. Let t; < t9, be two times. Let w,w',z,2" € Wi(ts)
be two k-waves, z < w < w' < 2. Assume that they have the same sign
and that they satisfy both p(t1,w,w’) and p(t1,z,2"). Then P(t1,ta,2,2")
can be restricted both to L(ty,ta,2,2") NZ(t1,t2, w,w'") and to Z(t1,t2,2,2")\
I(tl,tg,w,w’).

The following proposition is the equivalent to [3, Proposition 5.15] and
can be proved in an analogous way.

Proposition 2.19. Let t; < ty, be two times. Let w,w', z,2" € Wy(ta) be
two k-waves, z < w < w' < 2. Assume that they have the same sign and
that they satisfy both p(t1,w,w’) and p(t1,z,2").

(1) If w,w' € Wy(t1) and they have already interacted at time t1, if z,2' €
T(t1,to, ,w,w') and if t(2),t(2') < %Pt w,w'), then I(ty,ta,,2,2")
= Z(t1,to,,w,w") and P(t1,ta,2,2") = P(t1,t2, w,w’).

(2) If w,2w' € Wi(t1) and they have already interacted at time ty, but at
least one wave between z,7' is created after tPU(ty, w,w'), then z,2'
have never interacted at time t1.
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(3) If either w,w' € W(t1) and they have never interacted at time ty, or if
at least one between w,w’ does not belong to Wy(t1), then the partition

P(t1,t2,2,2") is made of singletons.

2.6. New quadratic potential

Let ¢ € [0,400) be a fixed time and let w,w’ € Wg(t) be two k-waves
having the same sign. In this section we introduce the weight qx (¢, w,w’)
of the pair of waves w,w’ at time t; as we have already pointed out, the
definition we present here is different (and stronger) from the one we gave

in |3]. We proceed as follows.
First of all, fix three times ¢t; < to < t3. Assume that w,w’ € Wg(t2) N
Wi (t3). Assume also that p(¢1,w,w’) holds and that ¢35 € Ne. We set

g (t1, t2, t3, w, w')
di,(t1,t2, t3, w,w')’

qk(t17t27t37w7wl) =

where 7y (t1, t2, t3, w,w'), di(t1,te,t3, w,w’) are defined as follows. Let

J,J € P(t1,ta, w,w'), such that w € J,w' € J',

! / ! ! (2‘9)
K,K" € P(t1,t3,w,w"), such that w € K,w" € K,

be the elements of the partition of Z(t1,t2, w,w') and Z(¢1, t3, w,w’) contain-

ing w,w’ respectively. Set

G :=Ku{zeJ|z>K}, ¢ =K'U{zeJ |2<K'}, (2.10)
and

B = KU {z € Wi(t) | S(2) = S(w) = S(w') and K < = < /c'} UK.

Using a version of [3, Lemma 5.11] adapted to our new definition of the
characteristic intervals and partitions, one can easily prove that G,G’ are

i.o.w.s at time ¢9. We can thus define

7Tk(tlat27t37'u)au),) = {arh(fzﬁ(t2)7g)_Urh(fzﬁ(t2)’g,):|+
and
dip(t1,ta, ts,w,w') = LN (P (t2)(B)).
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Remark 2.20. It is easy to see that qx(t1, t2, t3, w, w’) is uniformly bounded:
in fact,

g (t1, t2, t3, w, w')

< [|D?*ssf (¢ < 0(1).
By(tns oty o) = 10 1 (2o < O

0 < q(ty, to, t3, w,w') =

Fix now two times t; < t5 such that w,w’ € Wg(t2) and p(t1, w,w’)
holds. Define

qk(t17t2aw7w/) = sSup qk(t17t2at37wvw/)' (211)
i3 >12
t3€Ne
w,w EWg(t3)

Finally, for any fixed time ¢ and for any w,w’ € Wy(t), define

qr(t, t,w,w’), if w,w" are divided in
qx (¢, w, w’) = the real solution at time to, (2.12)

0, otherwise.

Remark 2.21. Notice that the definition of the weight q(¢, w, w") is different
and stronger from the old definition of the weight we gave in [3] and which

we will denote by q°'(¢,w,w’). Indeed,

qe(t, t, £ (¢t w, w') —e, w,w') if w,w’ are divided at time ¢

R (t, w, w') = and will interact after time ¢,
0 otherwise.
Hence
a9 (t, w, w') < qr(t, w, w') (2.13)

As in [3], we can finally define the functional Q(t) as

Qu(0) == (1) +9; (1),
where
L L
Q) = /0 dr / dr'ai (8, @4 (6) (1), B ()1 ()

and
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Q- () = /L . dT/ dr'ai (8, 2 (1)1 (), D1 (1)1 (7).

Remark 2.22. Clearly Q(¢) is constant on the time intervals [ie, (i + 1)¢)
and it changes its value only at times ic, ¢ € N.

This functional 9y, whose definition is different from the one in [3], still
satisfies [3, Theorem 6.3]. We state now this theorem and we give a brief
sketch of how its proof in 3] can be adapted to the new setting.

Theorem 2.23. For anyt € N, ¢ > 1, it holds

Qi (ie) — Qr((Z — 1)e)

< - Z Azuadr(is,ms) + O(1)Tot.Var.(u(0); R) Z A(ie,me).  (2.14)
meZ meZ

Sketch of the Proof. The proof is analogous to the proof of |3, Theorem
6.3]. We will not enter into details. Some notations, which will be used again
later, are introduced here.

First of all observe that it is sufficient to prove inequality (2.14]) separately
for D; and 9, . Let us thus concentrate our attention of Q,j, since the
analysis on £, is completely similar. For any m € Z, set

JE = @ ((i—l)s)({w e Wi ((i — 1)e) ( x((i — 1)e,w) = (m — 1)e,

e =ne))

JE = ®,((i —1)e ({wGWk (1 —1)e) ‘ x((i — Ve, w) = me,
ZE ’LU })
Jm = JEU J}fj, (2:15)
K = ®p(ic) (Wk(is,ms) N w,j(z'e)),
Sy = Bp((i — 1)6)<Wk(i6,m6) A Wi((i — 1)5)),
Ty = ®y(ie) (Wk(ia,ma) AWL((i — 1)a)>.

Observe that if 7,7/ € JE (or 7,7/ € JE), then w := &, '((i — 1)¢)(7) and
w' == &, 1((i — 1)e)(7') are not divided in the real solution at time (i — 1)e
and thus q((i — 1)e, w,w") = 0.
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Similarly, if 7,7/ € K, 7 < 7/, setting again w = &, '(ie)(1), v’ =
®, ! (ie)(7') then either w,w’ are not divided at time i<, and thus qg (ie, w, w') =
0, or they are divided at time ie, i.e. they have different positions at times
t € (ig, (i + 1)e). In this second case, by definition t*Pi*(ie, w,w') = is;
for any fixed j € N, j > i, with w,w’ € Wg(je), with notations similar to

(2.9)—2.10), denote by

J,J' € Plic,ie,w,w'), such that w € J,w' € J’,
K,K' € P(ie, je,w,w'), such that w € K,w" € K'.

the element of the partition containing w,w’ at time ic and at time je

respectively, and set
g::ICU{zej‘z>lC}, g’::lC’U{zej"z<lC'}.

Using the monotonicity properties of the derivative of the convex envelope
and the fact that the element of the partition P(ic,ie, w,w’) are entropic

w.r.t. the function £ (ic), we obtain
0> o™ (£ (ie), ) — o™(£] (ie), T') = o™ (27 (ie), G) — o™ (£57 (i), G).

Thus 7k (ig, ic, je,w,w’') = 0 = qx(ie, ic, je,w,w’), for any j > i such that
w,w’ € Wi(je). Hence, by 2I1) and (212,

qk’(i‘g)wvw/) = qk(is,ie,w,w/) = sup qk(ie,is,js,w,w/) =0.
Jj>i
’Ll),w,GWk(jE)

We can thus perform the following computation:
7 (ie) — Q7 (i~ 1)2)

<y [ /] (i) (1), i) () )are

m<m/

</ i (12,04 (12) (7). (i) (7)) dr
(K"LXKmI)\(T"L XTm/)

- //S s, <(i — Ve, @k ((i = 1)e) (), Bi((i — 1)6)_1(7"))de7,]
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Y ] ae( D 0e) el - Do) ) dr
meZ TEXTR
Now the tree terms in the r.h.s. of the last inequality are estimated separately

as follows.

1. The integral over pairs of waves such that at least one of them is created

at time ic is estimated exactly in the same way as is [3, Section 6.3]:

Z // qx (ie)drdr’
(Km X K )\ (T XT00)

m<m/ m

< O(1)Tot. Var.(u(0)) Y _ A(ie, me). (2.16)

meZ

2. The variation of the integral over pairs of waves which exist both at
time (i — 1)e and at time ic and which do not interact at time ic is

estimated by

Z [//mme/ qx (ie)drdr’ — //GmxSm/ qr((i — 1)e)drdr’

m<m/

< O(1)Tot.Var.(u(0)) Y _ A(ie, re). (2.17)
rez

in the following way:

(a) first one adapts the proof of [3, Lemma 6.6] to show that for any ¢; <
(i — 1)e < ie < tg, for any pair of waves w,w’ € Wy(ie) N Wi(t3),
if p(t1, w,w’) holds, setting me := x(ic,w) < x(ie,w’) =: m’e, we

have

X

‘dk (tl,ifs,tg,w,w’) —d. (tl, (i — 1)€,t3,w,w/)‘ <0(1) A(ig, re),

ﬂ
I
3

3

Tk (tl) i€, t3, w, ’U),) — Tk (tlv (2 - 1)87 3, w, w/) < 0(1) A(ig’ 7"6),

%
I
3

and thus

qk(tla ig) t3) w, ’LU,) - Qk(tl, (Z - 1)6) t3) w, ’LU,)
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/

1

< (9(1)|q)k(ig)(w) S ‘;A ie,re).  (2.18)

(b) then one observes that tP1 (i, w, w') = tP1((i — 1), w, w'), since
x(ie, w) # x(ie,w');
(c) finally one uses the new definition of qi, (2.11)— (Z.12]) to prove that

qx (ie, w,w') — q((i — 1)e, w,w’)

/

1 m
< 0(1)|¢k(i6)(w) ) ZA ic,r€)

r=

and then one concludes by the elementary estimate

1 m
2 o) e \Z“”E

m<m/

< O(1)Tot.Var.( ZA ie,re)

3. Finally the estimate on the pairs of waves which are divided at time

(t — 1)e and are interacting at time ie:

_Z//J i = eyirar’

m

< — Z A (e me)

meZ
S(Wi (ie,me))=1

+O(1)Tot.Var.(u(0)) Z A(ie, me), (2.19)

meZ

is an immediate consequence of the analogous estimate |3, Inequality
(6.9)] and of the fact that the new definition of g is “stronger” than
the old one, inequality (2I3]).

It is easy to see that inequality (2.14]) in the statement of Theorem [2.23]

follows from ([210), [217), 219). O

As an immediate consequence of the previous theorem and of estimate

([26), we get the following corollary.
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Corollary 2.24. There ezists a constant C = C(f) > 0, depending only on
f such that the functional

tes T(t) := Q(t) + CQM™"(t)
is uniformly bounded att =0 by
T(0) < O(1)Tot.Var.(u),
it is decreasing and at each time step ic, i € N, it decreases at least of

% S~ Aie,me) < T((i — 1)e) — Tie). (2.20)

meZ

3. The Wavefront Map

We have seen in Section 1.4 that a key point to prove Theorem [I.3lon the
rate of convergence of the Glimm scheme is to construct, for any 41,79 € N,
a map

1/1 : [i1€,i2€] xR — R"”

which satisfies the Properties in (LI7)). In this section we first explicitly
define the map v, which trivially satisfies Property (IL.I7al), and we construct
a Lagrangian representation for the map ; then we state Theorem B.3] on
the variation in time of the speed of the waves in 1, whose proof will be
the subject of Sections 4 and 5; finally, using Theorem B3] we prove that

satisfies also Properties (L17D) and (II7d).
3.1. Definition of ¢

We start with the explicit definition of ¢). This map 1 is constructed
more or less as in [§], with some slight modification. Set for simplicity ¢, :=
i1€ and to := i9e. The definition of 1) is given backward in time, starting from
time t9 and going backward to time ¢;. First of all we set ¢ (t2, z) := u®(te, x)
for any x € R, so that Property (I.I7al) is trivially satisfied. Then we define
two Riemann solvers, a starting RS and a transversal RS: both act backward
in time and produce a self-similar wavefront solution, with a finite number
of wavefronts. The starting RS is used at time to = ise to define 1 on a
left neighborhood [t,ts] of t3. Then, anytime two wavefronts collide at some
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time t € (t1,t2), assuming that v is defined on the time interval [t, t5], we
use the transversal RS to prolong v on a left neighborhood of t.

The starting Riemann Solver. This is the Riemann Solver used at time
t = ty. It is defined as follows. For m,r € Z, m € [r — (ia — i1), 7], set

ST = S(Wk(ilz’:‘, me) N Wy (ize, rs))
c <<I>k(z'1€) (Wk(ils, me) N Wy (ize, TE)>>
= S(Wk(ilz’:‘, me) N Wy (ize, rs))

c! <<I>k(z'2€) (Wk(ils, me) N Wy (ise, rs))). (3.1)

Notice that, by the monotonicity of the map w — x(t,w), if 5", éZ}W’”/ #0
and r < 7/, then k < k. Fix now r € Z and for m € [r — (ig — 1), 7] set

wr—(’iz—il)wr _ TN

: 8:7(22*21)“*7'

,l/}mvﬁ" = TT:TW, O+++0 Tslanw'r' (wm—lWT) .

S

iQ,T’—l)

1
O - OT"*('LQ*'L.I)W" (’LL 5
S1

The (backward) solution to the Riemann problem (u"~1 47) is now de-

fined as follows: for any m = r — (i —i1),...,r there is a physical wavefront
traveling with speed

< € —me

jmor = TETE (3.2)

19€ — 11€

which connects the left state "~ !" with the right state 1""; moreover,

there is one more non-physical wavefront, traveling with speed equal to A :=

—1 connecting ¥ to u'?".

The transversal Riemann solver. This RS is used every time two (or
more) wavefronts collide at a time in (¢1,t2). We assume w.l.o.g. that every
collision involves exactly two wavefronts: the rules can be easily extended
to the case of several simultaneous collisions, because the outcome does not
depend on the order of the collisions. Assume thus that at point (¢, ),
t € (t1,t2) two wavefronts collide. We have to distinguish two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the
collision the first wavefront is traveling with speed ) and it is connecting
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t—1=1i

Figure 2: The wavefronts of the function #: the pink region A (z) is used in the
proof of Proposition

the states
M 1., L
Y :TQLO"'Ongwv

while the second wavefront is traveling with speed A’ < X’ and it is connect-

ing the states
R _ 1M
P —Ts’zio---oTS,l,zp .

Notice that, by the monotonicity of the map w +— x(t,w), there exists
k € {1,...,n} such that 87,87 = 0 and S%H,...,s’n = 0. Hence the
interaction at (¢, ) is purely transversal. The (backward) Riemann problem
(yl,pf) at point (£,Z) is now solved as follows. Define the intermediate

states
TM . qmo 1 L TR._qm . 1.,M
P =Ty o oTSgH?[) , Pt = TS;; ) oTslldl )

The solution for times ¢ < ¢ around the point (¢,Z) is made by a physi-
cal wavefront traveling with speed A\’ connecting ¥~ and ™; a physical
wavefront traveling with speed X connecting ¥ and ¢ a non-physical

wavefront traveling with speed A = —1 connecting /% and *.
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Case 2: one of the two colliding wavefronts is non-physical. Assume that
the non-physical wavefront is connecting ¥’ with ¥, while the physical
wavefront is traveling with speed A and it is connecting

PR =T0 o oT M.
Define the intermediate state

Q;M = T" 6...0 Tl wL

Sn

The solution around (¢, ) for times ¢ < ¢ is now made by a physical wave-
front traveling with speed A connecting ¥* with "LZ}M and by a non-physical
wavefront traveling with speed A = —1 and connecting ”(;M with .

It is not difficult to see that the definition of 1 is well posed.

3.2. Lagrangian representation for

In the same spirit as in Section 2.3 we introduce now a sort of Lagrangian
representation for the wavefront solution . We are not interested here in
defining a general notion of Lagrangian representation, since the map v is a
map ad hoc constructed to get estimate (LI5I).

First of all, let us analyze the physical waves. For any K = 1,...,n the
set of the physical waves of the k-th family in v is the set Wi (t1) N Wi (t2).

Set, for any k=1,...,n
i = o (@k(igs) (W,;t(ile) N w,f(zgs)))
_ <<I>k(z'15) (w,;t(ils) N Wki(z'gz—:))).

Define also the position map for the physical waves in ¢ and follows:

y tl,tg U Wk t1 ﬁWk(tg)) R,
k=1

x(tg, w) — x(t1, w)
to — 11

y(t,w) = x(to,w) — (ta —1).

Notice that y takes values in the discontinuity points of ¢, it is increasing in
w and affine in ¢.
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The analog of the collection of the maps {®()}1c(0,00) (see Definition 2.4)
for v is the map

W s Wi(t) N Wi(t2) = [ = Li,0) N (0, +L}]

defined by

— S(w)L! <I>k(t2)<{w' € Wi(t1) N Wi(ta) | S(w') = S(w) and

w’ﬁw})).

The restriction ¥ : Wi (t1) N Wi (t2) — I(L}) is an isomorphism of or-
dered sets, while the restriction ¥ : W, (t1) N W, (t2) — I(L;) is an anti-
isomorphism of ordered sets.

Notice that while the maps ®(t) for u® depends on the time, the map ¥y
for v does not, since the total amount of physical waves in v is constant in
time.

We define also the maps i (t, ) := (ux(t,-), Uk (t,-), 0k (t,-)) and the effective
flux £5(¢,-) at any time ¢ € [t1,%2) as follows. Fix a time ¢; assume first that
no wavefront collision takes place at time ¢t. Fix any point € R. Assume
that

u(t,z) =T oo T, u(t,z—);

denote by {vx}x, W = (ur,vi,0%) : I(s;) — R"2 the collection of curves
which solve the Riemann problem (u(t,x—),u(t,z+)) and by fx : I(sx) = R

the associated reduced flux. Since
\IIk|y(t)—1(x)ﬂWk : y(t)_l(x) NWy — a+ I(Sk)
is an (anti)isomorphism of ordered sets for some a € R, we can define

ety )y THE) NOWE = D SR it w) = e (Tg(w) — a).



276 STEFANO MODENA AND STEFANO BIANCHINI [March

Using the fact that, for fixed time ¢, the position map y takes values in the
discontinuity points of ¥, (¢, w) is defined for any k-wave w.

We also define

2L L] =R
as any C'! map such that

PE5 (1)

dT2 (’7—) = T, Wlth T = \Pk(’w)

Now, if ¢ = t5 or if t is a time when a collision between two wavefronts
takes place, we extend the definitions of 4 (¢) and £$(¢) in order to have
left-continuous in time maps.

Remark 3.1. We usually want our maps to be right-continuous in time.
In this case, however, we are using backward-in-time Riemann solvers, and
thus it is quite natural to require that ¢ — () is left-continuous in time.

Finally, we define the wavefront speed of a wave w € Wi (t1) N Wy (t2) as

5\( ) x(ige,w) — x(i1e,w)  y(ige,w) — y(ire, w)
w) = =
i2€ — i1€ ’i2€ — ’i1€

which coincides with (B.2]).

As for the Glimm approximate solution u®, we say that a set Z C
W,;t(tl) N W,;t(tg) is an interval of waves for v if T is an interval in the
ordered set (W,;t(tl) N W,;t (t2),< ). The following definition is the analog of
Definition

Definition 3.2. Fix t € [t1,t2]. Let Z C Wi(t1) N Wi(t2) be an interval of
waves for 1. Set I := Wy (Z). Since the restriction of ¥y to positive (resp.
negative) waves is an isomorphism (resp. anti-isomorphism) of ordered sets,
I is an interval in R (possibly made by a single point). Let us define:

e the Rankine-Hugoniot speed given to the interval of waves I by a func-
tion g : R — R as
if I is not a singleton,

sup I—inf I

g(sup I)—g(inf I)
™9, T) = {

g (I) if I is a singleton;
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e for any w € Z, the entropic speed given to the wave w by the Riemann
problem T and the flux function g as

diconv Ig<\Ifk(w)) if Sp(w) = +1,
ent T
(g9, T, w) :=

d .
Econwg(\lfk(w)) if S(w) = —1.

If o™(g,7) = 0°(g,Z,w) for any w € T, we will say that Z is entropic
w.r.t. the function g. We will also say that the Riemann problem T with fluzx
function g divides w,w" if o®(g,Z,w) # (g, Z,w").

Let us now analyze the non-physical waves. The set of non-physical
wavefront is defined as

Wo = {(t,2) ! in (t,x) a non-physical wavefront is generated }.

We are labeling each non-physical wavefront with the point in the (¢, x) plane
in which it is generated.

Since the speed of the non-physical wavefronts is strictly less than the speed
of any physical wave, we will refer to the set of non-physical wavefronts also
as the set of waves of the 0-th family.

Clearly W) is a finite set. For any non-physical wavefronts « = (¢,7) €
W, we define its creation time t° (o) := ¢ and its position y(¢, ) = T—(t—t).
Moreover, if t is any time when no collision between wavefronts takes place,
we define the strength of the non-physical wavefront « as

)

s(t,a) :== ‘zp(t,y(t, ) +) —(tyta) —)

then, as usual, we extend the definition to all times in (t1,¢2] in order to
have a left-continuous in time map. Finally define

Wo(t) == {a € Wy | t%(a) > t}.

We will call Wy(t2) the set of primary non-physical wavefronts and Wy \
Wo(t2) the set of secondary non-physical wavefronts.
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3.3. The main theorem on

In this section we state the main theorem about physical and non-
physical waves in v, which will be proved in Sections 4 and 5, and, using
this theorem, we prove estimates (I.I7D]) and (LI7d).

Theorem 3.3. With the same notations as before,

(1) the following bounds on physical waves hold:

\

/Lﬁ {Tot.Var. (ak(',\lf_l(T)); (tl,tg))

_LI:

/_LLi_ {Tot.Var. (%(~,\If‘1(7-)); (t17t2))

<0(1) [r(tl) - T(tz)],
I

(0k(t2, ) — Ox(t2,-)) © \Pgl(T)‘}dT

/TJ {Tot.Var. (5‘k(',\1’_1(T)); (tl,tg))

_L;

A e

Vs

where (U, Ok, 0x) 1S the curve solving the exact Riemann problems at
time to (i.e. with all waves in W(te) N (ize, me), m € 7).

(2) the following bound on non-physical waves holds:
> [Tot-Var- (50 (tl,t°f<a>))+s(t“<a>,a)] <OM)|T(1)-T(ts)|.
aEWy

As an immediate consequence, we get the following corollary. For any k =
1,...,n, for any physical wave w € Wy(t1) N W (t2) and for any ¢ € (1, 2],
set

Pt w) = (Tt w), Bt w), r(tw)),

Pty w) = fk(ak(t,w),@k(t,w),&k(t,w)>.
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Corollary 3.4. It holds

/_L;;{Tot.\/ar. (fk(, \11—1(7-)); (tl,tg)) + ‘ (fk(tz, ) —7(ta, )) o ‘I’gl(r)‘}dr

< O1)[T(h) - T(t)].

As we have already said, the proof of Theorem [B3] is the subject of
Sections 4 and 5. We now use Theorem [3.3] and Corollary B4 to prove
estimates (LI7D])—(T.I7d) and thus complete the proof of Theorem [L3l

Proposition 3.5 (Estimate (LI7D). It holds

1 +log(iz — ¢
4 L log(i> — )]

|Sta—rt0(t1) = ¥ (ta) ||, < 0<1)[(T(t1)—T<t2)) pa— to —t1).

Proof. We make use the semigroup estimate

[4(t2) = Spo—n,00(t1) ||, < L/t2 lim sup [9(t + 1) — Spylt

)y
dt. 3.3
t1 h—0 h ( )

Since the map v is piecewise constant at any fixed time ¢, it is not hard to

see that the integrand on the r.h.s. can be estimated as

e - sl
im sup

h—0 h
n

‘)\(\If_l(r))—6(1&,\1!_1(7-))‘(17'—1—2 3 s(ta).

aEWp(t)

<3
=1 ¥k (Wk (t1)NWg (t2))

For the term concerning the non-physical waves, we easily obtain

Z s(t,a) < Z |s(t,oz)—s(tcr(oz),oz)‘+s(t°r(oz),oz)

a€Wp(t) a€WL(t)

< Z [Tot.Var. (S(',Oé); (h,tcr(a))) + S(tcr(a)’a)}

aceEWy

(by Theorem B3) < O(1) [r(tl) - T(tg)].

For the term concerning the physical waves, we argue as follows. Fix any
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T € U (W(t1) N W(t2)) and set w := U (7).

) | ol ;| nl
< Bi(w) — L A g
< (AMw — Z:ZZ; a(za,w)‘ + F— ;:1 o (ie,w) 0(225,10)‘
+|6 (e, w) — 6(t,w)‘
) = .
< - 5 (% . . o (- N —
< (AMw) F— Z a(zs,w)‘ + Tot.Var <a( ,W); (tl,tg + 2>>
1=11
+|6 (2, w) — 5(t2, w)| + Tot.Var. (6(-,w); (tl,tg)). (3.4)

To estimate the first term of the last summation we use the same technique

as in [14]. Define first the map

—0 ifo<d
w @ [0,1] x [0,1] - R, w(o,¥) =
l—0c ifo>9.
Set
o™ = min  &(ie,w), oM =  max oJ(ie,w),
=1 yeyiz—1 =1,z —1
and

J = {i € [ir,ig — 1] | o™ <0; < o™"},

K = {Z S [il,’iQ—l] ‘ 9 <5‘(i1€,w)}.

We thus have

) =,
Mw) — g > &(z’s,w)‘
i=iy
LS wote w00
= |- : w(o(ie,w),V;
2 — 11 i
1 12—1
= F— Z [w(&(is,w),ﬂi) —w(&(ils,w),ﬂi)] —I—w(é’(ile,w),ﬁi)
i=iy
= - 1 . Z <&(ilfs,w) — &(z’s,w)) + Z (&(ile,w) — o(ie,w) + ai)
2Ty ieg
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+Z ( - &(ile,w)) + Z (1 - &(z’le,w)) ‘

i¢K i€k
(Here a; is a number in {—1,0,1})
1

19 — 11

(Ng ieJ

—5‘(i1€, ’w)(ig — il) + WC

IN

19 — 11

<2
(using (LTD)
o)

1K

Fmax _ smin : :
22—

ﬁj _ (a_max _ a_min)

19 — 11

IN

+ +

IN

Tot.Var. <&(-,w); (tl,tg + E>> + - -
2 19 — 11

Using (34), (33), Corollary 2:24] and Theorem B.3] we thus get

1 + log(iy — il)]

A7) = & (L (7)) |

[pk (Wi (t1)nW (t2))

< O(l)/ 1+log(i2—i1)
a Uy (Wk(tl)ﬂWk(tz)) ig = i1

+Tot.Var. <a—(., 1{,;1(7-)); <t1,t2 + %))

281

Z( (e, w) — 6 (ie,w ) +Z< 6 (ir1e,w) — 6 (ie, w) +ai)

(”z:l‘ g (ire, w) — & (ic, w)‘ + 17 + ‘tth—a(zls w) (g —zl)D

-,

(3.5)

+(&(t2, U HT)) =6 (t, U (7)) ‘ + Tot. Var. (&(-, U m))s (s t2)> }dT

< 0(1){%@_“) F () — T(tg)}.

12—

Therefore, using (3.3]), integrating over all times ¢ € [i1e,i2e] we get the

conclusion.

Proposition 3.6 (Estimate (LI7d)). It holds

|l (t) — ()], < OQ)(Y(t1) — Y(t2)) (2 — t1).

O
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Proof. Fix any = € R. Consider the segment on the (¢, x)-plane joining
(t1,x) and (tg,x — (t3 — t1)). Assume that x ¢ Ze and that no non-physical
wavefront travels on this segment (this holds for all but finitely many x € R).
Define the set of k-waves which cross this segment in u® and in v respectively:

WS (u®, x) = {w € Wj, | there exists t =: t“°%(u®, z, w) € (t1,12)
such that x(t,w) =z — (t — tl)},

WIS (), x) = {w € Wi(t1) N We(t2) | there exists
t =1t (W, z,w) € (t1,12)
such that y(t,w) =z — (t — tl)}.

Since, for any wave w € Wy (t1) N Wi (t2), x(t1,w) = y(t1,w) and x(t2, w) =
Y(t27 ’U)),
WEESS (i, ) = W (u®, ) N W (t1) N Wi (t2).

Moreover, if a k-wave w € Wi (1), x), then its position at time ¢; must be
x(t1,w) = y(t;,w) € [m —2(tg — tl),x],

while if w € Wi (u®, x) \ Wi (¢, x), then either it is created at some
grid point in the triangle

A% (z) := [(tl,:c —2(ty — t1)), (t2,x — (t2 — t1)), (tl,x)]
or it is canceled at some grid point in the triangle

A (g) = [(tQ,x — (ta —t1)), (t1,2), (ta,z + (t2 — tl))].
Since ¥(ts) = us(t2), We can now write

[(ty, @) — u(ty, @)
_ Hq/;(tl,x) — 4tz — (t —tl))} _ [ua(tl,x) —uf (tg, 1 — (g — tl))”

{fk (g5 (0, 031 (7), w5 (7))

\Pk Wcross (w Z‘

—7k (tcmss (uf, z, gl (1), gl (7‘)) }dT
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+0(1){ > A%(ie,me) + > Acanc(z'e,me)}

(i,m)ENXZ (i,m)ENXZ
(ie,me)EA (z) (ie,me) € A1 ()

e (£ (2, W (1) 0 (1) ) =7 (12, W () '

n

<)
kzz:]_ \Ilk (W](C:ross(w’x)) {

i (tg,\I/,gl(T)) — 7y (tg,qul(f))‘

+

_|_

T (tg, \I’EI(T)) — T (tcmss (uf, z, \I’_I(T)),\I’_l(T)) ‘ }dT
+O(1){ Z A (ie, me) + Z Acanc(if:,ms)}

(i,m)ENXZ (i,m)ENXZ
(ie,me)€ A (x) (ie,me)e A (1)

; [v (51 (o202 -12).2)) {

P (12, 0 (7)) = (tz,‘I’El(T)>‘

IN

Tot.Var. (fk(, U(r); (t, t2))

_|_

+

Tot. Var. (fk (0 ();: (1, t2)> ‘ }dT
+0(1){ S A (i, me) + > Acanc(ie,me)}.

(i,m)ENXZ (i,m)ENXZ
(ie,me)EA°T () (ie,me)e AN ()
Hence, integrating over all z € R, we get

+o0
/ |¥(ty, x) — u(t1, x)|dx

—00

(o
<. {Z/ (et ) [T“‘V”‘ (o0 s 0.02)

+li (tg,\I/,gl(T)) _ (tg,\I/,gl(T))

+|Tot. Var. (fk(-, \1’1;1(7')); (t1,t2)) ‘ dr
+0(1){ Z Acr(is,ms) + Z Acanc(ie,m€)}}d$
(i,m)ENXZ (i,m)ENXZ

(ie,me) €A () (ie,me) € A2 ()
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(using Fubini’s Theorem and Corollaries and [3.4] )
< O()[(tr) = T(ta)] (82 — 1),

which is what we wanted to get. O

4. Analysis of the Interactions in v

In this and next section we prove Theorem B3 We will follow the
same technique we used in [3]. In particular this section is devoted to study
the local part of the theorem: we introduce a suitable notion of amount of
interaction and we prove that at any interaction the variation of g, Uy, 6%

is bounded by such amount of interaction.

In the next section, we will prove the global part of the theorem, i.e.
that the sum of all the amounts of interactions is bounded by the decrease
of T in the time interval [ty t2].

The crucial point is that the new definition of the functional Q we gave
in Section 2.6 is the one we need to prove Theorem [3.3] as we will see in the
next section.

4.1. Amounts of interaction at the final time ¢,

Instead of defining immediately the amounts of interactions at any point
(ie,re), r € Z, it is more convenient (to avoid too heavy notations) to

consider first a more abstract situation, and then apply it to our analysis.

Fix a left state u”, a right state u’® and a collection of A vectors

s =(sf,...,s0) €R" a=0,1,..., A

) Sn
The Riemann problem (u”, uf?) is solved by the collection of curves {’yk } k=1,
where

v I(sg) = D CR™2, gy = (ug, v, o),
and denote by fi : I(sx) — R the associated reduced fluxes.
Assume that for any fixed k =1,...,n,

e all the s¢, a € {1,..., A}, and s;, have the same sign;
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A
b Za:l SZ

Observe that our assumptions describe precisely the collisions taking place

< skl

at any point (ige, me), m € Z.

Set I := >, . st +1(s¢). Let O : I(ZA s&) — I(sk) be any increasing

a=1

map such that for each a = 0,1,..., A4, ®k|jg is an affine map with slope
equal to 1. Denote by @,;1 its pseudo-inverse, which turns out to be a

continuous map. Set J{ := {7 € I(sy,) | O, ' (r) e It}

Set u? :=u” and for any a = 1,..., A,
a._qm 1, a—1
ut i=T4 00T au" .
n 1

Assume that the Riemann problem (u®~! u?) is solved by the collection of
curves {V¢}p=1,...n, wWith v = (uf, v}, of). Assume moreover that, for any

k and a, 7 is defined on I}}.
We can now define:
e the transversal amount of interaction as

n k—1

A A —
BUS(ul sty s u) =) 0 ) 0 DTN Isillshl;

a=0 b=a+1 k=1 h=1
e the quadratic amount of interaction of the k-th family as

B%uadr L R)

(u”,81,...,84,u

H%COHV I(sk)fk - U?:O %COHV JgkaI if Sk > 0,

|

e the amount of creation of the k-th family as

A
sk—E Skl

)
a=1

d A d ; .
greonc ) fr — U,—o g=conc Igkal if s < 0;

Bzr(uL,sl,...,sA,uR) =

e the global amount of interaction as

B(UL7 S15---,8A4, uR)
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n
. t L R uadr/ I R
— Brans(u ,S1,...,SA4,U )+Z|:B2 (u ,81,...,84,U )
k=1
L R
+Bi (u”,81,...,84,u )}

We have used the letter B instead of A to distinguish these amounts of inter-
action from the amounts of interactions concerning two merging Riemann

problems, already introduced in Section 2.2.

Proposition 4.1. For any k =1,...,n, the following inequalities hold

A
ufp — ug © O — (ul(0) — up(0)) H
1

a= [e.e]

A
Uvg—vko@k < O1)B(ur,sq,...,s4,ul).
a=1

(e}

A

a
UO'k —O'ko@k
a=1

1

The proof can be achieved using the same techniques as in |3, Section 3] and

for this reason it is omitted here.

Recall now the definition of 5" in ([3.I]) and define the vector

I )

Applying the previous definitions to the collisions taking place at time t5 =

i9e, we can define, for any r € Z,

Btrans(igfj, T’E) — BtranS(uig,r—17 ér_(h_il)wry o éTWT’ ui”),
Bguadr(i267 T€) _ Bzuadr(uiz,r—l’ gr—(iz—il)wr’ o ’grwr’ uizﬂ"), k= 1, m
B (ige, re) 1= B (w271 g7z i) g iy =1,

Bline, re) 1= B(u'>" L &)= gror yior)

Applying Proposition [4.1], we obtain the following corollary.
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Corollary 4.2. It holds

(ﬂk(t2_7 ) _ ak(t27 )) o ‘1’1:1 _ (ak(tg—,()) — '&k(t270)) HLOO ([—L_l/ﬂ)

(Brlta=,) = Bulta, ) 00 Y||

(5’k(t2—, ) — &k(tg, )) o \I/I;I‘

< O(1)  Blige, re).

rez

4.2. Amounts of interaction at times ¢ € (¢1,t2)

Let t € (t1,t2) and let (¢,2) be a point where two wavefronts collide. As
in Section 3.1, we have to distinguish two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the
collision the first wavefront is traveling with speed A and it is connecting
the states

M 1.,L
¥ :T%O"'OT5’1¢ ,
while the second wavefront is traveling with speed A’ < A" and it is connect-
ing the states
YR =T oo THpM.
n z

S

We have already observed that the interaction at (¢, Z) is purely transversal.
Define thus the (transversal) amount of interaction at (t,z) as

E n
B () = > Y Isls
k=1 h=k+1

Case 2: one of the two colliding wavefronts is non-physical. Assume that
the non-physical wavefront « is connecting ¥ with ¥»™, while the physical
wavefront is traveling with speed A and it is connecting

PR=T" oo Ty,

Also in this case the interaction is purely transversal. Define thus the amount
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of interaction at (t,x) as

B(t, ) = B (t, ) = s(t+,0) 3 [se] = [ — 0| 3 [sil:

k=1 k=1

The following proposition covers both the case of a collision between
physical wavefronts and the case of a collision between a physical and a

non-physical wavefront.

Proposition 4.3. The following hold.
(1) For any k= 1,...,n, for the k-physical waves y(t)~'(x) N Wy located at

(t,z) in the wavefront map v, we have
(g (t+, ) — 11 (=, )) 0 Wi — (g (t+, 0) e (t—, 0)) HLOO (Tr(r )~ @)rwy)

0 D= — . -1
(Bl ) = 0elt=r)) o W Hmo(m(.x/(t)—l(z)mwk)))

(Gx(t+, ) — Gr(t—,-) o xlf,;l(

< O(l)Btrans (t, {L’)

L (U (y(0) 1 (@)Wh)

(2) If both wavefronts interacting at (t,x) are physical, denoting by « the
non-physical wavefront generated at (t,x), its initial strength can be es-

timated by
‘s(tcr(a),aﬂ < O(1)B™#S(¢, ).

(3) If one of the two wavefronts interacting at (t,x) is a non-physical wave-
front «, the variation of the strength of a can be estimated by

|s(t+, @) — s(t—, a)| < O(1)B™™5(¢, z).

The proof of this proposition can again be obtained with the same techniques

as in |3, Section 3|, and thus it is omitted here.

5. Estimates on the Amounts of Interaction in ¢

In this section we prove the following theorem, which is the global part
of the proof of Theorem [3.3l The proof of this theorem is the last step in
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order to complete the proof of the convergence rate of the Glimm scheme,
Theorem L3

Theorem 5.1. The sum of all amounts of interaction in the time inter-
val (t1,te] is bounded by the decrease of the functional Y in the same time
interval, i.e.

S Blise,re) + >, BTS(tz) < O(1)(T(t) — Y(t2)).

rel (t,x) int. pt.
te(ti,t2)

The proof is a direct consequence of the following three propositions.

Proposition 5.2 (Transversal amounts of interactions). It holds

ZB“”S’(ZQE re) + Z BYS (¢, x) < O(1)(Y(t1) — T(ta)).
rez (t,x) int. pt.
te(ty,t2)

Proof. Since for any wave w € Wy (t1) N W (t2),

X(tl,U]) = Y(tl,ZU), X(tz,ﬂ}) = Y(t27w)7

and thus the waves which have to cross in v also cross in ¢, it is not difficult
to see that

12
ZBtranS(i2€,T€) + Z BtranS(t’x) < Z Z Atrans(iE,m€)

reZ (t,x) int. pt. 1=t1+1meZ
tE(tl,tz)
(by @20)) < O(1)(Y(ize) — T(t1)),
which is what we wanted to prove. O

Proposition 5.3 (Amounts of creation). It holds

D Bf(ige,re) < O(1)(Y(t1) — Y(ta)).

rez

Proof. 1t is fairly easy to see that

ZBk ige, 7€) Z Z A% (ige, me)

rez 1=11+1meZ

and thus, again using (2.20), we get the conclusion. O
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Proposition 5.4 (Quadratic amounts of interaction). It holds

D B (ige, re) < O(1)(Y(t1) — Y(t2)). (5.1)

rez

The proof of this proposition is much more difficult than the previous two.
However, the technique we will use is the same we used in [3] to prove
estimate (2.19]) on the decreasing part of the functional Q(¢). Here, however,
the new definition of the functional Q(¢) we presented in Section 2.6 plays
a crucial role, since, with the old definition (the one in [3]), the decrease of
9 in the time interval [t1,¢5] is not big enough to prove (G.1]).

Proof. Introduce first the following sets:

& ::{(w,w’) € Wi (ise, re) x Wy(ize, re) ‘ w<w,

x(t, w) < x(tl,w/)},r €z,

Fr ;:{(w,w/) € Wi (ige, re) x Wy(ige, re) ‘ w<w,
max {tcr(w),tcr(u/)} > tl},r e,

& = U &, F = U Fr, (5.3)

reZ reZ
g {(w,w') ce ( 0t (4w, w') = z’s}, i=i 4 1,... 0.

We need now the following four lemmas, which conclude the proof of the

proposition.

Lemma 5.5. For anyr € Z,
BI (iye, re) < O(1) / / ak (11, b2, 2, W (1), O (7) ) drdr.
(\I/kX\Ifk)(grU]'—r)

Proof. We assume for the sake of simplicity that the k-waves interacting at
(ige, ) are positive, the negative case being completely similar. We divide

the proof in several steps.

Step 1. Set uf := w1 uf := u2" and

sy = 82_(12_21)4_&
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for any a = 0,1,...,i2 — i3 =: A. As in Section 4.1, let

S i (st 50,
let {Vk}k=1...n» V& : I(sk) = D C R""2 be the collection of curves which
solve the Riemann problem (u”,uf) and let f; be the associated reduced
flux. Define also

L —1
O 1= Pp(t2) o ¥y, |\1,k (Wi lize,re) Wi (1))

It is not difficult to see that there exists two real numbers ¢, ¢’ € R such that

fok(Wk (ine, r2) N Wi (ine, (r — (ip — i1) + a)e)) = (Y shAI(sp) = IF,
b<a
Dy (t2) Whlioe, re)) = ¢ +L(sk),

and
A
O :C+I(Zs%) — ' +1(sp)
a=1
is an increasing map and for each a = 0,1,..., A the restriction Oy e is

an affine map with slope equal to 1. We are thus exactly in the situation
described in Section 4.1 and therefore we can define the intervals J := {7‘ €
¢ +1(sp) | 0. (r) € I?}. Notice, moreover, that the effective flux £§(¢5) at
time 5 and the flux f;, associated to the Riemann problem (u”,u®) coincide
up to affine functions, i.e.

a2 2

d
eff
FCOHVC/-FI(S;C):E/C (tQ)(CI +7’) = FCOHVI(Sk)fk’(T)v TE I(Sk)

Hence, by the properties of the convex envelope, we can compute the quadratic

amount of interaction BA#Y (j5¢, re) using the effective flux £ (¢5) instead
of fk:
d A
pavadr . gy Lgeft
v (dge, TE) Zoconv 4 safh (t2) CL|_0 g-conv ety (t2) )

By triangular inequality, it is enough to prove that for any b=1,..., A,

‘ d

d d
270V e Jgfiﬁ(tg) - (Econv Uz;éfzﬁ(h) U 77 conv J};fzﬂ(tg))

1
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< / / ) ax (1 b2, 2, 0 (7), O () ) drdr. (5.4)
(Unzo T3

The technique we use to prove (0.4]) is the same as in [3, Proposition 6.9].

Step 2. Set
b—1
TM = Sup U J& = inf J?,
a=0
and
b—1
T[, = max {T € U Ji conv  jp—1 Jaf (L) (1) = conv, Jaf ff(152)(7')},

a=0

TR = min{r cJp

conv J}C)fzﬁ(tg)(T) = conv p Jgfiﬁ(tg)(T)}.
W.l.o.g. we assume that 77, < 73y < 7g, otherwise there is nothing to prove.

It is quite easy to see that

Bzuadr(z'fs, re) = - i - [arh (fzﬁ(tz), (t0,7m]) — o™ (fzﬁ(tz), (T, TR])]

Xﬁz((TL,TM] X (TM,TR]),

and thus it is sufficient to prove that

1

TR —TL

/TM/ ai (11,12, 12, W (1), WA () ) s (5.5)

o (5 (t2), (. maa]) = 0™ (857 (t2), (rar, 7)) | £2((7, 7] ¢ (s, 7]

Observe that, by Proposition 2.16],
d(th t27 t27 \Illzl(T% \IIIZI(T/)) S TR — TL;

hence (B.5]) will follow if we prove that

(o (85 (t2), (. maa]) = o™ (857 (t2), (rars 7)) | £2 (7 7] ¢ (s, 7]

T™
< / (b b, o, U (), WL () ) drdlr. (5.6)
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Step 3. Let
L= \Iflzl((TL,TM]), R = \Iflzl((TM,TR]).

We will identify waves through the equivalence relation <, already intro-
duced in ([2.7)): for any couple of waves w,w’ € LUR, set w <1 w’ if and only
if

t"(w) = t"(w') and x(t,w) = x(t,w’) for any t € [tcr(w),is).

The sets
/:'::L'/IXL ﬁ::R/N

are finite and totally ordered by the order < of Wg(t2). Moreover for any
Eel, & eR, letwe&, w e and set

Z(tr,t2,&,&) = Z(tr, to,w,w’), Plt1,t2,€,&) := Plt1, bo, w,w'),
and

f(tl,t%f,f/) = I(tlyt%g)g,) /D<] .

It is not hard to see that the above definitions are well posed and that
ICLUR.

Now we partition the rectangle L x R in sub- rectangles, as follows. For
any non empty rectangle C:=LexRe CLx R define (see Figure B3]

~

IH(C) = _Ecﬂf(tl,tg,maxfc,minﬁc)] X [ﬁcﬂi(tl,tg,maxfc,minﬁc)_,

~

I (C) := ECOI(tl,tg,maxﬁc,mch } X 7 tl,t2,maxzc,min7/?\,c) ,

~

I5(C) := _Ec\f(tl,tg,maxfc,mich } X [ tl,t2,maxﬁc,mln7€c) ,

~

II3(C) := _Ec\f(tl,tg,maxzc,minRC ] X tl,t2,maxﬁc,mln7€c) .

-~

Clearly {Ho( ), 11 (é\),HQ (CA),Hg(CA)} is a disjoint partition of C.

For any set A, denote by A<N the set of all finite sequences taking values
in A. We assume that ) € A<N called the empty sequence. There is a natural
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Figure 3: Partition of C .= Ec X ’ﬁc.

ordering < on A<N: given a, 8 € A<N,
a4 <= [ isobtained from « by adding a finite sequence.

A subset D C A<N is called a tree if for any o, 3 € A<N, a <3, if p € D,
then a € D.

Define a map U : {0,1,2,3}<N — 22X7€, by setting

a —

~ L xR, if a =10,
I, o0---oll, (LxR), ifa=(z,...,21) € {0,1,2,3}<N\ {p}.

For o € {0,1,2,3}<N let Za,ﬁ,a be defined by the relation U, =Ly X Ra.
Define a tree D in {0,1,2,3}<N setting

D= {(b} U {Oz:(zl,...,zL)6{0,1,2,3}<N ‘ LEN,
M, # 0, zl#Oforlzl,...,L—l},

See Figure @l

Since Iy (IIp (CA)) =1l (CA) for any C C £ x R, this implies, together with the
fact that £ x R is a finite set, that D is a finite tree.
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D)

Figure 4: Partition of £ x R using the tree D.

For any o € D, set

Lo:= ] ¢ Ra= | ¢,

feEa é‘/e’]’éa
Ly =Y, (Ly), Ry = Vi(Ra).

The idea of the proof is to show that, for each o € D, on the rectangle
L., x R, it holds
[arh(fzﬁ(tg), L,) — O'rh(fzﬁ(tg), Ra)]ﬁz(La X Ry)

< / (1, te, 7,7 )drdr’. (5.7)
Lo XRa

The conclusion will follow just considering that () € D and Ly = (77, Ta],
Ry = (7a1, TR)-

Step 4. Using Propositions 2.16] .18 2.19] it is possible to prove that B.7]
holds for each aw = (z1,...21) € D such that z, = 0.

This is a major part of the proof, in which the partitions P(ty, t3, w,w’) are
widely used, but we don’t prove this step explicitly, since its proof can be
obtained adapting the proofs of [3, Lemmas 6.10-6.11].

Step 5. We prove now that (5.7)) holds for any o € D by (inverse) induction
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on the tree. If « is a leaf of the tree, then, by definition, the last component
of a is equal to zero, and thus (5.7]) has already been proved in Step 4. If «
is not a leaf, then

(I\ja = (I\IQO U (I\’al U (I\ja2 U (I\jafi
and thus
La X Ra = (Lao X Rao) U (Lal X Ra1> U (Lag X Rag) U (Lag X Rag).

The estimate (5.7]) holds on Ly X Rao by Step 4, while it holds on Lyg X Raq,
a =1,2,3, by inductive assumption. Hence we can write

[ (£ (t2), La) — o™ (£5 (t2), Ra)] L? (Lo % Ra)
eff eff
:/kmjﬁwmm—“gﬂw%ma

:ZP%%ﬁLFﬂ@%mMW%M&J

Z// tl,tg,\Il 1(7'),\Il/,;1(7"))d7'al7"
= // Wk(tl,tg,\I’I;I(T),\I/I;I(T/))deT,.

IN

As already observed, for a = (), we get inequality (5.6)), thus concluding the
proof of the lemma. O

Lemma 5.6. It holds

// i (tl,tg,tg, v (), \If,j(#))ehd#
(\Ika\Ifk)(F)

Z ZA (ie,me)

i=i1+1meZ

Proof. The proof is an easy consequence of the definition (5.2])—(5.3]) of the
sets F, F and the fact that the weights q; are uniformly bounded, Remark
2. 20) O
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Lemma 5.7. It holds

// qk <t17t27t2,\1’21(7)7‘1’51(7/))
(g xWy)(E)
—qk (tint (t1, (), \IJ;I(T/)) —&, U, (1), \111;1(7'/))de7'/

1) Z ZA(is,ms).

i=i1+1meZ
Proof. Fix (w,w') € £. Observe that for any i = iy,..., 2,

@1 (ie) () — Bilie) (w)| = |wrie)(w) — Walie) (w)|,

(5.8)

since ¥ takes into account only the waves which are in Wy (i1e) N W(ize).
Then notice that

a(t™ (tw,w) =g ww') = q(8(w,0) - et (0, w,w) - g w, )
q(tlatint(t17w7w/) - €7w7wl>

q (tlv tint(tlv w, w/) — &, 12, w, ’U)/) :

v

Hence

Aqi(w,w') = q(tl,tg,tg,w,w/> — q( mt(tl,w w') — fs,w,w’>

< q<t17t27t27w7w,) - q(tbtint(tl)wvw,) - €7t27w7w/)
2

Z [Cl(this,tz,w,w’) _q<t1,(i—1)€,t2,w,w’)]

i=tint (¢, w,w’) /e

(by @I3))

IN

2

= 0(1) Z . E 25 me
izti"t(tl,w7w’)/5 |(I)k(ZE)( ) cI)k ZE ‘
(by B.8))

SO()N’k( Z Z ie, me)

1=11+1 meZ
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Therefore

// qk<t1,t27t2,\1’51(7)7‘1’51(7/))
(T xWgE)(E)

— (tmt (b, 0 (1), W () = &, 9 (), W ()

DS S [

kX\I/k (8) |T - 7—|

1=11+1 meZ
< (9(1)52((\Ifk X \Ifk)(€)> 222: Z A(ig, me)
i=i1+1mez
1) 22: Z A(ie, me). O
i=i1+1 mez

Lemma 5.8. It holds

//(Ww(g) o <tint (1,95 (1) 91 (7)) — 2 v ), q:;l(T'))deT’
< O()(T(t) - T(t2)).

Proof. 1t holds
/] a <tmt (10 (1), 0 (7)) — 2 W (), @;1(7/)> drdr’
(X )E)

_ Z //ngz <1_1)5qf ()qf,;l(T')>drdT'

i=i1+1
_ 2 N N ) T
= Z;ﬂ//cbk(z 1)e)x @y ((i—1)e ))(&_) ka<( e, Pr(( DeY(7),
)
(see (m))
((i — 1)e)drdr’
7 ;1Tnz€:zf/lll XJR

(using (2.16) — (Z.I7) and the fact that for waves w,w’ interacting at time ie,
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q(ie, w,w’) = 0).

< Z (Q((z —1)e) — Q(ie)) + O(1)Tot.Var. (u) Z Z A(ie, me)
i=i1+1 i=i1+1mez
(since Qlfnown is decreasing in time)
< >0 (9 - 1)e) - Aie)) +C(Q (i — 1)e) — Qi)
i=11+1
+O(1)Tot.Var.(u) i Z A(ie, me)

i=i1+1mez
(by the definition of Y and Corollary 2.24))
12
omn Y (T((z’ “1)e) — T(z’s))

i=i1+1

= 0(1)(T(t) = T(t)).

IA

The conclusion of the proof of Proposition 5.4l is an immediate consequence
of the previous four lemmas, Corollary 2.24] and Proposition (5.3l O
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