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Abstract

In this paper we are interested in the asymptotic behavior of incompressible fluid
around a bounded obstacle. Under certain a priori decaying assumptions, we derive a
quantitative estimate of the decaying rate of the difference of any two velocity functions
at infinity. This quantitative estimate gives us a sufficient condition, expressed in terms

of integrability, to guarantee that the solution of the Navier-Stokes equations is unique.

1. Introduction

Let D be a bounded domain in R™ and 2 = R”\D with n > 2. Without
loss of generality, we let 0 belong to interior of D. Assume that € is filled with
an incompressible fluid described by the stationary Navier-Stokes equations

—Au+u-Vu+Vp=f in Q

1.1
Viu=0 in Q. (1)

We are interested in the following question: let uq and uo be two solutions
of ([L.I)) satisfying some pre-described assumptions such as boundedness or
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decaying conditions, then find a sufficient condition which guarantees that
u1 = uy in €. In this paper, we answer this question by deriving a minimal
decay rate of u; — ug at infinity if uy # us.

This question is motivated by the following problem. It was shown by
Finn [1] that when n = 3 and f = 0, if u|sp = 0 and u = o(]z|~!), then u is
trivial. Inspired by Finn’s result, we would like to ask the following question:
when n = 3, if we know a priori that v = O(|z|~1), what is the minimal
decaying rate of any nontrivial u satisfying (II)? It should be remarked
that the boundary value of u on 0B is irrelevant in this problem. Moreover,
the asymptotic behavior u = O(|z|~1) characterizes the so-called physically
reasonable solutions introduced by Finn [2].

To answer the main question of the paper, we simply subtract two equa-
tions for u; and us and obtain

—Av+v-Vo+v-Vus+us-Vo+Vp, =0 in €,
V-v=0 in €,

where v = w13 — uo and p, = p1 — p2. Therefore, to solve the problem, it
suffices to consider the generalized Navier-Stokes equations

(1.2)

—Av+v-Vv+ov-Va+a-Vo+Vp=0 in Q
V-v=0 in Q

with V - @ = 0. To describe the main theorem, we denote

— v 2
1w = [ iy

and
M(t) = inf I(x).

|z|=t
Then we prove that

Theorem 1.1. Let v € (HL.(Q))" be a nontrivial solution of ([L.2)) with
an appropriate p € H}OC(Q). Assume that for 0 < k1 < i, 0 < Ky < %,
0<o< % and A >1

{|U($)| T la(@)] + [Vo(@)] < AL+ [2l?)™ 7 (1.3)

IVa(z)| < M1+ |z]?)~r2=0,
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Then there exist t depending on X\, n, k1, ka,d and positive constants Cy such
that

M(t) > exp (—C1t"logt) for t>t, (1.4)

where k = max{2 — 4k1,2 — 2k} and the constant Cy depends on A\, n and

log [ min{ inf / lu(y)|?dy, 1} || .
i<|z|<tt=0"1 Jjy—z|<1

It is interesting to compare Theorem [T with the result obtained in [5]

where we showed that for the standard stationary Navier-Stokes equations
(i.e., a = 0 in ([L2) if v is bounded (for n = 2) or C'* bounded (for n > 3)
in Q, then

M (t) > exp(—Ct*T).

We can immediately deduce several consequences from Theorem [I.11
Assume that n = 3 and f = O(|z|~3) at infinity. Let u1, us be two solutions
of (L) satisfying u; = O(|z|™!) and us = O(|z|™!). Tt was proved by
Sverak and Tsai [7] that both Vu; and Vuy are O(|z|~2). So we can choose
k1 = 3/16, ko = 3/8 (then k = 5/4), and fix 6 = 1/8 in Theorem [LI]
Due to Sverak and Tsai’s result, we can also relax condition (L3]). Setting
v =u; — ug and « = vy, we obtain from Theorem [I.1] that

Corollary 1.2. Let uj,us € (H}.(Q))? be solutions of (LI with appro-
priate pressures p1,pa € H} (Q). Assume that f(x) = O(|z|™3), wi(z) =
O(Jz|7Y), and ug = O(|z|™Y), at infinity. Then there exist t and positive
constant s1 such that

inf / [(u1 — ug)(y)|?dy > exp (—31t5/4 log t) for t>1t,
lzl=t J|y—z|<1

where s1 depends linearly on

log [ min{ inf / [(ur — u2)(y)|*dy, 1} || -
i<|z|<t/7 J|y—z|<1

Corollary immediately implies the following qualitative uniqueness

results.
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Corollary 1.3. Let uj,us € (H} () be solutions of (L) with appro-
priate pressures p1,pa € H] (Q). Assume that f(z) = O(|z|™3), wi(z) =
O(lz|7Y), and uz = O(|z|™1), at infinity. Then there exist R and positive

constant s1 such that if
/ exp(s|z[**log |z|)|(u1 — ug)(z)?dz < 0o
Qnflz|=R}

for all s > s1, then uy = ug in 2, where s1’s dependence is described in
Corollary [T.2.

In particular, let uo = 0 and f = 0, we have that

Corollary 1.4. Letn =3, f =0, and u € (H.(Q))3 be a solution of (L)
with an appropriate p € HL (). Assume that u(z) = O(|z|~1). Then there
exist R and positive constants s1 such that if

/ exp(s|z|”/*log |z|)|u(z)>dz < co
Qn{jz|>R}

for all s > s1, then u =0 in Q, where s1 depends linearly on the quantity

log <min{ inf / lu(y)*dy, 1}) ‘ .
R<|z|<r? Jly—z|<1

As in [5], we prove our result along the line of Carleman’s method. Some

useful techniques used in [5] are collected in the next Section. The proof of

the main theorem is given in Section 3.

2. Reduced system and Carleman estimates
Fixing xg with |zo| =t >> 1, we define
w(z) = (at)v(atz+x0), a&(r) = (at)alat + o), and p(x) = (at)’p(atz + o),

where 71 is the constant given in Lemma 2] and a > 8/r; which will be

determined in the proof of Theorem [I.Il Likewise, we denote

1 1
Q = B = : - .
t %_20111#5 (O) {x ‘1’| < a 20at5}
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From (L.2)), it is easy to get that

—Aw+4w-Vw+w-Va+a-Vw+Vp=0 in
V-w=0 1in Qt.

In view of (L3]), we have that

[l Lo (@) + 1wl Lo ) < Coati—2m =0,
IV oo (q,) < Coa®At2—2F1709,
Vil pe () < Coa? \2~2K2=59

where we can choose Cp = (20)%/%.

167

(2.1)

To prove TheoremIT], we use the reduced system containing the vorticity

equation derived in [5]. Let us define the vorticity ¢ of the velocity w by

1
q = curlw := —=(0;w; — Ojw;)1<i j<n-

V2

The formal transpose of curl is given by

1
(curlTv)lggn = % Z 8]'(1)1']' - vji)’
1<j<n

where v = (vjj)1<i j<n. It is easy to see that
Aw = V(V - w) — curl " curlw
(see, for example, [6] for a proof), which implies
Aw+curl'g=0 in Q.

Next we observe that

w-Va+a - Vw = V(w-a) —v2(curl w)a — v2(curl &)w

= V(w-a) — v2qa — v2(curl @)w

and in particular

w -V = V(= |wl*) — V2(curl w)w = V(l|w|2) —V2qu.

2

(2.3)
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Thus, applying curl on the first equation of ([2.1I), we have that

—~Aq+Q(q)(w+a)+q(Vw+Va)" —(Vw+Va)g' —divF=0in Q;, (2.4)
where

Qw)g = > (9iqik — Dige)wi
1<k<n
and

(AivF);Z = > OuFyn
k=1
with
Fyjr = Z ((curl d)jmwméfc — (curl d)imwméi) .

1<m<n

Putting together (2.3)), (24]), and using (I.3]), to prove the main theorem, it
suffices to consider

{Aq+A(:n)-Vq+B(ﬂc)q+divF:0 in 25

Aw+curl'g=0 in Q,
where A is a (3,2) tensor and B is a (2,2) tensor with

| Al| Loy < Corat'=2m179, ||B||Loo(9t)SCOAa2t2_2“1_5+Co)\a2t2_2“2_§5,
and
3
|F(z)| < Cora?t27 2230w ()|, VYV z ey

Our proof relies on appropriate Carleman estimates. Here we need two
Carleman estimates with weights 5 = pg(z) = exp(—S¢(z)), where > 0
and ¥(z) = log|z| + log((log |z[)?).

Lemma 2.1. There exist a sufficiently small number r1 > 0 depending on n
and a sufficiently large number 51 > 3, a positive constant C, depending on
n such that for allv € Uy, and f = (f1, -+, fn) € (Uy,)", B > B1, we have
that

/ 2 (log [2)2(Bl2] =" V] + B2~ o]?)dz
<c / 2 (log || 2 [ PAw + aldiv f)? + 82 f|2)dr,  (2.6)

where Uy, = {v € Cg°(R™\ {0}) : supp(v) C B, }.
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Lemma[2.T]is a modified form of |4, Lemma 2.4]. For the sake of brevity,
we omit the proof here. Replacing 8 of Lemma 2.1l with 8+ 1 and choosing
f =0 implies

Lemma 2.2. There exist a sufficiently small number r1 > 0, a sufficiently
large number By > 1, a positive constant C, such that for all v € U,, and

8 > B1, we have

/ 2 (log [2) 2z (Bla IV ol? + Fof)de < C / 2| (2] Af?)d.
(2.7)

In addition to Carleman estimates, we also need the following interior

estimate.

Lemma 2.3. For any 0 < a1 < ag such that By, C Q; for t > 1, let
X = By, \Ba, and d(z) be the distant from x € X to R"\X. Then we have

/d(w)2|Vw|2da:+/ d(a:)4|Vq\2da;+/ d(z)?|q|*dx
X X X
2
< C’<1+a2t_%) / w|2dz, (2.8)
X

where the constant C depends on n, \.

The proof of this lemma is similar to that given in [5].

3. Proof of Theorem 1.1

This section is devoted to the proof of the main theorem, Theorem [[.11
Since (w,p) € (H(Q))""!, the regularity theorem implies w € H7 ().
Therefore, to use estimate (2.7)), we simply cut-off w. So let x(x) € C§°(R"™)
satisfy 0 < x(z) <1 and

0, |z|< g,

X(@) =31 g <2l <5 = zom

07 “T| 2 é_ 20(21t5'
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It is easy to see that for any multiindex «

{wax\ =0((at)™) i g <ol < g3, (3.1)
[Dox| = O((atd)lel) if L— 35 <a| <120

To apply Carleman estimates above, it suffices to take 1/a < r;. Now

applying (2.7) to yw gives
[0l lal (Bl (xw)? + B )

<cC / 2] "l A (xw) Pd. (3.2)

Here and after, C and C denote general constants whose value may vary
from line to line. The dependence of C and C will be specified whenever

necessary. Next applying (2.6]) to v = xq and f = |z|xF yields that

/ 2 (log [2)2(|2[ " BIV (xa) 2 + |26 [xa?)de

< © [ A log o) lafP (A (x)+ aldivi o))+ 82l F P (3.3
Combining A (32) and @3), we obtain that
/Waog 2l) 23 ] (B 2|V f? + B2 da
+ [ (tog o) lol " (Blal'[Val? + fof28°lal)da
< 08 [ el lal'|A(xw) Pz

+C/@%(log|w|)4|w|2_"[(|wl2A(xq) + [efdiv (|| F))”

+8% |||z x F||*)da, (3.4)

where W denotes the domain {z : ;&> < |z| <1 — ﬁ} To simplify the

notations, we denote Y = {x : ﬁ < |z| < ﬁ} and Z = {x : % — 20:;’”5 <
| < 1-— 20?1#5}‘ By (24)) and estimates ([3.I]), we deduce from (B.4]) that

/Waog )2 Bl | (B2 Vawf? + B uw]?)da
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T /Waog 223" (Bl |V al? + 2263 )a[?)de
< 8 / Rla| ||V 2de
%%
+ a2 | (loglal)! g3l "ol Valda
L Cattta 2 /Waog ) 3| | g da
4ttt 410 [ (loglal) el ol uwPda
w
Clat)' [ el "0
YUz
L C(at)' 6 /Y  (log o) g3la "0 P (3.5)

where |U(z)[> = |z|*|Vq|? + |z)?|¢|)? + |z|?|Vw|? + |w|? and C depends on n,
A

Now we can choose a > ag > 8/r; such that (log|z|)? > 2C for all
x € W. Then the first term on the right hand side of ([3.5]) can be absorbed
by the left hand side of ([B.5]). Now, let 8 > 35 = t* and choose t > t( with
to depending on a, A, d such that the second term to the fourth term on the
right hand side of ([8.5) can be removed. With the choices described above,
we obtain from (B.5]) that

B (b1) " (log by) 223 (by) / fwl?dx
L<|"E|<bl

IN

g* /Waog )22 2|~ 2

IN

CBlat)* / (log [z]) B2 "0 Pdz
YuZz

< CB*(at)*(log be) 03" w3(b / U da
+CB?%(at)*(log bs) b3 " / |U|*da, (3.6)
where by = é - 20%7 by = 7 and b3 = 3 20at5

Using (2.8)), we can control |U|? terms on the right hand side of (3.6).
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Indeed, let X =Y; :={x: < |z| < 5}, then we can see that

16at

d(x) > C|x| forall zeY,
where C' an absolute constant. Therefore, (2.8]) implies
[ IVl + jal'[9a + fo2of?) da

< C | (d@)|Vuwl® +d(2)*|Vql* + d(x)?|q[*) da
Y1

E 2
< o(1ta?) / lw[2dz
Yi

< Cat | |w|de.
Yi

[March

(3.7)

Here C' depends on n, A. On the other hand, let X = Z; := {z : 3~ < |z| <

1 1
= 0P }, then

d(z) > Ct7%z| forall ze€ Z,

where C another absolute constant. Thus, it follows from (2.8]) that

/ (12270l + |2l Val? + |aPlg?) de
7

IN

IN

2
ot (1 + a2t_376) |w|?da
Al

IA

C(at)? lw|?dz.
VAl

Combining [B.6), (3.7), and [B.8) leads to
b2 (log by )42 / w[2da
L <‘Z“<b1

< Ca®t*(log ba)*b,™ goﬁ (be) / lw|?dz

+C(at)® (log bs) b3 ™0 (bs) / w[2dz.

Ct45/z (d(az)2|Vw|2 + d(x)4|Vq\2da; + d(m)Q\q|2) dx
1

(3.8)
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Notice that (3.9]) holds for all 5 > 5.
Changing 23 + n to 3, (3.9) becomes

bl_’B(log bl)—2ﬁ+2n—2 /1 \w\2daz

2at<|z|<b1

< C’a8t4b2_6(log bo) 282 [ )2 da
Yi

+C(at)®h; % (log by) 2042+ [ |w[?da. (3.10)
VAl
Dividing bl_ﬁ(log b1)~29+2n=2 on the both sides of (3I0) and noting 5 >
n+2>n-—1,ie., 28 —2n+2 >0, we have for t > t; > tg that

2
[ i, lw@)Pds
o4 2420 | < =

< / lw(z)|>dz

%<‘Z“<b1

< Ca®tH(log(8a1))" (by /by)? / lw[2da
Y

+C(at)® (b /b3)? (log bs)¥[log by / log bs] 22+ / wl?dx

Z1

< Ca8t4(log(8at))6(8t)5/ lw(z)|*da

|2]< o
+C(at)®(log b3)8(by /b5)° | |w(z)|*dz, (3.11)
Z1
where by = é— # and b5 = é— ﬁ. In deriving the third inequality above,
we use the fact that
= =1- — Ot <1
~ ‘b3’ log b3 2t0loga  20t9 +O(E) <

for all t > t9 > t; and a > a1 = max{1, ag}, where ¢t depends on ¢, d, and
a. From now on we fix a, which depends only on n and r1. Recall that rq is
a function of n. Therefore, t5 depends on n, A, and §. Having fixed constant

a, | log bs| can be bounded by a positive constant. Thus, (B11)) is reduced to

[, @ < CPO0g0fE0° [ ot
+=I<a

|lz|< X
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+Ct8(by/bs5)? | w(z)|Pde, (3.12)
Z1
where C depends on n and .

From (B12), (22)), the definition of w(z), the change of variables y =

atx + xg, and g = tyg, we have that

B
t5
h@W@+m&?(__J

I6%0) < Cellloge)(s)” [ T
10

ly—zo|<1

B
1
< O8I (tyo) + Ct® <t§t71)
10

B

d

< C(8)%I(tyy) + Ct® <t5ti) (3.13)
10

provided 8 > (5. For simplicity, by denoting

t+
A(t) = 2log8t, B(t) = log( m ),

(3I3) becomes

1(8'"y0) < C{ exp(BAM)I(tyo) + 1 exp(~BB(1) }. (3.14)
Now, we consider two cases. If

exp(B2A(t))1(tyo) > t° exp(—F2B(1)),

then we have

s, 1 B2
1W®=wazﬁwmﬁmmw+3m»=ﬁwY%(t;w> :

that is

I(tyo) >t 20218 = 47278 > oxp(—2t" log t) (3.15)

for any fixed t > t2. Note that we have used the relation 2 = t* in (B.15]).
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On the other hand, if

oxp(B2A (1)1 (tyo) < t° exp(—B2B(1)),
then we can pick a 8 > 35 such that

exp(BA()) I (tyo) = t° exp(=FB(t)). (3.16)
Solving § from (BI6) and using (3I4)), we have that

I(t'0yg) < Cexp(BA(t))I(tyo)
C (I(tyo))™ ()7
Ct8 (I(tyo))", (3.17)

IN

where 7 =

1

It is time to prove Theorem Il Let |zo| = ¢ for t > ¢3° and yo = %2,
then we can write

t = p(0=977) (3.18)

1
for some positive integer s and to < p < t,~° < t2 For simplicity, we define
_ (=0 B(d;)
dj—,u(( ) )andT]—Wforj—l2 - 8. Define

J={1<j<s:exp(dfA(d))I(dyo) > df exp(—d; B(d;))}.

Now, we divide it into two cases. If J = (), we only need to consider (3.I7]).
Using (817 iteratively starting from ¢ = d;, we have that

IN

I(pyo) < C(dY) (I(diyo))™
8

C*(dydy -+ ds)” (I(0))™ ™™ . (3.19)

A

By (8I8]) and (319]), we obtain that

I(,uyo) < C(logIOgt/‘10%(1—5)|)t8/5 (I(:L,O))Tﬂ'g---rs

< 1O0/8 (I ()™ (3.20)
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where C depends on \, n. It is easily to see that

1 2log(8d;) +log(1 + 0.1d;°) 4log(8d;)
—= 1 O L < 160d] log(d;),
j og(1+0.1d;°) log(1+0.1d;°)
and thus
1 s 1)
———— < (160log plogt)*(dy - - - ds)
T1’7'2 e TS
< tw(t), (3.21)

where w(t) = (logt)*loeloet)  Raising both sides of (20) to the power
L and using (3:2I)), we obtain that

TIT2 " Ts

1
(min{eyo). 1) < Tpayo) 172
< elCo/DW®) (I(zy)). (3.22)

Next, if J # (), let [ be the largest integer in J. Then from (BI5]) we

have

I(dyyo) > d; 2+, (3.23)
Iterating ([B.I7) starting from ¢ = dj1 yields
I(dyyo) < C* Hdppy -+ ds)® (I(xg)) ™
< O(loglogt/\ log(l—é)\)(t/dl)8/6 (I(xo))ﬂ-‘-r-ﬂ's
< 10 (I (o)) (3.24)

It is enough to assume I(d;yo) < 1. Repeating the computations in (3.21]),

we can see that

1
— < (t/dy)w(t). 3.25
< tfdett) (3.5
Hence, combining (3:23]), (3:24)) and using ([B.25), we get that
t—C’gt” log(t) < 6(00/5)tw(t) (1(1‘0)), (326)

where Cj is an absolute constant. The proof is complete in view of (BI5),

(B22) and (B220).
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