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Abstract

In this paper we are interested in the asymptotic behavior of incompressible fluid

around a bounded obstacle. Under certain a priori decaying assumptions, we derive a

quantitative estimate of the decaying rate of the difference of any two velocity functions

at infinity. This quantitative estimate gives us a sufficient condition, expressed in terms

of integrability, to guarantee that the solution of the Navier-Stokes equations is unique.

1. Introduction

Let D be a bounded domain in R
n and Ω = R

n\D̄ with n ≥ 2. Without

loss of generality, we let 0 belong to interior ofD. Assume that Ω is filled with

an incompressible fluid described by the stationary Navier-Stokes equations

{

−∆u+ u · ∇u+∇p = f in Ω,

∇ · u = 0 in Ω.
(1.1)

We are interested in the following question: let u1 and u2 be two solutions

of (1.1) satisfying some pre-described assumptions such as boundedness or
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decaying conditions, then find a sufficient condition which guarantees that

u1 ≡ u2 in Ω. In this paper, we answer this question by deriving a minimal

decay rate of u1 − u2 at infinity if u1 6= u2.

This question is motivated by the following problem. It was shown by

Finn [1] that when n = 3 and f = 0, if u|∂D = 0 and u = o(|x|−1), then u is

trivial. Inspired by Finn’s result, we would like to ask the following question:

when n = 3, if we know a priori that u = O(|x|−1), what is the minimal

decaying rate of any nontrivial u satisfying (1.1)? It should be remarked

that the boundary value of u on ∂B is irrelevant in this problem. Moreover,

the asymptotic behavior u = O(|x|−1) characterizes the so-called physically

reasonable solutions introduced by Finn [2].

To answer the main question of the paper, we simply subtract two equa-

tions for u1 and u2 and obtain

{

−∆v + v · ∇v + v · ∇u2 + u2 · ∇v +∇pv = 0 in Ω,

∇ · v = 0 in Ω,

where v = u1 − u2 and pv = p1 − p2. Therefore, to solve the problem, it

suffices to consider the generalized Navier-Stokes equations

{

−∆v + v · ∇v + v · ∇α+ α · ∇v +∇p = 0 in Ω,

∇ · v = 0 in Ω
(1.2)

with ∇ · α = 0. To describe the main theorem, we denote

I(x) =

∫

|y−x|<1
|v(y)|2dy

and

M(t) = inf
|x|=t

I(x).

Then we prove that

Theorem 1.1. Let v ∈ (H1
loc(Ω))

n be a nontrivial solution of (1.2) with

an appropriate p ∈ H1
loc(Ω). Assume that for 0 ≤ κ1 <

1
4 , 0 ≤ κ2 <

1
2 ,

0 < δ ≤ 1
8 and λ ≥ 1

{

|v(x)| + |α(x)| + |∇v(x)| ≤ λ(1 + |x|2)−κ1−δ

|∇α(x)| ≤ λ(1 + |x|2)−κ2−δ.
(1.3)
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Then there exist t̃ depending on λ, n, κ1, κ2, δ and positive constants C1 such

that

M(t) ≥ exp (−C1t
κ log t) for t ≥ t̃, (1.4)

where κ = max{2− 4κ1, 2− 2κ2} and the constant C1 depends on λ, n and

∣

∣

∣

∣

∣

log

(

min{ inf
t̃<|x|<t̃(1−δ)−1

∫

|y−x|<1
|v(y)|2dy, 1}

)∣

∣

∣

∣

∣

.

It is interesting to compare Theorem 1.1 with the result obtained in [5]

where we showed that for the standard stationary Navier-Stokes equations

(i.e., α = 0 in (1.2)) if v is bounded (for n = 2) or C1 bounded (for n ≥ 3)

in Ω, then

M(t) ≥ exp(−Ct2+).

We can immediately deduce several consequences from Theorem 1.1.

Assume that n = 3 and f = O(|x|−3) at infinity. Let u1, u2 be two solutions

of (1.1) satisfying u1 = O(|x|−1) and u2 = O(|x|−1). It was proved by

Sverak and Tsai [7] that both ∇u1 and ∇u2 are O(|x|−2). So we can choose

κ1 = 3/16, κ2 = 3/8 (then κ = 5/4), and fix δ = 1/8 in Theorem 1.1.

Due to Sverak and Tsai’s result, we can also relax condition (1.3). Setting

v = u1 − u2 and α = v1, we obtain from Theorem 1.1 that

Corollary 1.2. Let u1, u2 ∈ (H1
loc(Ω))

3 be solutions of (1.1) with appro-

priate pressures p1, p2 ∈ H1
loc(Ω). Assume that f(x) = O(|x|−3), u1(x) =

O(|x|−1), and u2 = O(|x|−1), at infinity. Then there exist t̃ and positive

constant s1 such that

inf
|x|=t

∫

|y−x|<1
|(u1 − u2)(y)|2dy ≥ exp

(

−s1t5/4 log t
)

for t ≥ t̃,

where s1 depends linearly on

∣

∣

∣

∣

∣

log

(

min{ inf
t̃<|x|<t̃8/7

∫

|y−x|<1
|(u1 − u2)(y)|2dy, 1}

)∣

∣

∣

∣

∣

.

Corollary 1.2 immediately implies the following qualitative uniqueness

results.
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Corollary 1.3. Let u1, u2 ∈ (H1
loc(Ω))

3 be solutions of (1.1) with appro-

priate pressures p1, p2 ∈ H1
loc(Ω). Assume that f(x) = O(|x|−3), u1(x) =

O(|x|−1), and u2 = O(|x|−1), at infinity. Then there exist R and positive

constant s1 such that if

∫

Ω∩{|x|≥R}
exp(s|x|5/4 log |x|)|(u1 − u2)(x)|2dx <∞

for all s > s1, then u1 ≡ u2 in Ω, where s1’s dependence is described in

Corollary 1.2.

In particular, let u2 = 0 and f = 0, we have that

Corollary 1.4. Let n = 3, f = 0, and u ∈ (H1
loc(Ω))

3 be a solution of (1.1)

with an appropriate p ∈ H1
loc(Ω). Assume that u(x) = O(|x|−1). Then there

exist R and positive constants s1 such that if

∫

Ω∩{|x|≥R}
exp(s|x|5/4 log |x|)|u(x)|2dx <∞

for all s > s1, then u ≡ 0 in Ω, where s1 depends linearly on the quantity

∣

∣

∣

∣

∣

log

(

min{ inf
R<|x|<R

8
7

∫

|y−x|<1
|u(y)|2dy, 1}

)
∣

∣

∣

∣

∣

.

As in [5], we prove our result along the line of Carleman’s method. Some

useful techniques used in [5] are collected in the next Section. The proof of

the main theorem is given in Section 3.

2. Reduced system and Carleman estimates

Fixing x0 with |x0| = t >> 1, we define

w(x) = (at)v(atx+x0), α̃(x) = (at)α(at+x0), and p̃(x) = (at)2p(atx+x0),

where r1 is the constant given in Lemma 2.1 and a ≥ 8/r1 which will be

determined in the proof of Theorem 1.1. Likewise, we denote

Ωt := B 1
a
− 1

20atδ
(0) = {x : |x| < 1

a
− 1

20atδ
}.
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From (1.2), it is easy to get that

{

−∆w + w · ∇w + w · ∇α̃+ α̃ · ∇w +∇p̃ = 0 in Ωt,

∇ · w = 0 in Ωt.
(2.1)

In view of (1.3), we have that















‖α̃‖L∞(Ωt) + ‖w‖L∞(Ωt) ≤ C0aλt
1−2κ1−δ,

‖∇w‖L∞(Ωt) ≤ C0a
2λt2−2κ1−δ,

‖∇α̃‖L∞(Ωt) ≤ C0a
2λt2−2κ2−

3
4
δ,

(2.2)

where we can choose C0 = (20)5/4.

To prove Theorem1.1, we use the reduced system containing the vorticity

equation derived in [5]. Let us define the vorticity q of the velocity w by

q = curlw :=
1√
2
(∂iwj − ∂jwi)1≤i,j≤n.

The formal transpose of curl is given by

(curl⊤v)1≤i≤n :=
1√
2

∑

1≤j≤n

∂j(vij − vji),

where v = (vij)1≤i,j≤n. It is easy to see that

∆w = ∇(∇ · w)− curl⊤curlw

(see, for example, [6] for a proof), which implies

∆w + curl⊤q = 0 in Ωt. (2.3)

Next we observe that

w · ∇α̃+ α̃ · ∇w = ∇(w · α̃)−
√
2(curl w)α̃ −

√
2(curl α̃)w

= ∇(w · α̃)−
√
2qα̃−

√
2(curl α̃)w

and in particular

w · ∇w = ∇(
1

2
|w|2)−

√
2(curl w)w = ∇(

1

2
|w|2)−

√
2qw.
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Thus, applying curl on the first equation of (2.1), we have that

−∆q+Q(q)(w+α̃)+q(∇w+∇α̃)⊤−(∇w+∇α̃)q⊤−divF =0 in Ωt, (2.4)

where

(Q(q)w)ij =
∑

1≤k≤n

(∂jqik − ∂iqjk)wk

and

(divF )ijZ =

n
∑

k=1

∂kFijk

with

Fijk =
∑

1≤m≤n

(

(curl α̃)jmwmδ
i
k − (curl α̃)imwmδ

j
k

)

.

Putting together (2.3), (2.4), and using (1.3), to prove the main theorem, it

suffices to consider

{

∆q +A(x) · ∇q +B(x)q + divF = 0 in Ωt,

∆w + curl⊤q = 0 in Ωt,
(2.5)

where A is a (3, 2) tensor and B is a (2, 2) tensor with

‖A‖L∞(Ωt) ≤ C0λat
1−2κ1−δ, ‖B‖L∞(Ωt)≤C0λa

2t2−2κ1−δ+C0λa
2t2−2κ2−

3
4
δ,

and

|F (x)| ≤ C0λa
2t2−2κ2−

3
4
δ|w(x)|, ∀ x ∈ Ωt.

Our proof relies on appropriate Carleman estimates. Here we need two

Carleman estimates with weights ϕβ = ϕβ(x) = exp(−βψ̃(x)), where β > 0

and ψ̃(x) = log |x|+ log((log |x|)2).

Lemma 2.1. There exist a sufficiently small number r1 > 0 depending on n

and a sufficiently large number β1 > 3, a positive constant C, depending on

n such that for all v ∈ Ur1 and f = (f1, · · · , fn) ∈ (Ur1)
n, β ≥ β1, we have

that
∫

ϕ2
β(log |x|)2(β|x|4−n|∇v|2 + β3|x|2−n|v|2)dx

≤ C

∫

ϕ2
β(log |x|)4|x|2−n[(|x|2∆v + |x|divf)2 + β2‖f‖2]dx, (2.6)

where Ur1 = {v ∈ C∞
0 (Rn \ {0}) : supp(v) ⊂ Br1}.
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Lemma 2.1 is a modified form of [4, Lemma 2.4]. For the sake of brevity,

we omit the proof here. Replacing β of Lemma 2.1 with β + 1 and choosing

f = 0 implies

Lemma 2.2. There exist a sufficiently small number r1 > 0, a sufficiently

large number β1 > 1, a positive constant C, such that for all v ∈ Ur1 and

β ≥ β1, we have

∫

ϕ2
β(log |x|)−2|x|−n(β|x|2|∇v|2 + β3|v|2)dx ≤ C

∫

ϕ2
β |x|−n(|x|4|∆v|2)dx.

(2.7)

In addition to Carleman estimates, we also need the following interior

estimate.

Lemma 2.3. For any 0 < a1 < a2 such that Ba2 ⊂ Ωt for t > 1, let

X = Ba2\B̄a1 and d(x) be the distant from x ∈ X to R
n\X. Then we have

∫

X
d(x)2|∇w|2dx+

∫

X
d(x)4|∇q|2dx+

∫

X
d(x)2|q|2dx

≤ C
(

1 + a2t−
3δ
2

)2
∫

X
|w|2dx, (2.8)

where the constant C depends on n, λ.

The proof of this lemma is similar to that given in [5].

3. Proof of Theorem 1.1

This section is devoted to the proof of the main theorem, Theorem 1.1.

Since (w, p) ∈ (H1(Ωt))
n+1, the regularity theorem implies w ∈ H2

loc(Ωt).

Therefore, to use estimate (2.7), we simply cut-off w. So let χ(x) ∈ C∞
0 (Rn)

satisfy 0 ≤ χ(x) ≤ 1 and

χ(x) =















0, |x| ≤ 1
8at ,

1, 1
4at < |x| < 1

a − 3
20atδ

,

0, |x| ≥ 1
a − 2

20atδ
.
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It is easy to see that for any multiindex α

{

|Dαχ| = O((at)|α|) if 1
8at ≤ |x| ≤ 1

4at ,

|Dαχ| = O((atδ)|α|) if 1
a − 3

20atδ
≤ |x| ≤ 1

a − 2
20atδ

.
(3.1)

To apply Carleman estimates above, it suffices to take 1/a ≤ r1. Now

applying (2.7) to χw gives

∫

(log |x|)−2ϕ2
β |x|−n(β|x|2|∇(χw)|2 + β3|χw|2)dx

≤ C

∫

ϕ2
β |x|−n|x|4|∆(χw)|2dx. (3.2)

Here and after, C and C̃ denote general constants whose value may vary

from line to line. The dependence of C and C̃ will be specified whenever

necessary. Next applying (2.6) to v = χq and f = |x|χF yields that

∫

ϕ2
β(log |x|)2(|x|4−nβ|∇(χq)|2 + |x|2−nβ3|χq|2)dx

≤ C

∫

ϕ2
β(log |x|)4|x|2−n[(|x|2∆(χq)+|x|div(|x|χF ))2+β2‖|x|χF‖2]dx.(3.3)

Combining β×(3.2) and (3.3), we obtain that

∫

W
(log |x|)−2ϕ2

β |x|−n(β2|x|2|∇w|2 + β4|w|2)dx

+

∫

W
(log |x|)2ϕ2

β|x|−n(β|x|4|∇q|2 + |x|2β3|q|2)dx

≤ Cβ

∫

ϕ2
β |x|−n|x|4|∆(χw)|2dx

+C

∫

ϕ2
β(log |x|)4|x|2−n[

(

|x|2∆(χq) + |x|div(|x|χF )
)2

+β2‖|x|χF‖2]dx, (3.4)

where W denotes the domain {x : 1
4at < |x| < 1

a − 3
20atδ

}. To simplify the

notations, we denote Y = {x : 1
8at ≤ |x| ≤ 1

4at} and Z = {x : 1
a − 3

20atδ
≤

|x| ≤ 1
a − 2

20atδ
}. By (2.4) and estimates (3.1), we deduce from (3.4) that

∫

W
(log |x|)−2ϕ2

β |x|−n(β2|x|2|∇w|2 + β4|w|2)dx
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+

∫

W
(log |x|)2ϕ2

β |x|−n(β|x|4|∇q|2 + |x|2β3|q|2)dx

≤ Cβ

∫

W
ϕ2
β |x|−n|x|4|∇q|2dx

+Ca2t2−4κ1−2δ

∫

W
(log |x|)4ϕ2

β|x|−n|x|6|∇q|2dx

+Ca4t4−4κ1−2δ

∫

W
(log |x|)4ϕ2

β|x|−n|x|6|q|2dx

+Cβ2a4t4−4κ2−
3
4
δ

∫

W
(log |x|)4ϕ2

β |x|−n|x|4|w|2dx

+C(at)4β

∫

Y ∪Z
ϕ2
β|x|−n|Ũ |2dx

+C(at)4β2
∫

Y ∪Z
(log |x|)4ϕ2

β |x|2−n|Ũ |2dx, (3.5)

where |Ũ(x)|2 = |x|4|∇q|2 + |x|2|q|2 + |x|2|∇w|2 + |w|2 and C depends on n,

λ.

Now we can choose a > a0 ≥ 8/r1 such that (log |x|)2 ≥ 2C for all

x ∈W . Then the first term on the right hand side of (3.5) can be absorbed

by the left hand side of (3.5). Now, let β ≥ β2 = tκ and choose t ≥ t0 with

t0 depending on a, λ, δ such that the second term to the fourth term on the

right hand side of (3.5) can be removed. With the choices described above,

we obtain from (3.5) that

β4(b1)
−n(log b1)

−2ϕ2
β(b1)

∫

1
at

<|x|<b1

|w|2dx

≤ β4
∫

W
(log |x|)−2ϕ2

β |x|−n|w|2dx

≤ Cβ(at)4
∫

Y ∪Z
(log |x|)4ϕ2

β |x|−n|Ũ |2dx

≤ Cβ2(at)4(log b2)
4b−n

2 ϕ2
β(b2)

∫

Y
|Ũ |2dx

+Cβ2(at)4(log b3)
4b−n

3 ϕ2
β(b3)

∫

Z
|Ũ |2dx, (3.6)

where b1 =
1
a − 8

20atδ
, b2 =

1
8at and b3 =

1
a − 3

20atδ
.

Using (2.8), we can control |Ũ |2 terms on the right hand side of (3.6).
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Indeed, let X = Y1 := {x : 1
16at ≤ |x| ≤ 1

2at}, then we can see that

d(x) ≥ C|x| for all x ∈ Y,

where C an absolute constant. Therefore, (2.8) implies

∫

Y

(

|x|2|∇w|2 + |x|4|∇q|2 + |x|2|q|2
)

dx

≤ C

∫

Y1

(

d(x)2|∇w|2 + d(x)4|∇q|2 + d(x)2|q|2
)

dx

≤ C
(

1 + a2t−
3δ
2

)2
∫

Y1

|w|2dx

≤ Ca4
∫

Y1

|w|2dx. (3.7)

Here C depends on n, λ. On the other hand, let X = Z1 := {x : 1
2a ≤ |x| ≤

1
a − 1

20atδ
}, then

d(x) ≥ Ct−δ|x| for all x ∈ Z,

where C another absolute constant. Thus, it follows from (2.8) that

∫

Z

(

|x|2|∇w|2 + |x|4|∇q|2 + |x|2|q|2
)

dx

≤ Ct4δ
∫

Z1

(

d(x)2|∇w|2 + d(x)4|∇q|2dx+ d(x)2|q|2
)

dx

≤ Ct4δ
(

1 + a2t−
3δ
2

)2
∫

Z1

|w|2dx

≤ C(at)4
∫

Z1

|w|2dx. (3.8)

Combining (3.6), (3.7), and (3.8) leads to

b−2β−n
1 (log b1)

−4β−2

∫

1
2at

<|x|<b1

|w|2dx

≤ Ca8t4(log b2)
4b−n

2 ϕ2
β(b2)

∫

Y1

|w|2dx

+C(at)8(log b3)
4b−n

3 ϕ2
β(b3)

∫

Z1

|w|2dx. (3.9)
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Notice that (3.9) holds for all β ≥ β2.

Changing 2β + n to β, (3.9) becomes

b−β
1 (log b1)

−2β+2n−2

∫

1
2at

<|x|<b1

|w|2dx

≤ Ca8t4b−β
2 (log b2)

−2β+2n+4

∫

Y1

|w|2dx

+C(at)8b−β
3 (log b3)

−2β+2n+4

∫

Z1

|w|2dx. (3.10)

Dividing b−β
1 (log b1)

−2β+2n−2 on the both sides of (3.10) and noting β ≥
n+ 2 > n− 1, i.e., 2β − 2n+ 2 > 0, we have for t ≥ t1 ≥ t0 that

∫

|x+
b4x0

t
|< 1

at

|w(x)|2dx

≤
∫

1
2at

<|x|<b1

|w(x)|2dx

≤ Ca8t4(log(8at))6(b1/b2)
β

∫

Y1

|w|2dx

+C(at)8(b1/b3)
β(log b3)

6[log b1/ log b3]
2β−2n+2

∫

Z1

|w|2dx

≤ Ca8t4(log(8at))6(8t)β
∫

|x|< 1
at

|w(x)|2dx

+C(at)8(log b3)
6(b1/b5)

β

∫

Z1

|w(x)|2dx, (3.11)

where b4 =
1
a− 1

atδ
and b5 =

1
a− 6

20atδ
. In deriving the third inequality above,

we use the fact that

0 ≤ (
b5
b3
)(
log b1
log b3

)2 = 1− 1

2tδ log a
− 3

20tδ
+O(t−2δ) ≤ 1

for all t ≥ t2 ≥ t1 and a > a1 = max{1, a0}, where t2 depends on t1, δ, and

a. From now on we fix a, which depends only on n and r1. Recall that r1 is

a function of n. Therefore, t2 depends on n, λ, and δ. Having fixed constant

a, | log b3| can be bounded by a positive constant. Thus, (3.11) is reduced to

∫

|x+
b4x0

t
|< 1

at

|w(x)|2dx ≤ Ct4(log t)6(8t)β
∫

|x|< 1
at

|w(x)|2dx
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+Ct8(b1/b5)
β

∫

Z1

|w(x)|2dx, (3.12)

where C depends on n and λ.

From (3.12), (2.2), the definition of w(x), the change of variables y =

atx+ x0, and x0 = ty0, we have that

I(t1−δy0) ≤ Ct4(log t)6(8t)β
∫

|y−x0|<1
|u(y)|2dy + Ct8−

3δ
2

(

tδ

tδ + 1
10

)β

≤ C(8t)β+10I(ty0) + Ct8

(

tδ

tδ + 1
10

)β

≤ C(8t)2βI(ty0) + Ct8

(

tδ

tδ + 1
10

)β

(3.13)

provided β ≥ β2. For simplicity, by denoting

A(t) = 2 log 8t, B(t) = log(
tδ + 1

10

tδ
),

(3.13) becomes

I(t1−δy0) ≤ C
{

exp(βA(t))I(ty0) + t8 exp(−βB(t))
}

. (3.14)

Now, we consider two cases. If

exp(β2A(t))I(ty0) ≥ t8 exp(−β2B(t)),

then we have

I(x0) = I(ty0) ≥ t8 exp(−β2(A(t) +B(t))) = t8(8t)−2β2

(

tδ + 1
10

tδ

)−β2

,

that is

I(ty0) ≥ t−2β2+8 = t−2tκ+8 ≥ exp(−2tκ log t) (3.15)

for any fixed t ≥ t2. Note that we have used the relation β2 = tκ in (3.15).



2016] THE STATIONARY NAVIER-STOKES EQUATIONS 175

On the other hand, if

exp(β2A(t))I(ty0) < t8 exp(−β2B(t)),

then we can pick a β̃ > β2 such that

exp(β̃A(t))I(ty0) = t8 exp(−β̃B(t)). (3.16)

Solving β̃ from (3.16) and using (3.14), we have that

I(t1−δy0) ≤ C exp(β̃A(t))I(ty0)

= C (I(ty0))
τ (t8)1−τ

≤ Ct8 (I(ty0))
τ , (3.17)

where τ = B(t)
A(t)+B(t) .

It is time to prove Theorem 1.1. Let |x0| = t for t ≥ t
1

1−δ

2 and y0 = x0
t ,

then we can write

t = µ((1−δ)−s) (3.18)

for some positive integer s and t2 ≤ µ < t
1

1−δ

2 ≤ t22. For simplicity, we define

dj = µ((1−δ)−j) and τj =
B(dj)

A(dj)+B(dj )
for j = 1, 2 · · · s. Define

J = {1 ≤ j ≤ s : exp(dκjA(dj))I(d
jy0) ≥ d8j exp(−dκjB(dj))}.

Now, we divide it into two cases. If J = ∅, we only need to consider (3.17).

Using (3.17) iteratively starting from t = d1, we have that

I(µy0) ≤ C(d81) (I(d1y0))
τ1

≤ Cs(d1d2 · · · ds)8 (I(x0))τ1τ2···τs . (3.19)

By (3.18) and (3.19), we obtain that

I(µy0) ≤ C(log log t/| log(1−δ)|)t8/δ (I(x0))
τ1τ2···τs

≤ tC̃0/δ (I(x0))
τ1τ2···τs , (3.20)
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where C̃0 depends on λ, n. It is easily to see that

1

τj
=

2 log(8dj) + log(1 + 0.1d−δ
j )

log(1 + 0.1d−δ
j )

≤ 4 log(8dj)

log(1 + 0.1d−δ
j )

≤ 160dδj log(dj),

and thus

1

τ1τ2 · · · τs
≤ (160 log µ log t)s(d1 · · · ds)δ

≤ tω(t), (3.21)

where ω(t) = (log t)4 log(log t). Raising both sides of (3.20) to the power
1

τ1τ2···τs
and using (3.21), we obtain that

(min{I(µy0), 1})tω(t) ≤ I(µy0)
1

τ1τ2···τs

≤ e(C̃0/δ)tω(t) (I(x0)) . (3.22)

Next, if J 6= ∅, let l be the largest integer in J . Then from (3.15) we

have

I(dly0) ≥ d
−2dκl +8

l . (3.23)

Iterating (3.17) starting from t = dl+1 yields

I(dly0) ≤ Cs−l(dl+1 · · · ds)8 (I(x0))τl+1···τs

≤ C(log log t/| log(1−δ)|)(t/dl)
8/δ (I(x0))

τl+1···τs

≤ tC̃0/δ (I(x0))
τl+1···τs . (3.24)

It is enough to assume I(dly0) < 1. Repeating the computations in (3.21),

we can see that

1

τl+1 · · · τs
≤ (t/dl)ω(t). (3.25)

Hence, combining (3.23), (3.24) and using (3.25), we get that

t−C̃3tκ log(t) ≤ e(C̃0/δ)tω(t) (I(x0)) , (3.26)

where C̃3 is an absolute constant. The proof is complete in view of (3.15),

(3.22) and (3.26).
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