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Abstract

We present a derivation, based on asymptotic analysis of Arsen’yev’s second order

ordinary differential equation, for the propagation of a boundary layer where thermal in-

version occurs. The equation we obtained has one more free parameter U0 than Arsen’yev’s

original ODE. Our analysis suggests that this ODE is only a first order closure in what

could be a hierarchal system of ODEs. The derivation and analysis of the hierarchal sys-

tem would provide an appealing generalization of Arsen’yev’s ODE and could be the basis

of further comparison with experimental data.

1. Introduction

In a recent paper Arsen’yev [1] has given a description of tornado forma-

tion and propagation via a model analogous to shallow water wave theory.

Moreover Arsen’yev’s predictions when compared with actual tornado data

are extremely accurate (within 10%) and hence provide a strong motivation

for further mathematical analysis of the derivation of his model. Indeed

that is the goal of this paper. Here, just as Arsen’yev, we begin with the

incompressible Navier-Stokes equations with the additional contribution of
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a turbulent stress that is phenomenologically modeled. However, unlike Ar-

sen’yev, we find it convenient to work in a dimensionless formulation thus

allowing us to be precise when neglecting small terms. This approach allows

us to see that our derived theory is fully non-linear and no linear approxi-

mations are made. Furthermore this allows us delineate exactly where our

model differs from that of Arsen’yev.

In fact the model of Arsen’yev belongs to a class of systems which are

open dissipative systems that are far from equilibrium. In such systems

energy and/or mass can flow through open boundaries. Such models are

actively studied in physics and in particular geophysics and have lead the

development of both theory and computational tools for the analysis of tor-

nadoes, squall storms, and ocean storm surges [2, 3, 4, 5].

Our physical set up of the model is identical to Arsen’yev. We consider

fluid motion (with velocity in Cartesian coordinates (u, v, w)) between the

earth and a thin thermal inversion layer which is modeled as a propagating

surface z = ζ(x, t) and hence the analogy with shallow water wave theory. In-

tegration of the Navier-Stokes equations in the z−direction from the surface

of the earth to the propagating surface allows us to find averaged equations

of motion which upon scaling lead to equations for ζ(x, t) and the space

averaged momentum in the x-direction S(x, t) =
∫ 1
ζ(x,t) u dz. However the

system for ζ, S is not closed and an extra dependent variable u(x, ζ(x, t), t)

appears in our equations. Arsen’yev has suggested in his Section 5 that this

relation can be taken as S(x, t) ≈ u(x, ζ(x, t), t) (in dimensionless variables)

which he refers to as the ”slab model”. Of course this is nothing more than

a rectangular approximation to the integral defining S(x, t) when ζ(x, t) is

small and there is no-slip boundary condition at z = 1. Here we see that a

higher order slab model with
∫ 1
ζ(x,t) u

2dz ≈ u2(x, ζ(x, t), t) suffices to close

our system and provide a new system of ordinary differential equations when

u, S, ζ are represented as traveling waves. The system is almost identical to

that of Arsen’yev with an additional free parameter entering governing or-

dinary differential equations.

As the end result of any new theory is comparison with existing theory,

i.e. in our case it is Arsen’yev theory, our final section will provide both such

a comparison and in addition a comparison with the observed tornado data

that Arsen’yev has provided in his paper.
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2. The Basic Model

The basic model relies on the concept of an inversion layer in the at-

mosphere and is taken from the paper of Arsen’yev [1]. In simple terms the

issue follows from how we measure the air temperature above the surface of

the earth. In common experience the temperature decreases as we increase

the distance from the earth’s surface. However in unusual circumstances in

an inversion layer the reverse is true and the temperature increases as the

distance increases. Pictorially this is represented in Figure 1 of [1] . There

the inversion layer is represented as a surface z = ς(x, t), z = 1 denotes the

surface of the earth, and z = 0 denotes the unperturbed layer.

The underlying dynamics are

1. between the earth’s surface z = 1and z = ς(x, t) cold air will rise

meeting the warmer inversion layer hence causing (via the ideal gas

law) a pressure difference pushing the cold air out and down;

2. above the inversion layer warm air arrives at the top of the inversion

layer where the air is colder again causing an opposite pressure differ-

ence that of 1). Now the air is pushed out and up.

3. This difference is pressures induces a turbulent shear stress E13 on the

layer z = ς(x, t). It is this turbulent shear stress that is constitutive

modeled at both z = ς(x, t) and z = 1 and provides an additional

input to the classical incompressible Navier- Stokes equations.

3. The Basic Equations

As noted in the Introduction our goal is to provide an asymptotic deriva-

tion of Arsen’yev’s theory as well as obtain a more general mathematical

result than he had obtained. In this regard we recall the incompressible

Navier- Stokes equations in dimensionless form.

Let (u, v, w) denote the components of velocity with respect to the Carte-

sian space coordinates (x, y, z), p the pressure , t denote time, Re denote

the dimensionless Reynolds number Re = V L/ν where V is a typical velocity

magnitude, L a typical length, and ν is the kinematic viscosity. We note

that an original set of dimensional coordinates (x∗, y∗, z∗) has been made
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dimensionless by division by H, (x∗, y∗, z∗)/H = (x, y, z), t∗/T = t where H

is the dimensional distance between the earth and the unperturbed inver-

sion layer and T is a typical time interval of approximately 30 seconds. This

explains why the surface of the earth has been set at z = 1.

In addition we represent the dimensionless force of gravity by the inverse

Froude number 1/ Fr where Fr = V 2/gL. Then the Navier-Stokes equations

are

∂u
∂t + u∂u

∂x + v ∂u
∂y + w ∂u

∂z = − ∂p
∂x + 1

Re

(

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)

− ∂E13

∂z (1a)

∂v
∂t + u∂v

∂x + v ∂v
∂y + w ∂v

∂z = − ∂p
∂y + 1

Re(
∂2v
∂x2 + ∂2v

∂y2
+ ∂2v

∂z2
) (1b)

∂w
∂t + u∂w

∂x + v ∂w
∂y + w ∂w

∂z = −∂p
∂z + 1

Re (
∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2 )−

∂E13

∂x + 1
Fr (1c)

∂u
∂x + ∂v

∂y + ∂w
∂z = 0. (1d)

On the boundary z = 1 we will impose no-slip boundary conditions

u = v = w = 0, (2)

while on the boundary z = ζ(x, t) we impose the kinematic boundary con-

dition,

w =
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
. (3)

In the subsequent analysis we will assume no dependence on y.

4. Analysis of the Continuity Equation

If there is no y dependence, the continuity equation (1d) becomes ∂u
∂x +

∂w
∂z = 0. Integrate from z = ζ(x, t) to z = 1 to obtain

∫ 1

ζ(x,t)

∂u

∂x
dz − w(x, ζ(x, t), t) = 0

and via the kinematic boundary condition we then have

∂ζ

∂t
+ u

∂ζ

∂x
=

∫ 1

ζ(x,t)

∂u

∂x
dz.
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Define S(x, t) =
∫ 1
ζ(x,t) u dz. Then from Leibnitz’s rule we have

∂S

∂x
=

∫ 1

ζ(x,t)

∂u

∂x
dz − u(x, ζ(x, t), t)

∂ζ

∂x
. (4)

Now substitute the above formula for ∂ζ
∂t to obtain

∂ζ

∂t
=

∂S

∂x
. (5)

5. Analysis of the Momentum Equation in the x−direction

Integrate the balance of linear momentum equation (1a) to obtain
∫ 1

ζ(x,t)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
dz =

∫ 1

ζ(x,t)
−∂p

∂x
+

1

Re
(
∂2u

∂x2
+

∂2u

∂z2
)dz

−E13(x, t, 1) + E13(x, t, ζ(x, t)). (6)

Now integrate by parts, use the continuity equation and (3) to find
∫ 1

ζ(x,t)
w
∂u

∂z
dz = −w(x, t, ζ(x, t))u(x, t, ζ(x, t)) +

∫ 1

ζ(x,t)
u
∂u

∂x
dz

= −(
∂ζ

∂t
+ u

∂ζ

∂x
)u(x, t, ζ(x, t)) +

∫ 1

ζ(x,t)
u
∂u

∂x
dz (7)

and hence

∫ 1

ζ(x,t)
{∂u
∂t

+ 2u
∂u

∂x
}dz − (

∂ζ

∂t
+ u

∂ζ

∂x
)u(x, t, ζ(x, t))

=

∫ 1

ζ(x,t)
{−∂p

∂x
+

1

Re
(
∂2u

∂x2
+

∂2u

∂z2
)}dz − E13(x, t, 1) + E13(x, t, ζ(x, t)). (8)

Leibnitz’s rule tells us

∂S

∂t
=

∫ 1

ζ(x,t)

∂u

∂t
dz − u(x, ζ(x, t), t)

∂ζ

∂t

and we insert this expression into (8). This yields

∫ 1

ζ(x,t)
2u

∂u

∂x
dz +

∂S

∂t
+ u(x, ζ(x, t), t)

∂ζ

∂t
− (

∂ζ

∂t
+ u

∂ζ

∂x
)u(x, t, ζ(x, t))
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=

∫ 1

ζ(x,t)
−∂p

∂x
+

1

Re
(
∂2u

∂x2
+

∂2u

∂z2
)}dz − E13(x, t, 1) + E13(x, t, ζ(x, t)) (9)

which simplifies to

∫ 1

ζ(x,t)
{2u∂u

∂x
}dz + ∂S

∂t
− ∂ζ

∂x
u2(x, t, ζ(x, t))

=

∫ 1

ζ(x,t)
{−∂p

∂x
+

1

Re
(
∂2u

∂x2
+

∂2u

∂z2
)}dz − E13(x, t, 1) + E13(x, t, ζ(x, t)). (10)

Recall from (4) that

∂S

∂x
=

∫ 1

ζ(x,t)

∂u

∂x
dz − u(x, ζ(x, t), t)

∂ζ

∂x
.

One additional differentiation gives

∂2S

∂x2
=

∫ 1

ζ(x,t)

∂2u

∂x2
dz −

[

∂

∂x
u(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x
− ∂

∂x
(u(x, ζ(x, t), t)

∂ζ

∂x
)

or
∫ 1

ζ(x,t)

∂2u

∂x2
dz =

∂2S

∂x2
+

[

∂

∂x
u(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x
+

∂

∂x
(u(x, ζ(x, t), t)

∂ζ

∂x
)).

(11)

We can check (11) if we make the following computations. Note

∫ 1

ζ(x,t)

∂2u

∂x2
dz = −

∫ 1

ζ(x,t)

∂2w

∂x∂z
dz = −

[

∂w

∂x

]z=1

z=ζ(x,t)

=

[

∂w

∂x
(x, z, t)

]

z=ζ(x,t)

where we have used the continuity equation and the no-slip boundary con-

dition at z = 1. Next use the continuity equation to see

∂

∂x
w(x, ζ(x, t), t) =

[

∂

∂x
w(x, z, t)

]

z=ζ(x,t)

+

[

∂

∂z
w(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x

=

[

∂

∂x
w(x, z, t)

]

z=ζ(x,t)

−
[

∂

∂x
u(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x
.

Insert the kinematic boundary condition (3) into left most term to find

∂

∂x

(∂ζ

∂t
+u(x, ζ(x, t), t)

∂ζ

∂x

)

=

[

∂

∂x
w(x, z, t)

]

z=ζ(x,t)

−
[

∂

∂x
u(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x
.
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Perform the indicated differentiations to see

∂2ζ

∂t∂x
+

∂

∂x
(u(x, ζ(x, t), t)

∂ζ

∂x
)

=

[

∂

∂x
w(x, z, t)

]

z=ζ(x,t)

−
[

∂

∂x
u(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x

∂2ζ

∂t∂x
+

∂

∂x
(u(x, ζ(x, t), t)

∂ζ

∂x
) +

[

∂

∂x
u(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x

=

[

∂

∂x
w(x, z, t)

]

z=ζ(x,t)

and we have

∫ 1

ζ(x,t)

∂2u

∂x2
dz =

∂2ζ

∂t∂x
+

∂

∂x
(u(x, ζ(x, t), t)

∂ζ

∂x
) +

[

∂

∂x
u(x, z, t)

]

z=ζ(x,t)

∂ζ

∂x
.

(12)

Thus we see (11) and (12) are equivalent if ∂2ζ
∂t∂x = ∂2S

∂x2 and we know this

equality holds.

Now return to (10) and we have

∫ 1

ζ(x,t)
2u

∂u

∂x
dz +

∂S

∂t
− ∂ζ

∂x
u2(x, t, ζ(x, t))

=

∫ 1

ζ(x,t)
{−∂p

∂x
+

1

Re
(
∂2u

∂z2
)}dz + 1

Re
{ ∂2S

∂x2
+

[

∂u(x, z, t)

∂x

]

z=ζ(x,t)

∂ζ

∂x

+
∂

∂x
(u(x, ζ(x, t), t)

∂ζ

∂x
)} − E13(x, t, 1) + E13(x, t, ζ(x, t)). (13)

Finally write

∫ 1

ζ(x,t)
2u

∂u

∂x
dz =

∂

∂x

∫ 1

ζ(x,t)
u2dz + u2(x, ζ(x, t), t)

∂ζ

∂x
,

so that (13) becomes

∂S

∂t
+

∂

∂x

∫ 1

ζ(x,t)
u2dz

=

∫ 1

ζ(x,t)
−∂p

∂x
dz+

1

Re

{

∂2S

∂x2
+

[

∂u(x, z, t)

∂x

]

z=ζ(x,t)

∂ζ

∂x
+

∂

∂x

(

u(x, ζ(x, t), t)
∂ζ

∂x

)
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+
∂u

∂z
(x, 1, t) − ∂u

∂z
(x, ζ(x, t), t)

}

− E13(x, t, 1) +E13(x, t, ζ(x, t)). (14)

7. Scaling and the Balance of Linear Momentum in the z−direction

Since we are interested in both a comparatively thin boundary over a

long section of the earth’s surface and motion with large Reynolds number

we scale the independent values as

x′ = x
√
Re, t′ = t

√
Re, z′ =

λ

H
z (15)

where λ is a typical dimensional length along the surface of the earth , i.e.

in the x−direction. In this case we expect H
λ to be small. Substitute (15)

into (1c) and we obtain

√
Re{∂w

∂t′
+u

∂w

∂x′
−w

∂u

∂x′
} = − λ

H

∂p

∂z′
+
∂2w

∂x′2
+

1

Re
(
λ

H
)2(

∂2w

∂z′2
)−

√
Re

∂E13

∂x
+

1

Fr
(16)

Multiply both sides of (16) by H
λ and we see that if

H

λ

√
Re ≪ 1,

H

λ
≪ 1,

1

Re

λ

H
≪ 1, (17)

to leading order we will have the static atmosphere balance relation

∂p

∂z′
=

1

Fr

H

λ
(18)

as long as 1
Fr

H
λ is of order one. Examination of (17) tells us that we must

satisfy 1
Re ≪ H

λ ≪ 1/
√
Re or

√
Re ≪ λ

H ≪ Re which is consistent with our

large Reynolds number assumption. This list of assumptions motivates us

to introduce data given by Arsen’yev in Section 6 of [1] and compare our

assumptions with his data. Arsen’yev takes

ν = 67.32m2/ sec

H = 980m

L = H

λ = 7101.82m

V = 31m/ sec
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Re = V L
ν = 31 · 980/67.32 = 451.27..

√
Re= 21.24, 1/

√
Re= .047..

1
Fr = 9.8m/ sec2 ·980m

(31m/ sec)2
= 9.8·980

961 = 9.99..

These values yield

H
λ = 980

7101.82 = .137.. =

1
Re

λ
H = 1

902.55 · 1
.137 = 1

123.64.. = .008...

1
Fr

H
λ = 9.99 · .137 = 1.37 . . .

where the desired relation
√
Re ≪ λ

H ≪ Re requires

20, 815m ≪ λ ≪ 441, 980m. (19)

Hence for our asymptotic analysis the choice of λ = 7101.82 suggested by Ar-

sen’yev is too low and more reasonable figure appears to be a value satisfying

(19). For example multiplying Arsen’yev value of λ by 5 would allow a bet-

ter approximation to (17) with 1
Fr

H
λ = 9.99 · .137/5 = 1.37/5 · · · = .27 . . .

We thus continue with our analysis based on the assumption that (17) is

satisfied where a larger value of λ has been used. In terms of the original

unscaled variables (18) gives

p =
1

Fr
(z − ζ(x, t)) + p0(x, t) (20)

where p0(x, t) is the pressure on z = ζ(x, t) but for convenience we take

p0 to be a constant ( as did Arsen’yev in his computations) and thus have

p = 1
Fr (z − ζ(x, t)) + p0. This of course yields ∂p

∂x = − 1
Fr

∂ζ
∂x .

8. Rescaled Momentum Equation in the x−direction

Substitution of (20) into (14) gives us

∂S

∂t
+

∂

∂x

∫ 1

ζ(x,t)
u2dz =

1

Fr

∂ζ

∂x
(1− ζ(x, t))+

1

Re

{∂2S

∂x2
+

[

∂u(x, z, t)

∂x

]

z=ζ(x,t)

∂ζ

∂x

+
∂

∂x
(u(x, ζ(x, t), t)

∂ζ

∂x
)+

∂u

∂z
(x, 1, t)− ∂u

∂z
(x, ζ(x, t), t)

}

−E13(x, t, 1) + E13(x, t, ζ(x, t)). (21)
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In terms of the scaled variables we then have

√
Re
{∂S

∂t′
+

∂

∂x′

∫ 1

ζ(x,t)
u2dz

}

=
√
Re

1

Fr

∂ζ

∂x′
(1− ζ(x, t)) +

∂2S

∂x′2
+

[

∂u(x, z, t)

∂x′

]

z=ζ(x,t)

∂ζ

∂x′

+
∂

∂x′
(u(x, ζ(x, t), t)

∂ζ

∂x′
) +

1

Re

λ

H

∂u

∂z′
(x, 1, t) − 1

Re

λ

H

∂u

∂z′
(x, ζ(x, t), t)

−E13(x, t, 1) +E13(x, t, ζ(x, t)). (22)

Since we have assumed 1
Re

λ
H << 1 delete the terms multiplying this quantity

in (22). In addition we assume |ζ| << 1 so that to leading order we have

√
Re{∂S

∂t′
+

∂

∂x′

∫ 1

ζ(x,t)
u2dz}

=
√
Re

1

Fr

∂ζ

∂x′
+

∂2S

∂x′2
+

[

∂u(x, z, t)

∂x′

]

z=ζ(x,t)

∂ζ

∂x′
+

∂

∂x′
(u(x, ζ(x, t), t)

∂ζ

∂x′
)

−E13(x, t, 1) +E13(x, t, ζ(x, t)). (23)

At this point to continue further we must place constitutive assumptions

on E13(x, t, 1), E13(x, t, ζ(x, t)). The constitutive equation for E13(x, t, 1) is

given by

E13(x, t, 1) = f∗S, where f∗ =
3A

H2
· 1

(1− n2)
(24)

where A is the coefficient of shear turbulent viscosity, H is still the height of

the unperturbed layer, and n = z0/H with z0a measure of the roughness of

the surface of the earth say caused by the height of grass or crops. Arsen’yev

in his paper takes A = 300m2/ sec, n = 0.05m/980m. Hence n2 is negligible

compared to 1 and we take

f∗ =
3A

H2
=

900m2/ sec

(980m)2
≈ .001/ sec .

Unfortunately as we see Arsen’yev value for f∗ is in dimensional

units. To make the relation dimensionless we take out typical velocity

V = 31m/ secand typical length L = H = 980m and hence find the typical

time scale T = L/V = (980/31) sec = 31.6 sec or roughly one half minute.

Thus the dimensionless value of f∗ is given f∗ ≈ .001/ sec . · 31.6 sec = .0316.
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The relation for E13(x, t, ζ(x, t)) is given by

E13(x, t, ζ(x, t)) =
Cg

H2k2
· S2.

Set α =
Cg

H2k2
and note that Arsen’yev takes Cg = .02, k = 1,H = 980m.

So we have the dimensional value of E13(x, t, ζ(x, t)) = .02S2/H2 and since

the typical length L = H we get the dimensionless relation E13(x, t, ζ(x, t)) =

(02S2/H2) ·H2, and hence E13(x, t, ζ(x, t)) = 02S2 with the dimensionless

value of α = .02.

We insert these relations into (23) and find

√
Re
{∂S

∂t′
+

∂

∂x′

∫ 1

ζ(x,t)
u2dz− 1

Fr

∂ζ

∂x′

}

=
∂2S

∂x′2
+

[

∂u(x, z, t)

∂x′

]

z=ζ(x,t)

∂ζ

∂x′
+

∂

∂x′

(

u(x, ζ(x, t), t)
∂ζ

∂x′

)

−f∗S+αS2.(25)

As is readily seen, (25) contains the non-local term
∫ 1
ζ(x,t) u

2dz and hence

we have little choice but to make a crude local approximation. The simplest

such approximation would be to replace the integral with its rectangular

approximation, that is,

∫ 1

ζ(x,t)
u2dz ≈ (1− ζ(x, t))(u2(x, ζ(x, t), t) − u2(x, 1, t))

= (1− ζ(x, t))u2(x, ζ(x, t), t)

where we have used the no-slip boundary condition at z = 1. We again recall

|ζ| << 1 so that our local approximation is now
∫ 1
ζ(x,t) u

2dz ≈ u2(x, ζ(x, t), t)

and substitute this into (25) to obtain

√
Re

{

∂S

∂t′
+

∂

∂x′
u2(x, ζ(x, t), t)− 1

Fr

∂ζ

∂x′

}

=
∂2S

∂x′2
+

[

∂u(x, z, t)

∂x′

]

z=ζ(x,t)

∂ζ

∂x′
+

∂

∂x′

(

u(x, ζ(x, t), t)
∂ζ

∂x′

)

−f∗S+αS2.(26)

The final issue we must address in this section is the appearance of the

unpleasant
[

∂u(x,z,t)
∂x′

]

z=ζ(x,t)
term in (25).
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We impose here yet one more boundary condition on the free surface

z = ζ(x, t):
[

∂u(x, z, t)

∂z

]

z=ζ(x,t)

= 0, (27)

i.e that the tangential component of the velocity u(x, z, t) has no appreciable

change as we go across the free boundary. We then compute via the chain

rule

∂u(x, ζ(x, t), t)

∂x′
=

[

∂u(x, z, t)

∂z

]

z=ζ(x,t)

∂ζ

∂x′
+

[

∂u(x, z, t)

∂x′

]

z=ζ(x,t)

and thus (27) gives us

∂u(x, ζ(x, t), t)

∂x′
=

[

∂u(x, z, t)

∂x′

]

z=ζ(x,t)

(28)

which in turn yields

√
Re

{

∂S

∂t′
+

∂

∂x′
u2(x, ζ(x, t), t) − 1

Fr

∂ζ

∂x′

}

=
∂2S

∂x′2
+
∂u(x, ζ(x, t), t)

∂x′
∂ζ

∂x′
+

∂

∂x′

(

u(x, ζ(x, t), t)
∂ζ

∂x′

)

−f∗S+αS2. (29)

One additional remark may be of interest. We have made the ap-

proximation
∫ 1
ζ(x,t) u

2dz ≈ u2(x, ζ(x, t), t) to eliminate the non-local term.

But if one multiplies the balance of linear momentum equation (1a) by u

and performs the integration to compute ∂
∂t

∫ 1
ζ(x,t) u

2dz then we can re-

peat the process and get the moment equation for
∫ 1
ζ(x,t) u

2dz in terms of
∂
∂x

∫ 1
ζ(x,t) u

3dz. Continuing in this way we may compute a hierarchy of mo-

ment equations. But inevitably a closure rule must be enforced. Arsen’yev

used
∫ 1
ζ(x,t) u dz ≈ u(x, ζ(x, t), t), we used

∫ 1
ζ(x,t) u

2dz ≈ u2(x, ζ(x, t), t) ,and

so at some point a rule of the form
∫ 1
ζ(x,t) u

pdz ≈ up(x, ζ(x, t), t) for some p

will come into play.

9. The Dynamical System

Inspection of equations (5), (29) shows it would be a closed system in
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ζ, S if an additional relation for u(x, t, ζ(x, t)) is imposed. We rewrite (5) in

the scaled variables and display rest of the closed system

∂ζ

∂t′
=

∂S

∂x′
. (30)

We look for a traveling wave solution of (29), (30)

S(x, t) = F (ξ), u(x, ζ(x, t), t) = U(ξ), ξ = x′ − ct′ (31)

Substitution into (30) gives ∂ζ
∂t′ = F ′(ξ) and hence

ζ(x, t) = −F (ξ)/c + ζ0 = −S(x, t)/c + ζ0, ζ0 a constant.

Next require

F (ξ) → 0, ζ(ξ) → 0 as ξ → ∞ and/or ξ → −∞ (32)

so that ζ0 = 0. Insert this relation into (29) and we find

√
Re{−cF + U2 +

1

cFr
F}′ = F ′′ −U ′F ′/c− (UF ′/c)′ − f∗F +αF 2 (33)

Since Re is taken to be large the only possibility is that U,F must balance

by the relation {−cF +U2 + 1
cFrF} = const. By (32) we see U2 → const. as

ξ → ∞ and/or ξ → −∞. Thus a simple choice of U2(ξ) is const. and U = U0

and we have {−c+ 1
cFr}F = 0 which yields the “locking” condition

−c+
1

cFr
= 0, c2 =

1

Fr
. (34)

Hence we may rewrite (33) as

(1− U0/c)F
′′ − f∗F + αF 2 = 0. (35)

This equation is classical and has the soliton solution

S = F = β sech2(ξ/∆), β =
3f∗
2α

∆ =

(

4(1− Uo
c )

f∗

)
1

2

,

ζ(x, t) = −F (ξ)/c = −S(x, t)/c, c2 =
1

Fr
,

(36)
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where we must take (1 − U0/c) > 0. We do this by taking U0 ≥ 0 and

c = − 1
(Fr)1/2

.

Arsen’yev obtained this result with U0 in (36) equal to zero. Here (36)

has the additional parameter U0 which will either steepen or flatten the

graph shown Figure 3 of Arsen’yev’s paper. Finally note that the data given

in our earlier Section 5 gives Fr = (9.99.)−1 and so to two decimal places

we have ζ(ξ) = .32 F (ξ).

10. Swirling Flow and the Cyclostrophic Approximation

First recall that the Navier-Stokes equations are Galilean invariant which

means that the velocity (
◦
u,

◦
v,

◦
w) moving in the frame (ξ, y′, z′, t′) of the

traveling wave with velocity (c, 0, 0) is related to the velocity (u, v, w) via

the formula

(
◦
u,

◦
v,

◦
w)(ξ, y′, z′, t′) + (c, 0, 0) = (u, v, w)(x′, y′, z′, t′)

and both (
◦
u,

◦
v,

◦
w), (u, v, w) satisfy the Navier-Stokes equations in their re-

spective frames. Next write the velocity in the moving frame in cylindrical

coordinates r = (ξ2 + (y′)2)1/2, ξ = r cos θ, y′ = r sin θ, y = y′√
Re

, z = H
λ z

′

∂vr
∂t′

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

= −∂p

∂r
,

∂vθ
∂t′

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

= −1

r

∂p

∂θ
,

where the small terms multiplying 1√
Re

, H
λ are omitted. We are interested in

finding a vθ, vr which are independent of t′, that is flow which is steady with

respect to the moving frame. To this end we set ∂vr
∂t′ = ∂vθ

∂t′ = 0 to obtain

vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

= −∂p

∂r
(37a)

vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

= −1

r

∂p

∂θ
. (37b)

Next recall that (20) tells us p = 1
Fr (z − ζ(x, t)) + p0 which in the moving
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frame gives us p = 1
Fr (z− (Fr)1/2F (ξ)) + p0. Use the chain rule to compute

∂p

∂r
= −F ′(ξ) cos θ

(Fr)1/2
,

∂p

∂θ
=

F ′(ξ)r sin θ

(Fr)1/2
,

∂vθ
∂θ

= −∂vθ
∂ξ

r sin θ +
∂vθ
∂y′

r cos θ,
∂vr
∂θ

= −∂vr
∂ξ

r sin θ +
∂vr
∂y′

r cos θ.

(38)

Recall we have assumed no y′ dependence and hence ∂vθ
∂θ = −∂vθ

∂ξ r sin θ,
∂vr
∂θ =

−∂vr
∂ξ r sin θ. Substitution of these relations into (37) gives

vr
∂vr
∂r

− vθ
∂vr
∂ξ

sin θ − v2θ
r

=
F ′(ξ) cos θ

(Fr)1/2
(39a)

vr
∂vθ
∂r

− vθ
∂vθ
∂ξ

sin θ +
vrvθ
r

=
−F ′(ξ)r sin θ

(Fr)1/2
· 1
r
. (39b)

Notice (39b) admits the solution vr = 0 when θ = 0. Substitution into (39a)

then gives the ”cyclostrophic approximation” for our problem

v2θ = − ξF ′(ξ)

(Fr)1/2
(40)

and hence we able to compute the swirling angular velocity vθ on the line

y = 0 from our traveling wave solution F (ξ). Of course (40) only makes

sense when ξF ′(ξ) ≤ 0 and hence we assume that our homoclinic orbit (35)

is adjusted so that it has ξ > 0 (ξ < 0) when the homoclinic orbit is in

the lower-half (upper-half) of the F,F ′ phase plane. A graph of vθ is would

have the shape given in Figure 5 of Arsen’yev’s paper. Notice however that

Arsen’yev’s graph would match the observed meteorological data if his graph

was flattened. As we have noted above the graph could be flattened by an

appropriate choice of U0.

The specific formula predicted by (40) is

v2θ = 2ξβsech2(ξ/∆) tanh(ξ/∆)/∆(Fr)1/2.

If we substitute the values used by Arsen’yev we note that here he has used

the viscosity ν = 3.96 which changes the Reynolds number to Re = 7671,

(Re)1/2 = 87.5. The values β = 2.37, 1/(Fr)1/2 = (9.99)1/2, ∆ = 20(1−U0)1/2

(3.16)1/2



160 E. LUNASIN, R. MALEK-MADANI AND M. SLEMROD [March

remain unchanged and so

v2θ = 14.978(ξ/∆)sech2(ξ/∆) tanh(ξ/∆).

For purposes of comparison with Arsen’yev this would give a value

vθ = [14.978(ξ/∆) tanh(ξ/∆)]1/2sech(ξ/∆)(31m/ sec)

= 119.97[(ξ/∆) tanh(ξ/∆)]1/2sech(ξ/∆)m/ sec (41)

where we have made vθ dimensional by putting in our typical velocity. We

can now observe first that since v2θ = 2ξβsech2(ξ/∆) tanh(ξ/∆)/∆(Fr)1/2

the dimensional maximum value of v2θ is given by

max v2θ =
βV 2

(Fr)1/2
max{2σsech2(σ) tanh(σ)}

and the value of ∆ is irrelevant for computing
[

v2θ
]

max, that is, the only

quantity that plays a role is βV 2

(Fr)1/2
. In addition a plot of the graph of

σsech2(σ) tanh(σ) shows the maximum occurs at approximately σ = 1 and

hence at approximately ξ = ∆. Return to the definition of ξ = x′ − ct′ =

(x− ct)(Re)1/2 = (x
∗

H − c t
∗

T )(Re)1/2 we see that the statement ξ = ∆ implies

that the approximate distance from the zero point of the wave propagat-

ing with velocity c to the maximum value is given (x
∗

H )(Re)1/2 = ∆, x∗ =

∆H/(Re)1/2. Hence for Arsen’yev’s data x∗ ≈
20(1−U0)1/2

87.5·(3.16)1/2
· 980 = 126.55 if

the value U0 = 0 is chosen. This value of x∗ is quite close the one seen in

Arsen’yev’s Figure 5.

11. Conclusion

In the above discussion we have given a derivation based on asymtotic

analysis of Arsen’yev’s second order ordinary differential equation for the

propagation of a boundary layer where thermal inversion occurs. The equa-

tion we obtain has one more free parameter U0 than Arsen’yev’s original

ODE. Also we note that our analysis suggests that this ODE is only a first

order closure in what could be a hierarchal system of ODEs. The derivation

and analysis of the hierarchal system would provide an appealing generaliza-

tion of Arsen’yev’s ODE and could be the basis of further comparison with

experimental data.
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